1 /* 2 * Driver for Microtune MT2060 "Single chip dual conversion broadband tuner" 3 * 4 * Copyright (c) 2006 Olivier DANET <odanet@caramail.com> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * 15 * GNU General Public License for more details. 16 */ 17 18 /* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */ 19 20 #include <linux/module.h> 21 #include <linux/delay.h> 22 #include <linux/dvb/frontend.h> 23 #include <linux/i2c.h> 24 #include <linux/slab.h> 25 26 #include "dvb_frontend.h" 27 28 #include "mt2060.h" 29 #include "mt2060_priv.h" 30 31 static int debug; 32 module_param(debug, int, 0644); 33 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); 34 35 #define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2060: " args); printk("\n"); }} while (0) 36 37 // Reads a single register 38 static int mt2060_readreg(struct mt2060_priv *priv, u8 reg, u8 *val) 39 { 40 struct i2c_msg msg[2] = { 41 { .addr = priv->cfg->i2c_address, .flags = 0, .buf = ®, .len = 1 }, 42 { .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 }, 43 }; 44 45 if (i2c_transfer(priv->i2c, msg, 2) != 2) { 46 printk(KERN_WARNING "mt2060 I2C read failed\n"); 47 return -EREMOTEIO; 48 } 49 return 0; 50 } 51 52 // Writes a single register 53 static int mt2060_writereg(struct mt2060_priv *priv, u8 reg, u8 val) 54 { 55 u8 buf[2] = { reg, val }; 56 struct i2c_msg msg = { 57 .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = 2 58 }; 59 60 if (i2c_transfer(priv->i2c, &msg, 1) != 1) { 61 printk(KERN_WARNING "mt2060 I2C write failed\n"); 62 return -EREMOTEIO; 63 } 64 return 0; 65 } 66 67 // Writes a set of consecutive registers 68 static int mt2060_writeregs(struct mt2060_priv *priv,u8 *buf, u8 len) 69 { 70 int rem, val_len; 71 u8 xfer_buf[16]; 72 struct i2c_msg msg = { 73 .addr = priv->cfg->i2c_address, .flags = 0, .buf = xfer_buf 74 }; 75 76 for (rem = len - 1; rem > 0; rem -= priv->i2c_max_regs) { 77 val_len = min_t(int, rem, priv->i2c_max_regs); 78 msg.len = 1 + val_len; 79 xfer_buf[0] = buf[0] + len - 1 - rem; 80 memcpy(&xfer_buf[1], &buf[1 + len - 1 - rem], val_len); 81 82 if (i2c_transfer(priv->i2c, &msg, 1) != 1) { 83 printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n", val_len); 84 return -EREMOTEIO; 85 } 86 } 87 88 return 0; 89 } 90 91 // Initialisation sequences 92 // LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49 93 static u8 mt2060_config1[] = { 94 REG_LO1C1, 95 0x3F, 0x74, 0x00, 0x08, 0x93 96 }; 97 98 // FMCG=2, GP2=0, GP1=0 99 static u8 mt2060_config2[] = { 100 REG_MISC_CTRL, 101 0x20, 0x1E, 0x30, 0xff, 0x80, 0xff, 0x00, 0x2c, 0x42 102 }; 103 104 // VGAG=3, V1CSE=1 105 106 #ifdef MT2060_SPURCHECK 107 /* The function below calculates the frequency offset between the output frequency if2 108 and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */ 109 static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2) 110 { 111 int I,J; 112 int dia,diamin,diff; 113 diamin=1000000; 114 for (I = 1; I < 10; I++) { 115 J = ((2*I*lo1)/lo2+1)/2; 116 diff = I*(int)lo1-J*(int)lo2; 117 if (diff < 0) diff=-diff; 118 dia = (diff-(int)if2); 119 if (dia < 0) dia=-dia; 120 if (diamin > dia) diamin=dia; 121 } 122 return diamin; 123 } 124 125 #define BANDWIDTH 4000 // kHz 126 127 /* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */ 128 static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2) 