xref: /linux/drivers/media/tuners/xc4000.c (revision b7019ac550eb3916f34d79db583e9b7ea2524afa)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Driver for Xceive XC4000 "QAM/8VSB single chip tuner"
4  *
5  *  Copyright (c) 2007 Xceive Corporation
6  *  Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
7  *  Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
8  *  Copyright (c) 2009 Davide Ferri <d.ferri@zero11.it>
9  *  Copyright (c) 2010 Istvan Varga <istvan_v@mailbox.hu>
10  */
11 
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/videodev2.h>
15 #include <linux/delay.h>
16 #include <linux/dvb/frontend.h>
17 #include <linux/i2c.h>
18 #include <linux/mutex.h>
19 #include <asm/unaligned.h>
20 
21 #include <media/dvb_frontend.h>
22 
23 #include "xc4000.h"
24 #include "tuner-i2c.h"
25 #include "tuner-xc2028-types.h"
26 
27 static int debug;
28 module_param(debug, int, 0644);
29 MODULE_PARM_DESC(debug, "Debugging level (0 to 2, default: 0 (off)).");
30 
31 static int no_poweroff;
32 module_param(no_poweroff, int, 0644);
33 MODULE_PARM_DESC(no_poweroff, "Power management (1: disabled, 2: enabled, 0 (default): use device-specific default mode).");
34 
35 static int audio_std;
36 module_param(audio_std, int, 0644);
37 MODULE_PARM_DESC(audio_std, "Audio standard. XC4000 audio decoder explicitly needs to know what audio standard is needed for some video standards with audio A2 or NICAM. The valid settings are a sum of:\n"
38 	" 1: use NICAM/B or A2/B instead of NICAM/A or A2/A\n"
39 	" 2: use A2 instead of NICAM or BTSC\n"
40 	" 4: use SECAM/K3 instead of K1\n"
41 	" 8: use PAL-D/K audio for SECAM-D/K\n"
42 	"16: use FM radio input 1 instead of input 2\n"
43 	"32: use mono audio (the lower three bits are ignored)");
44 
45 static char firmware_name[30];
46 module_param_string(firmware_name, firmware_name, sizeof(firmware_name), 0);
47 MODULE_PARM_DESC(firmware_name, "Firmware file name. Allows overriding the default firmware name.");
48 
49 static DEFINE_MUTEX(xc4000_list_mutex);
50 static LIST_HEAD(hybrid_tuner_instance_list);
51 
52 #define dprintk(level, fmt, arg...) if (debug >= level) \
53 	printk(KERN_INFO "%s: " fmt, "xc4000", ## arg)
54 
55 /* struct for storing firmware table */
56 struct firmware_description {
57 	unsigned int  type;
58 	v4l2_std_id   id;
59 	__u16         int_freq;
60 	unsigned char *ptr;
61 	unsigned int  size;
62 };
63 
64 struct firmware_properties {
65 	unsigned int	type;
66 	v4l2_std_id	id;
67 	v4l2_std_id	std_req;
68 	__u16		int_freq;
69 	unsigned int	scode_table;
70 	int		scode_nr;
71 };
72 
73 struct xc4000_priv {
74 	struct tuner_i2c_props i2c_props;
75 	struct list_head hybrid_tuner_instance_list;
76 	struct firmware_description *firm;
77 	int	firm_size;
78 	u32	if_khz;
79 	u32	freq_hz, freq_offset;
80 	u32	bandwidth;
81 	u8	video_standard;
82 	u8	rf_mode;
83 	u8	default_pm;
84 	u8	dvb_amplitude;
85 	u8	set_smoothedcvbs;
86 	u8	ignore_i2c_write_errors;
87 	__u16	firm_version;
88 	struct firmware_properties cur_fw;
89 	__u16	hwmodel;
90 	__u16	hwvers;
91 	struct mutex	lock;
92 };
93 
94 #define XC4000_AUDIO_STD_B		 1
95 #define XC4000_AUDIO_STD_A2		 2
96 #define XC4000_AUDIO_STD_K3		 4
97 #define XC4000_AUDIO_STD_L		 8
98 #define XC4000_AUDIO_STD_INPUT1		16
99 #define XC4000_AUDIO_STD_MONO		32
100 
101 #define XC4000_DEFAULT_FIRMWARE "dvb-fe-xc4000-1.4.fw"
102 #define XC4000_DEFAULT_FIRMWARE_NEW "dvb-fe-xc4000-1.4.1.fw"
103 
104 /* Misc Defines */
105 #define MAX_TV_STANDARD			24
106 #define XC_MAX_I2C_WRITE_LENGTH		64
107 #define XC_POWERED_DOWN			0x80000000U
108 
109 /* Signal Types */
110 #define XC_RF_MODE_AIR			0
111 #define XC_RF_MODE_CABLE		1
112 
113 /* Product id */
114 #define XC_PRODUCT_ID_FW_NOT_LOADED	0x2000
115 #define XC_PRODUCT_ID_XC4000		0x0FA0
116 #define XC_PRODUCT_ID_XC4100		0x1004
117 
118 /* Registers (Write-only) */
119 #define XREG_INIT         0x00
120 #define XREG_VIDEO_MODE   0x01
121 #define XREG_AUDIO_MODE   0x02
122 #define XREG_RF_FREQ      0x03
123 #define XREG_D_CODE       0x04
124 #define XREG_DIRECTSITTING_MODE 0x05
125 #define XREG_SEEK_MODE    0x06
126 #define XREG_POWER_DOWN   0x08
127 #define XREG_SIGNALSOURCE 0x0A
128 #define XREG_SMOOTHEDCVBS 0x0E
129 #define XREG_AMPLITUDE    0x10
130 
131 /* Registers (Read-only) */
132 #define XREG_ADC_ENV      0x00
133 #define XREG_QUALITY      0x01
134 #define XREG_FRAME_LINES  0x02
135 #define XREG_HSYNC_FREQ   0x03
136 #define XREG_LOCK         0x04
137 #define XREG_FREQ_ERROR   0x05
138 #define XREG_SNR          0x06
139 #define XREG_VERSION      0x07
140 #define XREG_PRODUCT_ID   0x08
141 #define XREG_SIGNAL_LEVEL 0x0A
142 #define XREG_NOISE_LEVEL  0x0B
143 
144 /*
145    Basic firmware description. This will remain with
146    the driver for documentation purposes.
147 
148    This represents an I2C firmware file encoded as a
149    string of unsigned char. Format is as follows:
150 
151    char[0  ]=len0_MSB  -> len = len_MSB * 256 + len_LSB
152    char[1  ]=len0_LSB  -> length of first write transaction
153    char[2  ]=data0 -> first byte to be sent
154    char[3  ]=data1
155    char[4  ]=data2
156    char[   ]=...
157    char[M  ]=dataN  -> last byte to be sent
158    char[M+1]=len1_MSB  -> len = len_MSB * 256 + len_LSB
159    char[M+2]=len1_LSB  -> length of second write transaction
160    char[M+3]=data0
161    char[M+4]=data1
162    ...
163    etc.
164 
165    The [len] value should be interpreted as follows:
166 
167    len= len_MSB _ len_LSB
168    len=1111_1111_1111_1111   : End of I2C_SEQUENCE
169    len=0000_0000_0000_0000   : Reset command: Do hardware reset
170    len=0NNN_NNNN_NNNN_NNNN   : Normal transaction: number of bytes = {1:32767)
171    len=1WWW_WWWW_WWWW_WWWW   : Wait command: wait for {1:32767} ms
172 
173    For the RESET and WAIT commands, the two following bytes will contain
174    immediately the length of the following transaction.
