xref: /linux/drivers/media/tuners/mt2060.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 /*
2  *  Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
3  *
4  *  Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *
15  *  GNU General Public License for more details.
16  */
17 
18 /* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
19 
20 #include <linux/module.h>
21 #include <linux/delay.h>
22 #include <linux/dvb/frontend.h>
23 #include <linux/i2c.h>
24 #include <linux/slab.h>
25 
26 #include <media/dvb_frontend.h>
27 
28 #include "mt2060.h"
29 #include "mt2060_priv.h"
30 
31 static int debug;
32 module_param(debug, int, 0644);
33 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
34 
35 #define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2060: " args); printk("\n"); }} while (0)
36 
37 // Reads a single register
38 static int mt2060_readreg(struct mt2060_priv *priv, u8 reg, u8 *val)
39 {
40 	struct i2c_msg msg[2] = {
41 		{ .addr = priv->cfg->i2c_address, .flags = 0, .len = 1 },
42 		{ .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .len = 1 },
43 	};
44 	int rc = 0;
45 	u8 *b;
46 
47 	b = kmalloc(2, GFP_KERNEL);
48 	if (!b)
49 		return -ENOMEM;
50 
51 	b[0] = reg;
52 	b[1] = 0;
53 
54 	msg[0].buf = b;
55 	msg[1].buf = b + 1;
56 
57 	if (i2c_transfer(priv->i2c, msg, 2) != 2) {
58 		printk(KERN_WARNING "mt2060 I2C read failed\n");
59 		rc = -EREMOTEIO;
60 	}
61 	*val = b[1];
62 	kfree(b);
63 
64 	return rc;
65 }
66 
67 // Writes a single register
68 static int mt2060_writereg(struct mt2060_priv *priv, u8 reg, u8 val)
69 {
70 	struct i2c_msg msg = {
71 		.addr = priv->cfg->i2c_address, .flags = 0, .len = 2
72 	};
73 	u8 *buf;
74 	int rc = 0;
75 
76 	buf = kmalloc(2, GFP_KERNEL);
77 	if (!buf)
78 		return -ENOMEM;
79 
80 	buf[0] = reg;
81 	buf[1] = val;
82 
83 	msg.buf = buf;
84 
85 	if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
86 		printk(KERN_WARNING "mt2060 I2C write failed\n");
87 		rc = -EREMOTEIO;
88 	}
89 	kfree(buf);
90 	return rc;
91 }
92 
93 // Writes a set of consecutive registers
94 static int mt2060_writeregs(struct mt2060_priv *priv,u8 *buf, u8 len)
95 {
96 	int rem, val_len;
97 	u8 *xfer_buf;
98 	int rc = 0;
99 	struct i2c_msg msg = {
100 		.addr = priv->cfg->i2c_address, .flags = 0
101 	};
102 
103 	xfer_buf = kmalloc(16, GFP_KERNEL);
104 	if (!xfer_buf)
105 		return -ENOMEM;
106 
107 	msg.buf = xfer_buf;
108 
109 	for (rem = len - 1; rem > 0; rem -= priv->i2c_max_regs) {
110 		val_len = min_t(int, rem, priv->i2c_max_regs);
111 		msg.len = 1 + val_len;
112 		xfer_buf[0] = buf[0] + len - 1 - rem;
113 		memcpy(&xfer_buf[1], &buf[1 + len - 1 - rem], val_len);
114 
115 		if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
116 			printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n", val_len);
117 			rc = -EREMOTEIO;
118 			break;
119 		}
120 	}
121 
122 	kfree(xfer_buf);
123 	return rc;
124 }
125 
126 // Initialisation sequences
127 // LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
128 static u8 mt2060_config1[] = {
129 	REG_LO1C1,
130 	0x3F,	0x74,	0x00,	0x08,	0x93
131 };
132 
133 // FMCG=2, GP2=0, GP1=0
134 static u8 mt2060_config2[] = {
135 	REG_MISC_CTRL,
136 	0x20,	0x1E,	0x30,	0xff,	0x80,	0xff,	0x00,	0x2c,	0x42
137 };
138 
139 //  VGAG=3, V1CSE=1
140 
141 #ifdef  MT2060_SPURCHECK
142 /* The function below calculates the frequency offset between the output frequency if2
143  and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
144 static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
145 {
146 	int I,J;
147 	int dia,diamin,diff;
148 	diamin=1000000;
149 	for (I = 1; I < 10; I++) {
