1 /* 2 * Driver for Xceive XC5000 "QAM/8VSB single chip tuner" 3 * 4 * Copyright (c) 2007 Xceive Corporation 5 * Copyright (c) 2007 Steven Toth <stoth@linuxtv.org> 6 * Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/videodev2.h> 27 #include <linux/delay.h> 28 #include <linux/workqueue.h> 29 #include <linux/dvb/frontend.h> 30 #include <linux/i2c.h> 31 32 #include "dvb_frontend.h" 33 34 #include "xc5000.h" 35 #include "tuner-i2c.h" 36 37 static int debug; 38 module_param(debug, int, 0644); 39 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); 40 41 static int no_poweroff; 42 module_param(no_poweroff, int, 0644); 43 MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n" 44 "\t\t1 keep device energized and with tuner ready all the times.\n" 45 "\t\tFaster, but consumes more power and keeps the device hotter"); 46 47 static DEFINE_MUTEX(xc5000_list_mutex); 48 static LIST_HEAD(hybrid_tuner_instance_list); 49 50 #define dprintk(level, fmt, arg...) if (debug >= level) \ 51 printk(KERN_INFO "%s: " fmt, "xc5000", ## arg) 52 53 struct xc5000_priv { 54 struct tuner_i2c_props i2c_props; 55 struct list_head hybrid_tuner_instance_list; 56 57 u32 if_khz; 58 u16 xtal_khz; 59 u32 freq_hz, freq_offset; 60 u32 bandwidth; 61 u8 video_standard; 62 u8 rf_mode; 63 u8 radio_input; 64 65 int chip_id; 66 u16 pll_register_no; 67 u8 init_status_supported; 68 u8 fw_checksum_supported; 69 70 struct dvb_frontend *fe; 71 struct delayed_work timer_sleep; 72 }; 73 74 /* Misc Defines */ 75 #define MAX_TV_STANDARD 24 76 #define XC_MAX_I2C_WRITE_LENGTH 64 77 78 /* Time to suspend after the .sleep callback is called */ 79 #define XC5000_SLEEP_TIME 5000 /* ms */ 80 81 /* Signal Types */ 82 #define XC_RF_MODE_AIR 0 83 #define XC_RF_MODE_CABLE 1 84 85 /* Product id */ 86 #define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000 87 #define XC_PRODUCT_ID_FW_LOADED 0x1388 88 89 /* Registers */ 90 #define XREG_INIT 0x00 91 #define XREG_VIDEO_MODE 0x01 92 #define XREG_AUDIO_MODE 0x02 93 #define XREG_RF_FREQ 0x03 94 #define XREG_D_CODE 0x04 95 #define XREG_IF_OUT 0x05 96 #define XREG_SEEK_MODE 0x07 97 #define XREG_POWER_DOWN 0x0A /* Obsolete */ 98 /* Set the output amplitude - SIF for analog, DTVP/DTVN for digital */ 99 #define XREG_OUTPUT_AMP 0x0B 100 #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */ 101 #define XREG_SMOOTHEDCVBS 0x0E 102 #define XREG_XTALFREQ 0x0F 103 #define XREG_FINERFREQ 0x10 104 #define XREG_DDIMODE 0x11 105 106 #define XREG_ADC_ENV 0x00 107 #define XREG_QUALITY 0x01 108 #define XREG_FRAME_LINES 0x02 109 #define XREG_HSYNC_FREQ 0x03 110 #define XREG_LOCK 0x04 111 #define XREG_FREQ_ERROR 0x05 112 #define XREG_SNR 0x06 113 #define XREG_VERSION 0x07 114 #define XREG_PRODUCT_ID 0x08 115 #define XREG_BUSY 0x09 116 #define XREG_BUILD 0x0D 117 #define XREG_TOTALGAIN 0x0F 118 #define XREG_FW_CHECKSUM 0x12 119 #define XREG_INIT_STATUS 0x13 120 121 /* 122 Basic firmware description. This will remain with 123 the driver for documentation purposes. 124 125 This represents an I2C firmware file encoded as a 126 string of unsigned char. Format is as follows: 127 128 char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB 129 char[1 ]=len0_LSB -> length of first write transaction 130 char[2 ]=data0 -> first byte to be sent 131 char[3 ]=data1 132 char[4 ]=data2 133 char[ ]=... 134 char[M ]=dataN -> last byte to be sent 135 char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB 136 char[M+2]=len1_LSB -> length of second write transaction 137 char[M+3]=data0 138 char[M+4]=data1 139 ... 140 etc. 141 142 The [len] value should be interpreted as follows: 143 144 len= len_MSB _ len_LSB 145 len=1111_1111_1111_1111 : End of I2C_SEQUENCE 146 len=0000_0000_0000_0000 : Reset command: Do hardware reset 147 len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767) 148 len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms 149 150 For the RESET and WAIT commands, the two following bytes will contain 151 immediately the length of the following transaction. 152 153 */ 154 struct XC_TV_STANDARD { 155 char *name; 156 u16 audio_mode; 157 u16 video_mode; 158 }; 159 160 /* Tuner standards */ 161 #define MN_NTSC_PAL_BTSC 0 162 #define MN_NTSC_PAL_A2 1 163 #define MN_NTSC_PAL_EIAJ 2 164 #define MN_NTSC_PAL_MONO 3 165 #define BG_PAL_A2 4 166 #define BG_PAL_NICAM 5 167 #define BG_PAL_MONO 6 168 #define I_PAL_NICAM 7 169 #define I_PAL_NICAM_MONO 8 170 #define DK_PAL_A2 9 171 #define DK_PAL_NICAM 10 172 #define DK_PAL_MONO 11 173 #define DK_SECAM_A2DK1 12 174 #define DK_SECAM_A2LDK3 13 175 #define DK_SECAM_A2MONO 14 176 #define L_SECAM_NICAM 15 177 #define LC_SECAM_NICAM 16 178 #define DTV6 17 179 #define DTV8 18 180 #define DTV7_8 19 181 #define DTV7 20 182 #define FM_RADIO_INPUT2 21 183 #define FM_RADIO_INPUT1 22 184 #define