xref: /linux/drivers/media/tuners/xc5000.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  *  Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
3  *
4  *  Copyright (c) 2007 Xceive Corporation
5  *  Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
6  *  Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/videodev2.h>
27 #include <linux/delay.h>
28 #include <linux/workqueue.h>
29 #include <linux/dvb/frontend.h>
30 #include <linux/i2c.h>
31 
32 #include "dvb_frontend.h"
33 
34 #include "xc5000.h"
35 #include "tuner-i2c.h"
36 
37 static int debug;
38 module_param(debug, int, 0644);
39 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
40 
41 static int no_poweroff;
42 module_param(no_poweroff, int, 0644);
43 MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n"
44 	"\t\t1 keep device energized and with tuner ready all the times.\n"
45 	"\t\tFaster, but consumes more power and keeps the device hotter");
46 
47 static DEFINE_MUTEX(xc5000_list_mutex);
48 static LIST_HEAD(hybrid_tuner_instance_list);
49 
50 #define dprintk(level, fmt, arg...) if (debug >= level) \
51 	printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)
52 
53 struct xc5000_priv {
54 	struct tuner_i2c_props i2c_props;
55 	struct list_head hybrid_tuner_instance_list;
56 
57 	u32 if_khz;
58 	u16 xtal_khz;
59 	u32 freq_hz, freq_offset;
60 	u32 bandwidth;
61 	u8  video_standard;
62 	u8  rf_mode;
63 	u8  radio_input;
64 
65 	int chip_id;
66 	u16 pll_register_no;
67 	u8 init_status_supported;
68 	u8 fw_checksum_supported;
69 
70 	struct dvb_frontend *fe;
71 	struct delayed_work timer_sleep;
72 };
73 
74 /* Misc Defines */
75 #define MAX_TV_STANDARD			24
76 #define XC_MAX_I2C_WRITE_LENGTH		64
77 
78 /* Time to suspend after the .sleep callback is called */
79 #define XC5000_SLEEP_TIME		5000 /* ms */
80 
81 /* Signal Types */
82 #define XC_RF_MODE_AIR			0
83 #define XC_RF_MODE_CABLE		1
84 
85 /* Product id */
86 #define XC_PRODUCT_ID_FW_NOT_LOADED	0x2000
87 #define XC_PRODUCT_ID_FW_LOADED	0x1388
88 
89 /* Registers */
90 #define XREG_INIT         0x00
91 #define XREG_VIDEO_MODE   0x01
92 #define XREG_AUDIO_MODE   0x02
93 #define XREG_RF_FREQ      0x03
94 #define XREG_D_CODE       0x04
95 #define XREG_IF_OUT       0x05
96 #define XREG_SEEK_MODE    0x07
97 #define XREG_POWER_DOWN   0x0A /* Obsolete */
98 /* Set the output amplitude - SIF for analog, DTVP/DTVN for digital */
99 #define XREG_OUTPUT_AMP   0x0B
100 #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
101 #define XREG_SMOOTHEDCVBS 0x0E
102 #define XREG_XTALFREQ     0x0F
103 #define XREG_FINERFREQ    0x10
104 #define XREG_DDIMODE      0x11
105 
106 #define XREG_ADC_ENV      0x00
107 #define XREG_QUALITY      0x01
108 #define XREG_FRAME_LINES  0x02
109 #define XREG_HSYNC_FREQ   0x03
110 #define XREG_LOCK         0x04
111 #define XREG_FREQ_ERROR   0x05
112 #define XREG_SNR          0x06
113 #define XREG_VERSION      0x07
114 #define XREG_PRODUCT_ID   0x08
115 #define XREG_BUSY         0x09
116 #define XREG_BUILD        0x0D
117 #define XREG_TOTALGAIN    0x0F
118 #define XREG_FW_CHECKSUM  0x12
119 #define XREG_INIT_STATUS  0x13
120 
121 /*
122    Basic firmware description. This will remain with
123    the driver for documentation purposes.
124 
125    This represents an I2C firmware file encoded as a
126    string of unsigned char. Format is as follows:
127 
128    char[0  ]=len0_MSB  -> len = len_MSB * 256 + len_LSB
129    char[1  ]=len0_LSB  -> length of first write transaction
130    char[2  ]=data0 -> first byte to be sent
131    char[3  ]=data1
132    char[4  ]=data2
133    char[   ]=...
134    char[M  ]=dataN  -> last byte to be sent
135    char[M+1]=len1_MSB  -> len = len_MSB * 256 + len_LSB
136    char[M+2]=len1_LSB  -> length of second write transaction
137    char[M+3]=data0
138    char[M+4]=data1
139    ...
140    etc.
141 
142    The [len] value should be interpreted as follows:
143 
144    len= len_MSB _ len_LSB
145    len=1111_1111_1111_1111   : End of I2C_SEQUENCE
146    len=0000_0000_0000_0000   : Reset command: Do hardware reset
147    len=0NNN_NNNN_NNNN_NNNN   : Normal transaction: number of bytes = {1:32767)
148    len=1WWW_WWWW_WWWW_WWWW   : Wait command: wait for {1:32767} ms
149 
150    For the RESET and WAIT commands, the two following bytes will contain
151    immediately the length of the following transaction.
