xref: /linux/drivers/media/rc/rc-main.c (revision 9a379e77033f02c4a071891afdf0f0a01eff8ccb)
1 // SPDX-License-Identifier: GPL-2.0
2 // rc-main.c - Remote Controller core module
3 //
4 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <media/rc-core.h>
9 #include <linux/bsearch.h>
10 #include <linux/spinlock.h>
11 #include <linux/delay.h>
12 #include <linux/input.h>
13 #include <linux/leds.h>
14 #include <linux/slab.h>
15 #include <linux/idr.h>
16 #include <linux/device.h>
17 #include <linux/module.h>
18 #include "rc-core-priv.h"
19 
20 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
21 #define IR_TAB_MIN_SIZE	256
22 #define IR_TAB_MAX_SIZE	8192
23 
24 static const struct {
25 	const char *name;
26 	unsigned int repeat_period;
27 	unsigned int scancode_bits;
28 } protocols[] = {
29 	[RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 250 },
30 	[RC_PROTO_OTHER] = { .name = "other", .repeat_period = 250 },
31 	[RC_PROTO_RC5] = { .name = "rc-5",
32 		.scancode_bits = 0x1f7f, .repeat_period = 250 },
33 	[RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
34 		.scancode_bits = 0x1f7f3f, .repeat_period = 250 },
35 	[RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
36 		.scancode_bits = 0x2fff, .repeat_period = 250 },
37 	[RC_PROTO_JVC] = { .name = "jvc",
38 		.scancode_bits = 0xffff, .repeat_period = 250 },
39 	[RC_PROTO_SONY12] = { .name = "sony-12",
40 		.scancode_bits = 0x1f007f, .repeat_period = 250 },
41 	[RC_PROTO_SONY15] = { .name = "sony-15",
42 		.scancode_bits = 0xff007f, .repeat_period = 250 },
43 	[RC_PROTO_SONY20] = { .name = "sony-20",
44 		.scancode_bits = 0x1fff7f, .repeat_period = 250 },
45 	[RC_PROTO_NEC] = { .name = "nec",
46 		.scancode_bits = 0xffff, .repeat_period = 250 },
47 	[RC_PROTO_NECX] = { .name = "nec-x",
48 		.scancode_bits = 0xffffff, .repeat_period = 250 },
49 	[RC_PROTO_NEC32] = { .name = "nec-32",
50 		.scancode_bits = 0xffffffff, .repeat_period = 250 },
51 	[RC_PROTO_SANYO] = { .name = "sanyo",
52 		.scancode_bits = 0x1fffff, .repeat_period = 250 },
53 	[RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
54 		.scancode_bits = 0xffff, .repeat_period = 250 },
55 	[RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
56 		.scancode_bits = 0x1fffff, .repeat_period = 250 },
57 	[RC_PROTO_RC6_0] = { .name = "rc-6-0",
58 		.scancode_bits = 0xffff, .repeat_period = 250 },
59 	[RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
60 		.scancode_bits = 0xfffff, .repeat_period = 250 },
61 	[RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
62 		.scancode_bits = 0xffffff, .repeat_period = 250 },
63 	[RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
64 		.scancode_bits = 0xffffffff, .repeat_period = 250 },
65 	[RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
66 		.scancode_bits = 0xffff7fff, .repeat_period = 250 },
67 	[RC_PROTO_SHARP] = { .name = "sharp",
68 		.scancode_bits = 0x1fff, .repeat_period = 250 },
69 	[RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 250 },
70 	[RC_PROTO_CEC] = { .name = "cec", .repeat_period = 550 },
71 };
72 
73 /* Used to keep track of known keymaps */
74 static LIST_HEAD(rc_map_list);
75 static DEFINE_SPINLOCK(rc_map_lock);
76 static struct led_trigger *led_feedback;
77 
78 /* Used to keep track of rc devices */
79 static DEFINE_IDA(rc_ida);
80 
81 static struct rc_map_list *seek_rc_map(const char *name)
82 {
83 	struct rc_map_list *map = NULL;
84 
85 	spin_lock(&rc_map_lock);
86 	list_for_each_entry(map, &rc_map_list, list) {
87 		if (!strcmp(name, map->map.name)) {
88 			spin_unlock(&rc_map_lock);
89 			return map;
90 		}
91 	}
92 	spin_unlock(&rc_map_lock);
93 
94 	return NULL;
95 }
96 
97 struct rc_map *rc_map_get(const char *name)
98 {
99 
100 	struct rc_map_list *map;
101 
102 	map = seek_rc_map(name);
103 #ifdef CONFIG_MODULES
104 	if (!map) {
105 		int rc = request_module("%s", name);
106 		if (rc < 0) {
107 			pr_err("Couldn't load IR keymap %s\n", name);
108 			return NULL;
109 		}
110 		msleep(20);	/* Give some time for IR to register */
111 
112 		map = seek_rc_map(name);
113 	}
114 #endif
115 	if (!map) {
116 		pr_err("IR keymap %s not found\n", name);
117 		return NULL;
118 	}
119 
120 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
121 