FM_RADIO_INPUT1_MONO 23 185 186 static struct XC_TV_STANDARD xc5000_standard[MAX_TV_STANDARD] = { 187 {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020}, 188 {"M/N-NTSC/PAL-A2", 0x0600, 0x8020}, 189 {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020}, 190 {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020}, 191 {"B/G-PAL-A2", 0x0A00, 0x8049}, 192 {"B/G-PAL-NICAM", 0x0C04, 0x8049}, 193 {"B/G-PAL-MONO", 0x0878, 0x8059}, 194 {"I-PAL-NICAM", 0x1080, 0x8009}, 195 {"I-PAL-NICAM-MONO", 0x0E78, 0x8009}, 196 {"D/K-PAL-A2", 0x1600, 0x8009}, 197 {"D/K-PAL-NICAM", 0x0E80, 0x8009}, 198 {"D/K-PAL-MONO", 0x1478, 0x8009}, 199 {"D/K-SECAM-A2 DK1", 0x1200, 0x8009}, 200 {"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009}, 201 {"D/K-SECAM-A2 MONO", 0x1478, 0x8009}, 202 {"L-SECAM-NICAM", 0x8E82, 0x0009}, 203 {"L'-SECAM-NICAM", 0x8E82, 0x4009}, 204 {"DTV6", 0x00C0, 0x8002}, 205 {"DTV8", 0x00C0, 0x800B}, 206 {"DTV7/8", 0x00C0, 0x801B}, 207 {"DTV7", 0x00C0, 0x8007}, 208 {"FM Radio-INPUT2", 0x9802, 0x9002}, 209 {"FM Radio-INPUT1", 0x0208, 0x9002}, 210 {"FM Radio-INPUT1_MONO", 0x0278, 0x9002} 211 }; 212 213 214 struct xc5000_fw_cfg { 215 char *name; 216 u16 size; 217 u16 pll_reg; 218 u8 init_status_supported; 219 u8 fw_checksum_supported; 220 }; 221 222 #define XC5000A_FIRMWARE "dvb-fe-xc5000-1.6.114.fw" 223 static const struct xc5000_fw_cfg xc5000a_1_6_114 = { 224 .name = XC5000A_FIRMWARE, 225 .size = 12401, 226 .pll_reg = 0x806c, 227 }; 228 229 #define XC5000C_FIRMWARE "dvb-fe-xc5000c-4.1.30.7.fw" 230 static const struct xc5000_fw_cfg xc5000c_41_024_5 = { 231 .name = XC5000C_FIRMWARE, 232 .size = 16497, 233 .pll_reg = 0x13, 234 .init_status_supported = 1, 235 .fw_checksum_supported = 1, 236 }; 237 238 static inline const struct xc5000_fw_cfg *xc5000_assign_firmware(int chip_id) 239 { 240 switch (chip_id) { 241 default: 242 case XC5000A: 243 return &xc5000a_1_6_114; 244 case XC5000C: 245 return &xc5000c_41_024_5; 246 } 247 } 248 249 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force); 250 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe); 251 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val); 252 static int xc5000_tuner_reset(struct dvb_frontend *fe); 253 254 static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len) 255 { 256 struct i2c_msg msg = { .addr = priv->i2c_props.addr, 257 .flags = 0, .buf = buf, .len = len }; 258 259 if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) { 260 printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n", len); 261 return -EREMOTEIO; 262 } 263 return 0; 264 } 265 266 #if 0 267 /* This routine is never used because the only time we read data from the 268 i2c bus is when we read registers, and we want that to be an atomic i2c 269 transaction in case we are on a multi-master bus */ 270 static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len) 271 { 272 struct i2c_msg msg = { .addr = priv->i2c_props.addr, 273 .flags = I2C_M_RD, .buf = buf, .len = len }; 274 275 if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) { 276 printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", len); 277 return -EREMOTEIO; 278 } 279 return 0; 280 } 281 #endif 282 283 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val) 284 { 285 u8 buf[2] = { reg >> 8, reg & 0xff }; 286 u8 bval[2] = { 0, 0 }; 287 struct i2c_msg msg[2] = { 288 { .addr = priv->i2c_props.addr, 289 .flags = 0, .buf = &buf[0], .len = 2 }, 290 { .addr = priv->i2c_props.addr, 291 .flags = I2C_M_RD, .buf = &bval[0], .len = 2 }, 292 }; 293 294 if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) { 295 printk(KERN_WARNING "xc5000: I2C read failed\n"); 296 return -EREMOTEIO; 297 } 298 299 *val = (bval[0] << 8) | bval[1]; 300 return 0; 301 } 302 303 static int xc5000_tuner_reset(struct dvb_frontend *fe) 304 { 305 struct xc5000_priv *priv = fe->tuner_priv; 306 int ret; 307 308 dprintk(1, "%s()\n", __func__); 309 310 if (fe->callback) { 311 ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ? 312 fe->dvb->priv : 313 priv->i2c_props.adap->algo_data, 314 DVB_FRONTEND_COMPONENT_TUNER, 315 XC5000_TUNER_RESET, 0); 316 if (ret) { 317 printk(KERN_ERR "xc5000: reset failed\n"); 318 return ret; 319 } 320 } else { 321 printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n"); 322 return -EINVAL; 323 } 324 return 0; 325 } 326 327 static int xc_write_reg(struct xc5000_priv *priv, u16 reg_addr, u16 i2c_data) 328 { 329 u8 buf[4]; 330 int watch_dog_timer = 100; 331 int result; 332 333 buf[0] = (reg_addr >> 8) & 0xFF; 334 buf[1] = reg_addr & 0xFF; 335 buf[2] = (i2c_data >> 8) & 0xFF; 336 buf[3] = i2c_data & 0xFF; 337 result = xc_send_i2c_data(priv, buf, 4); 338 if (result == 0) { 339 /* wait for busy flag to clear */ 340 while ((watch_dog_timer > 0) && (result == 0)) { 341 result = xc5000_readreg(priv, XREG_BUSY, (u16 *)buf); 342 if (result == 0) { 343 if ((buf[0] == 0) && (buf[1] == 0)) { 344 /* busy flag cleared */ 345 break; 346 } else { 347 msleep(5); /* wait 5 ms */ 348 watch_dog_timer--; 349 } 350 } 351 } 352 } 353 if (watch_dog_timer <= 0) 354 result = -EREMOTEIO; 355 356 return result; 357 } 358 359 static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence) 360 { 361 struct xc5000_priv *priv = fe->tuner_priv; 362 363 int i, nbytes_to_send, result; 364 unsigned int len, pos, index; 365 u8 buf[XC_MAX_I2C_WRITE_LENGTH]; 366 367 index = 0; 368 while ((i2c_sequence[index] != 0xFF) || 369 (i2c_sequence[index + 1] != 0xFF)) { 370 len = i2c_sequence[index] * 256 + i2c_sequence[index+1]; 371 if (len == 0x0000) { 372 /* RESET command */ 373 result = xc5000_tuner_reset(fe); 374 index += 2; 375 if (result != 0) 376 return result; 377 } else if (len & 0x8000) { 378 /* WAIT command */ 379 msleep(len & 0x7FFF); 380 index += 2; 381 } else { 382 /* Send i2c data whilst ensuring individual transactions 383 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes. 384 */ 385 index += 2; 386 buf[0] = i2c_sequence[index]; 387 buf[1] = i2c_sequence[index + 1]; 388 pos = 2; 389 while (pos < len) { 390 if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2) 391 nbytes_to_send = 392 XC_MAX_I2C_WRITE_LENGTH; 393 else 394 nbytes_to_send = (len - pos + 2); 395 for (i = 2; i < nbytes_to_send; i++) { 396 buf[i] = i2c_sequence[index + pos + 397 i - 2]; 398 } 399 result = xc_send_i2c_data(priv, buf, 400 nbytes_to_send); 401 402 if (result != 0) 403 return result; 404 405 pos += nbytes_to_send - 2; 406 } 407 index += len; 408 } 409 } 410 return 0; 411 } 412 413 static int xc_initialize(struct xc5000_priv *priv) 414 { 415 dprintk(1, "%s()\n", __func__); 416 return xc_write_reg(priv, XREG_INIT, 0); 417 } 418 419 static int xc_set_tv_standard(struct xc5000_priv *priv, 420 u16 video_mode, u16 audio_mode, u8 radio_mode) 421 { 422 int ret; 423 dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, video_mode, audio_mode); 424 if (radio_mode) { 425 dprintk(1, "%s() Standard = %s\n", 426 __func__, 427 xc5000_standard[radio_mode].name); 428 } else { 429 dprintk(1, "%s() Standard = %s\n", 430 __func__, 431 xc5000_standard[priv->video_standard].name); 432 } 433 434 ret = xc_write_reg(priv, XREG_VIDEO_MODE, video_mode); 435 if (ret == 0) 436 ret = xc_write_reg(priv, XREG_AUDIO_MODE, audio_mode); 437 438 return ret; 439 } 440 441 static int xc_set_signal_source(struct xc5000_priv *priv, u16 rf_mode) 442 { 443 dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode, 444 rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE"); 445 446 if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) { 447 rf_mode = XC_RF_MODE_CABLE; 448 printk(KERN_ERR 449 "%s(), Invalid mode, defaulting to CABLE", 450 __func__); 451 } 452 return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode); 453 } 454 455 static const struct dvb_tuner_ops xc5000_tuner_ops; 456 457 static int xc_set_rf_frequency(struct xc5000_priv *priv, u32 freq_hz) 458 { 459 u16 freq_code; 460 461 dprintk(1, "%s(%u)\n", __func__, freq_hz); 462 463 if ((freq_hz > xc5000_tuner_ops.info.frequency_max) || 464 (freq_hz < xc5000_tuner_ops.info.frequency_min)) 465 return -EINVAL; 466 467 freq_code = (u16)(freq_hz / 15625); 468 469 /* Starting in firmware version 1.1.44, Xceive recommends using the 470 FINERFREQ for all normal tuning (the doc indicates reg 0x03 should 471 only be used for fast scanning for channel lock) */ 472 return xc_write_reg(priv, XREG_FINERFREQ, freq_code); 473 } 474 475 476 static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz) 477 { 478 u32 freq_code = (freq_khz * 1024)/1000; 479 dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n", 480 __func__, freq_khz, freq_code); 481 482 return xc_write_reg(priv, XREG_IF_OUT, freq_code); 483 } 484 485 486 static int xc_get_adc_envelope(struct xc5000_priv *priv, u16 *adc_envelope) 487 { 488 return xc5000_readreg(priv, XREG_ADC_ENV, adc_envelope); 489 } 490 491 static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz) 492 { 493 int result; 494 u16 reg_data; 495 u32 tmp; 496 497 result = xc5000_readreg(priv, XREG_FREQ_ERROR, ®_data); 498 if (result != 0) 499 return result; 500 501 tmp = (u32)reg_data; 502 (*freq_error_hz) = (tmp * 15625) / 1000; 503 return result; 504 } 505 506 static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status) 507 { 508 return xc5000_readreg(priv, XREG_LOCK, lock_status); 509 } 510 511 static int xc_get_version(struct xc5000_priv *priv, 512 u8 *hw_majorversion, u8 *hw_minorversion, 513 u8 *fw_majorversion, u8 *fw_minorversion) 514 { 515 u16 data; 516 int result; 517 518 result = xc5000_readreg(priv, XREG_VERSION, &data); 519 if (result != 0) 520 