xref: /linux/drivers/media/rc/st_rc.c (revision c0e297dc61f8d4453e07afbea1fa8d0e67cd4a34)
1 /*
2  * Copyright (C) 2013 STMicroelectronics Limited
3  * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  */
10 #include <linux/kernel.h>
11 #include <linux/clk.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/reset.h>
17 #include <media/rc-core.h>
18 #include <linux/pinctrl/consumer.h>
19 
20 struct st_rc_device {
21 	struct device			*dev;
22 	int				irq;
23 	int				irq_wake;
24 	struct clk			*sys_clock;
25 	void __iomem			*base;	/* Register base address */
26 	void __iomem			*rx_base;/* RX Register base address */
27 	struct rc_dev			*rdev;
28 	bool				overclocking;
29 	int				sample_mult;
30 	int				sample_div;
31 	bool				rxuhfmode;
32 	struct	reset_control		*rstc;
33 };
34 
35 /* Registers */
36 #define IRB_SAMPLE_RATE_COMM	0x64	/* sample freq divisor*/
37 #define IRB_CLOCK_SEL		0x70	/* clock select       */
38 #define IRB_CLOCK_SEL_STATUS	0x74	/* clock status       */
39 /* IRB IR/UHF receiver registers */
40 #define IRB_RX_ON               0x40	/* pulse time capture */
41 #define IRB_RX_SYS              0X44	/* sym period capture */
42 #define IRB_RX_INT_EN           0x48	/* IRQ enable (R/W)   */
43 #define IRB_RX_INT_STATUS       0x4c	/* IRQ status (R/W)   */
44 #define IRB_RX_EN               0x50	/* Receive enable     */
45 #define IRB_MAX_SYM_PERIOD      0x54	/* max sym value      */
46 #define IRB_RX_INT_CLEAR        0x58	/* overrun status     */
47 #define IRB_RX_STATUS           0x6c	/* receive status     */
48 #define IRB_RX_NOISE_SUPPR      0x5c	/* noise suppression  */
49 #define IRB_RX_POLARITY_INV     0x68	/* polarity inverter  */
50 
51 /**
52  * IRQ set: Enable full FIFO                 1  -> bit  3;
53  *          Enable overrun IRQ               1  -> bit  2;
54  *          Enable last symbol IRQ           1  -> bit  1:
55  *          Enable RX interrupt              1  -> bit  0;
56  */
57 #define IRB_RX_INTS		0x0f
58 #define IRB_RX_OVERRUN_INT	0x04
59  /* maximum symbol period (microsecs),timeout to detect end of symbol train */
60 #define MAX_SYMB_TIME		0x5000
61 #define IRB_SAMPLE_FREQ		10000000
62 #define	IRB_FIFO_NOT_EMPTY	0xff00
63 #define IRB_OVERFLOW		0x4
64 #define IRB_TIMEOUT		0xffff
65 #define IR_ST_NAME "st-rc"
66 
67 static void st_rc_send_lirc_timeout(struct rc_dev *rdev)
68 {
69 	DEFINE_IR_RAW_EVENT(ev);
70 	ev.timeout = true;
71 	ir_raw_event_store(rdev, &ev);
72 }
73 
74 /**
75  * RX graphical example to better understand the difference between ST IR block
76  * output and standard definition used by LIRC (and most of the world!)
77  *
78  *           mark                                     mark
79  *      |-IRB_RX_ON-|                            |-IRB_RX_ON-|
80  *      ___  ___  ___                            ___  ___  ___             _
81  *      | |  | |  | |                            | |  | |  | |             |
82  *      | |  | |  | |         space 0            | |  | |  | |   space 1   |
83  * _____| |__| |__| |____________________________| |__| |__| |_____________|
84  *
85  *      |--------------- IRB_RX_SYS -------------|------ IRB_RX_SYS -------|
86  *
87  *      |------------- encoding bit 0 -----------|---- encoding bit 1 -----|
88  *
89  * ST hardware returns mark (IRB_RX_ON) and total symbol time (IRB_RX_SYS), so
90  * convert to standard mark/space we have to calculate space=(IRB_RX_SYS-mark)
91  * The mark time represents the amount of time the carrier (usually 36-40kHz)
92  * is detected.The above examples shows Pulse Width Modulation encoding where
93  * bit 0 is represented by space>mark.