175 */
176 
177 struct XC_TV_STANDARD {
178 	const char  *Name;
179 	u16	    audio_mode;
180 	u16	    video_mode;
181 	u16	    int_freq;
182 };
183 
184 /* Tuner standards */
185 #define XC4000_MN_NTSC_PAL_BTSC		0
186 #define XC4000_MN_NTSC_PAL_A2		1
187 #define XC4000_MN_NTSC_PAL_EIAJ		2
188 #define XC4000_MN_NTSC_PAL_Mono		3
189 #define XC4000_BG_PAL_A2		4
190 #define XC4000_BG_PAL_NICAM		5
191 #define XC4000_BG_PAL_MONO		6
192 #define XC4000_I_PAL_NICAM		7
193 #define XC4000_I_PAL_NICAM_MONO		8
194 #define XC4000_DK_PAL_A2		9
195 #define XC4000_DK_PAL_NICAM		10
196 #define XC4000_DK_PAL_MONO		11
197 #define XC4000_DK_SECAM_A2DK1		12
198 #define XC4000_DK_SECAM_A2LDK3		13
199 #define XC4000_DK_SECAM_A2MONO		14
200 #define XC4000_DK_SECAM_NICAM		15
201 #define XC4000_L_SECAM_NICAM		16
202 #define XC4000_LC_SECAM_NICAM		17
203 #define XC4000_DTV6			18
204 #define XC4000_DTV8			19
205 #define XC4000_DTV7_8			20
206 #define XC4000_DTV7			21
207 #define XC4000_FM_Radio_INPUT2		22
208 #define XC4000_FM_Radio_INPUT1		23
209 
210 static struct XC_TV_STANDARD xc4000_standard[MAX_TV_STANDARD] = {
211 	{"M/N-NTSC/PAL-BTSC",	0x0000, 0x80A0, 4500},
212 	{"M/N-NTSC/PAL-A2",	0x0000, 0x80A0, 4600},
213 	{"M/N-NTSC/PAL-EIAJ",	0x0040, 0x80A0, 4500},
214 	{"M/N-NTSC/PAL-Mono",	0x0078, 0x80A0, 4500},
215 	{"B/G-PAL-A2",		0x0000, 0x8159, 5640},
216 	{"B/G-PAL-NICAM",	0x0004, 0x8159, 5740},
217 	{"B/G-PAL-MONO",	0x0078, 0x8159, 5500},
218 	{"I-PAL-NICAM",		0x0080, 0x8049, 6240},
219 	{"I-PAL-NICAM-MONO",	0x0078, 0x8049, 6000},
220 	{"D/K-PAL-A2",		0x0000, 0x8049, 6380},
221 	{"D/K-PAL-NICAM",	0x0080, 0x8049, 6200},
222 	{"D/K-PAL-MONO",	0x0078, 0x8049, 6500},
223 	{"D/K-SECAM-A2 DK1",	0x0000, 0x8049, 6340},
224 	{"D/K-SECAM-A2 L/DK3",	0x0000, 0x8049, 6000},
225 	{"D/K-SECAM-A2 MONO",	0x0078, 0x8049, 6500},
226 	{"D/K-SECAM-NICAM",	0x0080, 0x8049, 6200},
227 	{"L-SECAM-NICAM",	0x8080, 0x0009, 6200},
228 	{"L'-SECAM-NICAM",	0x8080, 0x4009, 6200},
229 	{"DTV6",		0x00C0, 0x8002,    0},
230 	{"DTV8",		0x00C0, 0x800B,    0},
231 	{"DTV7/8",		0x00C0, 0x801B,    0},
232 	{"DTV7",		0x00C0, 0x8007,    0},
233 	{"FM Radio-INPUT2",	0x0008, 0x9800, 10700},
234 	{"FM Radio-INPUT1",	0x0008, 0x9000, 10700}
235 };
236 
237 static int xc4000_readreg(struct xc4000_priv *priv, u16 reg, u16 *val);
238 static int xc4000_tuner_reset(struct dvb_frontend *fe);
239 static void xc_debug_dump(struct xc4000_priv *priv);
240 
241 static int xc_send_i2c_data(struct xc4000_priv *priv, u8 *buf, int len)
242 {
243 	struct i2c_msg msg = { .addr = priv->i2c_props.addr,
244 			       .flags = 0, .buf = buf, .len = len };
245 	if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
246 		if (priv->ignore_i2c_write_errors == 0) {
247 			printk(KERN_ERR "xc4000: I2C write failed (len=%i)\n",
248 			       len);
249 			if (len == 4) {
250 				printk(KERN_ERR "bytes %*ph\n", 4, buf);
251 			}
252 			return -EREMOTEIO;
253 		}
254 	}
255 	return 0;
256 }
257 
258 static int xc4000_tuner_reset(struct dvb_frontend *fe)
259 {
260 	struct xc4000_priv *priv = fe->tuner_priv;
261 	int ret;
262 
263 	dprintk(1, "%s()\n", __func__);
264 
265 	if (fe->callback) {
266 		ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
267 					   fe->dvb->priv :
268 					   priv->i2c_props.adap->algo_data,
269 					   DVB_FRONTEND_COMPONENT_TUNER,
270 					   XC4000_TUNER_RESET, 0);
271 		if (ret) {
272 			printk(KERN_ERR "xc4000: reset failed\n");
273 			return -EREMOTEIO;
274 		}
275 	} else {
276 		printk(KERN_ERR "xc4000: no tuner reset callback function, fatal\n");
277 		return -EINVAL;
278 	}
279 	return 0;
280 }
281 
282 static int xc_write_reg(struct xc4000_priv *priv, u16 regAddr, u16 i2cData)
283 {
284 	u8 buf[4];
285 	int result;
286 
287 	buf[0] = (regAddr >> 8) & 0xFF;
288 	buf[1] = regAddr & 0xFF;
289 	buf[2] = (i2cData >> 8) & 0xFF;
290 	buf[3] = i2cData & 0xFF;
291 	result = xc_send_i2c_data(priv, buf, 4);
292 
293 	return result;
294 }
295 
296 static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
297 {
298 	struct xc4000_priv *priv = fe->tuner_priv;
299 
300 	int i, nbytes_to_send, result;
301 	unsigned int len, pos, index;
302 	u8 buf[XC_MAX_I2C_WRITE_LENGTH];
303 
304 	index = 0;
305 	while ((i2c_sequence[index] != 0xFF) ||
306 		(i2c_sequence[index + 1] != 0xFF)) {
307 		len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
308 		if (len == 0x0000) {
309 			/* RESET command */
310 			/* NOTE: this is ignored, as the reset callback was */
311 			/* already called by check_firmware() */
312 			index += 2;
313 		} else if (len & 0x8000) {
314 			/* WAIT command */
315 			msleep(len & 0x7FFF);
316 			index += 2;
317 		} else {
318 			/* Send i2c data whilst ensuring individual transactions
319 			 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
320 			 */
321 			index += 2;
322 			buf[0] = i2c_sequence[index];
323 			buf[1] = i2c_sequence[index + 1];
324 			pos = 2;
325 			while (pos < len) {
326 				if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
327 					nbytes_to_send =
328 						XC_MAX_I2C_WRITE_LENGTH;
329 				else
330 					nbytes_to_send = (len - pos + 2);
331 				for (i = 2; i < nbytes_to_send; i++) {
332 					buf[i] = i2c_sequence[index + pos +
333 						i - 2];
334 				}
335 				result = xc_send_i2c_data(priv, buf,
336 					nbytes_to_send);
337 
338 				if (result != 0)
339 					return result;
340 
341 				pos += nbytes_to_send - 2;
342 			}
343 			index += len;
344 		}
345 	}
346 	return 0;
347 }
348 
349 static int xc_set_tv_standard(struct xc4000_priv *priv,
350 	u16 video_mode, u16 audio_mode)
351 {
352 	int ret;
353 	dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, video_mode, audio_mode);
354 	dprintk(1, "%s() Standard = %s\n",
355 		__func__,
356 		xc4000_standard[priv->video_standard].Name);
357 
358 	/* Don't complain when the request fails because of i2c stretching */
359 	priv->ignore_i2c_write_errors = 1;
360 
361 	ret = xc_write_reg(priv, XREG_VIDEO_MODE, video_mode);
362 	if (ret == 0)
363 		ret = xc_write_reg(priv, XREG_AUDIO_MODE, audio_mode);
364 
365 	priv->ignore_i2c_write_errors = 0;
366 
367 	return ret;
368 }
369 
370 static int xc_set_signal_source(struct xc4000_priv *priv, u16 rf_mode)
371 {
372 	dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
373 		rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
374 
375 	if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
376 		rf_mode = XC_RF_MODE_CABLE;
377 		printk(KERN_ERR
378 			"%s(), Invalid mode, defaulting to CABLE",
379 			__func__);
380 	}
381 	return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
382 }
383 
384 static const struct dvb_tuner_ops xc4000_tuner_ops;