return result; 521 522 (*hw_majorversion) = (data >> 12) & 0x0F; 523 (*hw_minorversion) = (data >> 8) & 0x0F; 524 (*fw_majorversion) = (data >> 4) & 0x0F; 525 (*fw_minorversion) = data & 0x0F; 526 527 return 0; 528 } 529 530 static int xc_get_buildversion(struct xc5000_priv *priv, u16 *buildrev) 531 { 532 return xc5000_readreg(priv, XREG_BUILD, buildrev); 533 } 534 535 static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz) 536 { 537 u16 reg_data; 538 int result; 539 540 result = xc5000_readreg(priv, XREG_HSYNC_FREQ, ®_data); 541 if (result != 0) 542 return result; 543 544 (*hsync_freq_hz) = ((reg_data & 0x0fff) * 763)/100; 545 return result; 546 } 547 548 static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines) 549 { 550 return xc5000_readreg(priv, XREG_FRAME_LINES, frame_lines); 551 } 552 553 static int xc_get_quality(struct xc5000_priv *priv, u16 *quality) 554 { 555 return xc5000_readreg(priv, XREG_QUALITY, quality); 556 } 557 558 static int xc_get_analogsnr(struct xc5000_priv *priv, u16 *snr) 559 { 560 return xc5000_readreg(priv, XREG_SNR, snr); 561 } 562 563 static int xc_get_totalgain(struct xc5000_priv *priv, u16 *totalgain) 564 { 565 return xc5000_readreg(priv, XREG_TOTALGAIN, totalgain); 566 } 567 568 static u16 wait_for_lock(struct xc5000_priv *priv) 569 { 570 u16 lock_state = 0; 571 int watch_dog_count = 40; 572 573 while ((lock_state == 0) && (watch_dog_count > 0)) { 574 xc_get_lock_status(priv, &lock_state); 575 if (lock_state != 1) { 576 msleep(5); 577 watch_dog_count--; 578 } 579 } 580 return lock_state; 581 } 582 583 #define XC_TUNE_ANALOG 0 584 #define XC_TUNE_DIGITAL 1 585 static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz, int mode) 586 { 587 int found = 0; 588 589 dprintk(1, "%s(%u)\n", __func__, freq_hz); 590 591 if (xc_set_rf_frequency(priv, freq_hz) != 0) 592 return 0; 593 594 if (mode == XC_TUNE_ANALOG) { 595 if (wait_for_lock(priv) == 1) 596 found = 1; 597 } 598 599 return found; 600 } 601 602 static int xc_set_xtal(struct dvb_frontend *fe) 603 { 604 struct xc5000_priv *priv = fe->tuner_priv; 605 int ret = 0; 606 607 switch (priv->chip_id) { 608 default: 609 case XC5000A: 610 /* 32.000 MHz xtal is default */ 611 break; 612 case XC5000C: 613 switch (priv->xtal_khz) { 614 default: 615 case 32000: 616 /* 32.000 MHz xtal is default */ 617 break; 618 case 31875: 619 /* 31.875 MHz xtal configuration */ 620 ret = xc_write_reg(priv, 0x000f, 0x8081); 621 break; 622 } 623 break; 624 } 625 return ret; 626 } 627 628 static int xc5000_fwupload(struct dvb_frontend *fe, 629 const struct xc5000_fw_cfg *desired_fw, 630 const struct firmware *fw) 631 { 632 struct xc5000_priv *priv = fe->tuner_priv; 633 int ret; 634 635 /* request the firmware, this will block and timeout */ 636 dprintk(1, "waiting for firmware upload (%s)...\n", 637 desired_fw->name); 638 639 priv->pll_register_no = desired_fw->pll_reg; 640 priv->init_status_supported = desired_fw->init_status_supported; 641 priv->fw_checksum_supported = desired_fw->fw_checksum_supported; 642 643 644 dprintk(1, "firmware uploading...\n"); 645 ret = xc_load_i2c_sequence(fe, fw->data); 646 if (!ret) { 647 ret = xc_set_xtal(fe); 648 dprintk(1, "Firmware upload complete...\n"); 649 } else 650 printk(KERN_ERR "xc5000: firmware upload failed...\n"); 651 652 return ret; 653 } 654 655 static void xc_debug_dump(struct xc5000_priv *priv) 656 { 657 u16 adc_envelope; 658 u32 freq_error_hz = 0; 659 u16 lock_status; 660 u32 hsync_freq_hz = 0; 661 u16 frame_lines; 662 u16 quality; 663 u16 snr; 664 u16 totalgain; 665 u8 hw_majorversion = 0, hw_minorversion = 0; 666 u8 fw_majorversion = 0, fw_minorversion = 0; 667 u16 fw_buildversion = 0; 668 u16 regval; 669 670 /* Wait for stats to stabilize. 671 * Frame Lines needs two frame times after initial lock 672 * before it is valid. 673 */ 674 msleep(100); 675 676 xc_get_adc_envelope(priv, &adc_envelope); 677 dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope); 678 679 xc_get_frequency_error(priv, &freq_error_hz); 680 dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz); 681 682 xc_get_lock_status(priv, &lock_status); 683 dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n", 684 lock_status); 685 686 xc_get_version(priv, &hw_majorversion, &hw_minorversion, 687 &fw_majorversion, &fw_minorversion); 688 xc_get_buildversion(priv, &fw_buildversion); 689 dprintk(1, "*** HW: V%d.%d, FW: V %d.%d.%d\n", 690 hw_majorversion, hw_minorversion, 691 fw_majorversion, fw_minorversion, fw_buildversion); 692 693 xc_get_hsync_freq(priv, &hsync_freq_hz); 694 dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz); 695 696 xc_get_frame_lines(priv, &frame_lines); 697 dprintk(1, "*** Frame lines = %d\n", frame_lines); 698 699 xc_get_quality(priv, &quality); 700 dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality & 0x07); 701 702 xc_get_analogsnr(priv, &snr); 703 dprintk(1, "*** Unweighted analog SNR = %d dB\n", snr & 0x3f); 704 705 xc_get_totalgain(priv, &totalgain); 706 dprintk(1, "*** Total gain = %d.