122 	return &map->map;
123 }
124 EXPORT_SYMBOL_GPL(rc_map_get);
125 
126 int rc_map_register(struct rc_map_list *map)
127 {
128 	spin_lock(&rc_map_lock);
129 	list_add_tail(&map->list, &rc_map_list);
130 	spin_unlock(&rc_map_lock);
131 	return 0;
132 }
133 EXPORT_SYMBOL_GPL(rc_map_register);
134 
135 void rc_map_unregister(struct rc_map_list *map)
136 {
137 	spin_lock(&rc_map_lock);
138 	list_del(&map->list);
139 	spin_unlock(&rc_map_lock);
140 }
141 EXPORT_SYMBOL_GPL(rc_map_unregister);
142 
143 
144 static struct rc_map_table empty[] = {
145 	{ 0x2a, KEY_COFFEE },
146 };
147 
148 static struct rc_map_list empty_map = {
149 	.map = {
150 		.scan     = empty,
151 		.size     = ARRAY_SIZE(empty),
152 		.rc_proto = RC_PROTO_UNKNOWN,	/* Legacy IR type */
153 		.name     = RC_MAP_EMPTY,
154 	}
155 };
156 
157 /**
158  * ir_create_table() - initializes a scancode table
159  * @rc_map:	the rc_map to initialize
160  * @name:	name to assign to the table
161  * @rc_proto:	ir type to assign to the new table
162  * @size:	initial size of the table
163  *
164  * This routine will initialize the rc_map and will allocate
165  * memory to hold at least the specified number of elements.
166  *
167  * return:	zero on success or a negative error code
168  */
169 static int ir_create_table(struct rc_map *rc_map,
170 			   const char *name, u64 rc_proto, size_t size)
171 {
172 	rc_map->name = kstrdup(name, GFP_KERNEL);
173 	if (!rc_map->name)
174 		return -ENOMEM;
175 	rc_map->rc_proto = rc_proto;
176 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
177 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
178 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
179 	if (!rc_map->scan) {
180 		kfree(rc_map->name);
181 		rc_map->name = NULL;
182 		return -ENOMEM;
183 	}
184 
185 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
186 		   rc_map->size, rc_map->alloc);
187 	return 0;
188 }
189 
190 /**
191  * ir_free_table() - frees memory allocated by a scancode table
192  * @rc_map:	the table whose mappings need to be freed
193  *
194  * This routine will free memory alloctaed for key mappings used by given
195  * scancode table.
196  */
197 static void ir_free_table(struct rc_map *rc_map)
198 {
199 	rc_map->size = 0;
200 	kfree(rc_map->name);
201 	rc_map->name = NULL;
202 	kfree(rc_map->scan);
203 	rc_map->scan = NULL;
204 }
205 
206 /**
207  * ir_resize_table() - resizes a scancode table if necessary
208  * @rc_map:	the rc_map to resize
209  * @gfp_flags:	gfp flags to use when allocating memory
210  *
211  * This routine will shrink the rc_map if it has lots of
212  * unused entries and grow it if it is full.
213  *
214  * return:	zero on success or a negative error code
215  */
216 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
217 {
218 	unsigned int oldalloc = rc_map->alloc;
219 	unsigned int newalloc = oldalloc;
220 	struct rc_map_table *oldscan = rc_map->scan;
221 	struct rc_map_table *newscan;
222 
223 	if (rc_map->size == rc_map->len) {
224 		/* All entries in use -> grow keytable */
225 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
226 			return -ENOMEM;
227 
228 		newalloc *= 2;
229 		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
230 	}
231 
232 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
233 		/* Less than 1/3 of entries in use -> shrink keytable */
234 		newalloc /= 2;
235 		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
236 	}
237 
238 	if (newalloc == oldalloc)
239 		return 0;
240 
241 	newscan = kmalloc(newalloc, gfp_flags);
242 	if (!newscan) {
243 		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
244 		return -ENOMEM;
245 	}
246 
247 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
248 	rc_map->scan = newscan;
249 	rc_map->alloc = newalloc;
250 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
251 	kfree(oldscan);
252 	return 0;
253 }
254 
255 /**
256  * ir_update_mapping() - set a keycode in the scancode->keycode table
257  * @dev:	the struct rc_dev device descriptor
258  * @rc_map:	scancode table to be adjusted
259  * @index:	index of the mapping that needs to be updated
260  * @new_keycode: the desired keycode
261  *
262  * This routine is used to update scancode->keycode mapping at given
263  * position.