152 
153 */
154 struct XC_TV_STANDARD {
155 	char *name;
156 	u16 audio_mode;
157 	u16 video_mode;
158 };
159 
160 /* Tuner standards */
161 #define MN_NTSC_PAL_BTSC	0
162 #define MN_NTSC_PAL_A2		1
163 #define MN_NTSC_PAL_EIAJ	2
164 #define MN_NTSC_PAL_MONO	3
165 #define BG_PAL_A2		4
166 #define BG_PAL_NICAM		5
167 #define BG_PAL_MONO		6
168 #define I_PAL_NICAM		7
169 #define I_PAL_NICAM_MONO	8
170 #define DK_PAL_A2		9
171 #define DK_PAL_NICAM		10
172 #define DK_PAL_MONO		11
173 #define DK_SECAM_A2DK1		12
174 #define DK_SECAM_A2LDK3		13
175 #define DK_SECAM_A2MONO		14
176 #define L_SECAM_NICAM		15
177 #define LC_SECAM_NICAM		16
178 #define DTV6			17
179 #define DTV8			18
180 #define DTV7_8			19
181 #define DTV7			20
182 #define FM_RADIO_INPUT2		21
183 #define FM_RADIO_INPUT1		22
184 #define FM_RADIO_INPUT1_MONO	23
185 
186 static struct XC_TV_STANDARD xc5000_standard[MAX_TV_STANDARD] = {
187 	{"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
188 	{"M/N-NTSC/PAL-A2",   0x0600, 0x8020},
189 	{"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
190 	{"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
191 	{"B/G-PAL-A2",        0x0A00, 0x8049},
192 	{"B/G-PAL-NICAM",     0x0C04, 0x8049},
193 	{"B/G-PAL-MONO",      0x0878, 0x8059},
194 	{"I-PAL-NICAM",       0x1080, 0x8009},
195 	{"I-PAL-NICAM-MONO",  0x0E78, 0x8009},
196 	{"D/K-PAL-A2",        0x1600, 0x8009},
197 	{"D/K-PAL-NICAM",     0x0E80, 0x8009},
198 	{"D/K-PAL-MONO",      0x1478, 0x8009},
199 	{"D/K-SECAM-A2 DK1",  0x1200, 0x8009},
200 	{"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009},
201 	{"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
202 	{"L-SECAM-NICAM",     0x8E82, 0x0009},
203 	{"L'-SECAM-NICAM",    0x8E82, 0x4009},
204 	{"DTV6",              0x00C0, 0x8002},
205 	{"DTV8",              0x00C0, 0x800B},
206 	{"DTV7/8",            0x00C0, 0x801B},
207 	{"DTV7",              0x00C0, 0x8007},
208 	{"FM Radio-INPUT2",   0x9802, 0x9002},
209 	{"FM Radio-INPUT1",   0x0208, 0x9002},
210 	{"FM Radio-INPUT1_MONO", 0x0278, 0x9002}
211 };
212 
213 
214 struct xc5000_fw_cfg {
215 	char *name;
216 	u16 size;
217 	u16 pll_reg;
218 	u8 init_status_supported;
219 	u8 fw_checksum_supported;
220 };
221 
222 #define XC5000A_FIRMWARE "dvb-fe-xc5000-1.6.114.fw"
223 static const struct xc5000_fw_cfg xc5000a_1_6_114 = {
224 	.name = XC5000A_FIRMWARE,
225 	.size = 12401,
226 	.pll_reg = 0x806c,
227 };
228 
229 #define XC5000C_FIRMWARE "dvb-fe-xc5000c-4.1.30.7.fw"
230 static const struct xc5000_fw_cfg xc5000c_41_024_5 = {
231 	.name = XC5000C_FIRMWARE,
232 	.size = 16497,
233 	.pll_reg = 0x13,
234 	.init_status_supported = 1,
235 	.fw_checksum_supported = 1,
236 };
237 
238 static inline const struct xc5000_fw_cfg *xc5000_assign_firmware(int chip_id)
239 {
240 	switch (chip_id) {
241 	default:
242 	case XC5000A:
243 		return &xc5000a_1_6_114;
244 	case XC5000C:
245 		return &xc5000c_41_024_5;
246 	}
247 }
248 
249 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force);
250 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe);
251 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val);
252 static int xc5000_tuner_reset(struct dvb_frontend *fe);
253 
254 static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
255 {
256 	struct i2c_msg msg = { .addr = priv->i2c_props.addr,
257 			       .flags = 0, .buf = buf, .len = len };
258 
259 	if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
260 		printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n", len);
261 		return -EREMOTEIO;
262 	}
263 	return 0;
264 }
265 
266 #if 0
267 /* This routine is never used because the only time we read data from the
268    i2c bus is when we read registers, and we want that to be an atomic i2c
269    transaction in case we are on a multi-master bus */
270 static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
271 {
272 	struct i2c_msg msg = { .addr = priv->i2c_props.addr,
273 		.flags = I2C_M_RD, .buf = buf, .len = len };
274 
275 	if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
276 		printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", len);
277 		return -EREMOTEIO;
278 	}
279 	return 0;
280 }
281 #endif
282 
283 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
284 {
285 	u8 buf[2] = { reg >> 8, reg & 0xff };
286 	u8 bval[2] = { 0, 0 };
287 	struct i2c_msg msg[2] = {
288 		{ .addr = priv->i2c_props.addr,
289 			.flags = 0, .buf = &buf[0], .len = 2 },
290 		{ .addr = priv->i2c_props.addr,
291 			.flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
292 	};
293 
294 	if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
295 		printk(KERN_WARNING "xc5000: I2C read failed\n");
296 		return -EREMOTEIO;
297 	}
298 
299 	*val = (bval[0] << 8) | bval[1];
300 	return 0;
301 }
302 
303 static int xc5000_tuner_reset(struct dvb_frontend *fe)
304 {
305 	struct xc5000_priv *priv = fe->tuner_priv;
306 	int ret;
307 
308 	dprintk(1, "%s()\n", __func__);
309 
310 	if (fe->callback) {