385 
386 static int xc_set_rf_frequency(struct xc4000_priv *priv, u32 freq_hz)
387 {
388 	u16 freq_code;
389 
390 	dprintk(1, "%s(%u)\n", __func__, freq_hz);
391 
392 	if ((freq_hz > xc4000_tuner_ops.info.frequency_max_hz) ||
393 	    (freq_hz < xc4000_tuner_ops.info.frequency_min_hz))
394 		return -EINVAL;
395 
396 	freq_code = (u16)(freq_hz / 15625);
397 
398 	/* WAS: Starting in firmware version 1.1.44, Xceive recommends using the
399 	   FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
400 	   only be used for fast scanning for channel lock) */
401 	/* WAS: XREG_FINERFREQ */
402 	return xc_write_reg(priv, XREG_RF_FREQ, freq_code);
403 }
404 
405 static int xc_get_adc_envelope(struct xc4000_priv *priv, u16 *adc_envelope)
406 {
407 	return xc4000_readreg(priv, XREG_ADC_ENV, adc_envelope);
408 }
409 
410 static int xc_get_frequency_error(struct xc4000_priv *priv, u32 *freq_error_hz)
411 {
412 	int result;
413 	u16 regData;
414 	u32 tmp;
415 
416 	result = xc4000_readreg(priv, XREG_FREQ_ERROR, &regData);
417 	if (result != 0)
418 		return result;
419 
420 	tmp = (u32)regData & 0xFFFFU;
421 	tmp = (tmp < 0x8000U ? tmp : 0x10000U - tmp);
422 	(*freq_error_hz) = tmp * 15625;
423 	return result;
424 }
425 
426 static int xc_get_lock_status(struct xc4000_priv *priv, u16 *lock_status)
427 {
428 	return xc4000_readreg(priv, XREG_LOCK, lock_status);
429 }
430 
431 static int xc_get_version(struct xc4000_priv *priv,
432 	u8 *hw_majorversion, u8 *hw_minorversion,
433 	u8 *fw_majorversion, u8 *fw_minorversion)
434 {
435 	u16 data;
436 	int result;
437 
438 	result = xc4000_readreg(priv, XREG_VERSION, &data);
439 	if (result != 0)
440 		return result;
441 
442 	(*hw_majorversion) = (data >> 12) & 0x0F;
443 	(*hw_minorversion) = (data >>  8) & 0x0F;
444 	(*fw_majorversion) = (data >>  4) & 0x0F;
445 	(*fw_minorversion) = data & 0x0F;
446 
447 	return 0;
448 }
449 
450 static int xc_get_hsync_freq(struct xc4000_priv *priv, u32 *hsync_freq_hz)
451 {
452 	u16 regData;
453 	int result;
454 
455 	result = xc4000_readreg(priv, XREG_HSYNC_FREQ, &regData);
456 	if (result != 0)
457 		return result;
458 
459 	(*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
460 	return result;
461 }
462 
463 static int xc_get_frame_lines(struct xc4000_priv *priv, u16 *frame_lines)
464 {
465 	return xc4000_readreg(priv, XREG_FRAME_LINES, frame_lines);
466 }
467 
468 static int xc_get_quality(struct xc4000_priv *priv, u16 *quality)
469 {
470 	return xc4000_readreg(priv, XREG_QUALITY, quality);
471 }
472 
473 static int xc_get_signal_level(struct xc4000_priv *priv, u16 *signal)
474 {
475 	return xc4000_readreg(priv, XREG_SIGNAL_LEVEL, signal);
476 }
477 
478 static int xc_get_noise_level(struct xc4000_priv *priv, u16 *noise)
479 {
480 	return xc4000_readreg(priv, XREG_NOISE_LEVEL, noise);
481 }
482 
483 static u16 xc_wait_for_lock(struct xc4000_priv *priv)
484 {
485 	u16	lock_state = 0;
486 	int	watchdog_count = 40;
487 
488 	while ((lock_state == 0) && (watchdog_count > 0)) {
489 		xc_get_lock_status(priv, &lock_state);
490 		if (lock_state != 1) {
491 			msleep(5);
492 			watchdog_count--;
493 		}
494 	}
495 	return lock_state;
496 }
497 
498 static int xc_tune_channel(struct xc4000_priv *priv, u32 freq_hz)
499 {
500 	int	found = 1;
501 	int	result;
502 
503 	dprintk(1, "%s(%u)\n", __func__, freq_hz);
504 
505 	/* Don't complain when the request fails because of i2c stretching */
506 	priv->ignore_i2c_write_errors = 1;
507 	result = xc_set_rf_frequency(priv, freq_hz);
508 	priv->ignore_i2c_write_errors = 0;
509 
510 	if (result != 0)
511 		return 0;
512 
513 	/* wait for lock only in analog TV mode */
514 	if ((priv->cur_fw.type & (FM | DTV6 | DTV7 | DTV78 | DTV8)) == 0) {
515 		if (xc_wait_for_lock(priv) != 1)
516 			found = 0;
517 	}
518 
519 	/* Wait for stats to stabilize.
520 	 * Frame Lines needs two frame times after initial lock
521 	 * before it is valid.
522 	 */
523 	msleep(debug ? 100 : 10);
524 
525 	if (debug)
526 		xc_debug_dump(priv);
527 
528 	return found;
529 }
530 
531 static int xc4000_readreg(struct xc4000_priv *priv, u16 reg, u16 *val)
532 {
533 	u8 buf[2] = { reg >> 8, reg & 0xff };
534 	u8 bval[2] = { 0, 0 };
535 	struct i2c_msg msg[2] = {
536 		{ .addr = priv->i2c_props.addr,
537 			.flags = 0, .buf = &buf[0], .len = 2 },
538 		{ .addr = priv->i2c_props.addr,
539 			.flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
540 	};
541 
542 	if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
543 		printk(KERN_ERR "xc4000: I2C read failed\n");
544 		return -EREMOTEIO;
545 	}
546 
547 	*val = (bval[0] << 8) | bval[1];
548 	return 0;
549 }
550 
551 #define dump_firm_type(t)	dump_firm_type_and_int_freq(t, 0)
552 static void dump_firm_type_and_int_freq(unsigned int type, u16 int_freq)
553 {
554 	if (type & BASE)
555 		printk(KERN_CONT "BASE ");
556 	if (type & INIT1)
557 		printk(KERN_CONT "INIT1 ");
558 	if (type & F8MHZ)
559 		printk(KERN_CONT "F8MHZ ");
560 	if (type & MTS)
561 		printk(KERN_CONT "MTS ");
562 	if (type & D2620)
563 		printk(KERN_CONT "D2620 ");
564 	if (type & D2633)
565 		printk(KERN_CONT "D2633 ");
566 	if (type & DTV6)
567 		printk(KERN_CONT "DTV6 ");
568 	if (type & QAM)
569 		printk(KERN_CONT "QAM ");
570 	if (type & DTV7)
571 		printk(KERN_CONT "DTV7 ");
572 	if (type & DTV78)
573 		printk(KERN_CONT "DTV78 ");
574 	if (type & DTV8)
575 		printk(KERN_CONT "DTV8 ");
576 	if (type & FM)
577 		printk(KERN_CONT "FM ");
578 	if (type & INPUT1)
579 		printk(KERN_CONT "INPUT1 ");
580 	if (type & LCD)
581 		printk(KERN_CONT "LCD ");
582 	if (type & NOGD)
583 		printk(KERN_CONT "NOGD ");
584 	if (type & MONO)
585 		printk(KERN_CONT "MONO ");
586 	if (type & ATSC)
587 		printk(KERN_CONT "ATSC ");
588 	if (type & IF)
589 		printk(KERN_CONT "IF ");
590 	if (type & LG60)
591 		printk(KERN_CONT "LG60 ");
592 	if (type & ATI638)
593 		printk(KERN_CONT "ATI638 ");
594 	if (type & OREN538)
595 		printk(KERN_CONT "OREN538 ");
596 	if (type & OREN36)
597 		printk(KERN_CONT "OREN36 ");
598 	if (type & TOYOTA388)
599 		printk(KERN_CONT "TOYOTA388 ");
600 	if (type & TOYOTA794)
601 		printk(KERN_CONT "TOYOTA794 ");
602 	if (type & DIBCOM52)
603 		printk(KERN_CONT "DIBCOM52 ");
604 	if (type & ZARLINK456)
605 		printk(KERN_CONT "ZARLINK456 ");
606 	if (type & CHINA)
607 		printk(KERN_CONT "CHINA ");
608 	if (type & F6MHZ)
609 		printk(KERN_CONT "F6MHZ ");
610 	if (type & INPUT2)
611 		printk(KERN_CONT "INPUT2 ");
612 	if (type & SCODE)
613 		printk(KERN_CONT "SCODE ");
614 	if (type & HAS_IF)
615 		printk(KERN_CONT "HAS_IF_%d ", int_freq);
616 }
617 
618 static int seek_firmware(struct dvb_frontend *fe, unsigned int type,
