1 /* rc-main.c - Remote Controller core module 2 * 3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab <mchehab@redhat.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation version 2 of the License. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 */ 14 15 #include <media/rc-core.h> 16 #include <linux/spinlock.h> 17 #include <linux/delay.h> 18 #include <linux/input.h> 19 #include <linux/slab.h> 20 #include <linux/device.h> 21 #include <linux/module.h> 22 #include "rc-core-priv.h" 23 24 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */ 25 #define IR_TAB_MIN_SIZE 256 26 #define IR_TAB_MAX_SIZE 8192 27 28 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */ 29 #define IR_KEYPRESS_TIMEOUT 250 30 31 /* Used to keep track of known keymaps */ 32 static LIST_HEAD(rc_map_list); 33 static DEFINE_SPINLOCK(rc_map_lock); 34 35 static struct rc_map_list *seek_rc_map(const char *name) 36 { 37 struct rc_map_list *map = NULL; 38 39 spin_lock(&rc_map_lock); 40 list_for_each_entry(map, &rc_map_list, list) { 41 if (!strcmp(name, map->map.name)) { 42 spin_unlock(&rc_map_lock); 43 return map; 44 } 45 } 46 spin_unlock(&rc_map_lock); 47 48 return NULL; 49 } 50 51 struct rc_map *rc_map_get(const char *name) 52 { 53 54 struct rc_map_list *map; 55 56 map = seek_rc_map(name); 57 #ifdef MODULE 58 if (!map) { 59 int rc = request_module(name); 60 if (rc < 0) { 61 printk(KERN_ERR "Couldn't load IR keymap %s\n", name); 62 return NULL; 63 } 64 msleep(20); /* Give some time for IR to register */ 65 66 map = seek_rc_map(name); 67 } 68 #endif 69 if (!map) { 70 printk(KERN_ERR "IR keymap %s not found\n", name); 71 return NULL; 72 } 73 74 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name); 75 76 return &map->map; 77 } 78 EXPORT_SYMBOL_GPL(rc_map_get); 79 80 int rc_map_register(struct rc_map_list *map) 81 { 82 spin_lock(&rc_map_lock); 83 list_add_tail(&map->list, &rc_map_list); 84 spin_unlock(&rc_map_lock); 85 return 0; 86 } 87 EXPORT_SYMBOL_GPL(rc_map_register); 88 89 void rc_map_unregister(struct rc_map_list *map) 90 { 91 spin_lock(&rc_map_lock); 92 list_del(&map->list); 93 spin_unlock(&rc_map_lock); 94 } 95 EXPORT_SYMBOL_GPL(rc_map_unregister); 96 97 98 static struct rc_map_table empty[] = { 99 { 0x2a, KEY_COFFEE }, 100 }; 101 102 static struct rc_map_list empty_map = { 103 .map = { 104 .scan = empty, 105 .size = ARRAY_SIZE(empty), 106 .rc_type = RC_TYPE_UNKNOWN, /* Legacy IR type */ 107 .name = RC_MAP_EMPTY, 108 } 109 }; 110 111 /** 112 * ir_create_table() - initializes a scancode table 113 * @rc_map: the rc_map to initialize 114 * @name: name to assign to the table 115 * @rc_type: ir type to assign to the new table 116 * @size: initial size of the table 117 * @return: zero on success or a negative error code 118 * 119 * This routine will initialize the rc_map and will allocate 120 * memory to hold at least the specified number of elements. 121 */ 122 static int ir_create_table(struct rc_map *rc_map, 123 const char *name, u64 rc_type, size_t size) 124 { 125 rc_map->name = name; 126 rc_map->rc_type = rc_type; 127 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table)); 128 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 129 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL); 130 if (!rc_map->scan) 131 return -ENOMEM; 132 133 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n", 134 rc_map->size, rc_map->alloc); 135 return 0; 136 } 137 138 /** 139 * ir_free_table() - frees memory allocated by a scancode table 140 * @rc_map: the table whose mappings need to be freed 141 * 142 * This routine will free memory alloctaed for key mappings used by given 143 * scancode table. 