%d dB\n", totalgain / 256, 707 (totalgain % 256) * 100 / 256); 708 709 if (priv->pll_register_no) { 710 xc5000_readreg(priv, priv->pll_register_no, ®val); 711 dprintk(1, "*** PLL lock status = 0x%04x\n", regval); 712 } 713 } 714 715 static int xc5000_set_params(struct dvb_frontend *fe) 716 { 717 int ret, b; 718 struct xc5000_priv *priv = fe->tuner_priv; 719 u32 bw = fe->dtv_property_cache.bandwidth_hz; 720 u32 freq = fe->dtv_property_cache.frequency; 721 u32 delsys = fe->dtv_property_cache.delivery_system; 722 723 if (xc_load_fw_and_init_tuner(fe, 0) != 0) { 724 dprintk(1, "Unable to load firmware and init tuner\n"); 725 return -EINVAL; 726 } 727 728 dprintk(1, "%s() frequency=%d (Hz)\n", __func__, freq); 729 730 switch (delsys) { 731 case SYS_ATSC: 732 dprintk(1, "%s() VSB modulation\n", __func__); 733 priv->rf_mode = XC_RF_MODE_AIR; 734 priv->freq_offset = 1750000; 735 priv->video_standard = DTV6; 736 break; 737 case SYS_DVBC_ANNEX_B: 738 dprintk(1, "%s() QAM modulation\n", __func__); 739 priv->rf_mode = XC_RF_MODE_CABLE; 740 priv->freq_offset = 1750000; 741 priv->video_standard = DTV6; 742 break; 743 case SYS_ISDBT: 744 /* All ISDB-T are currently for 6 MHz bw */ 745 if (!bw) 746 bw = 6000000; 747 /* fall to OFDM handling */ 748 case SYS_DMBTH: 749 case SYS_DVBT: 750 case SYS_DVBT2: 751 dprintk(1, "%s() OFDM\n", __func__); 752 switch (bw) { 753 case 6000000: 754 priv->video_standard = DTV6; 755 priv->freq_offset = 1750000; 756 break; 757 case 7000000: 758 priv->video_standard = DTV7; 759 priv->freq_offset = 2250000; 760 break; 761 case 8000000: 762 priv->video_standard = DTV8; 763 priv->freq_offset = 2750000; 764 break; 765 default: 766 printk(KERN_ERR "xc5000 bandwidth not set!\n"); 767 return -EINVAL; 768 } 769 priv->rf_mode = XC_RF_MODE_AIR; 770 break; 771 case SYS_DVBC_ANNEX_A: 772 case SYS_DVBC_ANNEX_C: 773 dprintk(1, "%s() QAM modulation\n", __func__); 774 priv->rf_mode = XC_RF_MODE_CABLE; 775 if (bw <= 6000000) { 776 priv->video_standard = DTV6; 777 priv->freq_offset = 1750000; 778 b = 6; 779 } else if (bw <= 7000000) { 780 priv->video_standard = DTV7; 781 priv->freq_offset = 2250000; 782 b = 7; 783 } else { 784 priv->video_standard = DTV7_8; 785 priv->freq_offset = 2750000; 786 b = 8; 787 } 788 dprintk(1, "%s() Bandwidth %dMHz (%d)\n", __func__, 789 b, bw); 790 break; 791 default: 792 printk(KERN_ERR "xc5000: delivery system is not supported!\n"); 793 return -EINVAL; 794 } 795 796 priv->freq_hz = freq - priv->freq_offset; 797 798 dprintk(1, "%s() frequency=%d (compensated to %d)\n", 799 __func__, freq, priv->freq_hz); 800 801 ret = xc_set_signal_source(priv, priv->rf_mode); 802 if (ret != 0) { 803 printk(KERN_ERR 804 "xc5000: xc_set_signal_source(%d) failed\n", 805 priv->rf_mode); 806 return -EREMOTEIO; 807 } 808 809 ret = xc_set_tv_standard(priv, 810 xc5000_standard[priv->video_standard].video_mode, 811 xc5000_standard[priv->video_standard].audio_mode, 0); 812 if (ret != 0) { 813 printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n"); 814 return -EREMOTEIO; 815 } 816 817 ret = xc_set_IF_frequency(priv, priv->if_khz); 818 if (ret != 0) { 819 printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n", 820 priv->if_khz); 821 return -EIO; 822 } 823 824 xc_write_reg(priv, XREG_OUTPUT_AMP, 0x8a); 825 826 xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL); 827 828 if (debug) 829 xc_debug_dump(priv); 830 831 priv->bandwidth = bw; 832 833 return 0; 834 } 835 836 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe) 837 { 838 struct xc5000_priv *priv = fe->tuner_priv; 839 int ret; 840 u16 id; 841 842 ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id); 843 if (ret == 0) { 844 if (id == XC_PRODUCT_ID_FW_NOT_LOADED) 845 ret = -ENOENT; 846 else 847 ret = 0; 848 } 849 850 dprintk(1, "%s() returns %s id = 0x%x\n", __func__, 851 ret == 0 ? "True" : "False", id); 852 return ret; 853 } 854 855 static int xc5000_set_tv_freq(struct dvb_frontend *fe, 856 struct analog_parameters *params) 857 { 858 struct xc5000_priv *priv = fe->tuner_priv; 859 u16 pll_lock_status; 860 int ret; 861 862 dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n", 863 __func__, params->frequency); 864 865 /* Fix me: it could be air. */ 866 priv->rf_mode = params->mode; 867 if (params->mode > XC_RF_MODE_CABLE) 868 priv->rf_mode = XC_RF_MODE_CABLE; 869 870 /* params->frequency is in units of 62.5khz */ 871 priv->freq_hz = params->frequency * 62500; 872 873 /* FIX ME: Some video standards may have several possible audio 874 standards. We simply default to one of them here. 875 */ 876 if (params->std & V4L2_STD_MN) { 877 /* default to BTSC audio standard */ 878 priv->video_standard = MN_NTSC_PAL_BTSC; 879 goto tune_channel; 880 } 881 882 if (params->std & V4L2_STD_PAL_BG) { 883 /* default to NICAM audio standard */ 884 priv->video_standard = BG_PAL_NICAM; 885 goto tune_channel; 886 } 887 888 if (params->std & V4L2_STD_PAL_I) { 889 /* default to NICAM audio standard */ 890 priv->video_standard = I_PAL_NICAM; 891 goto tune_channel; 892 } 893 894 if (params->std & V4L2_STD_PAL_DK) { 895 /* default to NICAM audio standard */ 896 priv->video_standard = DK_PAL_NICAM; 897 goto tune_channel; 898 } 899 900 if (params->std & V4L2_STD_SECAM_DK) { 901 /* default to A2 DK1 audio standard */ 902 priv->video_standard = DK_SECAM_A2DK1; 903 goto tune_channel; 904 } 905 906 if (params->std & V4L2_STD_SECAM_L) { 907 priv->video_standard = L_SECAM_NICAM; 908 goto tune_channel; 909 } 910 911 if (params->std & V4L2_STD_SECAM_LC) { 912 priv->video_standard = LC_SECAM_NICAM; 913 goto tune_channel; 914 } 915 916 tune_channel: 917 ret = xc_set_signal_source(priv, priv->rf_mode); 918 if (ret != 0) { 919 printk(KERN_ERR 920 "xc5000: xc_set_signal_source(%d) failed\n", 921 priv->rf_mode); 922 return -EREMOTEIO; 923 } 924 925 ret = xc_set_tv_standard(priv, 926 xc5000_standard[priv->video_standard].video_mode, 927 xc5000_standard[priv->video_standard].audio_mode, 0); 928 if (ret != 0) { 929 printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n"); 930 return -EREMOTEIO; 931 } 932 933 xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09); 934 935 xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG); 936 937 if (debug) 938 xc_debug_dump(priv); 939 940 if (priv->pll_register_no != 0) { 941 msleep(20); 942 xc5000_readreg(priv, priv->pll_register_no, &pll_lock_status); 943 if (pll_lock_status > 63) { 944 /* PLL is unlocked, force reload of the firmware */ 945 dprintk(1, "xc5000: PLL not locked (0x%x). Reloading...\n", 946 pll_lock_status); 947 if (xc_load_fw_and_init_tuner(fe, 1) != 0) { 948 printk(KERN_ERR "xc5000: Unable to reload fw\n"); 949 return -EREMOTEIO; 950 } 951 goto tune_channel; 952 } 953 } 954 955 return 0; 956 } 957 958 static int xc5000_set_radio_freq(struct dvb_frontend *fe, 959 struct analog_parameters *params) 960 { 961 struct xc5000_priv *priv = fe->tuner_priv; 962 int ret = -EINVAL; 963 u8 radio_input; 964 965 dprintk(1, "%s() frequency=%d (in units of khz)\n", 966 __func__, params->frequency); 967 968 if (priv->radio_input == XC5000_RADIO_NOT_CONFIGURED) { 969 dprintk(1, "%s() radio input not configured\n", __func__); 970 return -EINVAL; 971 } 972 973 if (priv->radio_input == XC5000_RADIO_FM1) 974 radio_input = FM_RADIO_INPUT1; 975 else if (priv->radio_input == XC5000_RADIO_FM2) 976 radio_input = FM_RADIO_INPUT2; 977 else if (priv->radio_input == XC5000_RADIO_FM1_MONO) 978 radio_input = FM_RADIO_INPUT1_MONO; 979 else { 980 dprintk(1, "%s() unknown radio input %d\n", __func__, 981 priv->radio_input); 982 return -EINVAL; 983 } 984 985 priv->freq_hz = params->frequency * 125 / 2; 986 987 priv->rf_mode = XC_RF_MODE_AIR; 988 989 ret = xc_set_tv_standard(priv, xc5000_standard[radio_input].video_mode, 990 xc5000_standard[radio_input].audio_mode, radio_input); 991 992 if (ret != 0) { 993 printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n"); 994 return -EREMOTEIO; 995 } 996 997 ret = xc_set_signal_source(priv, priv->rf_mode); 998 if (ret != 0) { 999 printk(KERN_ERR 1000 "xc5000: xc_set_signal_source(%d) failed\n", 1001 priv->rf_mode); 1002 return -EREMOTEIO; 1003 } 1004 1005 if ((priv->radio_input == XC5000_RADIO_FM1) || 1006 (priv->radio_input == XC5000_RADIO_FM2)) 1007 xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09); 1008 else if (priv->radio_input == XC5000_RADIO_FM1_MONO) 1009 xc_write_reg(priv, XREG_OUTPUT_AMP, 0x06); 1010 1011 xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG); 1012 1013 return 0; 1014 } 1015 1016 static int xc5000_set_analog_params(struct dvb_frontend *fe, 1017 struct analog_parameters *params) 1018 { 1019 struct xc5000_priv *priv = fe->tuner_priv; 1020 int ret = -EINVAL; 1021 1022 if (priv->i2c_props.adap == NULL) 1023 return -EINVAL; 1024 1025 if (xc_load_fw_and_init_tuner(fe, 0) != 0) { 1026 dprintk(1, "Unable to load firmware and init tuner\n"); 1027 return -EINVAL; 1028 } 1029 1030 switch (params->mode) { 1031 case V4L2_TUNER_RADIO: 1032 ret = xc5000_set_radio_freq(fe, params); 1033 break; 1034 case V4L2_TUNER_ANALOG_TV: 1035 case V4L2_TUNER_DIGITAL_TV: 1036 ret = xc5000_set_tv_freq(fe, params); 1037 break; 1038 } 1039 1040 return ret; 1041 } 1042 1043 1044 static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq) 1045 { 1046 struct xc5000_priv *priv = fe->tuner_priv; 1047 dprintk(1, "%s()\n", __func__); 1048 *freq = priv->freq_hz + priv->freq_offset; 