311 		ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
312 					   fe->dvb->priv :
313 					   priv->i2c_props.adap->algo_data,
314 					   DVB_FRONTEND_COMPONENT_TUNER,
315 					   XC5000_TUNER_RESET, 0);
316 		if (ret) {
317 			printk(KERN_ERR "xc5000: reset failed\n");
318 			return ret;
319 		}
320 	} else {
321 		printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
322 		return -EINVAL;
323 	}
324 	return 0;
325 }
326 
327 static int xc_write_reg(struct xc5000_priv *priv, u16 reg_addr, u16 i2c_data)
328 {
329 	u8 buf[4];
330 	int watch_dog_timer = 100;
331 	int result;
332 
333 	buf[0] = (reg_addr >> 8) & 0xFF;
334 	buf[1] = reg_addr & 0xFF;
335 	buf[2] = (i2c_data >> 8) & 0xFF;
336 	buf[3] = i2c_data & 0xFF;
337 	result = xc_send_i2c_data(priv, buf, 4);
338 	if (result == 0) {
339 		/* wait for busy flag to clear */
340 		while ((watch_dog_timer > 0) && (result == 0)) {
341 			result = xc5000_readreg(priv, XREG_BUSY, (u16 *)buf);
342 			if (result == 0) {
343 				if ((buf[0] == 0) && (buf[1] == 0)) {
344 					/* busy flag cleared */
345 					break;
346 				} else {
347 					msleep(5); /* wait 5 ms */
348 					watch_dog_timer--;
349 				}
350 			}
351 		}
352 	}
353 	if (watch_dog_timer <= 0)
354 		result = -EREMOTEIO;
355 
356 	return result;
357 }
358 
359 static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
360 {
361 	struct xc5000_priv *priv = fe->tuner_priv;
362 
363 	int i, nbytes_to_send, result;
364 	unsigned int len, pos, index;
365 	u8 buf[XC_MAX_I2C_WRITE_LENGTH];
366 
367 	index = 0;
368 	while ((i2c_sequence[index] != 0xFF) ||
369 		(i2c_sequence[index + 1] != 0xFF)) {
370 		len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
371 		if (len == 0x0000) {
372 			/* RESET command */
373 			result = xc5000_tuner_reset(fe);
374 			index += 2;
375 			if (result != 0)
376 				return result;
377 		} else if (len & 0x8000) {
378 			/* WAIT command */
379 			msleep(len & 0x7FFF);
380 			index += 2;
381 		} else {
382 			/* Send i2c data whilst ensuring individual transactions
383 			 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
384 			 */
385 			index += 2;
386 			buf[0] = i2c_sequence[index];
387 			buf[1] = i2c_sequence[index + 1];
388 			pos = 2;
389 			while (pos < len) {
390 				if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
391 					nbytes_to_send =
392 						XC_MAX_I2C_WRITE_LENGTH;
393 				else
394 					nbytes_to_send = (len - pos + 2);
395 				for (i = 2; i < nbytes_to_send; i++) {
396 					buf[i] = i2c_sequence[index + pos +
397 						i - 2];
398 				}
399 				result = xc_send_i2c_data(priv, buf,
400 					nbytes_to_send);
401 
402 				if (result != 0)
403 					return result;
404 
405 				pos += nbytes_to_send - 2;
406 			}
407 			index += len;
408 		}
409 	}
410 	return 0;
411 }
412 
413 static int xc_initialize(struct xc5000_priv *priv)
414 {
415 	dprintk(1, "%s()\n", __func__);
416 	return xc_write_reg(priv, XREG_INIT, 0);
417 }
418 
419 static int xc_set_tv_standard(struct xc5000_priv *priv,
420 	u16 video_mode, u16 audio_mode, u8 radio_mode)
421 {
422 	int ret;
423 	dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, video_mode, audio_mode);
424 	if (radio_mode) {
425 		dprintk(1, "%s() Standard = %s\n",
426 			__func__,
427 			xc5000_standard[radio_mode].name);
428 	} else {
429 		dprintk(1, "%s() Standard = %s\n",
430 			__func__,
431 			xc5000_standard[priv->video_standard].name);
432 	}
433 
434 	ret = xc_write_reg(priv, XREG_VIDEO_MODE, video_mode);
435 	if (ret == 0)
436 		ret = xc_write_reg(priv, XREG_AUDIO_MODE, audio_mode);
437 
438 	return ret;
439 }
440 
441 static int xc_set_signal_source(struct xc5000_priv *priv, u16 rf_mode)
442 {
443 	dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
444 		rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
445 
446 	if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
447 		rf_mode = XC_RF_MODE_CABLE;
448 		printk(KERN_ERR
449 			"%s(), Invalid mode, defaulting to CABLE",
450 			__func__);
451 	}
452 	return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
453 }
454 
455 static const struct dvb_tuner_ops xc5000_tuner_ops;
456 
457 static int xc_set_rf_frequency(struct xc5000_priv *priv, u32 freq_hz)
458 {
459 	u16 freq_code;
460 
461 	dprintk(1, "%s(%u)\n", __func__, freq_hz);
462 
463 	if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
464 		(freq_hz < xc5000_tuner_ops.info.frequency_min))
465 		return -EINVAL;
466 
467 	freq_code = (u16)(freq_hz / 15625);
468 
469 	/* Starting in firmware version 1.1.44, Xceive recommends using the
470 	   FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
471 	   only be used for fast scanning for channel lock) */
472 	return xc_write_reg(priv, XREG_FINERFREQ, freq_code);
473 }
474 
475 
476 static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
477 {
478 	u32 freq_code = (freq_khz * 1024)/1000;
479 	dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
480 		__func__, freq_khz, freq_code);