144 */ 145 static void ir_free_table(struct rc_map *rc_map) 146 { 147 rc_map->size = 0; 148 kfree(rc_map->scan); 149 rc_map->scan = NULL; 150 } 151 152 /** 153 * ir_resize_table() - resizes a scancode table if necessary 154 * @rc_map: the rc_map to resize 155 * @gfp_flags: gfp flags to use when allocating memory 156 * @return: zero on success or a negative error code 157 * 158 * This routine will shrink the rc_map if it has lots of 159 * unused entries and grow it if it is full. 160 */ 161 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags) 162 { 163 unsigned int oldalloc = rc_map->alloc; 164 unsigned int newalloc = oldalloc; 165 struct rc_map_table *oldscan = rc_map->scan; 166 struct rc_map_table *newscan; 167 168 if (rc_map->size == rc_map->len) { 169 /* All entries in use -> grow keytable */ 170 if (rc_map->alloc >= IR_TAB_MAX_SIZE) 171 return -ENOMEM; 172 173 newalloc *= 2; 174 IR_dprintk(1, "Growing table to %u bytes\n", newalloc); 175 } 176 177 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) { 178 /* Less than 1/3 of entries in use -> shrink keytable */ 179 newalloc /= 2; 180 IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc); 181 } 182 183 if (newalloc == oldalloc) 184 return 0; 185 186 newscan = kmalloc(newalloc, gfp_flags); 187 if (!newscan) { 188 IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc); 189 return -ENOMEM; 190 } 191 192 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table)); 193 rc_map->scan = newscan; 194 rc_map->alloc = newalloc; 195 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 196 kfree(oldscan); 197 return 0; 198 } 199 200 /** 201 * ir_update_mapping() - set a keycode in the scancode->keycode table 202 * @dev: the struct rc_dev device descriptor 203 * @rc_map: scancode table to be adjusted 204 * @index: index of the mapping that needs to be updated 205 * @keycode: the desired keycode 206 * @return: previous keycode assigned to the mapping 207 * 208 * This routine is used to update scancode->keycode mapping at given 209 * position. 210 */ 211 static unsigned int ir_update_mapping(struct rc_dev *dev, 212 struct rc_map *rc_map, 213 unsigned int index, 214 unsigned int new_keycode) 215 { 216 int old_keycode = rc_map->scan[index].keycode; 217 int i; 218 219 /* Did the user wish to remove the mapping? */ 220 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) { 221 IR_dprintk(1, "#%d: Deleting scan 0x%04x\n", 222 index, rc_map->scan[index].scancode); 223 rc_map->len--; 224 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1], 225 (rc_map->len - index) * sizeof(struct rc_map_table)); 226 } else { 227 IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n", 228 index, 229 old_keycode == KEY_RESERVED ? "New" : "Replacing", 230 rc_map->scan[index].scancode, new_keycode); 231 rc_map->scan[index].keycode = new_keycode; 232 __set_bit(new_keycode, dev->input_dev->keybit); 233 } 234 235 if (old_keycode != KEY_RESERVED) { 236 /* A previous mapping was updated... */ 237 __clear_bit(old_keycode, dev->input_dev->keybit); 238 /* ... but another scancode might use the same keycode */ 239 for (i = 0; i < rc_map->len; i++) { 240 if (rc_map->scan[i].keycode == old_keycode) { 241 __set_bit(old_keycode, dev->input_dev->keybit); 242 break; 243 } 244 } 245 246 /* Possibly shrink the keytable, failure is not a problem */ 247 ir_resize_table(rc_map, GFP_ATOMIC); 248 } 249 250 return old_keycode; 251 } 252 253 /** 254 * ir_establish_scancode() - set a keycode in the scancode->keycode table 255 * @dev: the struct rc_dev device descriptor 256 * @rc_map: scancode table to be searched 257 * @scancode: the desired scancode 258 * @resize: controls whether we allowed to resize the table to 259 * accommodate not yet present scancodes 260 * @return: index of the mapping containing scancode in question 261 * or -1U in case of failure. 262 * 263 * This routine is used to locate given scancode in rc_map. 264 * If scancode is not yet present the routine will allocate a new slot 265 * for it. 266 */ 267 static unsigned int ir_establish_scancode(struct rc_dev *dev, 268 struct rc_map *rc_map, 269 unsigned int scancode, 270 bool resize) 271 { 272 unsigned int i; 273 274 /* 275 * Unfortunately, some hardware-based IR decoders don't provide 276 * all bits for the complete IR code. In general, they provide only 277 * the command part of the IR code. Yet, as it is possible to replace 278 * the provided IR with another one, it is needed to allow loading 279 * IR tables from other remotes. So, we support specifying a mask to 280 * indicate the valid bits of the scancodes. 