619 			 v4l2_std_id *id)
620 {
621 	struct xc4000_priv *priv = fe->tuner_priv;
622 	int		i, best_i = -1;
623 	unsigned int	best_nr_diffs = 255U;
624 
625 	if (!priv->firm) {
626 		printk(KERN_ERR "Error! firmware not loaded\n");
627 		return -EINVAL;
628 	}
629 
630 	if (((type & ~SCODE) == 0) && (*id == 0))
631 		*id = V4L2_STD_PAL;
632 
633 	/* Seek for generic video standard match */
634 	for (i = 0; i < priv->firm_size; i++) {
635 		v4l2_std_id	id_diff_mask =
636 			(priv->firm[i].id ^ (*id)) & (*id);
637 		unsigned int	type_diff_mask =
638 			(priv->firm[i].type ^ type)
639 			& (BASE_TYPES | DTV_TYPES | LCD | NOGD | MONO | SCODE);
640 		unsigned int	nr_diffs;
641 
642 		if (type_diff_mask
643 		    & (BASE | INIT1 | FM | DTV6 | DTV7 | DTV78 | DTV8 | SCODE))
644 			continue;
645 
646 		nr_diffs = hweight64(id_diff_mask) + hweight32(type_diff_mask);
647 		if (!nr_diffs)	/* Supports all the requested standards */
648 			goto found;
649 
650 		if (nr_diffs < best_nr_diffs) {
651 			best_nr_diffs = nr_diffs;
652 			best_i = i;
653 		}
654 	}
655 
656 	/* FIXME: Would make sense to seek for type "hint" match ? */
657 	if (best_i < 0) {
658 		i = -ENOENT;
659 		goto ret;
660 	}
661 
662 	if (best_nr_diffs > 0U) {
663 		printk(KERN_WARNING
664 		       "Selecting best matching firmware (%u bits differ) for type=(%x), id %016llx:\n",
665 		       best_nr_diffs, type, (unsigned long long)*id);
666 		i = best_i;
667 	}
668 
669 found:
670 	*id = priv->firm[i].id;
671 
672 ret:
673 	if (debug) {
674 		printk(KERN_DEBUG "%s firmware for type=",
675 		       (i < 0) ? "Can't find" : "Found");
676 		dump_firm_type(type);
677 		printk(KERN_DEBUG "(%x), id %016llx.\n", type, (unsigned long long)*id);
678 	}
679 	return i;
680 }
681 
682 static int load_firmware(struct dvb_frontend *fe, unsigned int type,
683 			 v4l2_std_id *id)
684 {
685 	struct xc4000_priv *priv = fe->tuner_priv;
686 	int                pos, rc;
687 	unsigned char      *p;
688 
689 	pos = seek_firmware(fe, type, id);
690 	if (pos < 0)
691 		return pos;
692 
693 	p = priv->firm[pos].ptr;
694 
695 	/* Don't complain when the request fails because of i2c stretching */
696 	priv->ignore_i2c_write_errors = 1;
697 
698 	rc = xc_load_i2c_sequence(fe, p);
699 
700 	priv->ignore_i2c_write_errors = 0;
701 
702 	return rc;
703 }
704 
705 static int xc4000_fwupload(struct dvb_frontend *fe)
706 {
707 	struct xc4000_priv *priv = fe->tuner_priv;
708 	const struct firmware *fw   = NULL;
709 	const unsigned char   *p, *endp;
710 	int                   rc = 0;
711 	int		      n, n_array;
712 	char		      name[33];
713 	const char	      *fname;
714 
715 	if (firmware_name[0] != '\0') {
716 		fname = firmware_name;
717 
718 		dprintk(1, "Reading custom firmware %s\n", fname);
719 		rc = request_firmware(&fw, fname,
720 				      priv->i2c_props.adap->dev.parent);
721 	} else {
722 		fname = XC4000_DEFAULT_FIRMWARE_NEW;
723 		dprintk(1, "Trying to read firmware %s\n", fname);
724 		rc = request_firmware(&fw, fname,
725 				      priv->i2c_props.adap->dev.parent);
726 		if (rc == -ENOENT) {
727 			fname = XC4000_DEFAULT_FIRMWARE;
728 			dprintk(1, "Trying to read firmware %s\n", fname);
729 			rc = request_firmware(&fw, fname,
730 					      priv->i2c_props.adap->dev.parent);
731 		}
732 	}
733 
734 	if (rc < 0) {
735 		if (rc == -ENOENT)
736 			printk(KERN_ERR "Error: firmware %s not found.\n", fname);
737 		else
738 			printk(KERN_ERR "Error %d while requesting firmware %s\n",
739 			       rc, fname);
740 
741 		return rc;
742 	}
743 	dprintk(1, "Loading Firmware: %s\n", fname);
744 
745 	p = fw->data;
746 	endp = p + fw->size;
747 
748 	if (fw->size < sizeof(name) - 1 + 2 + 2) {
749 		printk(KERN_ERR "Error: firmware file %s has invalid size!\n",
750 		       fname);
751 		goto corrupt;
752 	}
753 
754 	memcpy(name, p, sizeof(name) - 1);
755 	name[sizeof(name) - 1] = '\0';
756 	p += sizeof(name) - 1;
757 
758 	priv->firm_version = get_unaligned_le16(p);
759 	p += 2;
760 
761 	n_array = get_unaligned_le16(p);
762 	p += 2;
763 
764 	dprintk(1, "Loading %d firmware images from %s, type: %s, ver %d.%d\n",
765 		n_array, fname, name,
766 		priv->firm_version >> 8, priv->firm_version & 0xff);
767 
768 	priv->firm = kcalloc(n_array, sizeof(*priv->firm), GFP_KERNEL);
769 	if (priv->firm == NULL) {
770 		printk(KERN_ERR "Not enough memory to load firmware file.\n");
771 		rc = -ENOMEM;
772 		goto done;
773 	}
774 	priv->firm_size = n_array;
775 
776 	n = -1;
777 	while (p < endp) {
778 		__u32 type, size;
779 		v4l2_std_id id;
780 		__u16 int_freq = 0;
781 
782 		n++;
783 		if (n >= n_array) {
784 			printk(KERN_ERR "More firmware images in file than were expected!\n");
785 			goto corrupt;
786 		}
787 
788 		/* Checks if there's enough bytes to read */
789 		if (endp - p < sizeof(type) + sizeof(id) + sizeof(size))
790 			goto header;
791 
792 		type = get_unaligned_le32(p);
793 		p += sizeof(type);
794 
795 		id = get_unaligned_le64(p);
796 		p += sizeof(id);
797 
798 		if (type & HAS_IF) {
799 			int_freq = get_unaligned_le16(p);
800 			p += sizeof(int_freq);
801 			if (endp - p < sizeof(size))
802 				goto header;
803 		}
804 
805 		size = get_unaligned_le32(p);
806 		p += sizeof(size);
807 
808 		if (!size || size > endp - p) {
809 			printk(KERN_ERR "Firmware type (%x), id %llx is corrupted (size=%zd, expected %d)\n",
810 			       type, (unsigned long long)id,
811 			       endp - p, size);
812 			goto corrupt;
813 		}
814 
815 		priv->firm[n].ptr = kzalloc(size, GFP_KERNEL);
816 		if (priv->firm[n].ptr == NULL) {
817 			printk(KERN_ERR "Not enough memory to load firmware file.\n");
818 			rc = -ENOMEM;
819 			goto done;
820 		}
821 
822 		if (debug) {
823 			printk(KERN_DEBUG "Reading firmware type ");
824 			dump_firm_type_and_int_freq(type, int_freq);
825 			printk(KERN_DEBUG "(%x), id %llx, size=%d.\n",
826 			       type, (unsigned long long)id, size);
827 		}
828 
829 		memcpy(priv->firm[n].ptr, p, size);
830 		priv->firm[n].type = type;
831 		priv->firm[n].id   = id;
832 		priv->firm[n].size = size;
833 		priv->firm[n].int_freq = int_freq;
834 
835 		p += size;
836 	}
837 
838 	if (n + 1 != priv->firm_size) {
839 		printk(KERN_ERR "Firmware file is incomplete!\n");
840 		goto corrupt;
841 	}
842 
843 	goto done;
844 
845 header:
846 	printk(KERN_ERR "Firmware header is incomplete!\n");
847 corrupt:
848 	rc = -EINVAL;
849 	printk(KERN_ERR "Error: firmware file is corrupted!\n");
850 
851 done:
852 	release_firmware(fw);
853 	if (rc == 0)
854 		dprintk(1, "Firmware files loaded.\n");
855 
856 	return rc;
857 }
858 
859 static int load_scode(struct dvb_frontend *fe, unsigned int type,