481 
482 	return xc_write_reg(priv, XREG_IF_OUT, freq_code);
483 }
484 
485 
486 static int xc_get_adc_envelope(struct xc5000_priv *priv, u16 *adc_envelope)
487 {
488 	return xc5000_readreg(priv, XREG_ADC_ENV, adc_envelope);
489 }
490 
491 static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
492 {
493 	int result;
494 	u16 reg_data;
495 	u32 tmp;
496 
497 	result = xc5000_readreg(priv, XREG_FREQ_ERROR, &reg_data);
498 	if (result != 0)
499 		return result;
500 
501 	tmp = (u32)reg_data;
502 	(*freq_error_hz) = (tmp * 15625) / 1000;
503 	return result;
504 }
505 
506 static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
507 {
508 	return xc5000_readreg(priv, XREG_LOCK, lock_status);
509 }
510 
511 static int xc_get_version(struct xc5000_priv *priv,
512 	u8 *hw_majorversion, u8 *hw_minorversion,
513 	u8 *fw_majorversion, u8 *fw_minorversion)
514 {
515 	u16 data;
516 	int result;
517 
518 	result = xc5000_readreg(priv, XREG_VERSION, &data);
519 	if (result != 0)
520 		return result;
521 
522 	(*hw_majorversion) = (data >> 12) & 0x0F;
523 	(*hw_minorversion) = (data >>  8) & 0x0F;
524 	(*fw_majorversion) = (data >>  4) & 0x0F;
525 	(*fw_minorversion) = data & 0x0F;
526 
527 	return 0;
528 }
529 
530 static int xc_get_buildversion(struct xc5000_priv *priv, u16 *buildrev)
531 {
532 	return xc5000_readreg(priv, XREG_BUILD, buildrev);
533 }
534 
535 static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
536 {
537 	u16 reg_data;
538 	int result;
539 
540 	result = xc5000_readreg(priv, XREG_HSYNC_FREQ, &reg_data);
541 	if (result != 0)
542 		return result;
543 
544 	(*hsync_freq_hz) = ((reg_data & 0x0fff) * 763)/100;
545 	return result;
546 }
547 
548 static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
549 {
550 	return xc5000_readreg(priv, XREG_FRAME_LINES, frame_lines);
551 }
552 
553 static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
554 {
555 	return xc5000_readreg(priv, XREG_QUALITY, quality);
556 }
557 
558 static int xc_get_analogsnr(struct xc5000_priv *priv, u16 *snr)
559 {
560 	return xc5000_readreg(priv, XREG_SNR, snr);
561 }
562 
563 static int xc_get_totalgain(struct xc5000_priv *priv, u16 *totalgain)
564 {
565 	return xc5000_readreg(priv, XREG_TOTALGAIN, totalgain);
566 }
567 
568 static u16 wait_for_lock(struct xc5000_priv *priv)
569 {
570 	u16 lock_state = 0;
571 	int watch_dog_count = 40;
572 
573 	while ((lock_state == 0) && (watch_dog_count > 0)) {
574 		xc_get_lock_status(priv, &lock_state);
575 		if (lock_state != 1) {
576 			msleep(5);
577 			watch_dog_count--;
578 		}
579 	}
580 	return lock_state;
581 }
582 
583 #define XC_TUNE_ANALOG  0
584 #define XC_TUNE_DIGITAL 1
585 static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz, int mode)
586 {
587 	int found = 0;
588 
589 	dprintk(1, "%s(%u)\n", __func__, freq_hz);
590 
591 	if (xc_set_rf_frequency(priv, freq_hz) != 0)
592 		return 0;
593 
594 	if (mode == XC_TUNE_ANALOG) {
595 		if (wait_for_lock(priv) == 1)
596 			found = 1;
597 	}
598 
599 	return found;
600 }
601 
602 static int xc_set_xtal(struct dvb_frontend *fe)
603 {
604 	struct xc5000_priv *priv = fe->tuner_priv;
605 	int ret = 0;
606 
607 	switch (priv->chip_id) {
608 	default:
609 	case XC5000A:
610 		/* 32.000 MHz xtal is default */
611 		break;
612 	case XC5000C:
613 		switch (priv->xtal_khz) {
614 		default:
615 		case 32000:
616 			/* 32.000 MHz xtal is default */
617 			break;
618 		case 31875:
619 			/* 31.875 MHz xtal configuration */
620 			ret = xc_write_reg(priv, 0x000f, 0x8081);
621 			break;
622 		}
623 		break;
624 	}
625 	return ret;
626 }
627 
628 static int xc5000_fwupload(struct dvb_frontend *fe,
629 			   const struct xc5000_fw_cfg *desired_fw,
630 			   const struct firmware *fw)
631 {
632 	struct xc5000_priv *priv = fe->tuner_priv;
633 	int ret;
634 
635 	/* request the firmware, this will block and timeout */
636 	dprintk(1, "waiting for firmware upload (%s)...\n",
637 		desired_fw->name);
638 
639 	priv->pll_register_no = desired_fw->pll_reg;
640 	priv->init_status_supported = desired_fw->init_status_supported;
641 	priv->fw_checksum_supported = desired_fw->fw_checksum_supported;
642 
643 
644 	dprintk(1, "firmware uploading...\n");
645 	ret = xc_load_i2c_sequence(fe,  fw->data);
646 	if (!ret) {
647 		ret = xc_set_xtal(fe);
648 		dprintk(1, "Firmware upload complete...\n");
649 	} else
650 		printk(KERN_ERR "xc5000: firmware upload failed...\n");
651 
652 	return ret;
653 }
654 
655 static void xc_debug_dump(struct xc5000_priv *priv)
656 {
657 	u16 adc_envelope;
658 	u32 freq_error_hz = 0;
659 	u16 lock_status;
660 	u32 hsync_freq_hz = 0;
661 	u16 frame_lines;
662 	u16 quality;
663 	u16 snr;
664 	u16 totalgain;
665 	u8 hw_majorversion = 0, hw_minorversion = 0;
666 	u8 fw_majorversion = 0, fw_minorversion = 0;
667 	u16 fw_buildversion = 0;
668 	u16 regval;
669 
670 	/* Wait for stats to stabilize.
671 	 * Frame Lines needs two frame times after initial lock
672 	 * before it is valid.