281 */ 282 if (dev->scanmask) 283 scancode &= dev->scanmask; 284 285 /* First check if we already have a mapping for this ir command */ 286 for (i = 0; i < rc_map->len; i++) { 287 if (rc_map->scan[i].scancode == scancode) 288 return i; 289 290 /* Keytable is sorted from lowest to highest scancode */ 291 if (rc_map->scan[i].scancode >= scancode) 292 break; 293 } 294 295 /* No previous mapping found, we might need to grow the table */ 296 if (rc_map->size == rc_map->len) { 297 if (!resize || ir_resize_table(rc_map, GFP_ATOMIC)) 298 return -1U; 299 } 300 301 /* i is the proper index to insert our new keycode */ 302 if (i < rc_map->len) 303 memmove(&rc_map->scan[i + 1], &rc_map->scan[i], 304 (rc_map->len - i) * sizeof(struct rc_map_table)); 305 rc_map->scan[i].scancode = scancode; 306 rc_map->scan[i].keycode = KEY_RESERVED; 307 rc_map->len++; 308 309 return i; 310 } 311 312 /** 313 * ir_setkeycode() - set a keycode in the scancode->keycode table 314 * @idev: the struct input_dev device descriptor 315 * @scancode: the desired scancode 316 * @keycode: result 317 * @return: -EINVAL if the keycode could not be inserted, otherwise zero. 318 * 319 * This routine is used to handle evdev EVIOCSKEY ioctl. 320 */ 321 static int ir_setkeycode(struct input_dev *idev, 322 const struct input_keymap_entry *ke, 323 unsigned int *old_keycode) 324 { 325 struct rc_dev *rdev = input_get_drvdata(idev); 326 struct rc_map *rc_map = &rdev->rc_map; 327 unsigned int index; 328 unsigned int scancode; 329 int retval = 0; 330 unsigned long flags; 331 332 spin_lock_irqsave(&rc_map->lock, flags); 333 334 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 335 index = ke->index; 336 if (index >= rc_map->len) { 337 retval = -EINVAL; 338 goto out; 339 } 340 } else { 341 retval = input_scancode_to_scalar(ke, &scancode); 342 if (retval) 343 goto out; 344 345 index = ir_establish_scancode(rdev, rc_map, scancode, true); 346 if (index >= rc_map->len) { 347 retval = -ENOMEM; 348 goto out; 349 } 350 } 351 352 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode); 353 354 out: 355 spin_unlock_irqrestore(&rc_map->lock, flags); 356 return retval; 357 } 358 359 /** 360 * ir_setkeytable() - sets several entries in the scancode->keycode table 361 * @dev: the struct rc_dev device descriptor 362 * @to: the struct rc_map to copy entries to 363 * @from: the struct rc_map to copy entries from 364 * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero. 365 * 366 * This routine is used to handle table initialization. 367 */ 368 static int ir_setkeytable(struct rc_dev *dev, 369 const struct rc_map *from) 370 { 371 struct rc_map *rc_map = &dev->rc_map; 372 unsigned int i, index; 373 int rc; 374 375 rc = ir_create_table(rc_map, from->name, 376 from->rc_type, from->size); 377 if (rc) 378 return rc; 379 380 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n", 381 rc_map->size, rc_map->alloc); 382 383 for (i = 0; i < from->size; i++) { 384 index = ir_establish_scancode(dev, rc_map, 385 from->scan[i].scancode, false); 386 if (index >= rc_map->len) { 387 rc = -ENOMEM; 388 break; 389 } 390 391 ir_update_mapping(dev, rc_map, index, 392 from->scan[i].keycode); 393 } 394 395 if (rc) 396 ir_free_table(rc_map); 397 398 return rc; 399 } 400 401 /** 402 * ir_lookup_by_scancode() - locate mapping by scancode 403 * @rc_map: the struct rc_map to search 404 * @scancode: scancode to look for in the table 405 * @return: index in the table, -1U if not found 406 * 407 * This routine performs binary search in RC keykeymap table for 408 * given scancode. 409 */ 410 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map, 411 unsigned int scancode) 412 { 413 int start = 0; 414 int end = rc_map->len - 1; 415 int mid; 416 417 while (start <= end) { 418 mid = (start + end) / 2; 419 if (rc_map->scan[mid].scancode < scancode) 420 start = mid + 1; 421 else if (rc_map->scan[mid].scancode > scancode) 422 end = mid - 1; 423 else 424 return mid; 425 } 426 427 return -1U; 428 } 429 430 /** 431 * ir_getkeycode() - get a keycode from the scancode->keycode table 432 * @idev: the struct input_dev device descriptor 433 * @scancode: the desired scancode 434 * @keycode: used to return the keycode, if found, or KEY_RESERVED 435 * @return: always returns zero. 436 * 437 * This routine is used to handle evdev EVIOCGKEY ioctl. 