264  *
265  * return:	previous keycode assigned to the mapping
266  *
267  */
268 static unsigned int ir_update_mapping(struct rc_dev *dev,
269 				      struct rc_map *rc_map,
270 				      unsigned int index,
271 				      unsigned int new_keycode)
272 {
273 	int old_keycode = rc_map->scan[index].keycode;
274 	int i;
275 
276 	/* Did the user wish to remove the mapping? */
277 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
278 		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
279 			   index, rc_map->scan[index].scancode);
280 		rc_map->len--;
281 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
282 			(rc_map->len - index) * sizeof(struct rc_map_table));
283 	} else {
284 		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
285 			   index,
286 			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
287 			   rc_map->scan[index].scancode, new_keycode);
288 		rc_map->scan[index].keycode = new_keycode;
289 		__set_bit(new_keycode, dev->input_dev->keybit);
290 	}
291 
292 	if (old_keycode != KEY_RESERVED) {
293 		/* A previous mapping was updated... */
294 		__clear_bit(old_keycode, dev->input_dev->keybit);
295 		/* ... but another scancode might use the same keycode */
296 		for (i = 0; i < rc_map->len; i++) {
297 			if (rc_map->scan[i].keycode == old_keycode) {
298 				__set_bit(old_keycode, dev->input_dev->keybit);
299 				break;
300 			}
301 		}
302 
303 		/* Possibly shrink the keytable, failure is not a problem */
304 		ir_resize_table(rc_map, GFP_ATOMIC);
305 	}
306 
307 	return old_keycode;
308 }
309 
310 /**
311  * ir_establish_scancode() - set a keycode in the scancode->keycode table
312  * @dev:	the struct rc_dev device descriptor
313  * @rc_map:	scancode table to be searched
314  * @scancode:	the desired scancode
315  * @resize:	controls whether we allowed to resize the table to
316  *		accommodate not yet present scancodes
317  *
318  * This routine is used to locate given scancode in rc_map.
319  * If scancode is not yet present the routine will allocate a new slot
320  * for it.
321  *
322  * return:	index of the mapping containing scancode in question
323  *		or -1U in case of failure.
324  */
325 static unsigned int ir_establish_scancode(struct rc_dev *dev,
326 					  struct rc_map *rc_map,
327 					  unsigned int scancode,
328 					  bool resize)
329 {
330 	unsigned int i;
331 
332 	/*
333 	 * Unfortunately, some hardware-based IR decoders don't provide
334 	 * all bits for the complete IR code. In general, they provide only
335 	 * the command part of the IR code. Yet, as it is possible to replace
336 	 * the provided IR with another one, it is needed to allow loading
337 	 * IR tables from other remotes. So, we support specifying a mask to
338 	 * indicate the valid bits of the scancodes.
339 	 */
340 	if (dev->scancode_mask)
341 		scancode &= dev->scancode_mask;
342 
343 	/* First check if we already have a mapping for this ir command */
344 	for (i = 0; i < rc_map->len; i++) {
345 		if (rc_map->scan[i].scancode == scancode)
346 			return i;
347 
348 		/* Keytable is sorted from lowest to highest scancode */
349 		if (rc_map->scan[i].scancode >= scancode)
350 			break;
351 	}
352 
353 	/* No previous mapping found, we might need to grow the table */
354 	if (rc_map->size == rc_map->len) {
355 		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
356 			return -1U;
357 	}
358 
359 	/* i is the proper index to insert our new keycode */
360 	if (i < rc_map->len)
361 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
362 			(rc_map->len - i) * sizeof(struct rc_map_table));
363 	rc_map->scan[i].scancode = scancode;
364 	rc_map->scan[i].keycode = KEY_RESERVED;
365 	rc_map->len++;
366 
367 	return i;
368 }
369 
370 /**
371  * ir_setkeycode() - set a keycode in the scancode->keycode table
372  * @idev:	the struct input_dev device descriptor
373  * @ke:		Input keymap entry
374  * @old_keycode: result
375  *
376  * This routine is used to handle evdev EVIOCSKEY ioctl.
377  *
378  * return:	-EINVAL if the keycode could not be inserted, otherwise zero.
