1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for Microtune MT2266 "Direct conversion low power broadband tuner" 4 * 5 * Copyright (c) 2007 Olivier DANET <odanet@caramail.com> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/delay.h> 10 #include <linux/dvb/frontend.h> 11 #include <linux/i2c.h> 12 #include <linux/slab.h> 13 14 #include <media/dvb_frontend.h> 15 #include "mt2266.h" 16 17 #define I2C_ADDRESS 0x60 18 19 #define REG_PART_REV 0 20 #define REG_TUNE 1 21 #define REG_BAND 6 22 #define REG_BANDWIDTH 8 23 #define REG_LOCK 0x12 24 25 #define PART_REV 0x85 26 27 struct mt2266_priv { 28 struct mt2266_config *cfg; 29 struct i2c_adapter *i2c; 30 31 u32 frequency; 32 u32 bandwidth; 33 u8 band; 34 }; 35 36 #define MT2266_VHF 1 37 #define MT2266_UHF 0 38 39 /* Here, frequencies are expressed in kiloHertz to avoid 32 bits overflows */ 40 41 static int debug; 42 module_param(debug, int, 0644); 43 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); 44 45 #define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2266: " args); printk("\n"); }} while (0) 46 47 // Reads a single register 48 static int mt2266_readreg(struct mt2266_priv *priv, u8 reg, u8 *val) 49 { 50 struct i2c_msg msg[2] = { 51 { .addr = priv->cfg->i2c_address, .flags = 0, .buf = ®, .len = 1 }, 52 { .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 }, 53 }; 54 if (i2c_transfer(priv->i2c, msg, 2) != 2) { 55 printk(KERN_WARNING "MT2266 I2C read failed\n"); 56 return -EREMOTEIO; 57 } 58 return 0; 59 } 60 61 // Writes a single register 62 static int mt2266_writereg(struct mt2266_priv *priv, u8 reg, u8 val) 63 { 64 u8 buf[2] = { reg, val }; 65 struct i2c_msg msg = { 66 .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = 2 67 }; 68 if (i2c_transfer(priv->i2c, &msg, 1) != 1) { 69 printk(KERN_WARNING "MT2266 I2C write failed\n"); 70 return -EREMOTEIO; 71 } 72 return 0; 73 } 74 75 // Writes a set of consecutive registers 76 static int mt2266_writeregs(struct mt2266_priv *priv,u8 *buf, u8 len) 77 { 78 struct i2c_msg msg = { 79 .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = len 80 }; 81 if (i2c_transfer(priv->i2c, &msg, 1) != 1) { 82 printk(KERN_WARNING "MT2266 I2C write failed (len=%i)\n",(int)len); 83 return -EREMOTEIO; 84 } 85 return 0; 86 } 87 88 // Initialisation sequences 89 static u8 mt2266_init1[] = { REG_TUNE, 0x00, 0x00, 0x28, 90 0x00, 0x52, 0x99, 0x3f }; 91 92 static u8 mt2266_init2[] = { 93 0x17, 0x6d, 0x71, 0x61, 0xc0, 0xbf, 0xff, 0xdc, 0x00, 0x0a, 0xd4, 94 0x03, 0x64, 0x64, 0x64, 0x64, 0x22, 0xaa, 0xf2, 0x1e, 0x80, 0x14, 95 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x7f, 0x5e, 0x3f, 0xff, 0xff, 96 0xff, 0x00, 0x77, 0x0f, 0x2d 97 }; 98 99 static u8 mt2266_init_8mhz[] = { REG_BANDWIDTH, 0x22, 0x22, 0x22, 0x22, 100 0x22, 0x22, 0x22, 0x22 }; 101 102 static u8 mt2266_init_7mhz[] = { REG_BANDWIDTH, 0x32, 0x32, 0x32, 0x32, 103 0x32, 0x32, 0x32, 0x32 }; 104 105 static u8 mt2266_init_6mhz[] = { REG_BANDWIDTH, 0xa7, 0xa7, 0xa7, 0xa7, 106 0xa7, 0xa7, 0xa7, 0xa7 }; 107 108 static u8 mt2266_uhf[] = { 0x1d, 0xdc, 0x00, 0x0a, 0xd4, 0x03, 0x64, 0x64, 109 0x64, 0x64, 0x22, 0xaa, 0xf2, 