xref: /linux/drivers/media/rc/rc-main.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 // SPDX-License-Identifier: GPL-2.0
2 // rc-main.c - Remote Controller core module
3 //
4 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <media/rc-core.h>
9 #include <linux/bsearch.h>
10 #include <linux/spinlock.h>
11 #include <linux/delay.h>
12 #include <linux/input.h>
13 #include <linux/leds.h>
14 #include <linux/slab.h>
15 #include <linux/idr.h>
16 #include <linux/device.h>
17 #include <linux/module.h>
18 #include "rc-core-priv.h"
19 
20 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
21 #define IR_TAB_MIN_SIZE	256
22 #define IR_TAB_MAX_SIZE	8192
23 
24 static const struct {
25 	const char *name;
26 	unsigned int repeat_period;
27 	unsigned int scancode_bits;
28 } protocols[] = {
29 	[RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 },
30 	[RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 },
31 	[RC_PROTO_RC5] = { .name = "rc-5",
32 		.scancode_bits = 0x1f7f, .repeat_period = 114 },
33 	[RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
34 		.scancode_bits = 0x1f7f3f, .repeat_period = 114 },
35 	[RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
36 		.scancode_bits = 0x2fff, .repeat_period = 114 },
37 	[RC_PROTO_JVC] = { .name = "jvc",
38 		.scancode_bits = 0xffff, .repeat_period = 125 },
39 	[RC_PROTO_SONY12] = { .name = "sony-12",
40 		.scancode_bits = 0x1f007f, .repeat_period = 100 },
41 	[RC_PROTO_SONY15] = { .name = "sony-15",
42 		.scancode_bits = 0xff007f, .repeat_period = 100 },
43 	[RC_PROTO_SONY20] = { .name = "sony-20",
44 		.scancode_bits = 0x1fff7f, .repeat_period = 100 },
45 	[RC_PROTO_NEC] = { .name = "nec",
46 		.scancode_bits = 0xffff, .repeat_period = 110 },
47 	[RC_PROTO_NECX] = { .name = "nec-x",
48 		.scancode_bits = 0xffffff, .repeat_period = 110 },
49 	[RC_PROTO_NEC32] = { .name = "nec-32",
50 		.scancode_bits = 0xffffffff, .repeat_period = 110 },
51 	[RC_PROTO_SANYO] = { .name = "sanyo",
52 		.scancode_bits = 0x1fffff, .repeat_period = 125 },
53 	[RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
54 		.scancode_bits = 0xffffff, .repeat_period = 100 },
55 	[RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
56 		.scancode_bits = 0x1fffff, .repeat_period = 100 },
57 	[RC_PROTO_RC6_0] = { .name = "rc-6-0",
58 		.scancode_bits = 0xffff, .repeat_period = 114 },
59 	[RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
60 		.scancode_bits = 0xfffff, .repeat_period = 114 },
61 	[RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
62 		.scancode_bits = 0xffffff, .repeat_period = 114 },
63 	[RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
64 		.scancode_bits = 0xffffffff, .repeat_period = 114 },
65 	[RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
66 		.scancode_bits = 0xffff7fff, .repeat_period = 114 },
67 	[RC_PROTO_SHARP] = { .name = "sharp",
68 		.scancode_bits = 0x1fff, .repeat_period = 125 },
69 	[RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 },
70 	[RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 },
71 	[RC_PROTO_IMON] = { .name = "imon",
72 		.scancode_bits = 0x7fffffff, .repeat_period = 114 },
73 };
74 
75 /* Used to keep track of known keymaps */
76 static LIST_HEAD(rc_map_list);
77 static DEFINE_SPINLOCK(rc_map_lock);
78 static struct led_trigger *led_feedback;
79 
80 /* Used to keep track of rc devices */
81 static DEFINE_IDA(rc_ida);
82 
83 static struct rc_map_list *seek_rc_map(const char *name)
84 {
85 	struct rc_map_list *map = NULL;
86 
87 	spin_lock(&rc_map_lock);
88 	list_for_each_entry(map, &rc_map_list, list) {
89 		if (!strcmp(name, map->map.name)) {
90 			spin_unlock(&rc_map_lock);
91 			return map;
92 		}
93 	}
94 	spin_unlock(&rc_map_lock);
95 
96 	return NULL;
97 }
98 
99 struct rc_map *rc_map_get(const char *name)
100 {
101 
102 	struct rc_map_list *map;
103 
104 	map = seek_rc_map(name);
105 #ifdef CONFIG_MODULES
106 	if (!map) {
107 		int rc = request_module("%s", name);
108 		if (rc < 0) {
109 			pr_err("Couldn't load IR keymap %s\n", name);
110 			return NULL;
111 		}
112 		msleep(20);	/* Give some time for IR to register */
113 
114 		map = seek_rc_map(name);
115 	}
116 #endif
117 	if (!map) {
118 		pr_err("IR keymap %s not found\n", name);
119 		return NULL;
120 	}
121 
122 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
123 
124 	return &map->map;
125 }
126 EXPORT_SYMBOL_GPL(rc_map_get);
127 
128 int rc_map_register(struct rc_map_list *map)
129 {
130 	spin_lock(&rc_map_lock);
131 	list_add_tail(&map->list, &rc_map_list);
132 	spin_unlock(&rc_map_lock);
133 	return 0;
134 }
135 EXPORT_SYMBOL_GPL(rc_map_register);
136 
137 void rc_map_unregister(struct rc_map_list *map)
138 {
139 	spin_lock(&rc_map_lock);
140 	list_del(&map->list);
141 	spin_unlock(&rc_map_lock);
142 }
143 EXPORT_SYMBOL_GPL(rc_map_unregister);
144 
145 
146 static struct rc_map_table empty[] = {
147 	{ 0x2a, KEY_COFFEE },
148 };
149 
150 static struct rc_map_list empty_map = {
151 	.map = {
152 		.scan     = empty,
153 		.size     = ARRAY_SIZE(empty),
154 		.rc_proto = RC_PROTO_UNKNOWN,	/* Legacy IR type */
155 		.name     = RC_MAP_EMPTY,
156 	}
157 };
158 
159 /**
160  * ir_create_table() - initializes a scancode table
161  * @dev:	the rc_dev device
162  * @rc_map:	the rc_map to initialize
163  * @name:	name to assign to the table
164  * @rc_proto:	ir type to assign to the new table
165  * @size:	initial size of the table
166  *
167  * This routine will initialize the rc_map and will allocate
168  * memory to hold at least the specified number of elements.
169  *
170  * return:	zero on success or a negative error code
171  */
172 static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map,
173 			   const char *name, u64 rc_proto, size_t size)
174 {
175 	rc_map->name = kstrdup(name, GFP_KERNEL);
176 	if (!rc_map->name)
177 		return -ENOMEM;
178 	rc_map->rc_proto = rc_proto;
179 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
180 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
181 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
182 	if (!rc_map->scan) {
183 		kfree(rc_map->name);
184 		rc_map->name = NULL;
185 		return -ENOMEM;
186 	}
187 
188 	dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n",
189 		rc_map->size, rc_map->alloc);
190 	return 0;
191 }
192 
193 /**
194  * ir_free_table() - frees memory allocated by a scancode table
195  * @rc_map:	the table whose mappings need to be freed
196  *
197  * This routine will free memory alloctaed for key mappings used by given
198  * scancode table.
199  */
200 static void ir_free_table(struct rc_map *rc_map)
201 {
202 	rc_map->size = 0;
203 	kfree(rc_map->name);
204 	rc_map->name = NULL;
205 	kfree(rc_map->scan);
206 	rc_map->scan = NULL;
207 }
208 
209 /**
210  * ir_resize_table() - resizes a scancode table if necessary
211  * @dev:	the rc_dev device
212  * @rc_map:	the rc_map to resize
213  * @gfp_flags:	gfp flags to use when allocating memory
214  *
215  * This routine will shrink the rc_map if it has lots of
216  * unused entries and grow it if it is full.