1049 return 0; 1050 } 1051 1052 static int xc5000_get_if_frequency(struct dvb_frontend *fe, u32 *freq) 1053 { 1054 struct xc5000_priv *priv = fe->tuner_priv; 1055 dprintk(1, "%s()\n", __func__); 1056 *freq = priv->if_khz * 1000; 1057 return 0; 1058 } 1059 1060 static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw) 1061 { 1062 struct xc5000_priv *priv = fe->tuner_priv; 1063 dprintk(1, "%s()\n", __func__); 1064 1065 *bw = priv->bandwidth; 1066 return 0; 1067 } 1068 1069 static int xc5000_get_status(struct dvb_frontend *fe, u32 *status) 1070 { 1071 struct xc5000_priv *priv = fe->tuner_priv; 1072 u16 lock_status = 0; 1073 1074 xc_get_lock_status(priv, &lock_status); 1075 1076 dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status); 1077 1078 *status = lock_status; 1079 1080 return 0; 1081 } 1082 1083 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force) 1084 { 1085 struct xc5000_priv *priv = fe->tuner_priv; 1086 const struct xc5000_fw_cfg *desired_fw = xc5000_assign_firmware(priv->chip_id); 1087 const struct firmware *fw; 1088 int ret, i; 1089 u16 pll_lock_status; 1090 u16 fw_ck; 1091 1092 cancel_delayed_work(&priv->timer_sleep); 1093 1094 if (!force && xc5000_is_firmware_loaded(fe) == 0) 1095 return 0; 1096 1097 ret = request_firmware(&fw, desired_fw->name, 1098 priv->i2c_props.adap->dev.parent); 1099 if (ret) { 1100 printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n"); 1101 return ret; 1102 } 1103 1104 dprintk(1, "firmware read %Zu bytes.\n", fw->size); 1105 1106 if (fw->size != desired_fw->size) { 1107 printk(KERN_ERR "xc5000: Firmware file with incorrect size\n"); 1108 ret = -EINVAL; 1109 goto err; 1110 } 1111 1112 /* Try up to 5 times to load firmware */ 1113 for (i = 0; i < 5; i++) { 1114 if (i) 1115 printk(KERN_CONT " - retrying to upload firmware.\n"); 1116 1117 ret = xc5000_fwupload(fe, desired_fw, fw); 1118 if (ret != 0) 1119 goto err; 1120 1121 msleep(20); 1122 1123 if (priv->fw_checksum_supported) { 1124 if (xc5000_readreg(priv, XREG_FW_CHECKSUM, &fw_ck)) { 1125 printk(KERN_ERR 1126 "xc5000: FW checksum reading failed."); 1127 continue; 1128 } 1129 1130 if (!fw_ck) { 1131 printk(KERN_ERR 1132 "xc5000: FW checksum failed = 0x%04x.", 1133 fw_ck); 1134 continue; 1135 } 1136 } 1137 1138 /* Start the tuner self-calibration process */ 1139 ret = xc_initialize(priv); 1140 if (ret) { 1141 printk(KERN_ERR 1142 "xc5000: Can't request Self-callibration."); 1143 continue; 1144 } 1145 1146 /* Wait for calibration to complete. 1147 * We could continue but XC5000 will clock stretch subsequent 1148 * I2C transactions until calibration is complete. This way we 1149 * don't have to rely on clock stretching working. 1150 */ 1151 msleep(100); 1152 1153 if (priv->init_status_supported) { 1154 if (xc5000_readreg(priv, XREG_INIT_STATUS, &fw_ck)) { 1155 printk(KERN_ERR 1156 "xc5000: FW failed reading init status."); 1157 continue; 1158 } 1159 1160 if (!fw_ck) { 1161 printk(KERN_ERR 1162 "xc5000: FW init status failed = 0x%04x.", 1163 fw_ck); 1164 continue; 1165 } 1166 } 1167 1168 if (priv->pll_register_no) { 1169 xc5000_readreg(priv, priv->pll_register_no, 1170 &pll_lock_status); 1171 if (pll_lock_status > 63) { 1172 /* PLL is unlocked, force reload of the firmware */ 1173 printk(KERN_ERR 1174 "xc5000: PLL not running after fwload."); 1175 continue; 1176 } 1177 } 1178 1179 /* Default to "CABLE" mode */ 1180 ret = xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE); 1181 if (!ret) 1182 break; 1183 printk(KERN_ERR "xc5000: can't set to cable mode."); 1184 } 1185 1186 err: 1187 if (!ret) 1188 printk(KERN_INFO "xc5000: Firmware %s loaded and running.\n", 1189 desired_fw->name); 1190 else 1191 printk(KERN_CONT " - too many retries. Giving up\n"); 1192 1193 release_firmware(fw); 1194 return ret; 1195 } 1196 1197 static void xc5000_do_timer_sleep(struct work_struct *timer_sleep) 1198 { 1199 struct xc5000_priv *priv =container_of(timer_sleep, struct xc5000_priv, 1200 timer_sleep.work); 1201 struct dvb_frontend *fe = priv->fe; 1202 int ret; 1203 1204 dprintk(1, "%s()\n", __func__); 1205 1206 /* According to Xceive technical support, the "powerdown" register 1207 was removed in newer versions of the firmware. The "supported" 1208 way to sleep the tuner is to pull the reset pin low for 10ms */ 1209 ret = xc5000_tuner_reset(fe); 1210 if (ret != 0) 1211 printk(KERN_ERR 1212 "xc5000: %s() unable to shutdown tuner\n", 1213 __func__); 1214 } 1215 1216 static int xc5000_sleep(struct dvb_frontend *fe) 1217 { 1218 struct xc5000_priv *priv = fe->tuner_priv; 1219 1220 dprintk(1, "%s()\n", __func__); 1221 1222 /* Avoid firmware reload on slow devices */ 1223 if (no_poweroff) 1224 return 0; 1225 1226 schedule_delayed_work(&priv->timer_sleep, 1227 msecs_to_jiffies(XC5000_SLEEP_TIME)); 1228 1229 return 0; 