150 		J = ((2*I*lo1)/lo2+1)/2;
151 		diff = I*(int)lo1-J*(int)lo2;
152 		if (diff < 0) diff=-diff;
153 		dia = (diff-(int)if2);
154 		if (dia < 0) dia=-dia;
155 		if (diamin > dia) diamin=dia;
156 	}
157 	return diamin;
158 }
159 
160 #define BANDWIDTH 4000 // kHz
161 
162 /* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
163 static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
164 {
165 	u32 Spur,Sp1,Sp2;
166 	int I,J;
167 	I=0;
168 	J=1000;
169 
170 	Spur=mt2060_spurcalc(lo1,lo2,if2);
171 	if (Spur < BANDWIDTH) {
172 		/* Potential spurs detected */
173 		dprintk("Spurs before : f_lo1: %d  f_lo2: %d  (kHz)",
174 			(int)lo1,(int)lo2);
175 		I=1000;
176 		Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
177 		Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);
178 
179 		if (Sp1 < Sp2) {
180 			J=-J; I=-I; Spur=Sp2;
181 		} else
182 			Spur=Sp1;
183 
184 		while (Spur < BANDWIDTH) {
185 			I += J;
186 			Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
187 		}
188 		dprintk("Spurs after  : f_lo1: %d  f_lo2: %d  (kHz)",
189 			(int)(lo1+I),(int)(lo2+I));
190 	}
191 	return I;
192 }
193 #endif
194 
195 #define IF2  36150       // IF2 frequency = 36.150 MHz
196 #define FREF 16000       // Quartz oscillator 16 MHz
197 
198 static int mt2060_set_params(struct dvb_frontend *fe)
199 {
200 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
201 	struct mt2060_priv *priv;
202 	int i=0;
203 	u32 freq;
204 	u8  lnaband;
205 	u32 f_lo1,f_lo2;
206 	u32 div1,num1,div2,num2;
207 	u8  b[8];
208 	u32 if1;
209 
210 	priv = fe->tuner_priv;
211 
212 	if1 = priv->if1_freq;
213 	b[0] = REG_LO1B1;
214 	b[1] = 0xFF;
215 
216 	if (fe->ops.i2c_gate_ctrl)
217 		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
218 
219 	mt2060_writeregs(priv,b,2);
220 
221 	freq = c->frequency / 1000; /* Hz -> kHz */
222 
223 	f_lo1 = freq + if1 * 1000;
224 	f_lo1 = (f_lo1 / 250) * 250;
225 	f_lo2 = f_lo1 - freq - IF2;
226 	// From the Comtech datasheet, the step used is 50kHz. The tuner chip could be more precise
227 	f_lo2 = ((f_lo2 + 25) / 50) * 50;
228 	priv->frequency =  (f_lo1 - f_lo2 - IF2) * 1000,
229 
230 #ifdef MT2060_SPURCHECK
231 	// LO-related spurs detection and correction
232 	num1   = mt2060_spurcheck(f_lo1,f_lo2,IF2);
233 	f_lo1 += num1;
234 	f_lo2 += num1;
235 #endif
236 	//Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
237 	num1 = f_lo1 / (FREF / 64);
238 	div1 = num1 / 64;
239 	num1 &= 0x3f;
240 
241 	// Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
242 	num2 = f_lo2 * 64 / (FREF / 128);
243 	div2 = num2 / 8192;
244 	num2 &= 0x1fff;
245 
246 	if (freq <=  95000) lnaband = 0xB0; else
247 	if (freq <= 180000) lnaband = 0xA0; else
248 	if (freq <= 260000) lnaband = 0x90; else
249 	if (freq <= 335000) lnaband = 0x80; else
250 	if (freq <= 425000) lnaband = 0x70; else
251 	if (freq <= 480000) lnaband = 0x60; else
252 	if (freq <= 570000) lnaband = 0x50; else
253 	if (freq <= 645000) lnaband = 0x40; else
254 	if (freq <= 730000) lnaband = 0x30; else
255 	if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;
256 
257 	b[0] = REG_LO1C1;
258 	b[1] = lnaband | ((num1 >>2) & 0x0F);
259 	b[2] = div1;
260 	b[3] = (num2 & 0x0F)  | ((num1 & 3) << 4);
261 	b[4] = num2 >> 4;
262 	b[5] = ((num2 >>12) & 1) | (div2 << 1);
263 
264 	dprintk("IF1: %dMHz",(int)if1);
265 	dprintk("PLL freq=%dkHz  f_lo1=%dkHz  f_lo2=%dkHz",(int)freq,(int)f_lo1,(int)f_lo2);
266 	dprintk("PLL div1=%d  num1=%d  div2=%d  num2=%d",(int)div1,(int)num1,(int)div2,(int)num2);
267 	dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
268 
269 	mt2060_writeregs(priv,b,6);
270 