217  *
218  * return:	zero on success or a negative error code
219  */
220 static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map,
221 			   gfp_t gfp_flags)
222 {
223 	unsigned int oldalloc = rc_map->alloc;
224 	unsigned int newalloc = oldalloc;
225 	struct rc_map_table *oldscan = rc_map->scan;
226 	struct rc_map_table *newscan;
227 
228 	if (rc_map->size == rc_map->len) {
229 		/* All entries in use -> grow keytable */
230 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
231 			return -ENOMEM;
232 
233 		newalloc *= 2;
234 		dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc);
235 	}
236 
237 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
238 		/* Less than 1/3 of entries in use -> shrink keytable */
239 		newalloc /= 2;
240 		dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc);
241 	}
242 
243 	if (newalloc == oldalloc)
244 		return 0;
245 
246 	newscan = kmalloc(newalloc, gfp_flags);
247 	if (!newscan)
248 		return -ENOMEM;
249 
250 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
251 	rc_map->scan = newscan;
252 	rc_map->alloc = newalloc;
253 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
254 	kfree(oldscan);
255 	return 0;
256 }
257 
258 /**
259  * ir_update_mapping() - set a keycode in the scancode->keycode table
260  * @dev:	the struct rc_dev device descriptor
261  * @rc_map:	scancode table to be adjusted
262  * @index:	index of the mapping that needs to be updated
263  * @new_keycode: the desired keycode
264  *
265  * This routine is used to update scancode->keycode mapping at given
266  * position.
267  *
268  * return:	previous keycode assigned to the mapping
269  *
270  */
271 static unsigned int ir_update_mapping(struct rc_dev *dev,
272 				      struct rc_map *rc_map,
273 				      unsigned int index,
274 				      unsigned int new_keycode)
275 {
276 	int old_keycode = rc_map->scan[index].keycode;
277 	int i;
278 
279 	/* Did the user wish to remove the mapping? */
280 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
281 		dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04x\n",
282 			index, rc_map->scan[index].scancode);
283 		rc_map->len--;
284 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
285 			(rc_map->len - index) * sizeof(struct rc_map_table));
286 	} else {
287 		dev_dbg(&dev->dev, "#%d: %s scan 0x%04x with key 0x%04x\n",
288 			index,
289 			old_keycode == KEY_RESERVED ? "New" : "Replacing",
290 			rc_map->scan[index].scancode, new_keycode);
291 		rc_map->scan[index].keycode = new_keycode;
292 		__set_bit(new_keycode, dev->input_dev->keybit);
293 	}
294 
295 	if (old_keycode != KEY_RESERVED) {
296 		/* A previous mapping was updated... */
297 		__clear_bit(old_keycode, dev->input_dev->keybit);
298 		/* ... but another scancode might use the same keycode */
299 		for (i = 0; i < rc_map->len; i++) {
300 			if (rc_map->scan[i].keycode == old_keycode) {
301 				__set_bit(old_keycode, dev->input_dev->keybit);
302 				break;
303 			}
304 		}
305 
306 		/* Possibly shrink the keytable, failure is not a problem */
307 		ir_resize_table(dev, rc_map, GFP_ATOMIC);
308 	}
309 
310 	return old_keycode;
311 }
312 
313 /**
314  * ir_establish_scancode() - set a keycode in the scancode->keycode table
315  * @dev:	the struct rc_dev device descriptor
316  * @rc_map:	scancode table to be searched
317  * @scancode:	the desired scancode
318  * @resize:	controls whether we allowed to resize the table to
319  *		accommodate not yet present scancodes
320  *
321  * This routine is used to locate given scancode in rc_map.
322  * If scancode is not yet present the routine will allocate a new slot
323  * for it.
324  *
325  * return:	index of the mapping containing scancode in question
326  *		or -1U in case of failure.
327  */
328 static unsigned int ir_establish_scancode(struct rc_dev *dev,
329 					  struct rc_map *rc_map,
330 					  unsigned int scancode,
331 					  bool resize)
332 {
333 	unsigned int i;
334 
335 	/*
336 	 * Unfortunately, some hardware-based IR decoders don't provide
337 	 * all bits for the complete IR code. In general, they provide only
338 	 * the command part of the IR code. Yet, as it is possible to replace
339 	 * the provided IR with another one, it is needed to allow loading
340 	 * IR tables from other remotes. So, we support specifying a mask to
341 	 * indicate the valid bits of the scancodes.
342 	 */
343 	if (dev->scancode_mask)
344 		scancode &= dev->scancode_mask;
345 
346 	/* First check if we already have a mapping for this ir command */
347 	for (i = 0; i < rc_map->len; i++) {
348 		if (rc_map->scan[i].scancode == scancode)
349 			return i;
350 
351 		/* Keytable is sorted from lowest to highest scancode */
352 		if (rc_map->scan[i].scancode >= scancode)
353 			break;
354 	}
355 
356 	/* No previous mapping found, we might need to grow the table */
357 	if (rc_map->size == rc_map->len) {
358 		if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC))
359 			return -1U;
360 	}
361 
362 	/* i is the proper index to insert our new keycode */
363 	if (i < rc_map->len)
364 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
365 			(rc_map->len - i) * sizeof(struct rc_map_table));
366 	rc_map->scan[i].scancode = scancode;
367 	rc_map->scan[i].keycode = KEY_RESERVED;
368 	rc_map->len++;
369 
370 	return i;
371 }
372 
373 /**
374  * ir_setkeycode() - set a keycode in the scancode->keycode table
375  * @idev:	the struct input_dev device descriptor
376  * @ke:		Input keymap entry
377  * @old_keycode: result
378  *
379  * This routine is used to handle evdev EVIOCSKEY ioctl.
380  *
381  * return:	-EINVAL if the keycode could not be inserted, otherwise zero.
382  */
383 static int ir_setkeycode(struct input_dev *idev,
384 			 const struct input_keymap_entry *ke,
385 			 unsigned int *old_keycode)
386 {
387 	struct rc_dev *rdev = input_get_drvdata(idev);
388 	struct rc_map *rc_map = &rdev->rc_map;
389 	unsigned int index;
390 	unsigned int scancode;
391 	int retval = 0;
392 	unsigned long flags;
393 
394 	spin_lock_irqsave(&rc_map->lock, flags);
395 
396 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
397 		index = ke->index;
398 		if (index >= rc_map->len) {
399 			retval = -EINVAL;
400 			goto out;
401 		}
402 	} else {
403 		retval = input_scancode_to_scalar(ke, &scancode);
404 		if (retval)
405 			goto out;
406 
407 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
408 		if (index >= rc_map->len) {
409 			retval = -ENOMEM;
410 			goto out;
411 		}
412 	}
413 
414 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
415 
416 out:
417 	spin_unlock_irqrestore(&rc_map->lock, flags);
418 	return retval;
419 }
420 
421 /**
422  * ir_setkeytable() - sets several entries in the scancode->keycode table
423  * @dev:	the struct rc_dev device descriptor
424  * @from:	the struct rc_map to copy entries from
425  *
426  * This routine is used to handle table initialization.
427  *
428  * return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
429  */
430 static int ir_setkeytable(struct rc_dev *dev,
431 			  const struct rc_map *from)
432 {
433 	struct rc_map *rc_map = &dev->rc_map;
434 	unsigned int i, index;
435 	int rc;
436 
437 	rc = ir_create_table(dev, rc_map, from->name, from->rc_proto,
438 			     from->size);
439 	if (rc)
440 		return rc;
441 
442 	for (i = 0; i < from->size; i++) {
443 		index = ir_establish_scancode(dev, rc_map,
444 					      from->scan[i].scancode, false);
445 		if (index >= rc_map->len) {
446 			rc = -ENOMEM;
447 			break;
448 		}
449 
450 		ir_update_mapping(dev, rc_map, index,
451 				  from->scan[i].keycode);
452 	}
453 
454 	if (rc)
455 		ir_free_table(rc_map);
456 
457 	return rc;
458 }
459 
460 static int rc_map_cmp(const void *key, const void *elt)
461 {
462 	const unsigned int *scancode = key;
463 	const struct rc_map_table *e = elt;
464 
465 	if (*scancode < e->scancode)
466 		return -1;
467 	else if (*scancode > e->scancode)
468 		return 1;
469 	return 0;
470 }
471 
472 /**
473  * ir_lookup_by_scancode() - locate mapping by scancode
474  * @rc_map:	the struct rc_map to search
475  * @scancode:	scancode to look for in the table
476  *
477  * This routine performs binary search in RC keykeymap table for
478  * given scancode.