438 */ 439 static int ir_getkeycode(struct input_dev *idev, 440 struct input_keymap_entry *ke) 441 { 442 struct rc_dev *rdev = input_get_drvdata(idev); 443 struct rc_map *rc_map = &rdev->rc_map; 444 struct rc_map_table *entry; 445 unsigned long flags; 446 unsigned int index; 447 unsigned int scancode; 448 int retval; 449 450 spin_lock_irqsave(&rc_map->lock, flags); 451 452 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 453 index = ke->index; 454 } else { 455 retval = input_scancode_to_scalar(ke, &scancode); 456 if (retval) 457 goto out; 458 459 index = ir_lookup_by_scancode(rc_map, scancode); 460 } 461 462 if (index < rc_map->len) { 463 entry = &rc_map->scan[index]; 464 465 ke->index = index; 466 ke->keycode = entry->keycode; 467 ke->len = sizeof(entry->scancode); 468 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode)); 469 470 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) { 471 /* 472 * We do not really know the valid range of scancodes 473 * so let's respond with KEY_RESERVED to anything we 474 * do not have mapping for [yet]. 475 */ 476 ke->index = index; 477 ke->keycode = KEY_RESERVED; 478 } else { 479 retval = -EINVAL; 480 goto out; 481 } 482 483 retval = 0; 484 485 out: 486 spin_unlock_irqrestore(&rc_map->lock, flags); 487 return retval; 488 } 489 490 /** 491 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode 492 * @dev: the struct rc_dev descriptor of the device 493 * @scancode: the scancode to look for 494 * @return: the corresponding keycode, or KEY_RESERVED 495 * 496 * This routine is used by drivers which need to convert a scancode to a 497 * keycode. Normally it should not be used since drivers should have no 498 * interest in keycodes. 499 */ 500 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode) 501 { 502 struct rc_map *rc_map = &dev->rc_map; 503 unsigned int keycode; 504 unsigned int index; 505 unsigned long flags; 506 507 spin_lock_irqsave(&rc_map->lock, flags); 508 509 index = ir_lookup_by_scancode(rc_map, scancode); 510 keycode = index < rc_map->len ? 511 rc_map->scan[index].keycode : KEY_RESERVED; 512 513 spin_unlock_irqrestore(&rc_map->lock, flags); 514 515 if (keycode != KEY_RESERVED) 516 IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n", 517 dev->input_name, scancode, keycode); 518 519 return keycode; 520 } 521 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table); 522 523 /** 524 * ir_do_keyup() - internal function to signal the release of a keypress 525 * @dev: the struct rc_dev descriptor of the device 526 * @sync: whether or not to call input_sync 527 * 528 * This function is used internally to release a keypress, it must be 529 * called with keylock held. 530 */ 531 static void ir_do_keyup(struct rc_dev *dev, bool sync) 532 { 533 if (!dev->keypressed) 534 return; 535 536 IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode); 537 input_report_key(dev->input_dev, dev->last_keycode, 0); 538 if (sync) 539 input_sync(dev->input_dev); 540 dev->keypressed = false; 541 } 542 543 /** 544 * rc_keyup() - signals the release of a keypress 545 * @dev: the struct rc_dev descriptor of the device 546 * 547 * This routine is used to signal that a key has been released on the 548 * remote control. 549 */ 550 void rc_keyup(struct rc_dev *dev) 551 { 552 unsigned long flags; 553 554 spin_lock_irqsave(&dev->keylock, flags); 555 ir_do_keyup(dev, true); 556 spin_unlock_irqrestore(&dev->keylock, flags); 557 } 558 EXPORT_SYMBOL_GPL(rc_keyup); 559 560 /** 561 * ir_timer_keyup() - generates a keyup event after a timeout 562 * @cookie: a pointer to the struct rc_dev for the device 563 * 564 * This routine will generate a keyup event some time after a keydown event 565 * is generated when no further activity has been detected. 566 */ 567 static void ir_timer_keyup(unsigned long cookie) 568 { 569 struct rc_dev *dev = (struct rc_dev *)cookie; 570 unsigned long flags; 571 572 /* 573 * ir->keyup_jiffies is used to prevent a race condition if a 574 * hardware interrupt occurs at this point and the keyup timer 575 * event is moved further into the future as a result. 576 * 577 * The timer will then be reactivated and this function called 578 * again in the future. We need to exit gracefully in that case 579 * to allow the input subsystem to do its auto-repeat magic or 580 * a keyup event might follow immediately after the keydown. 