1230 } 1231 1232 static int xc5000_init(struct dvb_frontend *fe) 1233 { 1234 struct xc5000_priv *priv = fe->tuner_priv; 1235 dprintk(1, "%s()\n", __func__); 1236 1237 if (xc_load_fw_and_init_tuner(fe, 0) != 0) { 1238 printk(KERN_ERR "xc5000: Unable to initialise tuner\n"); 1239 return -EREMOTEIO; 1240 } 1241 1242 if (debug) 1243 xc_debug_dump(priv); 1244 1245 return 0; 1246 } 1247 1248 static int xc5000_release(struct dvb_frontend *fe) 1249 { 1250 struct xc5000_priv *priv = fe->tuner_priv; 1251 1252 dprintk(1, "%s()\n", __func__); 1253 1254 mutex_lock(&xc5000_list_mutex); 1255 1256 if (priv) { 1257 cancel_delayed_work(&priv->timer_sleep); 1258 hybrid_tuner_release_state(priv); 1259 } 1260 1261 mutex_unlock(&xc5000_list_mutex); 1262 1263 fe->tuner_priv = NULL; 1264 1265 return 0; 1266 } 1267 1268 static int xc5000_set_config(struct dvb_frontend *fe, void *priv_cfg) 1269 { 1270 struct xc5000_priv *priv = fe->tuner_priv; 1271 struct xc5000_config *p = priv_cfg; 1272 1273 dprintk(1, "%s()\n", __func__); 1274 1275 if (p->if_khz) 1276 priv->if_khz = p->if_khz; 1277 1278 if (p->radio_input) 1279 priv->radio_input = p->radio_input; 1280 1281 return 0; 1282 } 1283 1284 1285 static const struct dvb_tuner_ops xc5000_tuner_ops = { 1286 .info = { 1287 .name = "Xceive XC5000", 1288 .frequency_min = 1000000, 1289 .frequency_max = 1023000000, 1290 .frequency_step = 50000, 1291 }, 1292 1293 .release = xc5000_release, 1294 .init = xc5000_init, 1295 .sleep = xc5000_sleep, 1296 1297 .set_config = xc5000_set_config, 1298 .set_params = xc5000_set_params, 1299 .set_analog_params = xc5000_set_analog_params, 1300 .get_frequency = xc5000_get_frequency, 1301 .get_if_frequency = xc5000_get_if_frequency, 1302 .get_bandwidth = xc5000_get_bandwidth, 1303 .get_status = xc5000_get_status 1304 }; 1305 1306 struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe, 1307 struct i2c_adapter *i2c, 1308 const struct xc5000_config *cfg) 1309 { 1310 struct xc5000_priv *priv = NULL; 1311 int instance; 1312 u16 id = 0; 1313 1314 dprintk(1, "%s(%d-%04x)\n", __func__, 1315 i2c ? i2c_adapter_id(i2c) : -1, 1316 cfg ? cfg->i2c_address : -1); 1317 1318 mutex_lock(&xc5000_list_mutex); 1319 1320 instance = hybrid_tuner_request_state(struct xc5000_priv, priv, 1321 hybrid_tuner_instance_list, 1322 i2c, cfg->i2c_address, "xc5000"); 1323 switch (instance) { 1324 case 0: 1325 goto fail; 1326 case 1: 1327 /* new tuner instance */ 1328 priv->bandwidth = 6000000; 1329 fe->tuner_priv = priv; 1330 priv->fe = fe; 1331 INIT_DELAYED_WORK(&priv->timer_sleep, xc5000_do_timer_sleep); 1332 break; 1333 default: 1334 /* existing tuner instance */ 1335 fe->tuner_priv = priv; 1336 break; 1337 } 1338 1339 if (priv->if_khz == 0) { 1340 /* If the IF hasn't been set yet, use the value provided by 1341 the caller (occurs in hybrid devices where the analog 1342 call to xc5000_attach occurs before the digital side) */ 1343 priv->if_khz = cfg->if_khz; 1344 } 1345 1346 if (priv->xtal_khz == 0) 1347 priv->xtal_khz = cfg->xtal_khz; 1348 1349 if (priv->radio_input == 0) 1350 priv->radio_input = cfg->radio_input; 1351 1352 /* don't override chip id if it's already been set 1353 unless explicitly specified */ 1354 if ((priv->chip_id == 0) || (cfg->chip_id)) 1355 /* use default chip id if none specified, set to 0 so 1356 it can be overridden if this is a hybrid driver */ 1357 priv->chip_id = (cfg->chip_id) ? cfg->chip_id : 0; 1358 1359 /* Check if firmware has been loaded. It is possible that another 1360 instance of the driver has loaded the firmware. 1361 */ 1362 if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != 0) 1363 goto fail; 1364 1365 switch (id) { 1366 case XC_PRODUCT_ID_FW_LOADED: 1367 printk(KERN_INFO 1368 "xc5000: Successfully identified at address 0x%02x\n", 1369 cfg->i2c_address); 1370 printk(KERN_INFO 1371 "xc5000: Firmware has been loaded previously\n"); 1372 break; 1373 case XC_PRODUCT_ID_FW_NOT_LOADED: 1374 printk(KERN_INFO 1375 "xc5000: Successfully identified at address 0x%02x\n", 1376 cfg->i2c_address); 1377 printk(KERN_INFO 1378 "xc5000: Firmware has not been loaded previously\n"); 1379 break; 1380 default: 1381 printk(KERN_ERR 1382 "xc5000: Device not found at addr 0x%02x (0x%x)\n", 1383 cfg->i2c_address, id); 1384 goto fail; 1385 } 1386 1387 mutex_unlock(&xc5000_list_mutex); 1388 1389 memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops, 1390 sizeof(struct dvb_tuner_ops)); 1391 1392 return fe; 1393 fail: 1394 mutex_unlock(&xc5000_list_mutex); 1395 1396 xc5000_release(fe); 1397 return NULL; 1398 } 1399 EXPORT_SYMBOL(xc5000_attach); 1400 1401 MODULE_AUTHOR("Steven Toth"); 1402 MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver"); 1403 MODULE_LICENSE("GPL"); 1404 MODULE_FIRMWARE(XC5000A_FIRMWARE); 1405 MODULE_FIRMWARE(XC5000C_FIRMWARE); 1406