479  *
480  * return:	index in the table, -1U if not found
481  */
482 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
483 					  unsigned int scancode)
484 {
485 	struct rc_map_table *res;
486 
487 	res = bsearch(&scancode, rc_map->scan, rc_map->len,
488 		      sizeof(struct rc_map_table), rc_map_cmp);
489 	if (!res)
490 		return -1U;
491 	else
492 		return res - rc_map->scan;
493 }
494 
495 /**
496  * ir_getkeycode() - get a keycode from the scancode->keycode table
497  * @idev:	the struct input_dev device descriptor
498  * @ke:		Input keymap entry
499  *
500  * This routine is used to handle evdev EVIOCGKEY ioctl.
501  *
502  * return:	always returns zero.
503  */
504 static int ir_getkeycode(struct input_dev *idev,
505 			 struct input_keymap_entry *ke)
506 {
507 	struct rc_dev *rdev = input_get_drvdata(idev);
508 	struct rc_map *rc_map = &rdev->rc_map;
509 	struct rc_map_table *entry;
510 	unsigned long flags;
511 	unsigned int index;
512 	unsigned int scancode;
513 	int retval;
514 
515 	spin_lock_irqsave(&rc_map->lock, flags);
516 
517 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
518 		index = ke->index;
519 	} else {
520 		retval = input_scancode_to_scalar(ke, &scancode);
521 		if (retval)
522 			goto out;
523 
524 		index = ir_lookup_by_scancode(rc_map, scancode);
525 	}
526 
527 	if (index < rc_map->len) {
528 		entry = &rc_map->scan[index];
529 
530 		ke->index = index;
531 		ke->keycode = entry->keycode;
532 		ke->len = sizeof(entry->scancode);
533 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
534 
535 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
536 		/*
537 		 * We do not really know the valid range of scancodes
538 		 * so let's respond with KEY_RESERVED to anything we
539 		 * do not have mapping for [yet].
540 		 */
541 		ke->index = index;
542 		ke->keycode = KEY_RESERVED;
543 	} else {
544 		retval = -EINVAL;
545 		goto out;
546 	}
547 
548 	retval = 0;
549 
550 out:
551 	spin_unlock_irqrestore(&rc_map->lock, flags);
552 	return retval;
553 }
554 
555 /**
556  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
557  * @dev:	the struct rc_dev descriptor of the device
558  * @scancode:	the scancode to look for
559  *
560  * This routine is used by drivers which need to convert a scancode to a
561  * keycode. Normally it should not be used since drivers should have no
562  * interest in keycodes.
563  *
564  * return:	the corresponding keycode, or KEY_RESERVED
565  */
566 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
567 {
568 	struct rc_map *rc_map = &dev->rc_map;
569 	unsigned int keycode;
570 	unsigned int index;
571 	unsigned long flags;
572 
573 	spin_lock_irqsave(&rc_map->lock, flags);
574 
575 	index = ir_lookup_by_scancode(rc_map, scancode);
576 	keycode = index < rc_map->len ?
577 			rc_map->scan[index].keycode : KEY_RESERVED;
578 
579 	spin_unlock_irqrestore(&rc_map->lock, flags);
580 
581 	if (keycode != KEY_RESERVED)
582 		dev_dbg(&dev->dev, "%s: scancode 0x%04x keycode 0x%02x\n",
583 			dev->device_name, scancode, keycode);
584 
585 	return keycode;
586 }
587 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
588 
589 /**
590  * ir_do_keyup() - internal function to signal the release of a keypress
591  * @dev:	the struct rc_dev descriptor of the device
592  * @sync:	whether or not to call input_sync
593  *
594  * This function is used internally to release a keypress, it must be
595  * called with keylock held.
596  */
597 static void ir_do_keyup(struct rc_dev *dev, bool sync)
598 {
599 	if (!dev->keypressed)
600 		return;
601 
602 	dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode);
603 	del_timer(&dev->timer_repeat);
604 	input_report_key(dev->input_dev, dev->last_keycode, 0);
605 	led_trigger_event(led_feedback, LED_OFF);
606 	if (sync)
607 		input_sync(dev->input_dev);
608 	dev->keypressed = false;
609 }
610 
611 /**
612  * rc_keyup() - signals the release of a keypress
613  * @dev:	the struct rc_dev descriptor of the device
614  *
615  * This routine is used to signal that a key has been released on the
616  * remote control.
617  */
618 void rc_keyup(struct rc_dev *dev)
619 {
620 	unsigned long flags;
621 
622 	spin_lock_irqsave(&dev->keylock, flags);
623 	ir_do_keyup(dev, true);
624 	spin_unlock_irqrestore(&dev->keylock, flags);
625 }
626 EXPORT_SYMBOL_GPL(rc_keyup);
627 
628 /**
629  * ir_timer_keyup() - generates a keyup event after a timeout
630  *
631  * @t:		a pointer to the struct timer_list
632  *
633  * This routine will generate a keyup event some time after a keydown event
634  * is generated when no further activity has been detected.
635  */
636 static void ir_timer_keyup(struct timer_list *t)
637 {
638 	struct rc_dev *dev = from_timer(dev, t, timer_keyup);
639 	unsigned long flags;
640 
641 	/*
642 	 * ir->keyup_jiffies is used to prevent a race condition if a
643 	 * hardware interrupt occurs at this point and the keyup timer
644 	 * event is moved further into the future as a result.
645 	 *
646 	 * The timer will then be reactivated and this function called
647 	 * again in the future. We need to exit gracefully in that case
648 	 * to allow the input subsystem to do its auto-repeat magic or
649 	 * a keyup event might follow immediately after the keydown.
650 	 */
651 	spin_lock_irqsave(&dev->keylock, flags);
652 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
653 		ir_do_keyup(dev, true);
654 	spin_unlock_irqrestore(&dev->keylock, flags);
655 }
656 
657 /**
658  * ir_timer_repeat() - generates a repeat event after a timeout
659  *
660  * @t:		a pointer to the struct timer_list
661  *
662  * This routine will generate a soft repeat event every REP_PERIOD
663  * milliseconds.
664  */
665 static void ir_timer_repeat(struct timer_list *t)
666 {
667 	struct rc_dev *dev = from_timer(dev, t, timer_repeat);
668 	struct input_dev *input = dev->input_dev;
669 	unsigned long flags;
670 
671 	spin_lock_irqsave(&dev->keylock, flags);
672 	if (dev->keypressed) {
673 		input_event(input, EV_KEY, dev->last_keycode, 2);
674 		input_sync(input);
675 		if (input->rep[REP_PERIOD])
676 			mod_timer(&dev->timer_repeat, jiffies +
677 				  msecs_to_jiffies(input->rep[REP_PERIOD]));
678 	}
679 	spin_unlock_irqrestore(&dev->keylock, flags);
680 }
681 
682 static unsigned int repeat_period(int protocol)
683 {
684 	if (protocol >= ARRAY_SIZE(protocols))
685 		return 100;
686 
687 	return protocols[protocol].repeat_period;
688 }
689 
690 /**
691  * rc_repeat() - signals that a key is still pressed
692  * @dev:	the struct rc_dev descriptor of the device
693  *
694  * This routine is used by IR decoders when a repeat message which does
695  * not include the necessary bits to reproduce the scancode has been
696  * received.
697  */
698 void rc_repeat(struct rc_dev *dev)
699 {
700 	unsigned long flags;
701 	unsigned int timeout = nsecs_to_jiffies(dev->timeout) +
702 		msecs_to_jiffies(repeat_period(dev->last_protocol));
703 	struct lirc_scancode sc = {
704 		.scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
705 		.keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
706 		.flags = LIRC_SCANCODE_FLAG_REPEAT |
707 			 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
708 	};
709 
710 	ir_lirc_scancode_event(dev, &sc);
711 
712 	spin_lock_irqsave(&dev->keylock, flags);
713 
714 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
715 	input_sync(dev->input_dev);
716 
717 	if (dev->keypressed) {
718 		dev->keyup_jiffies = jiffies + timeout;
719 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
720 	}
721 
722 	spin_unlock_irqrestore(&dev->keylock, flags);
723 }
724 EXPORT_SYMBOL_GPL(rc_repeat);
725 
726 /**
727  * ir_do_keydown() - internal function to process a keypress
728  * @dev:	the struct rc_dev descriptor of the device
729  * @protocol:	the protocol of the keypress
730  * @scancode:   the scancode of the keypress
731  * @keycode:    the keycode of the keypress
732  * @toggle:     the toggle value of the keypress
733  *
734  * This function is used internally to register a keypress, it must be
735  * called with keylock held.