0x1e, 0x80, 0x14 }; 110 111 static u8 mt2266_vhf[] = { 0x1d, 0xfe, 0x00, 0x00, 0xb4, 0x03, 0xa5, 0xa5, 112 0xa5, 0xa5, 0x82, 0xaa, 0xf1, 0x17, 0x80, 0x1f }; 113 114 #define FREF 30000 // Quartz oscillator 30 MHz 115 116 static int mt2266_set_params(struct dvb_frontend *fe) 117 { 118 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 119 struct mt2266_priv *priv; 120 int ret=0; 121 u32 freq; 122 u32 tune; 123 u8 lnaband; 124 u8 b[10]; 125 int i; 126 u8 band; 127 128 priv = fe->tuner_priv; 129 130 freq = priv->frequency / 1000; /* Hz -> kHz */ 131 if (freq < 470000 && freq > 230000) 132 return -EINVAL; /* Gap between VHF and UHF bands */ 133 134 priv->frequency = c->frequency; 135 tune = 2 * freq * (8192/16) / (FREF/16); 136 band = (freq < 300000) ? MT2266_VHF : MT2266_UHF; 137 if (band == MT2266_VHF) 138 tune *= 2; 139 140 switch (c->bandwidth_hz) { 141 case 6000000: 142 mt2266_writeregs(priv, mt2266_init_6mhz, 143 sizeof(mt2266_init_6mhz)); 144 break; 145 case 8000000: 146 mt2266_writeregs(priv, mt2266_init_8mhz, 147 sizeof(mt2266_init_8mhz)); 148 break; 149 case 7000000: 150 default: 151 mt2266_writeregs(priv, mt2266_init_7mhz, 152 sizeof(mt2266_init_7mhz)); 153 break; 154 } 155 priv->bandwidth = c->bandwidth_hz; 156 157 if (band == MT2266_VHF && priv->band == MT2266_UHF) { 158 dprintk("Switch from UHF to VHF"); 159 mt2266_writereg(priv, 0x05, 0x04); 160 mt2266_writereg(priv, 0x19, 0x61); 161 mt2266_writeregs(priv, mt2266_vhf, sizeof(mt2266_vhf)); 162 } else if (band == MT2266_UHF && priv->band == MT2266_VHF) { 163 dprintk("Switch from VHF to UHF"); 164 mt2266_writereg(priv, 0x05, 0x52); 165 mt2266_writereg(priv, 0x19, 0x61); 166 mt2266_writeregs(priv, mt2266_uhf, sizeof(mt2266_uhf)); 167 } 168 msleep(10); 169 170 if (freq <= 495000) 171 lnaband = 0xEE; 172 else if (freq <= 525000) 173 lnaband = 0xDD; 174 else if (freq <= 550000) 175 lnaband = 0xCC; 176 else if (freq <= 580000) 177 lnaband = 0xBB; 178 else if (freq <= 605000) 179 lnaband = 0xAA; 180 else if (freq <= 630000) 181 lnaband = 0x99; 182 else if (freq <= 655000) 183 lnaband = 0x88; 184 else if (freq <= 685000) 185 lnaband = 0x77; 186 else if (freq <= 710000) 187 lnaband = 0x66; 188 else if (freq <= 735000) 189 lnaband = 0x55; 190 else if (freq <= 765000) 191 lnaband = 0x44; 192 else if (freq <= 802000) 193 lnaband = 0x33; 194 else if (freq <= 840000) 195 lnaband = 0x22; 196 else 197 lnaband = 0x11; 198 199 b[0] = REG_TUNE; 200 b[1] = (tune >> 8) & 0x1F; 201 b[2] = tune & 0xFF; 202 b[3] = tune >> 13; 203 mt2266_writeregs(priv,b,4); 204 205 dprintk("set_parms: tune=%d band=%d %s", 206 (int) tune, (int) lnaband, 207 (band == MT2266_UHF) ? "UHF" : "VHF"); 208 dprintk("set_parms: [1..3]: %2x %2x %2x", 209 (int) b[1], (int) b[2], (int)b[3]); 210 211 if (band == MT2266_UHF) { 212 b[0] = 0x05; 213 b[1] = (priv->band == MT2266_VHF) ? 