1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for Microtune MT2060 "Single chip dual conversion broadband tuner" 4 * 5 * Copyright (c) 2006 Olivier DANET <odanet@caramail.com> 6 */ 7 8 /* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */ 9 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/dvb/frontend.h> 13 #include <linux/i2c.h> 14 #include <linux/slab.h> 15 16 #include <media/dvb_frontend.h> 17 18 #include "mt2060.h" 19 #include "mt2060_priv.h" 20 21 static int debug; 22 module_param(debug, int, 0644); 23 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); 24 25 #define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2060: " args); printk("\n"); }} while (0) 26 27 // Reads a single register 28 static int mt2060_readreg(struct mt2060_priv *priv, u8 reg, u8 *val) 29 { 30 struct i2c_msg msg[2] = { 31 { .addr = priv->cfg->i2c_address, .flags = 0, .len = 1 }, 32 { .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .len = 1 }, 33 }; 34 int rc = 0; 35 u8 *b; 36 37 b = kmalloc(2, GFP_KERNEL); 38 if (!b) 39 return -ENOMEM; 40 41 b[0] = reg; 42 b[1] = 0; 43 44 msg[0].buf = b; 45 msg[1].buf = b + 1; 46 47 if (i2c_transfer(priv->i2c, msg, 2) != 2) { 48 printk(KERN_WARNING "mt2060 I2C read failed\n"); 49 rc = -EREMOTEIO; 50 } 51 *val = b[1]; 52 kfree(b); 53 54 return rc; 55 } 56 57 // Writes a single register 58 static int mt2060_writereg(struct mt2060_priv *priv, u8 reg, u8 val) 59 { 60 struct i2c_msg msg = { 61 .addr = priv->cfg->i2c_address, .flags = 0, .len = 2 62 }; 63 u8 *buf; 64 int rc = 0; 65 66 buf = kmalloc(2, GFP_KERNEL); 67 if (!buf) 68 return -ENOMEM; 69 70 buf[0] = reg; 71 buf[1] = val; 72 73 msg.buf = buf; 74 75 if (i2c_transfer(priv->i2c, &msg, 1) != 1) { 76 printk(KERN_WARNING "mt2060 I2C write failed\n"); 77 rc = -EREMOTEIO; 78 } 79 kfree(buf); 80 return rc; 81 } 82 83 // Writes a set of consecutive registers 84 static int mt2060_writeregs(struct mt2060_priv *priv,u8 *buf, u8 len) 85 { 86 int rem, val_len; 87 u8 *xfer_buf; 88 int rc = 0; 89 struct i2c_msg msg = { 90 .addr = priv->cfg->i2c_address, .flags = 0 91 }; 92 93 xfer_buf = kmalloc(16, GFP_KERNEL); 94 if (!xfer_buf) 95 return -ENOMEM; 96 97 msg.buf = xfer_buf; 98 99 for (rem = len - 1; rem > 0; rem -= priv->i2c_max_regs) { 100 val_len = min_t(int, rem, priv->i2c_max_regs); 101 msg.len = 1 + val_len; 102 xfer_buf[0] = buf[0] + len - 1 - rem; 103 memcpy(&xfer_buf[1], &buf[1 + len - 1 - rem], val_len); 104 105 if (i2c_transfer(priv->i2c, &msg, 1) != 1) { 106 printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n", val_len); 107 rc = -EREMOTEIO; 108 break; 109 } 110 } 111 112 kfree(xfer_buf); 113 return rc; 114 } 115 116 // Initialisation sequences 117 // LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49 118 static u8 mt2060_config1[] = { 119 REG_LO1C1, 120 0x3F, 0x74, 0x00, 0x08, 0x93 121 }; 122 123 // FMCG=2, GP2=0, GP1=0 124 static u8 mt2060_config2[] = { 125 REG_MISC_CTRL, 126 0x20, 0x1E, 0x30, 0xff, 0x80, 0xff, 0x00, 0x2c, 0x42 127 }; 128 129 // VGAG=3, V1CSE=1 130 131 #ifdef MT2060_SPURCHECK 132 /* The function below calculates the frequency offset between the output frequency if2 133 and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */ 134 static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2) 135 { 136 int I,J; 137 int dia,diamin,diff; 138 diamin=1000000; 139 for (I = 1; I < 10; I++) { 140 J = ((2*I*lo1)/lo2+1)/2; 141 diff = I*(int)lo1-J*(int)lo2; 142 