673 	 */
674 	msleep(100);
675 
676 	xc_get_adc_envelope(priv,  &adc_envelope);
677 	dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
678 
679 	xc_get_frequency_error(priv, &freq_error_hz);
680 	dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
681 
682 	xc_get_lock_status(priv,  &lock_status);
683 	dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
684 		lock_status);
685 
686 	xc_get_version(priv,  &hw_majorversion, &hw_minorversion,
687 		&fw_majorversion, &fw_minorversion);
688 	xc_get_buildversion(priv,  &fw_buildversion);
689 	dprintk(1, "*** HW: V%d.%d, FW: V %d.%d.%d\n",
690 		hw_majorversion, hw_minorversion,
691 		fw_majorversion, fw_minorversion, fw_buildversion);
692 
693 	xc_get_hsync_freq(priv,  &hsync_freq_hz);
694 	dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
695 
696 	xc_get_frame_lines(priv,  &frame_lines);
697 	dprintk(1, "*** Frame lines = %d\n", frame_lines);
698 
699 	xc_get_quality(priv,  &quality);
700 	dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality & 0x07);
701 
702 	xc_get_analogsnr(priv,  &snr);
703 	dprintk(1, "*** Unweighted analog SNR = %d dB\n", snr & 0x3f);
704 
705 	xc_get_totalgain(priv,  &totalgain);
706 	dprintk(1, "*** Total gain = %d.%d dB\n", totalgain / 256,
707 		(totalgain % 256) * 100 / 256);
708 
709 	if (priv->pll_register_no) {
710 		xc5000_readreg(priv, priv->pll_register_no, &regval);
711 		dprintk(1, "*** PLL lock status = 0x%04x\n", regval);
712 	}
713 }
714 
715 static int xc5000_set_params(struct dvb_frontend *fe)
716 {
717 	int ret, b;
718 	struct xc5000_priv *priv = fe->tuner_priv;
719 	u32 bw = fe->dtv_property_cache.bandwidth_hz;
720 	u32 freq = fe->dtv_property_cache.frequency;
721 	u32 delsys  = fe->dtv_property_cache.delivery_system;
722 
723 	if (xc_load_fw_and_init_tuner(fe, 0) != 0) {
724 		dprintk(1, "Unable to load firmware and init tuner\n");
725 		return -EINVAL;
726 	}
727 
728 	dprintk(1, "%s() frequency=%d (Hz)\n", __func__, freq);
729 
730 	switch (delsys) {
731 	case SYS_ATSC:
732 		dprintk(1, "%s() VSB modulation\n", __func__);
733 		priv->rf_mode = XC_RF_MODE_AIR;
734 		priv->freq_offset = 1750000;
735 		priv->video_standard = DTV6;
736 		break;
737 	case SYS_DVBC_ANNEX_B:
738 		dprintk(1, "%s() QAM modulation\n", __func__);
739 		priv->rf_mode = XC_RF_MODE_CABLE;
740 		priv->freq_offset = 1750000;
741 		priv->video_standard = DTV6;
742 		break;
743 	case SYS_ISDBT:
744 		/* All ISDB-T are currently for 6 MHz bw */
745 		if (!bw)
746 			bw = 6000000;
747 		/* fall to OFDM handling */
748 	case SYS_DMBTH:
749 	case SYS_DVBT:
750 	case SYS_DVBT2:
751 		dprintk(1, "%s() OFDM\n", __func__);
752 		switch (bw) {
753 		case 6000000:
754 			priv->video_standard = DTV6;
755 			priv->freq_offset = 1750000;
756 			break;
757 		case 7000000:
758 			priv->video_standard = DTV7;
759 			priv->freq_offset = 2250000;
760 			break;
761 		case 8000000:
762 			priv->video_standard = DTV8;
763 			priv->freq_offset = 2750000;
764 			break;
765 		default:
766 			printk(KERN_ERR "xc5000 bandwidth not set!\n");
767 			return -EINVAL;
768 		}
769 		priv->rf_mode = XC_RF_MODE_AIR;
770 		break;
771 	case SYS_DVBC_ANNEX_A:
772 	case SYS_DVBC_ANNEX_C:
773 		dprintk(1, "%s() QAM modulation\n", __func__);
774 		priv->rf_mode = XC_RF_MODE_CABLE;
775 		if (bw <= 6000000) {
776 			priv->video_standard = DTV6;
777 			priv->freq_offset = 1750000;
778 			b = 6;
779 		} else if (bw <= 7000000) {
780 			priv->video_standard = DTV7;
781 			priv->freq_offset = 2250000;
782 			b = 7;
783 		} else {
784 			priv->video_standard = DTV7_8;
785 			priv->freq_offset = 2750000;
786 			b = 8;
787 		}
788 		dprintk(1, "%s() Bandwidth %dMHz (%d)\n", __func__,
789 			b, bw);
790 		break;
791 	default:
792 		printk(KERN_ERR "xc5000: delivery system is not supported!\n");
793 		return -EINVAL;
794 	}
795 
796 	priv->freq_hz = freq - priv->freq_offset;
797 
798 	dprintk(1, "%s() frequency=%d (compensated to %d)\n",
799 		__func__, freq, priv->freq_hz);
800 
801 	ret = xc_set_signal_source(priv, priv->rf_mode);
802 	if (ret != 0) {
803 		printk(KERN_ERR
804 			"xc5000: xc_set_signal_source(%d) failed\n",
805 			priv->rf_mode);
806 		return -EREMOTEIO;
807 	}
808 
809 	ret = xc_set_tv_standard(priv,
810 		xc5000_standard[priv->video_standard].video_mode,
811 		xc5000_standard[priv->video_standard].audio_mode, 0);
812 	if (ret != 0) {
813 		printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n");
814 		return -EREMOTEIO;
815 	}
816 
817 	ret = xc_set_IF_frequency(priv, priv->if_khz);
818 	if (ret != 0) {
819 		printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
820 		       priv->if_khz);
821 		return -EIO;
822 	}
823 
824 	xc_write_reg(priv, XREG_OUTPUT_AMP, 0x8a);
825 
826 	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL);
827 
828 	if (debug)
829 		xc_debug_dump(priv);
830 
831 	priv->bandwidth = bw;
832 
833 	return 0;
834 }
835 
836 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
837 {
838 	struct xc5000_priv *priv = fe->tuner_priv;
839 	int ret;
840 	u16 id;
841 
842 	ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
843 	if (ret == 0) {
844 		if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
845 			ret = -ENOENT;
846 		else
847 			ret = 0;
848 	}
849 
850 	dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
851 		ret == 0 ? "True" : "False", id);
852 	return ret;
853 }
854 
855 static int xc5000_set_tv_freq(struct dvb_frontend *fe,
856 	struct analog_parameters *params)
857 {
858 	struct xc5000_priv *priv = fe->tuner_priv;
859 	u16 pll_lock_status;
860 	int ret;
861 
862 	dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
863 		__func__, params->frequency);
864 
865 	/* Fix me: it could be air. */
866 	priv->rf_mode = params->mode;
867 	if (params->mode > XC_RF_MODE_CABLE)
868 		priv->rf_mode = XC_RF_MODE_CABLE;
869 
870 	/* params->frequency is in units of 62.5khz */
871 	priv->freq_hz = params->frequency * 62500;
872 
873 	/* FIX ME: Some video standards may have several possible audio
874 		   standards. We simply default to one of them here.