271 	//Waits for pll lock or timeout
272 	i = 0;
273 	do {
274 		mt2060_readreg(priv,REG_LO_STATUS,b);
275 		if ((b[0] & 0x88)==0x88)
276 			break;
277 		msleep(4);
278 		i++;
279 	} while (i<10);
280 
281 	if (fe->ops.i2c_gate_ctrl)
282 		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
283 
284 	return 0;
285 }
286 
287 static void mt2060_calibrate(struct mt2060_priv *priv)
288 {
289 	u8 b = 0;
290 	int i = 0;
291 
292 	if (mt2060_writeregs(priv,mt2060_config1,sizeof(mt2060_config1)))
293 		return;
294 	if (mt2060_writeregs(priv,mt2060_config2,sizeof(mt2060_config2)))
295 		return;
296 
297 	/* initialize the clock output */
298 	mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30);
299 
300 	do {
301 		b |= (1 << 6); // FM1SS;
302 		mt2060_writereg(priv, REG_LO2C1,b);
303 		msleep(20);
304 
305 		if (i == 0) {
306 			b |= (1 << 7); // FM1CA;
307 			mt2060_writereg(priv, REG_LO2C1,b);
308 			b &= ~(1 << 7); // FM1CA;
309 			msleep(20);
310 		}
311 
312 		b &= ~(1 << 6); // FM1SS
313 		mt2060_writereg(priv, REG_LO2C1,b);
314 
315 		msleep(20);
316 		i++;
317 	} while (i < 9);
318 
319 	i = 0;
320 	while (i++ < 10 && mt2060_readreg(priv, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
321 		msleep(20);
322 
323 	if (i <= 10) {
324 		mt2060_readreg(priv, REG_FM_FREQ, &priv->fmfreq); // now find out, what is fmreq used for :)
325 		dprintk("calibration was successful: %d", (int)priv->fmfreq);
326 	} else
327 		dprintk("FMCAL timed out");
328 }
329 
330 static int mt2060_get_frequency(struct dvb_frontend *fe, u32 *frequency)
331 {
332 	struct mt2060_priv *priv = fe->tuner_priv;
333 	*frequency = priv->frequency;
334 	return 0;
335 }
336 
337 static int mt2060_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
338 {
339 	*frequency = IF2 * 1000;
340 	return 0;
341 }
342 
343 static int mt2060_init(struct dvb_frontend *fe)
344 {
345 	struct mt2060_priv *priv = fe->tuner_priv;
346 	int ret;
347 
348 	if (fe->ops.i2c_gate_ctrl)
349 		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
350 
351 	if (priv->sleep) {
352 		ret = mt2060_writereg(priv, REG_MISC_CTRL, 0x20);
353 		if (ret)
354 			goto err_i2c_gate_ctrl;
355 	}
356 
357 	ret = mt2060_writereg(priv, REG_VGAG,
358 			      (priv->cfg->clock_out << 6) | 0x33);
359 
360 err_i2c_gate_ctrl:
361 	if (fe->ops.i2c_gate_ctrl)
362 		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
363 
364 	return ret;
365 }
366 
367 static int mt2060_sleep(struct dvb_frontend *fe)
368 {
369 	struct mt2060_priv *priv = fe->tuner_priv;
370 	int ret;
371 
372 	if (fe->ops.i2c_gate_ctrl)
373 		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
374 
375 	ret = mt2060_writereg(priv, REG_VGAG,
376 			      (priv->cfg->clock_out << 6) | 0x30);
377 	if (ret)
378 		goto err_i2c_gate_ctrl;
379 
380 	if (priv->sleep)
381 		ret = mt2060_writereg(priv, REG_MISC_CTRL, 0xe8);
382 
383 err_i2c_gate_ctrl:
384 	if (fe->ops.i2c_gate_ctrl)
385 		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
386 
387 	return ret;
388 }
389 
390 static void mt2060_release(struct dvb_frontend *fe)
391 {
392 	kfree(fe->tuner_priv);
393 	fe->tuner_priv = NULL;
394 }
395 
396 static const struct dvb_tuner_ops mt2060_tuner_ops = {
397 	.info = {
398 		.name              = "Microtune MT2060",
399 		.frequency_min_hz  =  48 * MHz,
400 		.frequency_max_hz  = 860 * MHz,
401 		.frequency_step_hz =  50 * kHz,
402 	},
403 
404 	.release       = mt2060_release,
405 
406 	.init          = mt2060_init,
407 	.sleep         = mt2060_sleep,
408 
409 	.set_params    = mt2060_set_params,
410 	.get_frequency = mt2060_get_frequency,
411 	.get_if_frequency = mt2060_get_if_frequency,