94  */
95 
96 static irqreturn_t st_rc_rx_interrupt(int irq, void *data)
97 {
98 	unsigned int symbol, mark = 0;
99 	struct st_rc_device *dev = data;
100 	int last_symbol = 0;
101 	u32 status;
102 	DEFINE_IR_RAW_EVENT(ev);
103 
104 	if (dev->irq_wake)
105 		pm_wakeup_event(dev->dev, 0);
106 
107 	status  = readl(dev->rx_base + IRB_RX_STATUS);
108 
109 	while (status & (IRB_FIFO_NOT_EMPTY | IRB_OVERFLOW)) {
110 		u32 int_status = readl(dev->rx_base + IRB_RX_INT_STATUS);
111 		if (unlikely(int_status & IRB_RX_OVERRUN_INT)) {
112 			/* discard the entire collection in case of errors!  */
113 			ir_raw_event_reset(dev->rdev);
114 			dev_info(dev->dev, "IR RX overrun\n");
115 			writel(IRB_RX_OVERRUN_INT,
116 					dev->rx_base + IRB_RX_INT_CLEAR);
117 			continue;
118 		}
119 
120 		symbol = readl(dev->rx_base + IRB_RX_SYS);
121 		mark = readl(dev->rx_base + IRB_RX_ON);
122 
123 		if (symbol == IRB_TIMEOUT)
124 			last_symbol = 1;
125 
126 		 /* Ignore any noise */
127 		if ((mark > 2) && (symbol > 1)) {
128 			symbol -= mark;
129 			if (dev->overclocking) { /* adjustments to timings */
130 				symbol *= dev->sample_mult;
131 				symbol /= dev->sample_div;
132 				mark *= dev->sample_mult;
133 				mark /= dev->sample_div;
134 			}
135 
136 			ev.duration = US_TO_NS(mark);
137 			ev.pulse = true;
138 			ir_raw_event_store(dev->rdev, &ev);
139 
140 			if (!last_symbol) {
141 				ev.duration = US_TO_NS(symbol);
142 				ev.pulse = false;
143 				ir_raw_event_store(dev->rdev, &ev);
144 			} else  {
145 				st_rc_send_lirc_timeout(dev->rdev);
146 			}
147 
148 		}
149 		last_symbol = 0;
150 		status  = readl(dev->rx_base + IRB_RX_STATUS);
151 	}
152 
153 	writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_CLEAR);
154 
155 	/* Empty software fifo */
156 	ir_raw_event_handle(dev->rdev);
157 	return IRQ_HANDLED;
158 }
159 
160 static void st_rc_hardware_init(struct st_rc_device *dev)
161 {
162 	int baseclock, freqdiff;
163 	unsigned int rx_max_symbol_per = MAX_SYMB_TIME;
164 	unsigned int rx_sampling_freq_div;
165 
166 	/* Enable the IP */
167 	if (dev->rstc)
168 		reset_control_deassert(dev->rstc);
169 
170 	clk_prepare_enable(dev->sys_clock);
171 	baseclock = clk_get_rate(dev->sys_clock);
172 
173 	/* IRB input pins are inverted internally from high to low. */
174 	writel(1, dev->rx_base + IRB_RX_POLARITY_INV);
175 
176 	rx_sampling_freq_div = baseclock / IRB_SAMPLE_FREQ;
177 	writel(rx_sampling_freq_div, dev->base + IRB_SAMPLE_RATE_COMM);
178 
179 	freqdiff = baseclock - (rx_sampling_freq_div * IRB_SAMPLE_FREQ);
180 	if (freqdiff) { /* over clocking, workout the adjustment factors */
181 		dev->overclocking = true;
182 		dev->sample_mult = 1000;
183 		dev->sample_div = baseclock / (10000 * rx_sampling_freq_div);
184 		rx_max_symbol_per = (rx_max_symbol_per * 1000)/dev->sample_div;
185 	}
186 
187 	writel(rx_max_symbol_per, dev->rx_base + IRB_MAX_SYM_PERIOD);
188 }
189 
190 static int st_rc_remove(struct platform_device *pdev)
191 {
192 	struct st_rc_device *rc_dev = platform_get_drvdata(pdev);
193 	clk_disable_unprepare(rc_dev->sys_clock);
194 	rc_unregister_device(rc_dev->rdev);
195 	return 0;
196 }
197 
198 static int st_rc_open(struct rc_dev *rdev)
199 {
200 	struct st_rc_device *dev = rdev->priv;
201 	unsigned long flags;