875 	 */
876 	if (params->std & V4L2_STD_MN) {
877 		/* default to BTSC audio standard */
878 		priv->video_standard = MN_NTSC_PAL_BTSC;
879 		goto tune_channel;
880 	}
881 
882 	if (params->std & V4L2_STD_PAL_BG) {
883 		/* default to NICAM audio standard */
884 		priv->video_standard = BG_PAL_NICAM;
885 		goto tune_channel;
886 	}
887 
888 	if (params->std & V4L2_STD_PAL_I) {
889 		/* default to NICAM audio standard */
890 		priv->video_standard = I_PAL_NICAM;
891 		goto tune_channel;
892 	}
893 
894 	if (params->std & V4L2_STD_PAL_DK) {
895 		/* default to NICAM audio standard */
896 		priv->video_standard = DK_PAL_NICAM;
897 		goto tune_channel;
898 	}
899 
900 	if (params->std & V4L2_STD_SECAM_DK) {
901 		/* default to A2 DK1 audio standard */
902 		priv->video_standard = DK_SECAM_A2DK1;
903 		goto tune_channel;
904 	}
905 
906 	if (params->std & V4L2_STD_SECAM_L) {
907 		priv->video_standard = L_SECAM_NICAM;
908 		goto tune_channel;
909 	}
910 
911 	if (params->std & V4L2_STD_SECAM_LC) {
912 		priv->video_standard = LC_SECAM_NICAM;
913 		goto tune_channel;
914 	}
915 
916 tune_channel:
917 	ret = xc_set_signal_source(priv, priv->rf_mode);
918 	if (ret != 0) {
919 		printk(KERN_ERR
920 			"xc5000: xc_set_signal_source(%d) failed\n",
921 			priv->rf_mode);
922 		return -EREMOTEIO;
923 	}
924 
925 	ret = xc_set_tv_standard(priv,
926 		xc5000_standard[priv->video_standard].video_mode,
927 		xc5000_standard[priv->video_standard].audio_mode, 0);
928 	if (ret != 0) {
929 		printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n");
930 		return -EREMOTEIO;
931 	}
932 
933 	xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
934 
935 	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
936 
937 	if (debug)
938 		xc_debug_dump(priv);
939 
940 	if (priv->pll_register_no != 0) {
941 		msleep(20);
942 		xc5000_readreg(priv, priv->pll_register_no, &pll_lock_status);
943 		if (pll_lock_status > 63) {
944 			/* PLL is unlocked, force reload of the firmware */
945 			dprintk(1, "xc5000: PLL not locked (0x%x).  Reloading...\n",
946 				pll_lock_status);
947 			if (xc_load_fw_and_init_tuner(fe, 1) != 0) {
948 				printk(KERN_ERR "xc5000: Unable to reload fw\n");
949 				return -EREMOTEIO;
950 			}
951 			goto tune_channel;
952 		}
953 	}
954 
955 	return 0;
956 }
957 
958 static int xc5000_set_radio_freq(struct dvb_frontend *fe,
959 	struct analog_parameters *params)
960 {
961 	struct xc5000_priv *priv = fe->tuner_priv;
962 	int ret = -EINVAL;
963 	u8 radio_input;
964 
965 	dprintk(1, "%s() frequency=%d (in units of khz)\n",
966 		__func__, params->frequency);
967 
968 	if (priv->radio_input == XC5000_RADIO_NOT_CONFIGURED) {
969 		dprintk(1, "%s() radio input not configured\n", __func__);
970 		return -EINVAL;
971 	}
972 
973 	if (priv->radio_input == XC5000_RADIO_FM1)
974 		radio_input = FM_RADIO_INPUT1;
975 	else if  (priv->radio_input == XC5000_RADIO_FM2)
976 		radio_input = FM_RADIO_INPUT2;
977 	else if  (priv->radio_input == XC5000_RADIO_FM1_MONO)
978 		radio_input = FM_RADIO_INPUT1_MONO;
979 	else {
980 		dprintk(1, "%s() unknown radio input %d\n", __func__,
981 			priv->radio_input);
982 		return -EINVAL;
983 	}
984 
985 	priv->freq_hz = params->frequency * 125 / 2;
986 
987 	priv->rf_mode = XC_RF_MODE_AIR;
988 
989 	ret = xc_set_tv_standard(priv, xc5000_standard[radio_input].video_mode,
990 			       xc5000_standard[radio_input].audio_mode, radio_input);
991 
992 	if (ret != 0) {
993 		printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n");
994 		return -EREMOTEIO;
995 	}
996 
997 	ret = xc_set_signal_source(priv, priv->rf_mode);
998 	if (ret != 0) {
999 		printk(KERN_ERR
1000 			"xc5000: xc_set_signal_source(%d) failed\n",
1001 			priv->rf_mode);
1002 		return -EREMOTEIO;
1003 	}
1004 
1005 	if ((priv->radio_input == XC5000_RADIO_FM1) ||
1006 				(priv->radio_input == XC5000_RADIO_FM2))
1007 		xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
1008 	else if  (priv->radio_input == XC5000_RADIO_FM1_MONO)
1009 		xc_write_reg(priv, XREG_OUTPUT_AMP, 0x06);
1010 
1011 	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
1012 
1013 	return 0;
1014 }
1015 
1016 static int xc5000_set_analog_params(struct dvb_frontend *fe,
1017 			     struct analog_parameters *params)
1018 {
1019 	struct xc5000_priv *priv = fe->tuner_priv;
1020 	int ret = -EINVAL;
1021 
1022 	if (priv->i2c_props.adap == NULL)
1023 		return -EINVAL;
1024 
1025 	if (xc_load_fw_and_init_tuner(fe, 0) != 0) {
1026 		dprintk(1, "Unable to load firmware and init tuner\n");
1027 		return -EINVAL;
1028 	}
1029 
1030 	switch (params->mode) {
1031 	case V4L2_TUNER_RADIO:
1032 		ret = xc5000_set_radio_freq(fe, params);
1033 		break;
1034 	case V4L2_TUNER_ANALOG_TV:
1035 	case V4L2_TUNER_DIGITAL_TV:
1036 		ret = xc5000_set_tv_freq(fe, params);
1037 		break;
1038 	}
1039 
1040 	return ret;
1041 }
1042 
1043 
1044 static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
1045 {
1046 	struct xc5000_priv *priv = fe->tuner_priv;
1047 	dprintk(1, "%s()\n", __func__);
1048 	*freq = priv->freq_hz + priv->freq_offset;
1049 	return 0;
1050 }
1051 