581 */ 582 spin_lock_irqsave(&dev->keylock, flags); 583 if (time_is_before_eq_jiffies(dev->keyup_jiffies)) 584 ir_do_keyup(dev, true); 585 spin_unlock_irqrestore(&dev->keylock, flags); 586 } 587 588 /** 589 * rc_repeat() - signals that a key is still pressed 590 * @dev: the struct rc_dev descriptor of the device 591 * 592 * This routine is used by IR decoders when a repeat message which does 593 * not include the necessary bits to reproduce the scancode has been 594 * received. 595 */ 596 void rc_repeat(struct rc_dev *dev) 597 { 598 unsigned long flags; 599 600 spin_lock_irqsave(&dev->keylock, flags); 601 602 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode); 603 input_sync(dev->input_dev); 604 605 if (!dev->keypressed) 606 goto out; 607 608 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT); 609 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 610 611 out: 612 spin_unlock_irqrestore(&dev->keylock, flags); 613 } 614 EXPORT_SYMBOL_GPL(rc_repeat); 615 616 /** 617 * ir_do_keydown() - internal function to process a keypress 618 * @dev: the struct rc_dev descriptor of the device 619 * @scancode: the scancode of the keypress 620 * @keycode: the keycode of the keypress 621 * @toggle: the toggle value of the keypress 622 * 623 * This function is used internally to register a keypress, it must be 624 * called with keylock held. 625 */ 626 static void ir_do_keydown(struct rc_dev *dev, int scancode, 627 u32 keycode, u8 toggle) 628 { 629 bool new_event = !dev->keypressed || 630 dev->last_scancode != scancode || 631 dev->last_toggle != toggle; 632 633 if (new_event && dev->keypressed) 634 ir_do_keyup(dev, false); 635 636 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode); 637 638 if (new_event && keycode != KEY_RESERVED) { 639 /* Register a keypress */ 640 dev->keypressed = true; 641 dev->last_scancode = scancode; 642 dev->last_toggle = toggle; 643 dev->last_keycode = keycode; 644 645 IR_dprintk(1, "%s: key down event, " 646 "key 0x%04x, scancode 0x%04x\n", 647 dev->input_name, keycode, scancode); 648 input_report_key(dev->input_dev, keycode, 1); 649 } 650 651 input_sync(dev->input_dev); 652 } 653 654 /** 655 * rc_keydown() - generates input event for a key press 656 * @dev: the struct rc_dev descriptor of the device 657 * @scancode: the scancode that we're seeking 658 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 659 * support toggle values, this should be set to zero) 660 * 661 * This routine is used to signal that a key has been pressed on the 662 * remote control. 663 */ 664 void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle) 665 { 666 unsigned long flags; 667 u32 keycode = rc_g_keycode_from_table(dev, scancode); 668 669 spin_lock_irqsave(&dev->keylock, flags); 670 ir_do_keydown(dev, scancode, keycode, toggle); 671 672 if (dev->keypressed) { 673 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT); 674 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 675 } 676 spin_unlock_irqrestore(&dev->keylock, flags); 677 } 678 EXPORT_SYMBOL_GPL(rc_keydown); 679 680 /** 681 * rc_keydown_notimeout() - generates input event for a key press without 682 * an automatic keyup event at a later time 683 * @dev: the struct rc_dev descriptor of the device 684 * @scancode: the scancode that we're seeking 685 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 686 * support toggle values, this should be set to zero) 687 * 688 * This routine is used to signal that a key has been pressed on the 689 * remote control. The driver must manually call rc_keyup() at a later stage. 690 */ 691 void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle) 692 { 693 unsigned long flags; 694 u32 keycode = rc_g_keycode_from_table(dev, scancode); 695 696 spin_lock_irqsave(&dev->keylock, flags); 697 ir_do_keydown(dev, scancode, keycode, toggle); 698 spin_unlock_irqrestore(&dev->keylock, flags); 699 } 700 EXPORT_SYMBOL_GPL(rc_keydown_notimeout); 701 702 static int ir_open(struct input_dev *idev) 703 { 704 struct rc_dev *rdev = input_get_drvdata(idev); 705 706 return rdev->open(rdev); 707 } 708 709 static void ir_close(struct input_dev *idev) 710 { 711 struct rc_dev *rdev = input_get_drvdata(idev); 712 713 if (rdev) 714 rdev->close(rdev); 715 } 716 717 /* class for /sys/class/rc */ 718 static char *ir_devnode(struct device *dev, mode_t *mode) 