202 	local_irq_save(flags);
203 	/* enable interrupts and receiver */
204 	writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_EN);
205 	writel(0x01, dev->rx_base + IRB_RX_EN);
206 	local_irq_restore(flags);
207 
208 	return 0;
209 }
210 
211 static void st_rc_close(struct rc_dev *rdev)
212 {
213 	struct st_rc_device *dev = rdev->priv;
214 	/* disable interrupts and receiver */
215 	writel(0x00, dev->rx_base + IRB_RX_EN);
216 	writel(0x00, dev->rx_base + IRB_RX_INT_EN);
217 }
218 
219 static int st_rc_probe(struct platform_device *pdev)
220 {
221 	int ret = -EINVAL;
222 	struct rc_dev *rdev;
223 	struct device *dev = &pdev->dev;
224 	struct resource *res;
225 	struct st_rc_device *rc_dev;
226 	struct device_node *np = pdev->dev.of_node;
227 	const char *rx_mode;
228 
229 	rc_dev = devm_kzalloc(dev, sizeof(struct st_rc_device), GFP_KERNEL);
230 
231 	if (!rc_dev)
232 		return -ENOMEM;
233 
234 	rdev = rc_allocate_device();
235 
236 	if (!rdev)
237 		return -ENOMEM;
238 
239 	if (np && !of_property_read_string(np, "rx-mode", &rx_mode)) {
240 
241 		if (!strcmp(rx_mode, "uhf")) {
242 			rc_dev->rxuhfmode = true;
243 		} else if (!strcmp(rx_mode, "infrared")) {
244 			rc_dev->rxuhfmode = false;
245 		} else {
246 			dev_err(dev, "Unsupported rx mode [%s]\n", rx_mode);
247 			goto err;
248 		}
249 
250 	} else {
251 		goto err;
252 	}
253 
254 	rc_dev->sys_clock = devm_clk_get(dev, NULL);
255 	if (IS_ERR(rc_dev->sys_clock)) {
256 		dev_err(dev, "System clock not found\n");
257 		ret = PTR_ERR(rc_dev->sys_clock);
258 		goto err;
259 	}
260 
261 	rc_dev->irq = platform_get_irq(pdev, 0);
262 	if (rc_dev->irq < 0) {
263 		ret = rc_dev->irq;
264 		goto err;
265 	}
266 
267 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
268 
269 	rc_dev->base = devm_ioremap_resource(dev, res);
270 	if (IS_ERR(rc_dev->base)) {
271 		ret = PTR_ERR(rc_dev->base);
272 		goto err;
273 	}
274 
275 	if (rc_dev->rxuhfmode)
276 		rc_dev->rx_base = rc_dev->base + 0x40;
277 	else
278 		rc_dev->rx_base = rc_dev->base;
279 
280 
281 	rc_dev->rstc = reset_control_get_optional(dev, NULL);
282 	if (IS_ERR(rc_dev->rstc))
283 		rc_dev->rstc = NULL;
284 
285 	rc_dev->dev = dev;
286 	platform_set_drvdata(pdev, rc_dev);
287 	st_rc_hardware_init(rc_dev);
288 
289 	rdev->driver_type = RC_DRIVER_IR_RAW;
290 	rdev->allowed_protocols = RC_BIT_ALL;
291 	/* rx sampling rate is 10Mhz */
292 	rdev->rx_resolution = 100;
293 	rdev->timeout = US_TO_NS(MAX_SYMB_TIME);
294 	rdev->priv = rc_dev;
295 	rdev->open = st_rc_open;
296 	rdev->close = st_rc_close;
297 	rdev->driver_name = IR_ST_NAME;
298 	rdev->map_name = RC_MAP_LIRC;
299 	rdev->input_name = "ST Remote Control Receiver";
300 
301 	/* enable wake via this device */
302 	device_set_wakeup_capable(dev, true);
303 	device_set_wakeup_enable(dev, true);
304 
305 	ret = rc_register_device(rdev);
306 	if (ret < 0)
307 		goto clkerr;
308 
309 	rc_dev->rdev = rdev;
310 	if (devm_request_irq(dev, rc_dev->irq, st_rc_rx_interrupt,
311 			IRQF_NO_SUSPEND, IR_ST_NAME, rc_dev) < 0) {
312 		dev_err(dev, "IRQ %d register failed\n", rc_dev->irq);
313 		ret = -EINVAL;
314 		goto rcerr;
315 	}
316 
317 	/**
318 	 * for LIRC_MODE_MODE2 or LIRC_MODE_PULSE or LIRC_MODE_RAW
319 	 * lircd expects a long space first before a signal train to sync.