1052 static int xc5000_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
1053 {
1054 	struct xc5000_priv *priv = fe->tuner_priv;
1055 	dprintk(1, "%s()\n", __func__);
1056 	*freq = priv->if_khz * 1000;
1057 	return 0;
1058 }
1059 
1060 static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
1061 {
1062 	struct xc5000_priv *priv = fe->tuner_priv;
1063 	dprintk(1, "%s()\n", __func__);
1064 
1065 	*bw = priv->bandwidth;
1066 	return 0;
1067 }
1068 
1069 static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
1070 {
1071 	struct xc5000_priv *priv = fe->tuner_priv;
1072 	u16 lock_status = 0;
1073 
1074 	xc_get_lock_status(priv, &lock_status);
1075 
1076 	dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
1077 
1078 	*status = lock_status;
1079 
1080 	return 0;
1081 }
1082 
1083 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force)
1084 {
1085 	struct xc5000_priv *priv = fe->tuner_priv;
1086 	const struct xc5000_fw_cfg *desired_fw = xc5000_assign_firmware(priv->chip_id);
1087 	const struct firmware *fw;
1088 	int ret, i;
1089 	u16 pll_lock_status;
1090 	u16 fw_ck;
1091 
1092 	cancel_delayed_work(&priv->timer_sleep);
1093 
1094 	if (!force && xc5000_is_firmware_loaded(fe) == 0)
1095 		return 0;
1096 
1097 	ret = request_firmware(&fw, desired_fw->name,
1098 			       priv->i2c_props.adap->dev.parent);
1099 	if (ret) {
1100 		printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
1101 		return ret;
1102 	}
1103 
1104 	dprintk(1, "firmware read %Zu bytes.\n", fw->size);
1105 
1106 	if (fw->size != desired_fw->size) {
1107 		printk(KERN_ERR "xc5000: Firmware file with incorrect size\n");
1108 		ret = -EINVAL;
1109 		goto err;
1110 	}
1111 
1112 	/* Try up to 5 times to load firmware */
1113 	for (i = 0; i < 5; i++) {
1114 		if (i)
1115 			printk(KERN_CONT " - retrying to upload firmware.\n");
1116 
1117 		ret = xc5000_fwupload(fe, desired_fw, fw);
1118 		if (ret != 0)
1119 			goto err;
1120 
1121 		msleep(20);
1122 
1123 		if (priv->fw_checksum_supported) {
1124 			if (xc5000_readreg(priv, XREG_FW_CHECKSUM, &fw_ck)) {
1125 				printk(KERN_ERR
1126 				       "xc5000: FW checksum reading failed.");
1127 				continue;
1128 			}
1129 
1130 			if (!fw_ck) {
1131 				printk(KERN_ERR
1132 				       "xc5000: FW checksum failed = 0x%04x.",
1133 				       fw_ck);
1134 				continue;
1135 			}
1136 		}
1137 
1138 		/* Start the tuner self-calibration process */
1139 		ret = xc_initialize(priv);
1140 		if (ret) {
1141 			printk(KERN_ERR
1142 			       "xc5000: Can't request Self-callibration.");
1143 			continue;
1144 		}
1145 
1146 		/* Wait for calibration to complete.
1147 		 * We could continue but XC5000 will clock stretch subsequent
1148 		 * I2C transactions until calibration is complete.  This way we
1149 		 * don't have to rely on clock stretching working.
1150 		 */
1151 		msleep(100);
1152 
1153 		if (priv->init_status_supported) {
1154 			if (xc5000_readreg(priv, XREG_INIT_STATUS, &fw_ck)) {
1155 				printk(KERN_ERR
1156 				       "xc5000: FW failed reading init status.");
1157 				continue;
1158 			}
1159 
1160 			if (!fw_ck) {
1161 				printk(KERN_ERR
1162 				       "xc5000: FW init status failed = 0x%04x.",
1163 				       fw_ck);
1164 				continue;
1165 			}
1166 		}
1167 
1168 		if (priv->pll_register_no) {
1169 			xc5000_readreg(priv, priv->pll_register_no,
1170 				       &pll_lock_status);
1171 			if (pll_lock_status > 63) {
1172 				/* PLL is unlocked, force reload of the firmware */
1173 				printk(KERN_ERR
1174 				       "xc5000: PLL not running after fwload.");
1175 				continue;
1176 			}
1177 		}
1178 
1179 		/* Default to "CABLE" mode */
1180 		ret = xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
1181 		if (!ret)
1182 			break;
1183 		printk(KERN_ERR "xc5000: can't set to cable mode.");
1184 	}
1185 
1186 err:
1187 	if (!ret)
1188 		printk(KERN_INFO "xc5000: Firmware %s loaded and running.\n",
1189 		       desired_fw->name);
1190 	else
1191 		printk(KERN_CONT " - too many retries. Giving up\n");
1192 
1193 	release_firmware(fw);
1194 	return ret;
1195 }
1196 
1197 static void xc5000_do_timer_sleep(struct work_struct *timer_sleep)
1198 {
1199 	struct xc5000_priv *priv =container_of(timer_sleep, struct xc5000_priv,
1200 					       timer_sleep.work);
1201 	struct dvb_frontend *fe = priv->fe;
1202 	int ret;
1203 
1204 	dprintk(1, "%s()\n", __func__);
1205 
1206 	/* According to Xceive technical support, the "powerdown" register
1207 	   was removed in newer versions of the firmware.  The "supported"
1208 	   way to sleep the tuner is to pull the reset pin low for 10ms */
1209 	ret = xc5000_tuner_reset(fe);
1210 	if (ret != 0)
1211 		printk(KERN_ERR
1212 			"xc5000: %s() unable to shutdown tuner\n",
1213 			__func__);
1214 }
1215 
1216 static int xc5000_sleep(struct dvb_frontend *fe)
1217 {
1218 	struct xc5000_priv *priv = fe->tuner_priv;
1219 
1220 	dprintk(1, "%s()\n", __func__);
1221 
1222 	/* Avoid firmware reload on slow devices */
1223 	if (no_poweroff)
1224 		return 0;
1225 
1226 	schedule_delayed_work(&priv->timer_sleep,
1227 			      msecs_to_jiffies(XC5000_SLEEP_TIME));