719 { 720 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev)); 721 } 722 723 static struct class ir_input_class = { 724 .name = "rc", 725 .devnode = ir_devnode, 726 }; 727 728 static struct { 729 u64 type; 730 char *name; 731 } proto_names[] = { 732 { RC_TYPE_UNKNOWN, "unknown" }, 733 { RC_TYPE_RC5, "rc-5" }, 734 { RC_TYPE_NEC, "nec" }, 735 { RC_TYPE_RC6, "rc-6" }, 736 { RC_TYPE_JVC, "jvc" }, 737 { RC_TYPE_SONY, "sony" }, 738 { RC_TYPE_RC5_SZ, "rc-5-sz" }, 739 { RC_TYPE_MCE_KBD, "mce_kbd" }, 740 { RC_TYPE_LIRC, "lirc" }, 741 { RC_TYPE_OTHER, "other" }, 742 }; 743 744 #define PROTO_NONE "none" 745 746 /** 747 * show_protocols() - shows the current IR protocol(s) 748 * @device: the device descriptor 749 * @mattr: the device attribute struct (unused) 750 * @buf: a pointer to the output buffer 751 * 752 * This routine is a callback routine for input read the IR protocol type(s). 753 * it is trigged by reading /sys/class/rc/rc?/protocols. 754 * It returns the protocol names of supported protocols. 755 * Enabled protocols are printed in brackets. 756 * 757 * dev->lock is taken to guard against races between device 758 * registration, store_protocols and show_protocols. 759 */ 760 static ssize_t show_protocols(struct device *device, 761 struct device_attribute *mattr, char *buf) 762 { 763 struct rc_dev *dev = to_rc_dev(device); 764 u64 allowed, enabled; 765 char *tmp = buf; 766 int i; 767 768 /* Device is being removed */ 769 if (!dev) 770 return -EINVAL; 771 772 mutex_lock(&dev->lock); 773 774 if (dev->driver_type == RC_DRIVER_SCANCODE) { 775 enabled = dev->rc_map.rc_type; 776 allowed = dev->allowed_protos; 777 } else { 778 enabled = dev->raw->enabled_protocols; 779 allowed = ir_raw_get_allowed_protocols(); 780 } 781 782 IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx\n", 783 (long long)allowed, 784 (long long)enabled); 785 786 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 787 if (allowed & enabled & proto_names[i].type) 788 tmp += sprintf(tmp, "[%s] ", proto_names[i].name); 789 else if (allowed & proto_names[i].type) 790 tmp += sprintf(tmp, "%s ", proto_names[i].name); 791 } 792 793 if (tmp != buf) 794 tmp--; 795 *tmp = '\n'; 796 797 mutex_unlock(&dev->lock); 798 799 return tmp + 1 - buf; 800 } 801 802 /** 803 * store_protocols() - changes the current IR protocol(s) 804 * @device: the device descriptor 805 * @mattr: the device attribute struct (unused) 806 * @buf: a pointer to the input buffer 807 * @len: length of the input buffer 808 * 809 * This routine is for changing the IR protocol type. 810 * It is trigged by writing to /sys/class/rc/rc?/protocols. 811 * Writing "+proto" will add a protocol to the list of enabled protocols. 812 * Writing "-proto" will remove a protocol from the list of enabled protocols. 813 * Writing "proto" will enable only "proto". 814 * Writing "none" will disable all protocols. 815 * Returns -EINVAL if an invalid protocol combination or unknown protocol name 816 * is used, otherwise @len. 817 * 818 * dev->lock is taken to guard against races between device 819 * registration, store_protocols and show_protocols. 820 */ 821 static ssize_t store_protocols(struct device *device, 822 struct device_attribute *mattr, 823 const char *data, 824 size_t len) 825 { 826 struct rc_dev *dev = to_rc_dev(device); 827 bool enable, disable; 828 const char *tmp; 829 u64 type; 830 u64 mask; 831 int rc, i, count = 0; 832 unsigned long flags; 833 ssize_t ret; 834 835 /* Device is being removed */ 836 if (!dev) 837 return -EINVAL; 838 839 mutex_lock(&dev->lock); 840 841 if (dev->driver_type == RC_DRIVER_SCANCODE) 842 type = dev->rc_map.rc_type; 843 else if (dev->raw) 844 type = dev->raw->enabled_protocols; 845 else { 846 IR_dprintk(1, "Protocol switching not supported\n"); 847 ret = -EINVAL; 848 goto out; 849 } 850 851 while ((tmp = strsep((char **) &data, " \n")) != NULL) { 852 if (!