if (diff < 0) diff=-diff; 143 dia = (diff-(int)if2); 144 if (dia < 0) dia=-dia; 145 if (diamin > dia) diamin=dia; 146 } 147 return diamin; 148 } 149 150 #define BANDWIDTH 4000 // kHz 151 152 /* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */ 153 static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2) 154 { 155 u32 Spur,Sp1,Sp2; 156 int I,J; 157 I=0; 158 J=1000; 159 160 Spur=mt2060_spurcalc(lo1,lo2,if2); 161 if (Spur < BANDWIDTH) { 162 /* Potential spurs detected */ 163 dprintk("Spurs before : f_lo1: %d f_lo2: %d (kHz)", 164 (int)lo1,(int)lo2); 165 I=1000; 166 Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2); 167 Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2); 168 169 if (Sp1 < Sp2) { 170 J=-J; I=-I; Spur=Sp2; 171 } else 172 Spur=Sp1; 173 174 while (Spur < BANDWIDTH) { 175 I += J; 176 Spur = mt2060_spurcalc(lo1+I,lo2+I,if2); 177 } 178 dprintk("Spurs after : f_lo1: %d f_lo2: %d (kHz)", 179 (int)(lo1+I),(int)(lo2+I)); 180 } 181 return I; 182 } 183 #endif 184 185 #define IF2 36150 // IF2 frequency = 36.150 MHz 186 #define FREF 16000 // Quartz oscillator 16 MHz 187 188 static int mt2060_set_params(struct dvb_frontend *fe) 189 { 190 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 191 struct mt2060_priv *priv; 192 int i=0; 193 u32 freq; 194 u8 lnaband; 195 u32 f_lo1,f_lo2; 196 u32 div1,num1,div2,num2; 197 u8 b[8]; 198 u32 if1; 199 200 priv = fe->tuner_priv; 201 202 if1 = priv->if1_freq; 203 b[0] = REG_LO1B1; 204 b[1] = 0xFF; 205 206 if (fe->ops.i2c_gate_ctrl) 207 fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */ 208 209 mt2060_writeregs(priv,b,2); 210 211 freq = c->frequency / 1000; /* Hz -> kHz */ 212 213 f_lo1 = freq + if1 * 1000; 214 f_lo1 = (f_lo1 / 250) * 250; 215 f_lo2 = f_lo1 - freq - IF2; 216 // From the Comtech datasheet, the step used is 50kHz. The tuner chip could be more precise 217 f_lo2 = ((f_lo2 + 25) / 50) * 50; 218 priv->frequency = (f_lo1 - f_lo2 - IF2) * 1000, 219 220 #ifdef MT2060_SPURCHECK 221 // LO-related spurs detection and correction 222 num1 = mt2060_spurcheck(f_lo1,f_lo2,IF2); 223 f_lo1 += num1; 224 f_lo2 += num1; 225 #endif 226 //Frequency LO1 = 16MHz * (DIV1 + NUM1/64 ) 227 num1 = f_lo1 / (FREF / 64); 228 div1 = num1 / 64; 229 num1 &= 0x3f; 230 231 // Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 ) 232 num2 = f_lo2 * 64 / (FREF / 128); 233 div2 = num2 / 8192; 234 num2 &= 0x1fff; 235 236 if (freq <= 95000) lnaband = 0xB0; else 237 if (freq <= 180000) lnaband = 0xA0; else 238 if (freq <= 260000) lnaband = 0x90; else 239 if (freq <= 335000) lnaband = 0x80; else 240 if (freq <= 425000) lnaband = 0x70; else 241 if (freq <= 480000) lnaband = 0x60; else 242 if (freq <= 570000) lnaband = 0x50; else 243 if (freq <= 645000) lnaband = 0x40; else 244 if (freq <= 730000) lnaband = 0x30; else 245 if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10; 246 247 b[0] = REG_LO1C1; 248 b[1] = lnaband | ((num1 >>2) & 0x0F); 249 b[2] = div1; 250 b[3] = (num2 & 0x0F) | ((num1 & 3) << 4); 251 b[4] = num2 >> 4; 252 b[5] = ((num2 >>12) & 1) | (div2 << 1); 253 254 dprintk("IF1: %dMHz",(int)if1); 255 dprintk("PLL freq=%dkHz f_lo1=%dkHz f_lo2=%dkHz",(int)freq,(int)f_lo1,(int)f_lo2); 256 dprintk("PLL div1=%d num1=%d div2=%d num2=%d",(int)div1,(int)num1,(int)div2,(int)num2); 257 dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]); 258 259 mt2060_writeregs(priv,b,6); 260 261 //Waits for pll lock or timeout 262 i = 0; 263 