320 	 */
321 	st_rc_send_lirc_timeout(rdev);
322 
323 	dev_info(dev, "setup in %s mode\n", rc_dev->rxuhfmode ? "UHF" : "IR");
324 
325 	return ret;
326 rcerr:
327 	rc_unregister_device(rdev);
328 	rdev = NULL;
329 clkerr:
330 	clk_disable_unprepare(rc_dev->sys_clock);
331 err:
332 	rc_free_device(rdev);
333 	dev_err(dev, "Unable to register device (%d)\n", ret);
334 	return ret;
335 }
336 
337 #ifdef CONFIG_PM_SLEEP
338 static int st_rc_suspend(struct device *dev)
339 {
340 	struct st_rc_device *rc_dev = dev_get_drvdata(dev);
341 
342 	if (device_may_wakeup(dev)) {
343 		if (!enable_irq_wake(rc_dev->irq))
344 			rc_dev->irq_wake = 1;
345 		else
346 			return -EINVAL;
347 	} else {
348 		pinctrl_pm_select_sleep_state(dev);
349 		writel(0x00, rc_dev->rx_base + IRB_RX_EN);
350 		writel(0x00, rc_dev->rx_base + IRB_RX_INT_EN);
351 		clk_disable_unprepare(rc_dev->sys_clock);
352 		if (rc_dev->rstc)
353 			reset_control_assert(rc_dev->rstc);
354 	}
355 
356 	return 0;
357 }
358 
359 static int st_rc_resume(struct device *dev)
360 {
361 	struct st_rc_device *rc_dev = dev_get_drvdata(dev);
362 	struct rc_dev	*rdev = rc_dev->rdev;
363 
364 	if (rc_dev->irq_wake) {
365 		disable_irq_wake(rc_dev->irq);
366 		rc_dev->irq_wake = 0;
367 	} else {
368 		pinctrl_pm_select_default_state(dev);
369 		st_rc_hardware_init(rc_dev);
370 		if (rdev->users) {
371 			writel(IRB_RX_INTS, rc_dev->rx_base + IRB_RX_INT_EN);
372 			writel(0x01, rc_dev->rx_base + IRB_RX_EN);
373 		}
374 	}
375 
376 	return 0;
377 }
378 
379 #endif
380 
381 static SIMPLE_DEV_PM_OPS(st_rc_pm_ops, st_rc_suspend, st_rc_resume);
382 
383 #ifdef CONFIG_OF
384 static const struct of_device_id st_rc_match[] = {
385 	{ .compatible = "st,comms-irb", },
386 	{},
387 };
388 
389 MODULE_DEVICE_TABLE(of, st_rc_match);
390 #endif
391 
392 static struct platform_driver st_rc_driver = {
393 	.driver = {
394 		.name = IR_ST_NAME,
395 		.of_match_table = of_match_ptr(st_rc_match),
396 		.pm     = &st_rc_pm_ops,
397 	},
398 	.probe = st_rc_probe,
399 	.remove = st_rc_remove,
400 };
401 
402 module_platform_driver(st_rc_driver);
403 
404 MODULE_DESCRIPTION("RC Transceiver driver for STMicroelectronics platforms");
405 MODULE_AUTHOR("STMicroelectronics (R&D) Ltd");
406 MODULE_LICENSE("GPL");
407