*tmp) 853 break; 854 855 if (*tmp == '+') { 856 enable = true; 857 disable = false; 858 tmp++; 859 } else if (*tmp == '-') { 860 enable = false; 861 disable = true; 862 tmp++; 863 } else { 864 enable = false; 865 disable = false; 866 } 867 868 if (!enable && !disable && !strncasecmp(tmp, PROTO_NONE, sizeof(PROTO_NONE))) { 869 tmp += sizeof(PROTO_NONE); 870 mask = 0; 871 count++; 872 } else { 873 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 874 if (!strcasecmp(tmp, proto_names[i].name)) { 875 tmp += strlen(proto_names[i].name); 876 mask = proto_names[i].type; 877 break; 878 } 879 } 880 if (i == ARRAY_SIZE(proto_names)) { 881 IR_dprintk(1, "Unknown protocol: '%s'\n", tmp); 882 ret = -EINVAL; 883 goto out; 884 } 885 count++; 886 } 887 888 if (enable) 889 type |= mask; 890 else if (disable) 891 type &= ~mask; 892 else 893 type = mask; 894 } 895 896 if (!count) { 897 IR_dprintk(1, "Protocol not specified\n"); 898 ret = -EINVAL; 899 goto out; 900 } 901 902 if (dev->change_protocol) { 903 rc = dev->change_protocol(dev, type); 904 if (rc < 0) { 905 IR_dprintk(1, "Error setting protocols to 0x%llx\n", 906 (long long)type); 907 ret = -EINVAL; 908 goto out; 909 } 910 } 911 912 if (dev->driver_type == RC_DRIVER_SCANCODE) { 913 spin_lock_irqsave(&dev->rc_map.lock, flags); 914 dev->rc_map.rc_type = type; 915 spin_unlock_irqrestore(&dev->rc_map.lock, flags); 916 } else { 917 dev->raw->enabled_protocols = type; 918 } 919 920 IR_dprintk(1, "Current protocol(s): 0x%llx\n", 921 (long long)type); 922 923 ret = len; 924 925 out: 926 mutex_unlock(&dev->lock); 927 return ret; 928 } 929 930 static void rc_dev_release(struct device *device) 931 { 932 } 933 934 #define ADD_HOTPLUG_VAR(fmt, val...) \ 935 do { \ 936 int err = add_uevent_var(env, fmt, val); \ 937 if (err) \ 938 return err; \ 939 } while (0) 940 941 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env) 942 { 943 struct rc_dev *dev = to_rc_dev(device); 944 945 if (!dev || !dev->input_dev) 946 return -ENODEV; 947 948 if (dev->rc_map.name) 949 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name); 950 if (dev->driver_name) 951 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name); 952 953 return 0; 954 } 955 956 /* 957 * Static device attribute struct with the sysfs attributes for IR's 958 */ 959 static DEVICE_ATTR(protocols, S_IRUGO | S_IWUSR, 960 show_protocols, store_protocols); 961 962 static struct attribute *rc_dev_attrs[] = { 963 &dev_attr_protocols.attr, 964 NULL, 965 }; 966 967 static struct attribute_group rc_dev_attr_grp = { 968 .attrs = rc_dev_attrs, 969 }; 970 971 static const struct attribute_group *rc_dev_attr_groups[] = { 972 &rc_dev_attr_grp, 973 NULL 974 }; 975 976 static struct device_type rc_dev_type = { 977 .groups = rc_dev_attr_groups, 978 .release = rc_dev_release, 979 .uevent = rc_dev_uevent, 980 }; 981 982 struct rc_dev *rc_allocate_device(void) 983 { 984 struct rc_dev *dev; 985 986 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 987 if (!dev) 988 return NULL; 989 990 dev->input_dev = input_allocate_device(); 991 if (!dev->input_dev) { 992 kfree(dev); 993 return NULL; 994 } 995 996 dev->input_dev->getkeycode = ir_getkeycode; 997 dev->input_dev->setkeycode = ir_setkeycode; 998 input_set_drvdata(dev->input_dev, dev); 999 1000 spin_lock_init(&dev->rc_map.lock); 1001 spin_lock_init(&dev->keylock); 1002 mutex_init(&dev->lock); 1003 setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev); 1004 1005 dev->dev.type = &rc_dev_type; 1006 dev->dev.class = &ir_input_class; 1007 device_initialize(&dev->dev); 1008 1009 __module_get(THIS_MODULE); 1010 return dev; 1011 } 1012 EXPORT_SYMBOL_GPL(rc_allocate_device); 1013 1014 void rc_free_device(struct rc_dev *dev) 1015 { 1016 if (!dev) 1017 return; 1018 1019 if (dev->input_dev) 1020 input_free_device(dev->input_dev); 1021 1022 put_device(&dev->dev); 1023 1024 kfree(dev); 1025 module_put(THIS_MODULE); 1026 } 1027 EXPORT_SYMBOL_GPL(rc_free_device); 1028 1029 int rc_register_device(struct rc_dev *dev) 1030 { 1031 static atomic_t devno = ATOMIC_INIT(0); 1032 struct rc_map *rc_map; 1033 const char *path; 1034 int rc; 1035 1036 if (!dev || !dev->map_name) 1037 return -EINVAL; 1038 1039 rc_map = rc_map_get(dev->map_name); 1040 if (!rc_map) 1041 rc_map = rc_map_get(RC_MAP_EMPTY); 1042 if (!rc_map || !rc_map->scan || rc_map->size == 0) 1043 return -EINVAL; 1044 1045 set_bit(EV_KEY, dev->input_dev->evbit); 1046 set_bit(EV_REP, dev->input_dev->evbit); 1047 set_bit(EV_MSC, dev->input_dev->evbit); 1048 set_bit(MSC_SCAN, dev->input_dev->mscbit); 1049 if (dev->open) 1050 dev->input_dev->open = ir_open; 1051 if (dev->close) 1052 dev->input_dev->close = ir_close; 1053 1054 /* 1055 * Take the lock here, as the device sysfs node will appear 1056 * when device_add() is called, which may trigger an ir-keytable udev 1057 * rule, which will in turn call show_protocols and access either 1058 * dev->rc_map.rc_type or dev->raw->enabled_protocols before it has 1059 * been initialized. 