860 			 v4l2_std_id *id, __u16 int_freq, int scode)
861 {
862 	struct xc4000_priv *priv = fe->tuner_priv;
863 	int		pos, rc;
864 	unsigned char	*p;
865 	u8		scode_buf[13];
866 	u8		indirect_mode[5];
867 
868 	dprintk(1, "%s called int_freq=%d\n", __func__, int_freq);
869 
870 	if (!int_freq) {
871 		pos = seek_firmware(fe, type, id);
872 		if (pos < 0)
873 			return pos;
874 	} else {
875 		for (pos = 0; pos < priv->firm_size; pos++) {
876 			if ((priv->firm[pos].int_freq == int_freq) &&
877 			    (priv->firm[pos].type & HAS_IF))
878 				break;
879 		}
880 		if (pos == priv->firm_size)
881 			return -ENOENT;
882 	}
883 
884 	p = priv->firm[pos].ptr;
885 
886 	if (priv->firm[pos].size != 12 * 16 || scode >= 16)
887 		return -EINVAL;
888 	p += 12 * scode;
889 
890 	if (debug) {
891 		tuner_info("Loading SCODE for type=");
892 		dump_firm_type_and_int_freq(priv->firm[pos].type,
893 					    priv->firm[pos].int_freq);
894 		printk(KERN_CONT "(%x), id %016llx.\n", priv->firm[pos].type,
895 		       (unsigned long long)*id);
896 	}
897 
898 	scode_buf[0] = 0x00;
899 	memcpy(&scode_buf[1], p, 12);
900 
901 	/* Enter direct-mode */
902 	rc = xc_write_reg(priv, XREG_DIRECTSITTING_MODE, 0);
903 	if (rc < 0) {
904 		printk(KERN_ERR "failed to put device into direct mode!\n");
905 		return -EIO;
906 	}
907 
908 	rc = xc_send_i2c_data(priv, scode_buf, 13);
909 	if (rc != 0) {
910 		/* Even if the send failed, make sure we set back to indirect
911 		   mode */
912 		printk(KERN_ERR "Failed to set scode %d\n", rc);
913 	}
914 
915 	/* Switch back to indirect-mode */
916 	memset(indirect_mode, 0, sizeof(indirect_mode));
917 	indirect_mode[4] = 0x88;
918 	xc_send_i2c_data(priv, indirect_mode, sizeof(indirect_mode));
919 	msleep(10);
920 
921 	return 0;
922 }
923 
924 static int check_firmware(struct dvb_frontend *fe, unsigned int type,
925 			  v4l2_std_id std, __u16 int_freq)
926 {
927 	struct xc4000_priv         *priv = fe->tuner_priv;
928 	struct firmware_properties new_fw;
929 	int			   rc = 0, is_retry = 0;
930 	u16			   hwmodel;
931 	v4l2_std_id		   std0;
932 	u8			   hw_major = 0, hw_minor = 0, fw_major = 0, fw_minor = 0;
933 
934 	dprintk(1, "%s called\n", __func__);
935 
936 	if (!priv->firm) {
937 		rc = xc4000_fwupload(fe);
938 		if (rc < 0)
939 			return rc;
940 	}
941 
942 retry:
943 	new_fw.type = type;
944 	new_fw.id = std;
945 	new_fw.std_req = std;
946 	new_fw.scode_table = SCODE;
947 	new_fw.scode_nr = 0;
948 	new_fw.int_freq = int_freq;
949 
950 	dprintk(1, "checking firmware, user requested type=");
951 	if (debug) {
952 		dump_firm_type(new_fw.type);
953 		printk(KERN_CONT "(%x), id %016llx, ", new_fw.type,
954 		       (unsigned long long)new_fw.std_req);
955 		if (!int_freq)
956 			printk(KERN_CONT "scode_tbl ");
957 		else
958 			printk(KERN_CONT "int_freq %d, ", new_fw.int_freq);
959 		printk(KERN_CONT "scode_nr %d\n", new_fw.scode_nr);
960 	}
961 
962 	/* No need to reload base firmware if it matches */
963 	if (priv->cur_fw.type & BASE) {
964 		dprintk(1, "BASE firmware not changed.\n");
965 		goto skip_base;
966 	}
967 
968 	/* Updating BASE - forget about all currently loaded firmware */
969 	memset(&priv->cur_fw, 0, sizeof(priv->cur_fw));
970 
971 	/* Reset is needed before loading firmware */
972 	rc = xc4000_tuner_reset(fe);
973 	if (rc < 0)
974 		goto fail;
975 
976 	/* BASE firmwares are all std0 */
977 	std0 = 0;
978 	rc = load_firmware(fe, BASE, &std0);
979 	if (rc < 0) {
980 		printk(KERN_ERR "Error %d while loading base firmware\n", rc);
981 		goto fail;
982 	}
983 
984 	/* Load INIT1, if needed */
985 	dprintk(1, "Load init1 firmware, if exists\n");
986 
987 	rc = load_firmware(fe, BASE | INIT1, &std0);
988 	if (rc == -ENOENT)
989 		rc = load_firmware(fe, BASE | INIT1, &std0);
990 	if (rc < 0 && rc != -ENOENT) {
991 		tuner_err("Error %d while loading init1 firmware\n",
992 			  rc);
993 		goto fail;
994 	}
995 
996 skip_base:
997 	/*
998 	 * No need to reload standard specific firmware if base firmware
999 	 * was not reloaded and requested video standards have not changed.
1000 	 */
1001 	if (priv->cur_fw.type == (BASE | new_fw.type) &&
1002 	    priv->cur_fw.std_req == std) {
1003 		dprintk(1, "Std-specific firmware already loaded.\n");
1004 		goto skip_std_specific;
1005 	}
1006 
1007 	/* Reloading std-specific firmware forces a SCODE update */
1008 	priv->cur_fw.scode_table = 0;
1009 
1010 	/* Load the standard firmware */
1011 	rc = load_firmware(fe, new_fw.type, &new_fw.id);
1012 
1013 	if (rc < 0)
1014 		goto fail;
1015 
1016 skip_std_specific:
1017 	if (priv->cur_fw.scode_table == new_fw.scode_table &&
1018 	    priv->cur_fw.scode_nr == new_fw.scode_nr) {
1019 		dprintk(1, "SCODE firmware already loaded.\n");
1020 		goto check_device;
1021 	}
1022 
1023 	/* Load SCODE firmware, if exists */
1024 	rc = load_scode(fe, new_fw.type | new_fw.scode_table, &new_fw.id,
1025 			new_fw.int_freq, new_fw.scode_nr);
1026 	if (rc != 0)
1027 		dprintk(1, "load scode failed %d\n", rc);
1028 
1029 check_device:
1030 	if (xc4000_readreg(priv, XREG_PRODUCT_ID, &hwmodel) < 0) {
1031 		printk(KERN_ERR "Unable to read tuner registers.\n");
1032 		goto fail;
1033 	}
1034 
1035 	if (xc_get_version(priv, &hw_major, &hw_minor, &fw_major,
1036 			   &fw_minor) != 0) {
1037 		printk(KERN_ERR "Unable to read tuner registers.\n");
1038 		goto fail;
1039 	}
1040 
1041 	dprintk(1, "Device is Xceive %d version %d.%d, firmware version %d.%d\n",
1042 		hwmodel, hw_major, hw_minor, fw_major, fw_minor);
1043 
1044 	/* Check firmware version against what we downloaded. */
1045 	if (priv->firm_version != ((fw_major << 8) | fw_minor)) {
1046 		printk(KERN_WARNING
1047 		       "Incorrect readback of firmware version %d.%d.\n",
1048 		       fw_major, fw_minor);
1049 		goto fail;
1050 	}
1051 
1052 	/* Check that the tuner hardware model remains consistent over time. */
1053 	if (priv->hwmodel == 0 &&
1054 	    (hwmodel == XC_PRODUCT_ID_XC4000 ||
1055 	     hwmodel == XC_PRODUCT_ID_XC4100)) {
1056 		priv->hwmodel = hwmodel;
1057 		priv->hwvers = (hw_major << 8) | hw_minor;
1058 	} else if (priv->hwmodel == 0 || priv->hwmodel != hwmodel ||
1059 		   priv->hwvers != ((hw_major << 8) | hw_minor)) {
1060 		printk(KERN_WARNING
1061 		       "Read invalid device hardware information - tuner hung?\n");
1062 		goto fail;
1063 	}
1064 
1065 	priv->cur_fw = new_fw;
1066 
1067 	/*
1068 	 * By setting BASE in cur_fw.type only after successfully loading all
1069 	 * firmwares, we can:
1070 	 * 1. Identify that BASE firmware with type=0 has been loaded;
1071 	 * 2. Tell whether BASE firmware was just changed the next time through.