129 { 130 u32 Spur,Sp1,Sp2; 131 int I,J; 132 I=0; 133 J=1000; 134 135 Spur=mt2060_spurcalc(lo1,lo2,if2); 136 if (Spur < BANDWIDTH) { 137 /* Potential spurs detected */ 138 dprintk("Spurs before : f_lo1: %d f_lo2: %d (kHz)", 139 (int)lo1,(int)lo2); 140 I=1000; 141 Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2); 142 Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2); 143 144 if (Sp1 < Sp2) { 145 J=-J; I=-I; Spur=Sp2; 146 } else 147 Spur=Sp1; 148 149 while (Spur < BANDWIDTH) { 150 I += J; 151 Spur = mt2060_spurcalc(lo1+I,lo2+I,if2); 152 } 153 dprintk("Spurs after : f_lo1: %d f_lo2: %d (kHz)", 154 (int)(lo1+I),(int)(lo2+I)); 155 } 156 return I; 157 } 158 #endif 159 160 #define IF2 36150 // IF2 frequency = 36.150 MHz 161 #define FREF 16000 // Quartz oscillator 16 MHz 162 163 static int mt2060_set_params(struct dvb_frontend *fe) 164 { 165 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 166 struct mt2060_priv *priv; 167 int i=0; 168 u32 freq; 169 u8 lnaband; 170 u32 f_lo1,f_lo2; 171 u32 div1,num1,div2,num2; 172 u8 b[8]; 173 u32 if1; 174 175 priv = fe->tuner_priv; 176 177 if1 = priv->if1_freq; 178 b[0] = REG_LO1B1; 179 b[1] = 0xFF; 180 181 if (fe->ops.i2c_gate_ctrl) 182 fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */ 183 184 mt2060_writeregs(priv,b,2); 185 186 freq = c->frequency / 1000; /* Hz -> kHz */ 187 188 f_lo1 = freq + if1 * 1000; 189 f_lo1 = (f_lo1 / 250) * 250; 190 f_lo2 = f_lo1 - freq - IF2; 191 // From the Comtech datasheet, the step used is 50kHz. The tuner chip could be more precise 192 f_lo2 = ((f_lo2 + 25) / 50) * 50; 193 priv->frequency = (f_lo1 - f_lo2 - IF2) * 1000, 194 195 #ifdef MT2060_SPURCHECK 196 // LO-related spurs detection and correction 197 num1 = mt2060_spurcheck(f_lo1,f_lo2,IF2); 198 f_lo1 += num1; 199 f_lo2 += num1; 200 #endif 201 //Frequency LO1 = 16MHz * (DIV1 + NUM1/64 ) 202 num1 = f_lo1 / (FREF / 64); 203 div1 = num1 / 64; 204 num1 &= 0x3f; 205 206 // Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 ) 207 num2 = f_lo2 * 64 / (FREF / 128); 208 div2 = num2 / 8192; 209 num2 &= 0x1fff; 210 211 if (freq <= 95000) lnaband = 0xB0; else 212 if (freq <= 180000) lnaband = 0xA0; else 213 if (freq <= 260000) lnaband = 0x90; else 214 if (freq <= 335000) lnaband = 0x80; else 215 if (freq <= 425000) lnaband = 0x70; else 216 if (freq <= 480000) lnaband = 0x60; else 217 if (freq <= 570000) lnaband = 0x50; else 218 if (freq <= 645000) lnaband = 0x40; else 219 if (freq <= 730000) lnaband = 0x30; else 220 if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10; 221 222 b[0] = REG_LO1C1; 223 b[1] = lnaband | ((num1 >>2) & 0x0F); 224 b[2] = div1; 225 b[3] = (num2 & 0x0F) | ((num1 & 3) << 4); 226 b[4] = num2 >> 4; 227 b[5] = ((num2 >>12) & 1) | (div2 << 1); 228 229 dprintk("IF1: %dMHz",(int)if1); 230 dprintk("PLL freq=%dkHz f_lo1=%dkHz f_lo2=%dkHz",(int)freq,(int)f_lo1,(int)f_lo2); 231 dprintk("PLL div1=%d num1=%d div2=%d num2=%d",(int)div1,(int)num1,(int)div2,(int)num2); 232 dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]); 233 234 mt2060_writeregs(priv,b,6); 235 236 //Waits for pll lock or timeout 237 i = 0; 238 do { 239 mt2060_readreg(priv,REG_LO_STATUS,b); 240 if ((b[0] & 0x88)==0x88) 241 break; 242 msleep(4); 243 i++; 244 } while (i<10); 245 246 if (fe->ops.i2c_gate_ctrl) 247 fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */ 248 249 return 0; 250 } 251 252 static void mt2060_calibrate(struct mt2060_priv *priv) 253 { 254 u8 b = 0; 255 int i = 0; 256 257 if (mt2060_writeregs(priv,mt2060_config1,sizeof(mt2060_config1))) 258 return; 259 if (mt2060_writeregs(priv,mt2060_config2,sizeof(mt2060_config2))) 260 return; 261 262 /* initialize the clock output */ 263 mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30); 264 265 do { 266 b |= (1 << 6); // FM1SS; 267 mt2060_writereg(priv, REG_LO2C1,b); 268 msleep(20); 269 270 if (i == 0) { 271 b |= (1 << 7); // FM1CA; 272 mt2060_writereg(priv, REG_LO2C1,b); 273 b &= ~(1 << 7); // FM1CA; 274 msleep(20); 275 } 276 277 b &= ~(1 << 6); // FM1SS 278 mt2060_writereg(priv, REG_LO2C1,b); 279 280 msleep(20); 281 i++; 282 } while (i < 9); 283 284 i = 0; 285 while (i++ < 10 && mt2060_readreg(priv, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0) 286 msleep(20); 287 288 if (i <= 10) { 289 mt2060_readreg(priv, REG_FM_FREQ, &priv->fmfreq); // now find out, what is fmreq used for :) 290 dprintk("calibration was successful: %d", (int)priv->fmfreq); 291 } else 292 dprintk("FMCAL timed out"); 293 } 294 295 static int mt2060_get_frequency(struct dvb_frontend *fe, u32 *frequency) 296 { 297 struct mt2060_priv *priv = fe->tuner_priv; 298 *frequency = priv->frequency; 299 return 0; 300 } 301 302 static int mt2060_get_if_frequency(struct dvb_frontend *fe, u32 *frequency) 303 { 304 *frequency = IF2 * 1000; 305 return 0; 306 } 307 308 static int mt2060_init(struct dvb_frontend *fe) 309 { 310 struct mt2060_priv *priv = fe->tuner_priv; 311 int ret; 312 313 if (fe->ops.i2c_gate_ctrl) 314 fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */ 315 316 if (priv->sleep) { 317 ret = mt2060_writereg(priv, REG_MISC_CTRL, 0x20); 318 if (ret) 319 goto err_i2c_gate_ctrl; 320 } 321 322 ret = mt2060_writereg(priv, REG_VGAG, 323 (priv->cfg->clock_out << 6) | 0x33); 324 325 err_i2c_gate_ctrl: 326 if (fe->ops.i2c_gate_ctrl) 327 fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */ 328 329 return ret; 330 } 331 332 static int mt2060_sleep(struct dvb_frontend *fe) 333 { 334 struct mt2060_priv *priv = fe->tuner_priv; 335 int ret; 336 337 if (fe->ops.i2c_gate_ctrl) 338 fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */ 339 340 ret = mt2060_writereg(priv, REG_VGAG, 341 (priv->cfg->clock_out << 6) | 0x30); 342 if (ret) 343 goto err_i2c_gate_ctrl; 344 345 if (priv->sleep) 346 ret = mt2060_writereg(priv, REG_MISC_CTRL, 0xe8); 347 348 err_i2c_gate_ctrl: 349 if (fe->ops.i2c_gate_ctrl) 350 fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */ 351 352 return ret; 353 } 354 355 static void mt2060_release(struct dvb_frontend *fe) 356 { 357 kfree(fe->tuner_priv); 358 fe->tuner_priv = NULL; 359 } 360 361 static const struct dvb_tuner_ops mt2060_tuner_ops = { 362 .info = { 363 .name = "Microtune MT2060", 364 .frequency_min = 48000000, 365 .frequency_max = 860000000, 366 .frequency_step = 50000, 367 }, 368 369 .release = mt2060_release, 370 371 .init = mt2060_init, 372 .sleep = mt2060_sleep, 373 374 .set_params = mt2060_set_params, 375 .get_frequency = mt2060_get_frequency, 376 .get_if_frequency = mt2060_get_if_frequency, 377 }; 378 379 /* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */ 380 struct dvb_frontend * mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1) 