1060 */ 1061 mutex_lock(&dev->lock); 1062 1063 dev->devno = (unsigned long)(atomic_inc_return(&devno) - 1); 1064 dev_set_name(&dev->dev, "rc%ld", dev->devno); 1065 dev_set_drvdata(&dev->dev, dev); 1066 rc = device_add(&dev->dev); 1067 if (rc) 1068 goto out_unlock; 1069 1070 rc = ir_setkeytable(dev, rc_map); 1071 if (rc) 1072 goto out_dev; 1073 1074 dev->input_dev->dev.parent = &dev->dev; 1075 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id)); 1076 dev->input_dev->phys = dev->input_phys; 1077 dev->input_dev->name = dev->input_name; 1078 rc = input_register_device(dev->input_dev); 1079 if (rc) 1080 goto out_table; 1081 1082 /* 1083 * Default delay of 250ms is too short for some protocols, especially 1084 * since the timeout is currently set to 250ms. Increase it to 500ms, 1085 * to avoid wrong repetition of the keycodes. Note that this must be 1086 * set after the call to input_register_device(). 1087 */ 1088 dev->input_dev->rep[REP_DELAY] = 500; 1089 1090 /* 1091 * As a repeat event on protocols like RC-5 and NEC take as long as 1092 * 110/114ms, using 33ms as a repeat period is not the right thing 1093 * to do. 1094 */ 1095 dev->input_dev->rep[REP_PERIOD] = 125; 1096 1097 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1098 printk(KERN_INFO "%s: %s as %s\n", 1099 dev_name(&dev->dev), 1100 dev->input_name ? dev->input_name : "Unspecified device", 1101 path ? path : "N/A"); 1102 kfree(path); 1103 1104 if (dev->driver_type == RC_DRIVER_IR_RAW) { 1105 rc = ir_raw_event_register(dev); 1106 if (rc < 0) 1107 goto out_input; 1108 } 1109 1110 if (dev->change_protocol) { 1111 rc = dev->change_protocol(dev, rc_map->rc_type); 1112 if (rc < 0) 1113 goto out_raw; 1114 } 1115 1116 mutex_unlock(&dev->lock); 1117 1118 IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n", 1119 dev->devno, 1120 dev->driver_name ? dev->driver_name : "unknown", 1121 rc_map->name ? rc_map->name : "unknown", 1122 dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked"); 1123 1124 return 0; 1125 1126 out_raw: 1127 if (dev->driver_type == RC_DRIVER_IR_RAW) 1128 ir_raw_event_unregister(dev); 1129 out_input: 1130 input_unregister_device(dev->input_dev); 1131 dev->input_dev = NULL; 1132 out_table: 1133 ir_free_table(&dev->rc_map); 1134 out_dev: 1135 device_del(&dev->dev); 1136 out_unlock: 1137 mutex_unlock(&dev->lock); 1138 return rc; 1139 } 1140 EXPORT_SYMBOL_GPL(rc_register_device); 1141 1142 void rc_unregister_device(struct rc_dev *dev) 1143 { 1144 if (!dev) 1145 return; 1146 1147 del_timer_sync(&dev->timer_keyup); 1148 1149 if (dev->driver_type == RC_DRIVER_IR_RAW) 1150 ir_raw_event_unregister(dev); 1151 1152 /* Freeing the table should also call the stop callback */ 1153 ir_free_table(&dev->rc_map); 1154 IR_dprintk(1, "Freed keycode table\n"); 1155 1156 input_unregister_device(dev->input_dev); 1157 dev->input_dev = NULL; 1158 1159 device_del(&dev->dev); 1160 1161 rc_free_device(dev); 1162 } 1163 1164 EXPORT_SYMBOL_GPL(rc_unregister_device); 1165 1166 /* 1167 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1168 */ 1169 1170 static int __init rc_core_init(void) 1171 { 1172 int rc = class_register(&ir_input_class); 1173 if (rc) { 1174 printk(KERN_ERR "rc_core: unable to register rc class\n"); 1175 return rc; 1176 } 1177 1178 /* Initialize/load the decoders/keymap code that will be used */ 1179 ir_raw_init(); 1180 rc_map_register(&empty_map); 1181 1182 return 0; 1183 } 1184 1185 static void __exit rc_core_exit(void) 1186 { 1187 class_unregister(&ir_input_class); 1188 rc_map_unregister(&empty_map); 1189 } 1190 1191 module_init(rc_core_init); 1192 module_exit(rc_core_exit); 1193 1194 int rc_core_debug; /* ir_debug level (0,1,2) */ 1195 EXPORT_SYMBOL_GPL(rc_core_debug); 1196 module_param_named(debug, rc_core_debug, int, 0644); 1197 1198 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>"); 1199 MODULE_LICENSE("GPL"); 1200