0x52 : 0x62; 214 b[2] = lnaband; 215 mt2266_writeregs(priv, b, 3); 216 } 217 218 /* Wait for pll lock or timeout */ 219 i = 0; 220 do { 221 mt2266_readreg(priv,REG_LOCK,b); 222 if (b[0] & 0x40) 223 break; 224 msleep(10); 225 i++; 226 } while (i<10); 227 dprintk("Lock when i=%i",(int)i); 228 229 if (band == MT2266_UHF && priv->band == MT2266_VHF) 230 mt2266_writereg(priv, 0x05, 0x62); 231 232 priv->band = band; 233 234 return ret; 235 } 236 237 static void mt2266_calibrate(struct mt2266_priv *priv) 238 { 239 mt2266_writereg(priv, 0x11, 0x03); 240 mt2266_writereg(priv, 0x11, 0x01); 241 mt2266_writeregs(priv, mt2266_init1, sizeof(mt2266_init1)); 242 mt2266_writeregs(priv, mt2266_init2, sizeof(mt2266_init2)); 243 mt2266_writereg(priv, 0x33, 0x5e); 244 mt2266_writereg(priv, 0x10, 0x10); 245 mt2266_writereg(priv, 0x10, 0x00); 246 mt2266_writeregs(priv, mt2266_init_8mhz, sizeof(mt2266_init_8mhz)); 247 msleep(25); 248 mt2266_writereg(priv, 0x17, 0x6d); 249 mt2266_writereg(priv, 0x1c, 0x00); 250 msleep(75); 251 mt2266_writereg(priv, 0x17, 0x6d); 252 mt2266_writereg(priv, 0x1c, 0xff); 253 } 254 255 static int mt2266_get_frequency(struct dvb_frontend *fe, u32 *frequency) 256 { 257 struct mt2266_priv *priv = fe->tuner_priv; 258 *frequency = priv->frequency; 259 return 0; 260 } 261 262 static int mt2266_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth) 263 { 264 struct mt2266_priv *priv = fe->tuner_priv; 265 *bandwidth = priv->bandwidth; 266 return 0; 267 } 268 269 static int mt2266_init(struct dvb_frontend *fe) 270 { 271 int ret; 272 struct mt2266_priv *priv = fe->tuner_priv; 273 ret = mt2266_writereg(priv, 0x17, 0x6d); 274 if (ret < 0) 275 return ret; 276 ret = mt2266_writereg(priv, 0x1c, 0xff); 277 if (ret < 0) 278 return ret; 279 return 0; 280 } 281 282 static int mt2266_sleep(struct dvb_frontend *fe) 283 { 284 struct mt2266_priv *priv = fe->tuner_priv; 285 mt2266_writereg(priv, 0x17, 0x6d); 286 mt2266_writereg(priv, 0x1c, 0x00); 287 return 0; 288 } 289 290 static void mt2266_release(struct dvb_frontend *fe) 291 { 292 kfree(fe->tuner_priv); 293 fe->tuner_priv = NULL; 294 } 295 296 static const struct dvb_tuner_ops mt2266_tuner_ops = { 297 .info = { 298 .name = "Microtune MT2266", 299 .frequency_min_hz = 174 * MHz, 300 .frequency_max_hz = 862 * MHz, 301 .frequency_step_hz = 50 * kHz, 302 }, 303 .release = mt2266_release, 304 .init = mt2266_init, 305 .sleep = mt2266_sleep, 306 .set_params = mt2266_set_params, 307 .get_frequency = mt2266_get_frequency, 308 .get_bandwidth = mt2266_get_bandwidth 309 }; 310 311 struct dvb_frontend * mt2266_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2266_config *cfg) 312 { 313 struct mt2266_priv *priv = NULL; 314 u8 id = 0; 315 316 priv = kzalloc(sizeof(struct mt2266_priv), GFP_KERNEL); 317 if (priv == NULL) 318 return NULL; 319 320 priv->cfg = cfg; 321 priv->i2c = i2c; 322 priv->band = MT2266_UHF; 323 324 if (mt2266_readreg(priv, 0, &id)) { 325 kfree(priv); 326 return NULL; 327 } 328 if (id != PART_REV) { 329 kfree(priv); 330 return NULL; 331 } 332 printk(KERN_INFO "MT2266: successfully identified\n"); 333 memcpy(&fe->ops.tuner_ops, &mt2266_tuner_ops, sizeof(struct dvb_tuner_ops)); 334 335 fe->tuner_priv = priv; 336 mt2266_calibrate(priv); 337 return fe; 338 } 339 EXPORT_SYMBOL(mt2266_attach); 340 341 MODULE_AUTHOR("Olivier DANET"); 342 MODULE_DESCRIPTION("Microtune MT2266 silicon tuner driver"); 343 MODULE_LICENSE("GPL"); 344