381 { 382 struct mt2060_priv *priv = NULL; 383 u8 id = 0; 384 385 priv = kzalloc(sizeof(struct mt2060_priv), GFP_KERNEL); 386 if (priv == NULL) 387 return NULL; 388 389 priv->cfg = cfg; 390 priv->i2c = i2c; 391 priv->if1_freq = if1; 392 priv->i2c_max_regs = ~0; 393 394 if (fe->ops.i2c_gate_ctrl) 395 fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */ 396 397 if (mt2060_readreg(priv,REG_PART_REV,&id) != 0) { 398 kfree(priv); 399 return NULL; 400 } 401 402 if (id != PART_REV) { 403 kfree(priv); 404 return NULL; 405 } 406 printk(KERN_INFO "MT2060: successfully identified (IF1 = %d)\n", if1); 407 memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(struct dvb_tuner_ops)); 408 409 fe->tuner_priv = priv; 410 411 mt2060_calibrate(priv); 412 413 if (fe->ops.i2c_gate_ctrl) 414 fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */ 415 416 return fe; 417 } 418 EXPORT_SYMBOL(mt2060_attach); 419 420 static int mt2060_probe(struct i2c_client *client, 421 const struct i2c_device_id *id) 422 { 423 struct mt2060_platform_data *pdata = client->dev.platform_data; 424 struct dvb_frontend *fe; 425 struct mt2060_priv *dev; 426 int ret; 427 u8 chip_id; 428 429 dev_dbg(&client->dev, "\n"); 430 431 if (!pdata) { 432 dev_err(&client->dev, "Cannot proceed without platform data\n"); 433 ret = -EINVAL; 434 goto err; 435 } 436 437 dev = devm_kzalloc(&client->dev, sizeof(*dev), GFP_KERNEL); 438 if (!dev) { 439 ret = -ENOMEM; 440 goto err; 441 } 442 443 fe = pdata->dvb_frontend; 444 dev->config.i2c_address = client->addr; 445 dev->config.clock_out = pdata->clock_out; 446 dev->cfg = &dev->config; 447 dev->i2c = client->adapter; 448 dev->if1_freq = pdata->if1 ? pdata->if1 : 1220; 449 dev->client = client; 450 dev->i2c_max_regs = pdata->i2c_write_max ? pdata->i2c_write_max - 1 : ~0; 451 dev->sleep = true; 452 453 ret = mt2060_readreg(dev, REG_PART_REV, &chip_id); 454 if (ret) { 455 ret = -ENODEV; 456 goto err; 457 } 458 459 dev_dbg(&client->dev, "chip id=%02x\n", chip_id); 460 461 if (chip_id != PART_REV) { 462 ret = -ENODEV; 463 goto err; 464 } 465 466 /* Power on, calibrate, sleep */ 467 ret = mt2060_writereg(dev, REG_MISC_CTRL, 0x20); 468 if (ret) 469 goto err; 470 mt2060_calibrate(dev); 471 ret = mt2060_writereg(dev, REG_MISC_CTRL, 0xe8); 472 if (ret) 473 goto err; 474 475 dev_info(&client->dev, "Microtune MT2060 successfully identified\n"); 476 memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(fe->ops.tuner_ops)); 477 fe->ops.tuner_ops.release = NULL; 478 fe->tuner_priv = dev; 479 i2c_set_clientdata(client, dev); 480 481 return 0; 482 err: 483 dev_dbg(&client->dev, "failed=%d\n", ret); 484 return ret; 485 } 486 487 static int mt2060_remove(struct i2c_client *client) 488 { 489 dev_dbg(&client->dev, "\n"); 490 491 return 0; 492 } 493 494 static const struct i2c_device_id mt2060_id_table[] = { 495 {"mt2060", 0}, 496 {} 497 }; 498 MODULE_DEVICE_TABLE(i2c, mt2060_id_table); 499 500 static struct i2c_driver mt2060_driver = { 501 .driver = { 502 .name = "mt2060", 503 .suppress_bind_attrs = true, 504 }, 505 .probe = mt2060_probe, 506 .remove = mt2060_remove, 507 .id_table = mt2060_id_table, 508 }; 509 510 module_i2c_driver(mt2060_driver); 511 512 MODULE_AUTHOR("Olivier DANET"); 513 MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver"); 514 MODULE_LICENSE("GPL"); 515