736  */
737 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
738 			  u32 scancode, u32 keycode, u8 toggle)
739 {
740 	bool new_event = (!dev->keypressed		 ||
741 			  dev->last_protocol != protocol ||
742 			  dev->last_scancode != scancode ||
743 			  dev->last_toggle   != toggle);
744 	struct lirc_scancode sc = {
745 		.scancode = scancode, .rc_proto = protocol,
746 		.flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0,
747 		.keycode = keycode
748 	};
749 
750 	ir_lirc_scancode_event(dev, &sc);
751 
752 	if (new_event && dev->keypressed)
753 		ir_do_keyup(dev, false);
754 
755 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
756 
757 	dev->last_protocol = protocol;
758 	dev->last_scancode = scancode;
759 	dev->last_toggle = toggle;
760 	dev->last_keycode = keycode;
761 
762 	if (new_event && keycode != KEY_RESERVED) {
763 		/* Register a keypress */
764 		dev->keypressed = true;
765 
766 		dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
767 			dev->device_name, keycode, protocol, scancode);
768 		input_report_key(dev->input_dev, keycode, 1);
769 
770 		led_trigger_event(led_feedback, LED_FULL);
771 	}
772 
773 	/*
774 	 * For CEC, start sending repeat messages as soon as the first
775 	 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
776 	 * is non-zero. Otherwise, the input layer will generate repeat
777 	 * messages.
778 	 */
779 	if (!new_event && keycode != KEY_RESERVED &&
780 	    dev->allowed_protocols == RC_PROTO_BIT_CEC &&
781 	    !timer_pending(&dev->timer_repeat) &&
782 	    dev->input_dev->rep[REP_PERIOD] &&
783 	    !dev->input_dev->rep[REP_DELAY]) {
784 		input_event(dev->input_dev, EV_KEY, keycode, 2);
785 		mod_timer(&dev->timer_repeat, jiffies +
786 			  msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
787 	}
788 
789 	input_sync(dev->input_dev);
790 }
791 
792 /**
793  * rc_keydown() - generates input event for a key press
794  * @dev:	the struct rc_dev descriptor of the device
795  * @protocol:	the protocol for the keypress
796  * @scancode:	the scancode for the keypress
797  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
798  *              support toggle values, this should be set to zero)
799  *
800  * This routine is used to signal that a key has been pressed on the
801  * remote control.
802  */
803 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode,
804 		u8 toggle)
805 {
806 	unsigned long flags;
807 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
808 
809 	spin_lock_irqsave(&dev->keylock, flags);
810 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
811 
812 	if (dev->keypressed) {
813 		dev->keyup_jiffies = jiffies + nsecs_to_jiffies(dev->timeout) +
814 			msecs_to_jiffies(repeat_period(protocol));
815 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
816 	}
817 	spin_unlock_irqrestore(&dev->keylock, flags);
818 }
819 EXPORT_SYMBOL_GPL(rc_keydown);
820 
821 /**
822  * rc_keydown_notimeout() - generates input event for a key press without
823  *                          an automatic keyup event at a later time
824  * @dev:	the struct rc_dev descriptor of the device
825  * @protocol:	the protocol for the keypress
826  * @scancode:	the scancode for the keypress
827  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
828  *              support toggle values, this should be set to zero)
829  *
830  * This routine is used to signal that a key has been pressed on the
831  * remote control. The driver must manually call rc_keyup() at a later stage.
832  */
833 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
834 			  u32 scancode, u8 toggle)
835 {
836 	unsigned long flags;
837 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
838 
839 	spin_lock_irqsave(&dev->keylock, flags);
840 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
841 	spin_unlock_irqrestore(&dev->keylock, flags);
842 }
843 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
844 
845 /**
846  * rc_validate_scancode() - checks that a scancode is valid for a protocol.
847  *	For nec, it should do the opposite of ir_nec_bytes_to_scancode()
848  * @proto:	protocol
849  * @scancode:	scancode
850  */
851 bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
852 {
853 	switch (proto) {
854 	/*
855 	 * NECX has a 16-bit address; if the lower 8 bits match the upper
856 	 * 8 bits inverted, then the address would match regular nec.
857 	 */
858 	case RC_PROTO_NECX:
859 		if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
860 			return false;
861 		break;
862 	/*
863 	 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
864 	 * of the command match the upper 8 bits inverted, then it would
865 	 * be either NEC or NECX.
866 	 */
867 	case RC_PROTO_NEC32:
868 		if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
869 			return false;
870 		break;
871 	/*
872 	 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
873 	 * is regular mode-6a 32 bit
874 	 */
875 	case RC_PROTO_RC6_MCE:
876 		if ((scancode & 0xffff0000) != 0x800f0000)
877 			return false;
878 		break;
879 	case RC_PROTO_RC6_6A_32:
880 		if ((scancode & 0xffff0000) == 0x800f0000)
881 			return false;
882 		break;
883 	default:
884 		break;
885 	}
886 
887 	return true;
888 }
889 
890 /**
891  * rc_validate_filter() - checks that the scancode and mask are valid and
892  *			  provides sensible defaults
893  * @dev:	the struct rc_dev descriptor of the device
894  * @filter:	the scancode and mask
895  *
896  * return:	0 or -EINVAL if the filter is not valid
897  */
898 static int rc_validate_filter(struct rc_dev *dev,
899 			      struct rc_scancode_filter *filter)
900 {
901 	u32 mask, s = filter->data;
902 	enum rc_proto protocol = dev->wakeup_protocol;
903 
904 	if (protocol >= ARRAY_SIZE(protocols))
905 		return -EINVAL;
906 
907 	mask = protocols[protocol].scancode_bits;
908 
909 	if (!rc_validate_scancode(protocol, s))
910 		return -EINVAL;
911 
912 	filter->data &= mask;
913 	filter->mask &= mask;
914 
915 	/*
916 	 * If we have to raw encode the IR for wakeup, we cannot have a mask
917 	 */
918 	if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
919 		return -EINVAL;
920 
921 	return 0;
922 }
923 
924 int rc_open(struct rc_dev *rdev)
925 {
926 	int rval = 0;
927 
928 	if (!rdev)
929 		return -EINVAL;
930 
931 	mutex_lock(&rdev->lock);
932 
933 	if (!rdev->registered) {
934 		rval = -ENODEV;
935 	} else {
936 		if (!rdev->users++ && rdev->open)
937 			rval = rdev->open(rdev);
938 
939 		if (rval)
940 			rdev->users--;
941 	}
942 
943 	mutex_unlock(&rdev->lock);
944 
945 	return rval;
946 }
947 
948 static int ir_open(struct input_dev *idev)
949 {
950 	struct rc_dev *rdev = input_get_drvdata(idev);
951 
952 	return rc_open(rdev);
953 }
954 
955 void rc_close(struct rc_dev *rdev)
956 {
957 	if (rdev) {
958 		mutex_lock(&rdev->lock);
959 
960 		if (!--rdev->users && rdev->close && rdev->registered)
961 			rdev->close(rdev);
962 
963 		mutex_unlock(&rdev->lock);
964 	}
965 }
966 
967 static void ir_close(struct input_dev *idev)
968 {
969 	struct rc_dev *rdev = input_get_drvdata(idev);
970 	rc_close(rdev);
971 }
972 
973 /* class for /sys/class/rc */
974 static char *rc_devnode(struct device *dev, umode_t *mode)
975 {
976 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
977 }
978 
979 static struct class rc_class = {
980 	.name		= "rc",
981 	.devnode	= rc_devnode,
982 };
983 
984 /*
985  * These are the protocol textual descriptions that are
986  * used by the sysfs protocols file. Note that the order
987  * of the entries is relevant.