412 };
413 
414 /* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
415 struct dvb_frontend * mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1)
416 {
417 	struct mt2060_priv *priv = NULL;
418 	u8 id = 0;
419 
420 	priv = kzalloc(sizeof(struct mt2060_priv), GFP_KERNEL);
421 	if (priv == NULL)
422 		return NULL;
423 
424 	priv->cfg      = cfg;
425 	priv->i2c      = i2c;
426 	priv->if1_freq = if1;
427 	priv->i2c_max_regs = ~0;
428 
429 	if (fe->ops.i2c_gate_ctrl)
430 		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
431 
432 	if (mt2060_readreg(priv,REG_PART_REV,&id) != 0) {
433 		kfree(priv);
434 		return NULL;
435 	}
436 
437 	if (id != PART_REV) {
438 		kfree(priv);
439 		return NULL;
440 	}
441 	printk(KERN_INFO "MT2060: successfully identified (IF1 = %d)\n", if1);
442 	memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(struct dvb_tuner_ops));
443 
444 	fe->tuner_priv = priv;
445 
446 	mt2060_calibrate(priv);
447 
448 	if (fe->ops.i2c_gate_ctrl)
449 		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
450 
451 	return fe;
452 }
453 EXPORT_SYMBOL(mt2060_attach);
454 
455 static int mt2060_probe(struct i2c_client *client,
456 			const struct i2c_device_id *id)
457 {
458 	struct mt2060_platform_data *pdata = client->dev.platform_data;
459 	struct dvb_frontend *fe;
460 	struct mt2060_priv *dev;
461 	int ret;
462 	u8 chip_id;
463 
464 	dev_dbg(&client->dev, "\n");
465 
466 	if (!pdata) {
467 		dev_err(&client->dev, "Cannot proceed without platform data\n");
468 		ret = -EINVAL;
469 		goto err;
470 	}
471 
472 	dev = devm_kzalloc(&client->dev, sizeof(*dev), GFP_KERNEL);
473 	if (!dev) {
474 		ret = -ENOMEM;
475 		goto err;
476 	}
477 
478 	fe = pdata->dvb_frontend;
479 	dev->config.i2c_address = client->addr;
480 	dev->config.clock_out = pdata->clock_out;
481 	dev->cfg = &dev->config;
482 	dev->i2c = client->adapter;
483 	dev->if1_freq = pdata->if1 ? pdata->if1 : 1220;
484 	dev->client = client;
485 	dev->i2c_max_regs = pdata->i2c_write_max ? pdata->i2c_write_max - 1 : ~0;
486 	dev->sleep = true;
487 
488 	ret = mt2060_readreg(dev, REG_PART_REV, &chip_id);
489 	if (ret) {
490 		ret = -ENODEV;
491 		goto err;
492 	}
493 
494 	dev_dbg(&client->dev, "chip id=%02x\n", chip_id);
495 
496 	if (chip_id != PART_REV) {
497 		ret = -ENODEV;
498 		goto err;
499 	}
500 
501 	/* Power on, calibrate, sleep */
502 	ret = mt2060_writereg(dev, REG_MISC_CTRL, 0x20);
503 	if (ret)
504 		goto err;
505 	mt2060_calibrate(dev);
506 	ret = mt2060_writereg(dev, REG_MISC_CTRL, 0xe8);
507 	if (ret)
508 		goto err;
509 
510 	dev_info(&client->dev, "Microtune MT2060 successfully identified\n");
511 	memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(fe->ops.tuner_ops));
512 	fe->ops.tuner_ops.release = NULL;
513 	fe->tuner_priv = dev;
514 	i2c_set_clientdata(client, dev);
515 
516 	return 0;
517 err:
518 	dev_dbg(&client->dev, "failed=%d\n", ret);
519 	return ret;
520 }
521 
522 static int mt2060_remove(struct i2c_client *client)
523 {
524 	dev_dbg(&client->dev, "\n");
525 
526 	return 0;
527 }
528 
529 static const struct i2c_device_id mt2060_id_table[] = {
530 	{"mt2060", 0},
531 	{}
532 };
533 MODULE_DEVICE_TABLE(i2c, mt2060_id_table);
534 
535 static struct i2c_driver mt2060_driver = {
536 	.driver = {
537 		.name = "mt2060",
538 		.suppress_bind_attrs = true,
539 	},
540 	.probe		= mt2060_probe,
541 	.remove		= mt2060_remove,
542 	.id_table	= mt2060_id_table,
543 };
544 
545 module_i2c_driver(mt2060_driver);
546 
547 MODULE_AUTHOR("Olivier DANET");
548 MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
549 MODULE_LICENSE("GPL");
550