1072 	 */
1073 	priv->cur_fw.type |= BASE;
1074 
1075 	return 0;
1076 
1077 fail:
1078 	memset(&priv->cur_fw, 0, sizeof(priv->cur_fw));
1079 	if (!is_retry) {
1080 		msleep(50);
1081 		is_retry = 1;
1082 		dprintk(1, "Retrying firmware load\n");
1083 		goto retry;
1084 	}
1085 
1086 	if (rc == -ENOENT)
1087 		rc = -EINVAL;
1088 	return rc;
1089 }
1090 
1091 static void xc_debug_dump(struct xc4000_priv *priv)
1092 {
1093 	u16	adc_envelope;
1094 	u32	freq_error_hz = 0;
1095 	u16	lock_status;
1096 	u32	hsync_freq_hz = 0;
1097 	u16	frame_lines;
1098 	u16	quality;
1099 	u16	signal = 0;
1100 	u16	noise = 0;
1101 	u8	hw_majorversion = 0, hw_minorversion = 0;
1102 	u8	fw_majorversion = 0, fw_minorversion = 0;
1103 
1104 	xc_get_adc_envelope(priv, &adc_envelope);
1105 	dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
1106 
1107 	xc_get_frequency_error(priv, &freq_error_hz);
1108 	dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
1109 
1110 	xc_get_lock_status(priv, &lock_status);
1111 	dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
1112 		lock_status);
1113 
1114 	xc_get_version(priv, &hw_majorversion, &hw_minorversion,
1115 		       &fw_majorversion, &fw_minorversion);
1116 	dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n",
1117 		hw_majorversion, hw_minorversion,
1118 		fw_majorversion, fw_minorversion);
1119 
1120 	if (priv->video_standard < XC4000_DTV6) {
1121 		xc_get_hsync_freq(priv, &hsync_freq_hz);
1122 		dprintk(1, "*** Horizontal sync frequency = %d Hz\n",
1123 			hsync_freq_hz);
1124 
1125 		xc_get_frame_lines(priv, &frame_lines);
1126 		dprintk(1, "*** Frame lines = %d\n", frame_lines);
1127 	}
1128 
1129 	xc_get_quality(priv, &quality);
1130 	dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
1131 
1132 	xc_get_signal_level(priv, &signal);
1133 	dprintk(1, "*** Signal level = -%ddB (%d)\n", signal >> 8, signal);
1134 
1135 	xc_get_noise_level(priv, &noise);
1136 	dprintk(1, "*** Noise level = %ddB (%d)\n", noise >> 8, noise);
1137 }
1138 
1139 static int xc4000_set_params(struct dvb_frontend *fe)
1140 {
1141 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1142 	u32 delsys = c->delivery_system;
1143 	u32 bw = c->bandwidth_hz;
1144 	struct xc4000_priv *priv = fe->tuner_priv;
1145 	unsigned int type;
1146 	int	ret = -EREMOTEIO;
1147 
1148 	dprintk(1, "%s() frequency=%d (Hz)\n", __func__, c->frequency);
1149 
1150 	mutex_lock(&priv->lock);
1151 
1152 	switch (delsys) {
1153 	case SYS_ATSC:
1154 		dprintk(1, "%s() VSB modulation\n", __func__);
1155 		priv->rf_mode = XC_RF_MODE_AIR;
1156 		priv->freq_offset = 1750000;
1157 		priv->video_standard = XC4000_DTV6;
1158 		type = DTV6;
1159 		break;
1160 	case SYS_DVBC_ANNEX_B:
1161 		dprintk(1, "%s() QAM modulation\n", __func__);
1162 		priv->rf_mode = XC_RF_MODE_CABLE;
1163 		priv->freq_offset = 1750000;
1164 		priv->video_standard = XC4000_DTV6;
1165 		type = DTV6;
1166 		break;
1167 	case SYS_DVBT:
1168 	case SYS_DVBT2:
1169 		dprintk(1, "%s() OFDM\n", __func__);
1170 		if (bw == 0) {
1171 			if (c->frequency < 400000000) {
1172 				priv->freq_offset = 2250000;
1173 			} else {
1174 				priv->freq_offset = 2750000;
1175 			}
1176 			priv->video_standard = XC4000_DTV7_8;
1177 			type = DTV78;
1178 		} else if (bw <= 6000000) {
1179 			priv->video_standard = XC4000_DTV6;
1180 			priv->freq_offset = 1750000;
1181 			type = DTV6;
1182 		} else if (bw <= 7000000) {
1183 			priv->video_standard = XC4000_DTV7;
1184 			priv->freq_offset = 2250000;
1185 			type = DTV7;
1186 		} else {
1187 			priv->video_standard = XC4000_DTV8;
1188 			priv->freq_offset = 2750000;
1189 			type = DTV8;
1190 		}
1191 		priv->rf_mode = XC_RF_MODE_AIR;
1192 		break;
1193 	default:
1194 		printk(KERN_ERR "xc4000 delivery system not supported!\n");
1195 		ret = -EINVAL;
1196 		goto fail;
1197 	}
1198 
1199 	priv->freq_hz = c->frequency - priv->freq_offset;
1200 
1201 	dprintk(1, "%s() frequency=%d (compensated)\n",
1202 		__func__, priv->freq_hz);
1203 
1204 	/* Make sure the correct firmware type is loaded */
1205 	if (check_firmware(fe, type, 0, priv->if_khz) != 0)
1206 		goto fail;
1207 
1208 	priv->bandwidth = c->bandwidth_hz;
1209 
1210 	ret = xc_set_signal_source(priv, priv->rf_mode);
1211 	if (ret != 0) {
1212 		printk(KERN_ERR "xc4000: xc_set_signal_source(%d) failed\n",
1213 		       priv->rf_mode);
1214 		goto fail;
1215 	} else {
1216 		u16	video_mode, audio_mode;
1217 		video_mode = xc4000_standard[priv->video_standard].video_mode;
1218 		audio_mode = xc4000_standard[priv->video_standard].audio_mode;
1219 		if (type == DTV6 && priv->firm_version != 0x0102)
1220 			video_mode |= 0x0001;
1221 		ret = xc_set_tv_standard(priv, video_mode, audio_mode);
1222 		if (ret != 0) {
1223 			printk(KERN_ERR "xc4000: xc_set_tv_standard failed\n");
1224 			/* DJH - do not return when it fails... */
1225 			/* goto fail; */
1226 		}
1227 	}
1228 
1229 	if (xc_write_reg(priv, XREG_D_CODE, 0) == 0)
1230 		ret = 0;
1231 	if (priv->dvb_amplitude != 0) {
1232 		if (xc_write_reg(priv, XREG_AMPLITUDE,
1233 				 (priv->firm_version != 0x0102 ||
1234 				  priv->dvb_amplitude != 134 ?
1235 				  priv->dvb_amplitude : 132)) != 0)
1236 			ret = -EREMOTEIO;
1237 	}
1238 	if (priv->set_smoothedcvbs != 0) {
1239 		if (xc_write_reg(priv, XREG_SMOOTHEDCVBS, 1) != 0)
1240 			ret = -EREMOTEIO;
1241 	}
1242 	if (ret != 0) {
1243 		printk(KERN_ERR "xc4000: setting registers failed\n");
1244 		/* goto fail; */
1245 	}
1246 
1247 	xc_tune_channel(priv, priv->freq_hz);
1248 
1249 	ret = 0;
1250 
1251 fail:
1252 	mutex_unlock(&priv->lock);
1253 
1254 	return ret;
1255 }
1256 
1257 static int xc4000_set_analog_params(struct dvb_frontend *fe,
1258 	struct analog_parameters *params)
1259 {
1260 	struct xc4000_priv *priv = fe->tuner_priv;
1261 	unsigned int type = 0;
1262 	int	ret = -EREMOTEIO;
1263 
1264 	if (params->mode == V4L2_TUNER_RADIO) {
1265 		dprintk(1, "%s() frequency=%d (in units of 62.5Hz)\n",
1266 			__func__, params->frequency);
1267 
1268 		mutex_lock(&priv->lock);
1269 
1270 		params->std = 0;
1271 		priv->freq_hz = params->frequency * 125L / 2;
1272 
1273 		if (audio_std & XC4000_AUDIO_STD_INPUT1) {
1274 			priv->video_standard = XC4000_FM_Radio_INPUT1;
1275 			type = FM | INPUT1;
1276 		} else {
1277 			priv->video_standard = XC4000_FM_Radio_INPUT2;
1278 			type = FM | INPUT2;
1279 		}
1280 
1281 		goto tune_channel;
1282 	}
1283 
1284 	dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
1285 		__func__, params->frequency);
1286 
1287 	mutex_lock(&priv->lock);
1288 
1289 	/* params->frequency is in units of 62.5khz */
1290 	priv->freq_hz = params->frequency * 62500;
1291 
1292 	params->std &= V4L2_STD_ALL;