988  */
989 static const struct {
990 	u64	type;
991 	const char	*name;
992 	const char	*module_name;
993 } proto_names[] = {
994 	{ RC_PROTO_BIT_NONE,	"none",		NULL			},
995 	{ RC_PROTO_BIT_OTHER,	"other",	NULL			},
996 	{ RC_PROTO_BIT_UNKNOWN,	"unknown",	NULL			},
997 	{ RC_PROTO_BIT_RC5 |
998 	  RC_PROTO_BIT_RC5X_20,	"rc-5",		"ir-rc5-decoder"	},
999 	{ RC_PROTO_BIT_NEC |
1000 	  RC_PROTO_BIT_NECX |
1001 	  RC_PROTO_BIT_NEC32,	"nec",		"ir-nec-decoder"	},
1002 	{ RC_PROTO_BIT_RC6_0 |
1003 	  RC_PROTO_BIT_RC6_6A_20 |
1004 	  RC_PROTO_BIT_RC6_6A_24 |
1005 	  RC_PROTO_BIT_RC6_6A_32 |
1006 	  RC_PROTO_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
1007 	{ RC_PROTO_BIT_JVC,	"jvc",		"ir-jvc-decoder"	},
1008 	{ RC_PROTO_BIT_SONY12 |
1009 	  RC_PROTO_BIT_SONY15 |
1010 	  RC_PROTO_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
1011 	{ RC_PROTO_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
1012 	{ RC_PROTO_BIT_SANYO,	"sanyo",	"ir-sanyo-decoder"	},
1013 	{ RC_PROTO_BIT_SHARP,	"sharp",	"ir-sharp-decoder"	},
1014 	{ RC_PROTO_BIT_MCIR2_KBD |
1015 	  RC_PROTO_BIT_MCIR2_MSE, "mce_kbd",	"ir-mce_kbd-decoder"	},
1016 	{ RC_PROTO_BIT_XMP,	"xmp",		"ir-xmp-decoder"	},
1017 	{ RC_PROTO_BIT_CEC,	"cec",		NULL			},
1018 	{ RC_PROTO_BIT_IMON,	"imon",		"ir-imon-decoder"	},
1019 };
1020 
1021 /**
1022  * struct rc_filter_attribute - Device attribute relating to a filter type.
1023  * @attr:	Device attribute.
1024  * @type:	Filter type.
1025  * @mask:	false for filter value, true for filter mask.
1026  */
1027 struct rc_filter_attribute {
1028 	struct device_attribute		attr;
1029 	enum rc_filter_type		type;
1030 	bool				mask;
1031 };
1032 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1033 
1034 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
1035 	struct rc_filter_attribute dev_attr_##_name = {			\
1036 		.attr = __ATTR(_name, _mode, _show, _store),		\
1037 		.type = (_type),					\
1038 		.mask = (_mask),					\
1039 	}
1040 
1041 /**
1042  * show_protocols() - shows the current IR protocol(s)
1043  * @device:	the device descriptor
1044  * @mattr:	the device attribute struct
1045  * @buf:	a pointer to the output buffer
1046  *
1047  * This routine is a callback routine for input read the IR protocol type(s).
1048  * it is trigged by reading /sys/class/rc/rc?/protocols.
1049  * It returns the protocol names of supported protocols.
1050  * Enabled protocols are printed in brackets.
1051  *
1052  * dev->lock is taken to guard against races between
1053  * store_protocols and show_protocols.
1054  */
1055 static ssize_t show_protocols(struct device *device,
1056 			      struct device_attribute *mattr, char *buf)
1057 {
1058 	struct rc_dev *dev = to_rc_dev(device);
1059 	u64 allowed, enabled;
1060 	char *tmp = buf;
1061 	int i;
1062 
1063 	mutex_lock(&dev->lock);
1064 
1065 	enabled = dev->enabled_protocols;
1066 	allowed = dev->allowed_protocols;
1067 	if (dev->raw && !allowed)
1068 		allowed = ir_raw_get_allowed_protocols();
1069 
1070 	mutex_unlock(&dev->lock);
1071 
1072 	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1073 		__func__, (long long)allowed, (long long)enabled);
1074 
1075 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1076 		if (allowed & enabled & proto_names[i].type)
1077 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
1078 		else if (allowed & proto_names[i].type)
1079 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
1080 
1081 		if (allowed & proto_names[i].type)
1082 			allowed &= ~proto_names[i].type;
1083 	}
1084 
1085 #ifdef CONFIG_LIRC
1086 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1087 		tmp += sprintf(tmp, "[lirc] ");
1088 #endif
1089 
1090 	if (tmp != buf)
1091 		tmp--;
1092 	*tmp = '\n';
1093 
1094 	return tmp + 1 - buf;
1095 }
1096 
1097 /**
1098  * parse_protocol_change() - parses a protocol change request
1099  * @dev:	rc_dev device
1100  * @protocols:	pointer to the bitmask of current protocols
1101  * @buf:	pointer to the buffer with a list of changes
1102  *
1103  * Writing "+proto" will add a protocol to the protocol mask.
1104  * Writing "-proto" will remove a protocol from protocol mask.
1105  * Writing "proto" will enable only "proto".
1106  * Writing "none" will disable all protocols.
1107  * Returns the number of changes performed or a negative error code.
1108  */
1109 static int parse_protocol_change(struct rc_dev *dev, u64 *protocols,
1110 				 const char *buf)
1111 {
1112 	const char *tmp;
1113 	unsigned count = 0;
1114 	bool enable, disable;
1115 	u64 mask;
1116 	int i;
1117 
1118 	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1119 		if (!*tmp)
1120 			break;
1121 
1122 		if (*tmp == '+') {
1123 			enable = true;
1124 			disable = false;
1125 			tmp++;
1126 		} else if (*tmp == '-') {
1127 			enable = false;
1128 			disable = true;
1129 			tmp++;
1130 		} else {
1131 			enable = false;
1132 			disable = false;
1133 		}
1134 
1135 		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1136 			if (!strcasecmp(tmp, proto_names[i].name)) {
1137 				mask = proto_names[i].type;
1138 				break;
1139 			}
1140 		}
1141 
1142 		if (i == ARRAY_SIZE(proto_names)) {
1143 			if (!strcasecmp(tmp, "lirc"))
1144 				mask = 0;
1145 			else {
1146 				dev_dbg(&dev->dev, "Unknown protocol: '%s'\n",
1147 					tmp);
1148 				return -EINVAL;
1149 			}
1150 		}
1151 
1152 		count++;
1153 
1154 		if (enable)
1155 			*protocols |= mask;
1156 		else if (disable)
1157 			*protocols &= ~mask;
1158 		else
1159 			*protocols = mask;
1160 	}
1161 
1162 	if (!count) {
1163 		dev_dbg(&dev->dev, "Protocol not specified\n");
1164 		return -EINVAL;
1165 	}
1166 
1167 	return count;
1168 }
1169 
1170 void ir_raw_load_modules(u64 *protocols)
1171 {
1172 	u64 available;
1173 	int i, ret;
1174 
1175 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1176 		if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1177 		    proto_names[i].type & (RC_PROTO_BIT_OTHER |
1178 					   RC_PROTO_BIT_UNKNOWN))
1179 			continue;
1180 
1181 		available = ir_raw_get_allowed_protocols();
1182 		if (!(*protocols & proto_names[i].type & ~available))
1183 			continue;
1184 
1185 		if (!proto_names[i].module_name) {
1186 			pr_err("Can't enable IR protocol %s\n",
1187 			       proto_names[i].name);
1188 			*protocols &= ~proto_names[i].type;
1189 			continue;
1190 		}
1191 
1192 		ret = request_module("%s", proto_names[i].module_name);
1193 		if (ret < 0) {
1194 			pr_err("Couldn't load IR protocol module %s\n",
1195 			       proto_names[i].module_name);
1196 			*protocols &= ~proto_names[i].type;
1197 			continue;
1198 		}
1199 		msleep(20);
1200 		available = ir_raw_get_allowed_protocols();
1201 		if (!(*protocols & proto_names[i].type & ~available))
1202 			continue;
1203 
1204 		pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1205 		       proto_names[i].module_name,
1206 		       proto_names[i].name);
1207 		*protocols &= ~proto_names[i].type;
1208 	}
1209 }
1210 
1211 /**
1212  * store_protocols() - changes the current/wakeup IR protocol(s)
1213  * @device:	the device descriptor
1214  * @mattr:	the device attribute struct
1215  * @buf:	a pointer to the input buffer
1216  * @len:	length of the input buffer
1217  *
1218  * This routine is for changing the IR protocol type.
1219  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1220  * See parse_protocol_change() for the valid commands.
1221  * Returns @len on success or a negative error code.