do { 264 mt2060_readreg(priv,REG_LO_STATUS,b); 265 if ((b[0] & 0x88)==0x88) 266 break; 267 msleep(4); 268 i++; 269 } while (i<10); 270 271 if (fe->ops.i2c_gate_ctrl) 272 fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */ 273 274 return 0; 275 } 276 277 static void mt2060_calibrate(struct mt2060_priv *priv) 278 { 279 u8 b = 0; 280 int i = 0; 281 282 if (mt2060_writeregs(priv,mt2060_config1,sizeof(mt2060_config1))) 283 return; 284 if (mt2060_writeregs(priv,mt2060_config2,sizeof(mt2060_config2))) 285 return; 286 287 /* initialize the clock output */ 288 mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30); 289 290 do { 291 b |= (1 << 6); // FM1SS; 292 mt2060_writereg(priv, REG_LO2C1,b); 293 msleep(20); 294 295 if (i == 0) { 296 b |= (1 << 7); // FM1CA; 297 mt2060_writereg(priv, REG_LO2C1,b); 298 b &= ~(1 << 7); // FM1CA; 299 msleep(20); 300 } 301 302 b &= ~(1 << 6); // FM1SS 303 mt2060_writereg(priv, REG_LO2C1,b); 304 305 msleep(20); 306 i++; 307 } while (i < 9); 308 309 i = 0; 310 while (i++ < 10 && mt2060_readreg(priv, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0) 311 msleep(20); 312 313 if (i <= 10) { 314 mt2060_readreg(priv, REG_FM_FREQ, &priv->fmfreq); // now find out, what is fmreq used for :) 315 dprintk("calibration was successful: %d", (int)priv->fmfreq); 316 } else 317 dprintk("FMCAL timed out"); 318 } 319 320 static int mt2060_get_frequency(struct dvb_frontend *fe, u32 *frequency) 321 { 322 struct mt2060_priv *priv = fe->tuner_priv; 323 *frequency = priv->frequency; 324 return 0; 325 } 326 327 static int mt2060_get_if_frequency(struct dvb_frontend *fe, u32 *frequency) 328 { 329 *frequency = IF2 * 1000; 330 return 0; 331 } 332 333 static int mt2060_init(struct dvb_frontend *fe) 334 { 335 struct mt2060_priv *priv = fe->tuner_priv; 336 int ret; 337 338 if (fe->ops.i2c_gate_ctrl) 339 fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */ 340 341 if (priv->sleep) { 342 ret = mt2060_writereg(priv, REG_MISC_CTRL, 0x20); 343 if (ret) 344 goto err_i2c_gate_ctrl; 345 } 346 347 ret = mt2060_writereg(priv, REG_VGAG, 348 (priv->cfg->clock_out << 6) | 0x33); 349 350 err_i2c_gate_ctrl: 351 if (fe->ops.i2c_gate_ctrl) 352 fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */ 353 354 return ret; 355 } 356 357 static int mt2060_sleep(struct dvb_frontend *fe) 358 { 359 struct mt2060_priv *priv = fe->tuner_priv; 360 int ret; 361 362 if (fe->ops.i2c_gate_ctrl) 363 fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */ 364 365 ret = mt2060_writereg(priv, REG_VGAG, 366 (priv->cfg->clock_out << 6) | 0x30); 367 if (ret) 368 goto err_i2c_gate_ctrl; 369 370 if (priv->sleep) 371 ret = mt2060_writereg(priv, REG_MISC_CTRL, 0xe8); 372 373 err_i2c_gate_ctrl: 374 if (fe->ops.i2c_gate_ctrl) 375 fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */ 376 377 return ret; 378 } 379 380 static void mt2060_release(struct dvb_frontend *fe) 381 { 382 kfree(fe->tuner_priv); 383 fe->tuner_priv = NULL; 384 } 385 386 static const struct dvb_tuner_ops mt2060_tuner_ops = { 387 .info = { 388 .name = "Microtune MT2060", 389 .frequency_min_hz = 48 * MHz, 390 .frequency_max_hz = 860 * MHz, 391 .frequency_step_hz = 50 * kHz, 392 }, 393 394 .release = mt2060_release, 395 396 .init = mt2060_init, 397 .sleep = mt2060_sleep, 398 399 .set_params = mt2060_set_params, 400 .get_frequency = mt2060_get_frequency, 401 .get_if_frequency = mt2060_get_if_frequency, 402 }; 403 404 /* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */ 405 struct dvb_frontend * mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1) 406 { 407 struct mt2060_priv *priv = NULL; 408 u8 id = 0; 409 410 priv = kzalloc(sizeof(struct mt2060_priv), GFP_KERNEL); 411 if (priv == NULL) 412 return NULL; 413 414 priv->cfg = cfg; 415 priv->i2c = i2c; 416 priv->if1_freq = if1; 417 priv->i2c_max_regs = ~0; 418 419 if (fe->ops.i2c_gate_ctrl) 420 fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */ 421 422 if (mt2060_readreg(priv,REG_PART_REV,&id) != 0) { 423 kfree(priv); 424 return NULL; 425 } 426 427 if (id != PART_REV) { 428 kfree(priv); 429 return NULL; 430 } 431 printk(KERN_INFO "MT2060: successfully identified (IF1 = %d)\n", if1); 432 memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(struct dvb_tuner_ops)); 433 434 fe->tuner_priv = priv; 435 436 mt2060_calibrate(priv); 437 438 if (fe->ops.i2c_gate_ctrl) 439 fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */ 440 441 return fe; 442 } 443 EXPORT_SYMBOL(mt2060_attach); 444 445 static int mt2060_probe(struct i2c_client *client, 446 const struct i2c_device_id *id) 447 { 448 struct mt2060_platform_data *pdata = client->dev.platform_data; 449 struct dvb_frontend *fe; 450 struct mt2060_priv *dev; 451 int ret; 452 u8 chip_id; 453 454 dev_dbg(&client->dev, "\n"); 455 456 if (!pdata) { 457 dev_err(&client->dev, "Cannot proceed without platform data\n"); 458 ret = -EINVAL; 459 goto err; 460 } 461 462 dev = devm_kzalloc(&client->dev, sizeof(*dev), GFP_KERNEL); 463 if (!dev) { 464 ret = -ENOMEM; 465 goto err; 466 } 467 468 fe = pdata->dvb_frontend; 469 dev->config.i2c_address = client->addr; 470 dev->config.clock_out = pdata->clock_out; 471 dev->cfg = &dev->config; 472 dev->i2c = client->adapter; 473 dev->if1_freq = pdata->if1 ? pdata->if1 : 1220; 474 dev->client = client; 475 dev->i2c_max_regs = pdata->i2c_write_max ? pdata->i2c_write_max - 1 : ~0; 476 dev->sleep = true; 477 478 ret = mt2060_readreg(dev, REG_PART_REV, &chip_id); 479 if (ret) { 480 ret = -ENODEV; 481 goto err; 482 } 483 484 dev_dbg(&client->dev, "chip id=%02x\n", chip_id); 485 486 if (chip_id != PART_REV) { 487 ret = -ENODEV; 488 goto err; 489 } 490 491 /* Power on, calibrate, sleep */ 492 ret = mt2060_writereg(dev, REG_MISC_CTRL, 0x20); 493 if (ret) 494 goto err; 495 mt2060_calibrate(dev); 496 ret = mt2060_writereg(dev, REG_MISC_CTRL, 0xe8); 497 if (ret) 498 goto err; 499 500 dev_info(&client->dev, "Microtune MT2060 successfully identified\n"); 501 memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(fe->ops.tuner_ops)); 502 fe->ops.tuner_ops.release = NULL; 503 fe->tuner_priv = dev; 504 i2c_set_clientdata(client, dev); 505 506 return 0; 507 err: 508 dev_dbg(&client->dev, "failed=%d\n", ret); 509 return ret; 510 } 511 512 static int mt2060_remove(struct i2c_client *client) 513 { 514 dev_dbg(&client->dev, "\n"); 515 516 return 0; 517 } 518 519 static const struct i2c_device_id mt2060_id_table[] = { 520 {"mt2060", 0}, 521 {} 522 }; 523 MODULE_DEVICE_TABLE(i2c, mt2060_id_table); 524 525 static struct i2c_driver mt2060_driver = { 526 .driver = { 527 .name = "mt2060", 528 .suppress_bind_attrs = true, 529 }, 530 .probe = mt2060_probe, 531 .remove = mt2060_remove, 532 .id_table = mt2060_id_table, 533 }; 534 535 module_i2c_driver(mt2060_driver); 536 537 MODULE_AUTHOR("Olivier DANET"); 538 MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver"); 539 MODULE_LICENSE("GPL"); 540