1293 	/* if std is not defined, choose one */
1294 	if (!params->std)
1295 		params->std = V4L2_STD_PAL_BG;
1296 
1297 	if (audio_std & XC4000_AUDIO_STD_MONO)
1298 		type = MONO;
1299 
1300 	if (params->std & V4L2_STD_MN) {
1301 		params->std = V4L2_STD_MN;
1302 		if (audio_std & XC4000_AUDIO_STD_MONO) {
1303 			priv->video_standard = XC4000_MN_NTSC_PAL_Mono;
1304 		} else if (audio_std & XC4000_AUDIO_STD_A2) {
1305 			params->std |= V4L2_STD_A2;
1306 			priv->video_standard = XC4000_MN_NTSC_PAL_A2;
1307 		} else {
1308 			params->std |= V4L2_STD_BTSC;
1309 			priv->video_standard = XC4000_MN_NTSC_PAL_BTSC;
1310 		}
1311 		goto tune_channel;
1312 	}
1313 
1314 	if (params->std & V4L2_STD_PAL_BG) {
1315 		params->std = V4L2_STD_PAL_BG;
1316 		if (audio_std & XC4000_AUDIO_STD_MONO) {
1317 			priv->video_standard = XC4000_BG_PAL_MONO;
1318 		} else if (!(audio_std & XC4000_AUDIO_STD_A2)) {
1319 			if (!(audio_std & XC4000_AUDIO_STD_B)) {
1320 				params->std |= V4L2_STD_NICAM_A;
1321 				priv->video_standard = XC4000_BG_PAL_NICAM;
1322 			} else {
1323 				params->std |= V4L2_STD_NICAM_B;
1324 				priv->video_standard = XC4000_BG_PAL_NICAM;
1325 			}
1326 		} else {
1327 			if (!(audio_std & XC4000_AUDIO_STD_B)) {
1328 				params->std |= V4L2_STD_A2_A;
1329 				priv->video_standard = XC4000_BG_PAL_A2;
1330 			} else {
1331 				params->std |= V4L2_STD_A2_B;
1332 				priv->video_standard = XC4000_BG_PAL_A2;
1333 			}
1334 		}
1335 		goto tune_channel;
1336 	}
1337 
1338 	if (params->std & V4L2_STD_PAL_I) {
1339 		/* default to NICAM audio standard */
1340 		params->std = V4L2_STD_PAL_I | V4L2_STD_NICAM;
1341 		if (audio_std & XC4000_AUDIO_STD_MONO)
1342 			priv->video_standard = XC4000_I_PAL_NICAM_MONO;
1343 		else
1344 			priv->video_standard = XC4000_I_PAL_NICAM;
1345 		goto tune_channel;
1346 	}
1347 
1348 	if (params->std & V4L2_STD_PAL_DK) {
1349 		params->std = V4L2_STD_PAL_DK;
1350 		if (audio_std & XC4000_AUDIO_STD_MONO) {
1351 			priv->video_standard = XC4000_DK_PAL_MONO;
1352 		} else if (audio_std & XC4000_AUDIO_STD_A2) {
1353 			params->std |= V4L2_STD_A2;
1354 			priv->video_standard = XC4000_DK_PAL_A2;
1355 		} else {
1356 			params->std |= V4L2_STD_NICAM;
1357 			priv->video_standard = XC4000_DK_PAL_NICAM;
1358 		}
1359 		goto tune_channel;
1360 	}
1361 
1362 	if (params->std & V4L2_STD_SECAM_DK) {
1363 		/* default to A2 audio standard */
1364 		params->std = V4L2_STD_SECAM_DK | V4L2_STD_A2;
1365 		if (audio_std & XC4000_AUDIO_STD_L) {
1366 			type = 0;
1367 			priv->video_standard = XC4000_DK_SECAM_NICAM;
1368 		} else if (audio_std & XC4000_AUDIO_STD_MONO) {
1369 			priv->video_standard = XC4000_DK_SECAM_A2MONO;
1370 		} else if (audio_std & XC4000_AUDIO_STD_K3) {
1371 			params->std |= V4L2_STD_SECAM_K3;
1372 			priv->video_standard = XC4000_DK_SECAM_A2LDK3;
1373 		} else {
1374 			priv->video_standard = XC4000_DK_SECAM_A2DK1;
1375 		}
1376 		goto tune_channel;
1377 	}
1378 
1379 	if (params->std & V4L2_STD_SECAM_L) {
1380 		/* default to NICAM audio standard */
1381 		type = 0;
1382 		params->std = V4L2_STD_SECAM_L | V4L2_STD_NICAM;
1383 		priv->video_standard = XC4000_L_SECAM_NICAM;
1384 		goto tune_channel;
1385 	}
1386 
1387 	if (params->std & V4L2_STD_SECAM_LC) {
1388 		/* default to NICAM audio standard */
1389 		type = 0;
1390 		params->std = V4L2_STD_SECAM_LC | V4L2_STD_NICAM;
1391 		priv->video_standard = XC4000_LC_SECAM_NICAM;
1392 		goto tune_channel;
1393 	}
1394 
1395 tune_channel:
1396 	/* FIXME: it could be air. */
1397 	priv->rf_mode = XC_RF_MODE_CABLE;
1398 
1399 	if (check_firmware(fe, type, params->std,
1400 			   xc4000_standard[priv->video_standard].int_freq) != 0)
1401 		goto fail;
1402 
1403 	ret = xc_set_signal_source(priv, priv->rf_mode);
1404 	if (ret != 0) {
1405 		printk(KERN_ERR
1406 		       "xc4000: xc_set_signal_source(%d) failed\n",
1407 		       priv->rf_mode);
1408 		goto fail;
1409 	} else {
1410 		u16	video_mode, audio_mode;
1411 		video_mode = xc4000_standard[priv->video_standard].video_mode;
1412 		audio_mode = xc4000_standard[priv->video_standard].audio_mode;
1413 		if (priv->video_standard < XC4000_BG_PAL_A2) {
1414 			if (type & NOGD)
1415 				video_mode &= 0xFF7F;
1416 		} else if (priv->video_standard < XC4000_I_PAL_NICAM) {
1417 			if (priv->firm_version == 0x0102)
1418 				video_mode &= 0xFEFF;
1419 			if (audio_std & XC4000_AUDIO_STD_B)
1420 				video_mode |= 0x0080;
1421 		}
1422 		ret = xc_set_tv_standard(priv, video_mode, audio_mode);
1423 		if (ret != 0) {
1424 			printk(KERN_ERR "xc4000: xc_set_tv_standard failed\n");
1425 			goto fail;
1426 		}
1427 	}
1428 
1429 	if (xc_write_reg(priv, XREG_D_CODE, 0) == 0)
1430 		ret = 0;
1431 	if (xc_write_reg(priv, XREG_AMPLITUDE, 1) != 0)
1432 		ret = -EREMOTEIO;
1433 	if (priv->set_smoothedcvbs != 0) {
1434 		if (xc_write_reg(priv, XREG_SMOOTHEDCVBS, 1) != 0)
1435 			ret = -EREMOTEIO;
1436 	}
1437 	if (ret != 0) {
1438 		printk(KERN_ERR "xc4000: setting registers failed\n");
1439 		goto fail;
1440 	}
1441 
1442 	xc_tune_channel(priv, priv->freq_hz);
1443 
1444 	ret = 0;
1445 
1446 fail:
1447 	mutex_unlock(&priv->lock);
1448 
1449 	return ret;
1450 }
1451 
1452 static int xc4000_get_signal(struct dvb_frontend *fe, u16 *strength)
1453 {
1454 	struct xc4000_priv *priv = fe->tuner_priv;
1455 	u16 value = 0;
1456 	int rc;
1457 
1458 	mutex_lock(&priv->lock);
1459 	rc = xc4000_readreg(priv, XREG_SIGNAL_LEVEL, &value);
1460 	mutex_unlock(&priv->lock);
1461 
1462 	if (rc < 0)
1463 		goto ret;
1464 
1465 	/* Information from real testing of DVB-T and radio part,
1466 	   coefficient for one dB is 0xff.
1467 	 */
1468 	tuner_dbg("Signal strength: -%ddB (%05d)\n", value >> 8, value);
1469 
1470 	/* all known digital modes */
1471 	if ((priv->video_standard == XC4000_DTV6) ||
1472 	    (priv->video_standard == XC4000_DTV7) ||
1473 	    (priv->video_standard == XC4000_DTV7_8) ||
1474 	    (priv->video_standard == XC4000_DTV8))
1475 		goto digital;
1476 
1477 	/* Analog mode has NOISE LEVEL important, signal
1478 	   depends only on gain of antenna and amplifiers,
1479 	   but it doesn't tell anything about real quality
1480 	   of reception.
1481 	 */
1482 	mutex_lock(&priv->lock);
1483 	rc = xc4000_readreg(priv, XREG_NOISE_LEVEL, &value);
1484 	mutex_unlock(&priv->lock);
1485 
1486 	tuner_dbg("Noise level: %ddB (%05d)\n", value >> 8, value);
1487 
1488 	/* highest noise level: 32dB */
1489 	if (value >= 0x2000) {
1490 		value = 0;
1491 	} else {
1492 		value = (~value << 3) & 0xffff;
1493 	}
1494 
1495 	goto ret;
1496 
1497 	/* Digital mode has SIGNAL LEVEL important and real
1498 	   noise level is stored in demodulator registers.