1222  *
1223  * dev->lock is taken to guard against races between
1224  * store_protocols and show_protocols.
1225  */
1226 static ssize_t store_protocols(struct device *device,
1227 			       struct device_attribute *mattr,
1228 			       const char *buf, size_t len)
1229 {
1230 	struct rc_dev *dev = to_rc_dev(device);
1231 	u64 *current_protocols;
1232 	struct rc_scancode_filter *filter;
1233 	u64 old_protocols, new_protocols;
1234 	ssize_t rc;
1235 
1236 	dev_dbg(&dev->dev, "Normal protocol change requested\n");
1237 	current_protocols = &dev->enabled_protocols;
1238 	filter = &dev->scancode_filter;
1239 
1240 	if (!dev->change_protocol) {
1241 		dev_dbg(&dev->dev, "Protocol switching not supported\n");
1242 		return -EINVAL;
1243 	}
1244 
1245 	mutex_lock(&dev->lock);
1246 
1247 	old_protocols = *current_protocols;
1248 	new_protocols = old_protocols;
1249 	rc = parse_protocol_change(dev, &new_protocols, buf);
1250 	if (rc < 0)
1251 		goto out;
1252 
1253 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1254 		ir_raw_load_modules(&new_protocols);
1255 
1256 	rc = dev->change_protocol(dev, &new_protocols);
1257 	if (rc < 0) {
1258 		dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n",
1259 			(long long)new_protocols);
1260 		goto out;
1261 	}
1262 
1263 	if (new_protocols != old_protocols) {
1264 		*current_protocols = new_protocols;
1265 		dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n",
1266 			(long long)new_protocols);
1267 	}
1268 
1269 	/*
1270 	 * If a protocol change was attempted the filter may need updating, even
1271 	 * if the actual protocol mask hasn't changed (since the driver may have
1272 	 * cleared the filter).
1273 	 * Try setting the same filter with the new protocol (if any).
1274 	 * Fall back to clearing the filter.
1275 	 */
1276 	if (dev->s_filter && filter->mask) {
1277 		if (new_protocols)
1278 			rc = dev->s_filter(dev, filter);
1279 		else
1280 			rc = -1;
1281 
1282 		if (rc < 0) {
1283 			filter->data = 0;
1284 			filter->mask = 0;
1285 			dev->s_filter(dev, filter);
1286 		}
1287 	}
1288 
1289 	rc = len;
1290 
1291 out:
1292 	mutex_unlock(&dev->lock);
1293 	return rc;
1294 }
1295 
1296 /**
1297  * show_filter() - shows the current scancode filter value or mask
1298  * @device:	the device descriptor
1299  * @attr:	the device attribute struct
1300  * @buf:	a pointer to the output buffer
1301  *
1302  * This routine is a callback routine to read a scancode filter value or mask.
1303  * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1304  * It prints the current scancode filter value or mask of the appropriate filter
1305  * type in hexadecimal into @buf and returns the size of the buffer.
1306  *
1307  * Bits of the filter value corresponding to set bits in the filter mask are
1308  * compared against input scancodes and non-matching scancodes are discarded.
1309  *
1310  * dev->lock is taken to guard against races between
1311  * store_filter and show_filter.
1312  */
1313 static ssize_t show_filter(struct device *device,
1314 			   struct device_attribute *attr,
1315 			   char *buf)
1316 {
1317 	struct rc_dev *dev = to_rc_dev(device);
1318 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1319 	struct rc_scancode_filter *filter;
1320 	u32 val;
1321 
1322 	mutex_lock(&dev->lock);
1323 
1324 	if (fattr->type == RC_FILTER_NORMAL)
1325 		filter = &dev->scancode_filter;
1326 	else
1327 		filter = &dev->scancode_wakeup_filter;
1328 
1329 	if (fattr->mask)
1330 		val = filter->mask;
1331 	else
1332 		val = filter->data;
1333 	mutex_unlock(&dev->lock);
1334 
1335 	return sprintf(buf, "%#x\n", val);
1336 }
1337 
1338 /**
1339  * store_filter() - changes the scancode filter value
1340  * @device:	the device descriptor
1341  * @attr:	the device attribute struct
1342  * @buf:	a pointer to the input buffer
1343  * @len:	length of the input buffer
1344  *
1345  * This routine is for changing a scancode filter value or mask.
1346  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1347  * Returns -EINVAL if an invalid filter value for the current protocol was
1348  * specified or if scancode filtering is not supported by the driver, otherwise
1349  * returns @len.
1350  *
1351  * Bits of the filter value corresponding to set bits in the filter mask are
1352  * compared against input scancodes and non-matching scancodes are discarded.
1353  *
1354  * dev->lock is taken to guard against races between
1355  * store_filter and show_filter.
1356  */
1357 static ssize_t store_filter(struct device *device,
1358 			    struct device_attribute *attr,
1359 			    const char *buf, size_t len)
1360 {
1361 	struct rc_dev *dev = to_rc_dev(device);
1362 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1363 	struct rc_scancode_filter new_filter, *filter;
1364 	int ret;
1365 	unsigned long val;
1366 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1367 
1368 	ret = kstrtoul(buf, 0, &val);
1369 	if (ret < 0)
1370 		return ret;
1371 
1372 	if (fattr->type == RC_FILTER_NORMAL) {
1373 		set_filter = dev->s_filter;
1374 		filter = &dev->scancode_filter;
1375 	} else {
1376 		set_filter = dev->s_wakeup_filter;
1377 		filter = &dev->scancode_wakeup_filter;
1378 	}
1379 
1380 	if (!set_filter)
1381 		return -EINVAL;
1382 
1383 	mutex_lock(&dev->lock);
1384 
1385 	new_filter = *filter;
1386 	if (fattr->mask)
1387 		new_filter.mask = val;
1388 	else
1389 		new_filter.data = val;
1390 
1391 	if (fattr->type == RC_FILTER_WAKEUP) {
1392 		/*
1393 		 * Refuse to set a filter unless a protocol is enabled
1394 		 * and the filter is valid for that protocol
1395 		 */
1396 		if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1397 			ret = rc_validate_filter(dev, &new_filter);
1398 		else
1399 			ret = -EINVAL;
1400 
1401 		if (ret != 0)
1402 			goto unlock;
1403 	}
1404 
1405 	if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1406 	    val) {
1407 		/* refuse to set a filter unless a protocol is enabled */
1408 		ret = -EINVAL;
1409 		goto unlock;
1410 	}
1411 
1412 	ret = set_filter(dev, &new_filter);
1413 	if (ret < 0)
1414 		goto unlock;
1415 
1416 	*filter = new_filter;
1417 
1418 unlock:
1419 	mutex_unlock(&dev->lock);
1420 	return (ret < 0) ? ret : len;
1421 }
1422 
1423 /**
1424  * show_wakeup_protocols() - shows the wakeup IR protocol
1425  * @device:	the device descriptor
1426  * @mattr:	the device attribute struct
1427  * @buf:	a pointer to the output buffer
1428  *
1429  * This routine is a callback routine for input read the IR protocol type(s).
1430  * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1431  * It returns the protocol names of supported protocols.
1432  * The enabled protocols are printed in brackets.
1433  *
1434  * dev->lock is taken to guard against races between
1435  * store_wakeup_protocols and show_wakeup_protocols.
1436  */
1437 static ssize_t show_wakeup_protocols(struct device *device,
1438 				     struct device_attribute *mattr,
1439 				     char *buf)
1440 {
1441 	struct rc_dev *dev = to_rc_dev(device);
1442 	u64 allowed;
1443 	enum rc_proto enabled;
1444 	char *tmp = buf;
1445 	int i;
1446 
1447 	mutex_lock(&dev->lock);
1448 
1449 	allowed = dev->allowed_wakeup_protocols;
1450 	enabled = dev->wakeup_protocol;
1451 
1452 	mutex_unlock(&dev->lock);
1453 
1454 	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n",
1455 		__func__, (long long)allowed, enabled);
1456 
1457 	for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1458 		if (allowed & (1ULL << i)) {
1459 			if (i == enabled)
1460 				tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1461 			else
1462 				tmp += sprintf(tmp, "%s ", protocols[i].name);
1463 		}
1464 	}
1465 
1466 	if (tmp != buf)
1467 		tmp--;
1468 	*tmp = '\n';
1469 
1470 	return tmp + 1 - buf;
1471 }
1472 
1473 /**
1474  * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1475  * @device:	the device descriptor
1476  * @mattr:	the device attribute struct
1477  * @buf:	a pointer to the input buffer
1478  * @len:	length of the input buffer
1479  *
1480  * This routine is for changing the IR protocol type.