1228 
1229 	return 0;
1230 }
1231 
1232 static int xc5000_init(struct dvb_frontend *fe)
1233 {
1234 	struct xc5000_priv *priv = fe->tuner_priv;
1235 	dprintk(1, "%s()\n", __func__);
1236 
1237 	if (xc_load_fw_and_init_tuner(fe, 0) != 0) {
1238 		printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
1239 		return -EREMOTEIO;
1240 	}
1241 
1242 	if (debug)
1243 		xc_debug_dump(priv);
1244 
1245 	return 0;
1246 }
1247 
1248 static int xc5000_release(struct dvb_frontend *fe)
1249 {
1250 	struct xc5000_priv *priv = fe->tuner_priv;
1251 
1252 	dprintk(1, "%s()\n", __func__);
1253 
1254 	mutex_lock(&xc5000_list_mutex);
1255 
1256 	if (priv) {
1257 		cancel_delayed_work(&priv->timer_sleep);
1258 		hybrid_tuner_release_state(priv);
1259 	}
1260 
1261 	mutex_unlock(&xc5000_list_mutex);
1262 
1263 	fe->tuner_priv = NULL;
1264 
1265 	return 0;
1266 }
1267 
1268 static int xc5000_set_config(struct dvb_frontend *fe, void *priv_cfg)
1269 {
1270 	struct xc5000_priv *priv = fe->tuner_priv;
1271 	struct xc5000_config *p = priv_cfg;
1272 
1273 	dprintk(1, "%s()\n", __func__);
1274 
1275 	if (p->if_khz)
1276 		priv->if_khz = p->if_khz;
1277 
1278 	if (p->radio_input)
1279 		priv->radio_input = p->radio_input;
1280 
1281 	return 0;
1282 }
1283 
1284 
1285 static const struct dvb_tuner_ops xc5000_tuner_ops = {
1286 	.info = {
1287 		.name           = "Xceive XC5000",
1288 		.frequency_min  =    1000000,
1289 		.frequency_max  = 1023000000,
1290 		.frequency_step =      50000,
1291 	},
1292 
1293 	.release	   = xc5000_release,
1294 	.init		   = xc5000_init,
1295 	.sleep		   = xc5000_sleep,
1296 
1297 	.set_config	   = xc5000_set_config,
1298 	.set_params	   = xc5000_set_params,
1299 	.set_analog_params = xc5000_set_analog_params,
1300 	.get_frequency	   = xc5000_get_frequency,
1301 	.get_if_frequency  = xc5000_get_if_frequency,
1302 	.get_bandwidth	   = xc5000_get_bandwidth,
1303 	.get_status	   = xc5000_get_status
1304 };
1305 
1306 struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
1307 				   struct i2c_adapter *i2c,
1308 				   const struct xc5000_config *cfg)
1309 {
1310 	struct xc5000_priv *priv = NULL;
1311 	int instance;
1312 	u16 id = 0;
1313 
1314 	dprintk(1, "%s(%d-%04x)\n", __func__,
1315 		i2c ? i2c_adapter_id(i2c) : -1,
1316 		cfg ? cfg->i2c_address : -1);
1317 
1318 	mutex_lock(&xc5000_list_mutex);
1319 
1320 	instance = hybrid_tuner_request_state(struct xc5000_priv, priv,
1321 					      hybrid_tuner_instance_list,
1322 					      i2c, cfg->i2c_address, "xc5000");
1323 	switch (instance) {
1324 	case 0:
1325 		goto fail;
1326 	case 1:
1327 		/* new tuner instance */
1328 		priv->bandwidth = 6000000;
1329 		fe->tuner_priv = priv;
1330 		priv->fe = fe;
1331 		INIT_DELAYED_WORK(&priv->timer_sleep, xc5000_do_timer_sleep);
1332 		break;
1333 	default:
1334 		/* existing tuner instance */
1335 		fe->tuner_priv = priv;
1336 		break;
1337 	}
1338 
1339 	if (priv->if_khz == 0) {
1340 		/* If the IF hasn't been set yet, use the value provided by
1341 		   the caller (occurs in hybrid devices where the analog
1342 		   call to xc5000_attach occurs before the digital side) */
1343 		priv->if_khz = cfg->if_khz;
1344 	}
1345 
1346 	if (priv->xtal_khz == 0)
1347 		priv->xtal_khz = cfg->xtal_khz;
1348 
1349 	if (priv->radio_input == 0)
1350 		priv->radio_input = cfg->radio_input;
1351 
1352 	/* don't override chip id if it's already been set
1353 	   unless explicitly specified */
1354 	if ((priv->chip_id == 0) || (cfg->chip_id))
1355 		/* use default chip id if none specified, set to 0 so
1356 		   it can be overridden if this is a hybrid driver */
1357 		priv->chip_id = (cfg->chip_id) ? cfg->chip_id : 0;
1358 
1359 	/* Check if firmware has been loaded. It is possible that another
1360 	   instance of the driver has loaded the firmware.
1361 	 */
1362 	if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != 0)
1363 		goto fail;
1364 
1365 	switch (id) {
1366 	case XC_PRODUCT_ID_FW_LOADED:
1367 		printk(KERN_INFO
1368 			"xc5000: Successfully identified at address 0x%02x\n",
1369 			cfg->i2c_address);
1370 		printk(KERN_INFO
1371 			"xc5000: Firmware has been loaded previously\n");
1372 		break;
1373 	case XC_PRODUCT_ID_FW_NOT_LOADED:
1374 		printk(KERN_INFO
1375 			"xc5000: Successfully identified at address 0x%02x\n",
1376 			cfg->i2c_address);
1377 		printk(KERN_INFO
1378 			"xc5000: Firmware has not been loaded previously\n");
1379 		break;
1380 	default:
1381 		printk(KERN_ERR
1382 			"xc5000: Device not found at addr 0x%02x (0x%x)\n",
1383 			cfg->i2c_address, id);
1384 		goto fail;
1385 	}
1386 
1387 	mutex_unlock(&xc5000_list_mutex);
1388 
1389 	memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
1390 		sizeof(struct dvb_tuner_ops));
1391 
1392 	return fe;
1393 fail:
1394 	mutex_unlock(&xc5000_list_mutex);
1395 
1396 	xc5000_release(fe);
1397 	return NULL;
1398 }
1399 EXPORT_SYMBOL(xc5000_attach);
1400 
1401 MODULE_AUTHOR("Steven Toth");
1402 MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
1403 MODULE_LICENSE("GPL");
1404 MODULE_FIRMWARE(XC5000A_FIRMWARE);
1405 MODULE_FIRMWARE(XC5000C_FIRMWARE);
1406