1499 	 */
1500 digital:
1501 	/* best signal: -50dB */
1502 	if (value <= 0x3200) {
1503 		value = 0xffff;
1504 	/* minimum: -114dB - should be 0x7200 but real zero is 0x713A */
1505 	} else if (value >= 0x713A) {
1506 		value = 0;
1507 	} else {
1508 		value = ~(value - 0x3200) << 2;
1509 	}
1510 
1511 ret:
1512 	*strength = value;
1513 
1514 	return rc;
1515 }
1516 
1517 static int xc4000_get_frequency(struct dvb_frontend *fe, u32 *freq)
1518 {
1519 	struct xc4000_priv *priv = fe->tuner_priv;
1520 
1521 	*freq = priv->freq_hz + priv->freq_offset;
1522 
1523 	if (debug) {
1524 		mutex_lock(&priv->lock);
1525 		if ((priv->cur_fw.type
1526 		     & (BASE | FM | DTV6 | DTV7 | DTV78 | DTV8)) == BASE) {
1527 			u16	snr = 0;
1528 			if (xc4000_readreg(priv, XREG_SNR, &snr) == 0) {
1529 				mutex_unlock(&priv->lock);
1530 				dprintk(1, "%s() freq = %u, SNR = %d\n",
1531 					__func__, *freq, snr);
1532 				return 0;
1533 			}
1534 		}
1535 		mutex_unlock(&priv->lock);
1536 	}
1537 
1538 	dprintk(1, "%s()\n", __func__);
1539 
1540 	return 0;
1541 }
1542 
1543 static int xc4000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
1544 {
1545 	struct xc4000_priv *priv = fe->tuner_priv;
1546 	dprintk(1, "%s()\n", __func__);
1547 
1548 	*bw = priv->bandwidth;
1549 	return 0;
1550 }
1551 
1552 static int xc4000_get_status(struct dvb_frontend *fe, u32 *status)
1553 {
1554 	struct xc4000_priv *priv = fe->tuner_priv;
1555 	u16	lock_status = 0;
1556 
1557 	mutex_lock(&priv->lock);
1558 
1559 	if (priv->cur_fw.type & BASE)
1560 		xc_get_lock_status(priv, &lock_status);
1561 
1562 	*status = (lock_status == 1 ?
1563 		   TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO : 0);
1564 	if (priv->cur_fw.type & (DTV6 | DTV7 | DTV78 | DTV8))
1565 		*status &= (~TUNER_STATUS_STEREO);
1566 
1567 	mutex_unlock(&priv->lock);
1568 
1569 	dprintk(2, "%s() lock_status = %d\n", __func__, lock_status);
1570 
1571 	return 0;
1572 }
1573 
1574 static int xc4000_sleep(struct dvb_frontend *fe)
1575 {
1576 	struct xc4000_priv *priv = fe->tuner_priv;
1577 	int	ret = 0;
1578 
1579 	dprintk(1, "%s()\n", __func__);
1580 
1581 	mutex_lock(&priv->lock);
1582 
1583 	/* Avoid firmware reload on slow devices */
1584 	if ((no_poweroff == 2 ||
1585 	     (no_poweroff == 0 && priv->default_pm != 0)) &&
1586 	    (priv->cur_fw.type & BASE) != 0) {
1587 		/* force reset and firmware reload */
1588 		priv->cur_fw.type = XC_POWERED_DOWN;
1589 
1590 		if (xc_write_reg(priv, XREG_POWER_DOWN, 0) != 0) {
1591 			printk(KERN_ERR
1592 			       "xc4000: %s() unable to shutdown tuner\n",
1593 			       __func__);
1594 			ret = -EREMOTEIO;
1595 		}
1596 		msleep(20);
1597 	}
1598 
1599 	mutex_unlock(&priv->lock);
1600 
1601 	return ret;
1602 }
1603 
1604 static int xc4000_init(struct dvb_frontend *fe)
1605 {
1606 	dprintk(1, "%s()\n", __func__);
1607 
1608 	return 0;
1609 }
1610 
1611 static void xc4000_release(struct dvb_frontend *fe)
1612 {
1613 	struct xc4000_priv *priv = fe->tuner_priv;
1614 
1615 	dprintk(1, "%s()\n", __func__);
1616 
1617 	mutex_lock(&xc4000_list_mutex);
1618 
1619 	if (priv)
1620 		hybrid_tuner_release_state(priv);
1621 
1622 	mutex_unlock(&xc4000_list_mutex);
1623 
1624 	fe->tuner_priv = NULL;
1625 }
1626 
1627 static const struct dvb_tuner_ops xc4000_tuner_ops = {
1628 	.info = {
1629 		.name              = "Xceive XC4000",
1630 		.frequency_min_hz  =    1 * MHz,
1631 		.frequency_max_hz  = 1023 * MHz,
1632 		.frequency_step_hz =   50 * kHz,
1633 	},
1634 
1635 	.release	   = xc4000_release,
1636 	.init		   = xc4000_init,
1637 	.sleep		   = xc4000_sleep,
1638 
1639 	.set_params	   = xc4000_set_params,
1640 	.set_analog_params = xc4000_set_analog_params,
1641 	.get_frequency	   = xc4000_get_frequency,
1642 	.get_rf_strength   = xc4000_get_signal,
1643 	.get_bandwidth	   = xc4000_get_bandwidth,
1644 	.get_status	   = xc4000_get_status
1645 };
1646 
1647 struct dvb_frontend *xc4000_attach(struct dvb_frontend *fe,
1648 				   struct i2c_adapter *i2c,
1649 				   struct xc4000_config *cfg)
1650 {
1651 	struct xc4000_priv *priv = NULL;
1652 	int	instance;
1653 	u16	id = 0;
1654 
1655 	dprintk(1, "%s(%d-%04x)\n", __func__,
1656 		i2c ? i2c_adapter_id(i2c) : -1,
1657 		cfg ? cfg->i2c_address : -1);
1658 
1659 	mutex_lock(&xc4000_list_mutex);
1660 
1661 	instance = hybrid_tuner_request_state(struct xc4000_priv, priv,
1662 					      hybrid_tuner_instance_list,
1663 					      i2c, cfg->i2c_address, "xc4000");
1664 	switch (instance) {
1665 	case 0:
1666 		goto fail;
1667 	case 1:
1668 		/* new tuner instance */
1669 		priv->bandwidth = 6000000;
1670 		/* set default configuration */
1671 		priv->if_khz = 4560;
1672 		priv->default_pm = 0;
1673 		priv->dvb_amplitude = 134;
1674 		priv->set_smoothedcvbs = 1;
1675 		mutex_init(&priv->lock);
1676 		fe->tuner_priv = priv;
1677 		break;
1678 	default:
1679 		/* existing tuner instance */
1680 		fe->tuner_priv = priv;
1681 		break;
1682 	}
1683 
1684 	if (cfg->if_khz != 0) {
1685 		/* copy configuration if provided by the caller */
1686 		priv->if_khz = cfg->if_khz;
1687 		priv->default_pm = cfg->default_pm;
1688 		priv->dvb_amplitude = cfg->dvb_amplitude;
1689 		priv->set_smoothedcvbs = cfg->set_smoothedcvbs;
1690 	}
1691 
1692 	/* Check if firmware has been loaded. It is possible that another
1693 	   instance of the driver has loaded the firmware.
1694 	 */
1695 
1696 	if (instance == 1) {
1697 		if (xc4000_readreg(priv, XREG_PRODUCT_ID, &id) != 0)
1698 			goto fail;
1699 	} else {
1700 		id = ((priv->cur_fw.type & BASE) != 0 ?
1701 		      priv->hwmodel : XC_PRODUCT_ID_FW_NOT_LOADED);
1702 	}
1703 
1704 	switch (id) {
1705 	case XC_PRODUCT_ID_XC4000:
1706 	case XC_PRODUCT_ID_XC4100:
1707 		printk(KERN_INFO
1708 			"xc4000: Successfully identified at address 0x%02x\n",
1709 			cfg->i2c_address);
1710 		printk(KERN_INFO
1711 			"xc4000: Firmware has been loaded previously\n");
1712 		break;
1713 	case XC_PRODUCT_ID_FW_NOT_LOADED:
1714 		printk(KERN_INFO
1715 			"xc4000: Successfully identified at address 0x%02x\n",
1716 			cfg->i2c_address);
1717 		printk(KERN_INFO
1718 			"xc4000: Firmware has not been loaded previously\n");
1719 		break;
1720 	default:
1721 		printk(KERN_ERR
1722 			"xc4000: Device not found at addr 0x%02x (0x%x)\n",
1723 			cfg->i2c_address, id);
1724 		goto fail;
1725 	}
1726 
1727 	mutex_unlock(&xc4000_list_mutex);
1728 
1729 	memcpy(&fe->ops.tuner_ops, &xc4000_tuner_ops,
1730 		sizeof(struct dvb_tuner_ops));
1731 
1732 	if (instance == 1) {
1733 		int	ret;
1734 		mutex_lock(&priv->lock);
1735 		ret = xc4000_fwupload(fe);
1736 		mutex_unlock(&priv->lock);
1737 		if (ret != 0)
1738 			goto fail2;
1739 	}
1740 
1741 	return fe;
1742 fail:
1743 	mutex_unlock(&xc4000_list_mutex);
1744 fail2:
1745 	xc4000_release(fe);
1746 	return NULL;
1747 }
1748 EXPORT_SYMBOL(xc4000_attach);
1749 
1750 MODULE_AUTHOR("Steven Toth, Davide Ferri");
1751 MODULE_DESCRIPTION("Xceive xc4000 silicon tuner driver");
1752 MODULE_LICENSE("GPL");
1753 MODULE_FIRMWARE(XC4000_DEFAULT_FIRMWARE_NEW);
1754 MODULE_FIRMWARE(XC4000_DEFAULT_FIRMWARE);
1755