1481  * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1482  * Returns @len on success or a negative error code.
1483  *
1484  * dev->lock is taken to guard against races between
1485  * store_wakeup_protocols and show_wakeup_protocols.
1486  */
1487 static ssize_t store_wakeup_protocols(struct device *device,
1488 				      struct device_attribute *mattr,
1489 				      const char *buf, size_t len)
1490 {
1491 	struct rc_dev *dev = to_rc_dev(device);
1492 	enum rc_proto protocol;
1493 	ssize_t rc;
1494 	u64 allowed;
1495 	int i;
1496 
1497 	mutex_lock(&dev->lock);
1498 
1499 	allowed = dev->allowed_wakeup_protocols;
1500 
1501 	if (sysfs_streq(buf, "none")) {
1502 		protocol = RC_PROTO_UNKNOWN;
1503 	} else {
1504 		for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1505 			if ((allowed & (1ULL << i)) &&
1506 			    sysfs_streq(buf, protocols[i].name)) {
1507 				protocol = i;
1508 				break;
1509 			}
1510 		}
1511 
1512 		if (i == ARRAY_SIZE(protocols)) {
1513 			rc = -EINVAL;
1514 			goto out;
1515 		}
1516 
1517 		if (dev->encode_wakeup) {
1518 			u64 mask = 1ULL << protocol;
1519 
1520 			ir_raw_load_modules(&mask);
1521 			if (!mask) {
1522 				rc = -EINVAL;
1523 				goto out;
1524 			}
1525 		}
1526 	}
1527 
1528 	if (dev->wakeup_protocol != protocol) {
1529 		dev->wakeup_protocol = protocol;
1530 		dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol);
1531 
1532 		if (protocol == RC_PROTO_RC6_MCE)
1533 			dev->scancode_wakeup_filter.data = 0x800f0000;
1534 		else
1535 			dev->scancode_wakeup_filter.data = 0;
1536 		dev->scancode_wakeup_filter.mask = 0;
1537 
1538 		rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1539 		if (rc == 0)
1540 			rc = len;
1541 	} else {
1542 		rc = len;
1543 	}
1544 
1545 out:
1546 	mutex_unlock(&dev->lock);
1547 	return rc;
1548 }
1549 
1550 static void rc_dev_release(struct device *device)
1551 {
1552 	struct rc_dev *dev = to_rc_dev(device);
1553 
1554 	kfree(dev);
1555 }
1556 
1557 #define ADD_HOTPLUG_VAR(fmt, val...)					\
1558 	do {								\
1559 		int err = add_uevent_var(env, fmt, val);		\
1560 		if (err)						\
1561 			return err;					\
1562 	} while (0)
1563 
1564 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1565 {
1566 	struct rc_dev *dev = to_rc_dev(device);
1567 
1568 	if (dev->rc_map.name)
1569 		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1570 	if (dev->driver_name)
1571 		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1572 	if (dev->device_name)
1573 		ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name);
1574 
1575 	return 0;
1576 }
1577 
1578 /*
1579  * Static device attribute struct with the sysfs attributes for IR's
1580  */
1581 static struct device_attribute dev_attr_ro_protocols =
1582 __ATTR(protocols, 0444, show_protocols, NULL);
1583 static struct device_attribute dev_attr_rw_protocols =
1584 __ATTR(protocols, 0644, show_protocols, store_protocols);
1585 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1586 		   store_wakeup_protocols);
1587 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1588 		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1589 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1590 		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1591 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1592 		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1593 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1594 		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1595 
1596 static struct attribute *rc_dev_rw_protocol_attrs[] = {
1597 	&dev_attr_rw_protocols.attr,
1598 	NULL,
1599 };
1600 
1601 static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1602 	.attrs	= rc_dev_rw_protocol_attrs,
1603 };
1604 
1605 static struct attribute *rc_dev_ro_protocol_attrs[] = {
1606 	&dev_attr_ro_protocols.attr,
1607 	NULL,
1608 };
1609 
1610 static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1611 	.attrs	= rc_dev_ro_protocol_attrs,
1612 };
1613 
1614 static struct attribute *rc_dev_filter_attrs[] = {
1615 	&dev_attr_filter.attr.attr,
1616 	&dev_attr_filter_mask.attr.attr,
1617 	NULL,
1618 };
1619 
1620 static const struct attribute_group rc_dev_filter_attr_grp = {
1621 	.attrs	= rc_dev_filter_attrs,
1622 };
1623 
1624 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1625 	&dev_attr_wakeup_filter.attr.attr,
1626 	&dev_attr_wakeup_filter_mask.attr.attr,
1627 	&dev_attr_wakeup_protocols.attr,
1628 	NULL,
1629 };
1630 
1631 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1632 	.attrs	= rc_dev_wakeup_filter_attrs,
1633 };
1634 
1635 static const struct device_type rc_dev_type = {
1636 	.release	= rc_dev_release,
1637 	.uevent		= rc_dev_uevent,
1638 };
1639 
1640 struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1641 {
1642 	struct rc_dev *dev;
1643 
1644 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1645 	if (!dev)
1646 		return NULL;
1647 
1648 	if (type != RC_DRIVER_IR_RAW_TX) {
1649 		dev->input_dev = input_allocate_device();
1650 		if (!dev->input_dev) {
1651 			kfree(dev);
1652 			return NULL;
1653 		}
1654 
1655 		dev->input_dev->getkeycode = ir_getkeycode;
1656 		dev->input_dev->setkeycode = ir_setkeycode;
1657 		input_set_drvdata(dev->input_dev, dev);
1658 
1659 		dev->timeout = IR_DEFAULT_TIMEOUT;
1660 		timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
1661 		timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
1662 
1663 		spin_lock_init(&dev->rc_map.lock);
1664 		spin_lock_init(&dev->keylock);
1665 	}
1666 	mutex_init(&dev->lock);
1667 
1668 	dev->dev.type = &rc_dev_type;
1669 	dev->dev.class = &rc_class;
1670 	device_initialize(&dev->dev);
1671 
1672 	dev->driver_type = type;
1673 
1674 	__module_get(THIS_MODULE);
1675 	return dev;
1676 }
1677 EXPORT_SYMBOL_GPL(rc_allocate_device);
1678 
1679 void rc_free_device(struct rc_dev *dev)
1680 {
1681 	if (!dev)
1682 		return;
1683 
1684 	input_free_device(dev->input_dev);
1685 
1686 	put_device(&dev->dev);
1687 
1688 	/* kfree(dev) will be called by the callback function
1689 	   rc_dev_release() */
1690 
1691 	module_put(THIS_MODULE);
1692 }
1693 EXPORT_SYMBOL_GPL(rc_free_device);
1694 
1695 static void devm_rc_alloc_release(struct device *dev, void *res)
1696 {
1697 	rc_free_device(*(struct rc_dev **)res);
1698 }
1699 
1700 struct rc_dev *devm_rc_allocate_device(struct device *dev,
1701 				       enum rc_driver_type type)
1702 {
1703 	struct rc_dev **dr, *rc;
1704 
1705 	dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1706 	if (!dr)
1707 		return NULL;
1708 
1709 	rc = rc_allocate_device(type);
1710 	if (!rc) {
1711 		devres_free(dr);
1712 		return NULL;
1713 	}
1714 
1715 	rc->dev.parent = dev;
1716 	rc->managed_alloc = true;
1717 	*dr = rc;
1718 	devres_add(dev, dr);
1719 
1720 	return rc;
1721 }
1722 EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1723 
1724 static int rc_prepare_rx_device(struct rc_dev *dev)
1725 {
1726 	int rc;
1727 	struct rc_map *rc_map;
1728 	u64 rc_proto;
1729 
1730 	if (!dev->map_name)
1731 		return -EINVAL;
1732 
1733 	rc_map = rc_map_get(dev->map_name);
1734 	if (!rc_map)
1735 		rc_map = rc_map_get(RC_MAP_EMPTY);
1736 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1737 		return -EINVAL;
1738 
1739 	rc = ir_setkeytable(dev, rc_map);
1740 	if (rc)
1741 		return rc;
1742 
1743 	rc_proto = BIT_ULL(rc_map->rc_proto);
1744 
1745 	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1746 		dev->enabled_protocols = dev->allowed_protocols;
1747 
1748 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1749 		ir_raw_load_modules(&rc_proto);
1750 
1751 	if (dev->change_protocol) {
1752 		rc = dev->change_protocol(dev, &rc_proto);
1753 		if (rc < 0)
1754 			goto out_table;
1755 		dev->enabled_protocols = rc_proto;
1756 	}
1757 
1758 	set_bit(EV_KEY, dev->input_dev->evbit);
1759 	set_bit(EV_REP, dev->input_dev->evbit);
1760 	set_bit(EV_MSC, dev->input_dev->evbit);
1761 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1762 	if (dev->open)
1763 		dev->input_dev->open = ir_open;
1764 	if (dev->close)
1765 		dev->input_dev->close = ir_close;
1766 
1767 	dev->input_dev->dev.parent = &dev->dev;
1768 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1769 	dev->input_dev->phys = dev->input_phys;
1770 	dev->input_dev->name = dev->device_name;
1771 
1772 	return 0;
1773 
1774 out_table:
1775 	ir_free_table(&dev->rc_map);
1776 
1777 	return rc;
1778 }
1779 
1780 static int rc_setup_rx_device(struct rc_dev *dev)
1781 {
1782 	int rc;
1783 
1784 	/* rc_open will be called here */
1785 	rc = input_register_device(dev->input_dev);
1786 	if (rc)
1787 		return rc;
1788 
1789 	/*
1790 	 * Default delay of 250ms is too short for some protocols, especially
1791 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1792 	 * to avoid wrong repetition of the keycodes. Note that this must be
1793 	 * set after the call to input_register_device().
1794 	 */
1795 	if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
1796 		dev->input_dev->rep[REP_DELAY] = 0;
1797 	else
1798 		dev->input_dev->rep[REP_DELAY] = 500;
1799 
1800 	/*
1801 	 * As a repeat event on protocols like RC-5 and NEC take as long as
1802 	 * 110/114ms, using 33ms as a repeat period is not the right thing
1803 	 * to do.
1804 	 */
1805 	dev->input_dev->rep[REP_PERIOD] = 125;
1806 
1807 	return 0;
1808 }
1809 
1810 static void rc_free_rx_device(struct rc_dev *dev)
1811 {
1812 	if (!dev)
1813 		return;
1814 
1815 	if (dev->input_dev) {
1816 		input_unregister_device(dev->input_dev);
1817 		dev->input_dev = NULL;
1818 	}
1819 
1820 	ir_free_table(&dev->rc_map);
1821 }
1822 
1823 int rc_register_device(struct rc_dev *dev)
1824 {
1825 	const char *path;
1826 	int attr = 0;
1827 	int minor;
1828 	int rc;
1829 
1830 	if (!dev)
1831 		return -EINVAL;
1832 
1833 	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1834 	if (minor < 0)
1835 		return minor;
1836 
1837 	dev->minor = minor;
1838 	dev_set_name(&dev->dev, "rc%u", dev->minor);
1839 	dev_set_drvdata(&dev->dev, dev);
1840 
1841 	dev->dev.groups = dev->sysfs_groups;
1842 	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1843 		dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1844 	else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1845 		dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
1846 	if (dev->s_filter)
1847 		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1848 	if (dev->s_wakeup_filter)
1849 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1850 	dev->sysfs_groups[attr++] = NULL;
1851 
1852 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1853 		rc = ir_raw_event_prepare(dev);
1854 		if (rc < 0)
1855 			goto out_minor;
1856 	}
1857 
1858 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1859 		rc = rc_prepare_rx_device(dev);
1860 		if (rc)
1861 			goto out_raw;
1862 	}
1863 
1864 	rc = device_add(&dev->dev);
1865 	if (rc)
1866 		goto out_rx_free;
1867 
1868 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1869 	dev_info(&dev->dev, "%s as %s\n",
1870 		 dev->device_name ?: "Unspecified device", path ?: "N/A");
1871 	kfree(path);
1872 
1873 	dev->registered = true;
1874 
1875 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1876 		rc = rc_setup_rx_device(dev);
1877 		if (rc)
1878 			goto out_dev;
1879 	}
1880 
1881 	/* Ensure that the lirc kfifo is setup before we start the thread */
1882 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
1883 		rc = ir_lirc_register(dev);
1884 		if (rc < 0)
1885 			goto out_rx;
1886 	}
1887 
1888 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1889 		rc = ir_raw_event_register(dev);
1890 		if (rc < 0)
1891 			goto out_lirc;
1892 	}
1893 
1894 	dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor,
1895 		dev->driver_name ? dev->driver_name : "unknown");
1896 
1897 	return 0;
1898 
1899 out_lirc:
1900 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1901 		ir_lirc_unregister(dev);
1902 out_rx:
1903 	rc_free_rx_device(dev);
1904 out_dev:
1905 	device_del(&dev->dev);
1906 out_rx_free:
1907 	ir_free_table(&dev->rc_map);
1908 out_raw:
1909 	ir_raw_event_free(dev);
1910 out_minor:
1911 	ida_simple_remove(&rc_ida, minor);
1912 	return rc;
1913 }
1914 EXPORT_SYMBOL_GPL(rc_register_device);
1915 
1916 static void devm_rc_release(struct device *dev, void *res)
1917 {
1918 	rc_unregister_device(*(struct rc_dev **)res);
1919 }
1920 
1921 int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1922 {
1923 	struct rc_dev **dr;
1924 	int ret;
1925 
1926 	dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1927 	if (!dr)
1928 		return -ENOMEM;
1929 
1930 	ret = rc_register_device(dev);
1931 	if (ret) {
1932 		devres_free(dr);
1933 		return ret;
1934 	}
1935 
1936 	*dr = dev;
1937 	devres_add(parent, dr);
1938 
1939 	return 0;
1940 }
1941 EXPORT_SYMBOL_GPL(devm_rc_register_device);
1942 
1943 void rc_unregister_device(struct rc_dev *dev)
1944 {
1945 	if (!dev)
1946 		return;
1947 
1948 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1949 		ir_raw_event_unregister(dev);
1950 
1951 	del_timer_sync(&dev->timer_keyup);
1952 	del_timer_sync(&dev->timer_repeat);
1953 
1954 	rc_free_rx_device(dev);
1955 
1956 	mutex_lock(&dev->lock);
1957 	dev->registered = false;
1958 	mutex_unlock(&dev->lock);
1959 
1960 	/*
1961 	 * lirc device should be freed with dev->registered = false, so
1962 	 * that userspace polling will get notified.
1963 	 */
1964 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1965 		ir_lirc_unregister(dev);
1966 
1967 	device_del(&dev->dev);
1968 
1969 	ida_simple_remove(&rc_ida, dev->minor);
1970 
1971 	if (!dev->managed_alloc)
1972 		rc_free_device(dev);
1973 }
1974 
1975 EXPORT_SYMBOL_GPL(rc_unregister_device);
1976 
1977 /*
1978  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1979  */
1980 
1981 static int __init rc_core_init(void)
1982 {
1983 	int rc = class_register(&rc_class);
1984 	if (rc) {
1985 		pr_err("rc_core: unable to register rc class\n");
1986 		return rc;
1987 	}
1988 
1989 	rc = lirc_dev_init();
1990 	if (rc) {
1991 		pr_err("rc_core: unable to init lirc\n");
1992 		class_unregister(&rc_class);
1993 		return 0;
1994 	}
1995 
1996 	led_trigger_register_simple("rc-feedback", &led_feedback);
1997 	rc_map_register(&empty_map);
1998 
1999 	return 0;
2000 }
2001 
2002 static void __exit rc_core_exit(void)
2003 {
2004 	lirc_dev_exit();
2005 	class_unregister(&rc_class);
2006 	led_trigger_unregister_simple(led_feedback);
2007 	rc_map_unregister(&empty_map);
2008 }
2009 
2010 subsys_initcall(rc_core_init);
2011 module_exit(rc_core_exit);
2012 
2013 MODULE_AUTHOR("Mauro Carvalho Chehab");
2014 MODULE_LICENSE("GPL v2");
2015