379  */
380 static int ir_setkeycode(struct input_dev *idev,
381 			 const struct input_keymap_entry *ke,
382 			 unsigned int *old_keycode)
383 {
384 	struct rc_dev *rdev = input_get_drvdata(idev);
385 	struct rc_map *rc_map = &rdev->rc_map;
386 	unsigned int index;
387 	unsigned int scancode;
388 	int retval = 0;
389 	unsigned long flags;
390 
391 	spin_lock_irqsave(&rc_map->lock, flags);
392 
393 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
394 		index = ke->index;
395 		if (index >= rc_map->len) {
396 			retval = -EINVAL;
397 			goto out;
398 		}
399 	} else {
400 		retval = input_scancode_to_scalar(ke, &scancode);
401 		if (retval)
402 			goto out;
403 
404 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
405 		if (index >= rc_map->len) {
406 			retval = -ENOMEM;
407 			goto out;
408 		}
409 	}
410 
411 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
412 
413 out:
414 	spin_unlock_irqrestore(&rc_map->lock, flags);
415 	return retval;
416 }
417 
418 /**
419  * ir_setkeytable() - sets several entries in the scancode->keycode table
420  * @dev:	the struct rc_dev device descriptor
421  * @from:	the struct rc_map to copy entries from
422  *
423  * This routine is used to handle table initialization.
424  *
425  * return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
426  */
427 static int ir_setkeytable(struct rc_dev *dev,
428 			  const struct rc_map *from)
429 {
430 	struct rc_map *rc_map = &dev->rc_map;
431 	unsigned int i, index;
432 	int rc;
433 
434 	rc = ir_create_table(rc_map, from->name,
435 			     from->rc_proto, from->size);
436 	if (rc)
437 		return rc;
438 
439 	for (i = 0; i < from->size; i++) {
440 		index = ir_establish_scancode(dev, rc_map,
441 					      from->scan[i].scancode, false);
442 		if (index >= rc_map->len) {
443 			rc = -ENOMEM;
444 			break;
445 		}
446 
447 		ir_update_mapping(dev, rc_map, index,
448 				  from->scan[i].keycode);
449 	}
450 
451 	if (rc)
452 		ir_free_table(rc_map);
453 
454 	return rc;
455 }
456 
457 static int rc_map_cmp(const void *key, const void *elt)
458 {
459 	const unsigned int *scancode = key;
460 	const struct rc_map_table *e = elt;
461 
462 	if (*scancode < e->scancode)
463 		return -1;
464 	else if (*scancode > e->scancode)
465 		return 1;
466 	return 0;
467 }
468 
469 /**
470  * ir_lookup_by_scancode() - locate mapping by scancode
471  * @rc_map:	the struct rc_map to search
472  * @scancode:	scancode to look for in the table
473  *
474  * This routine performs binary search in RC keykeymap table for
475  * given scancode.
476  *
477  * return:	index in the table, -1U if not found
478  */
479 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
480 					  unsigned int scancode)
481 {
482 	struct rc_map_table *res;
483 
484 	res = bsearch(&scancode, rc_map->scan, rc_map->len,
485 		      sizeof(struct rc_map_table), rc_map_cmp);
486 	if (!res)
487 		return -1U;
488 	else
489 		return res - rc_map->scan;
490 }
491 
492 /**
493  * ir_getkeycode() - get a keycode from the scancode->keycode table
494  * @idev:	the struct input_dev device descriptor
495  * @ke:		Input keymap entry
496  *
497  * This routine is used to handle evdev EVIOCGKEY ioctl.
498  *
499  * return:	always returns zero.
500  */
501 static int ir_getkeycode(struct input_dev *idev,
502 			 struct input_keymap_entry *ke)
503 {
504 	struct rc_dev *rdev = input_get_drvdata(idev);
505 	struct rc_map *rc_map = &rdev->rc_map;
506 	struct rc_map_table *entry;
507 	unsigned long flags;
508 	unsigned int index;
509 	unsigned int scancode;
510 	int retval;
511 
512 	spin_lock_irqsave(&rc_map->lock, flags);
513 
514 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
515 		index = ke->index;
516 	} else {
517 		retval = input_scancode_to_scalar(ke, &scancode);
518 		if (retval)
519 			goto out;
520 
521 		index = ir_lookup_by_scancode(rc_map, scancode);
522 	}
523 
524 	if (index < rc_map->len) {
525 		entry = &rc_map->scan[index];
526 
527 		ke->index = index;
528 		ke->keycode = entry->keycode;
529 		ke->len = sizeof(entry->scancode);
530 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
531 
532 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
533 		/*
534 		 * We do not really know the valid range of scancodes
535 		 * so let's respond with KEY_RESERVED to anything we
536 		 * do not have mapping for [yet].
537 		 */
538 		ke->index = index;
539 		ke->keycode = KEY_RESERVED;
540 	} else {
541 		retval = -EINVAL;
542 		goto out;
543 	}
544 
545 	retval = 0;
546 
547 out:
548 	spin_unlock_irqrestore(&rc_map->lock, flags);
549 	return retval;
550 }
551 
552 /**
553  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
554  * @dev:	the struct rc_dev descriptor of the device
555  * @scancode:	the scancode to look for
556  *
557  * This routine is used by drivers which need to convert a scancode to a
558  * keycode. Normally it should not be used since drivers should have no
559  * interest in keycodes.
560  *
561  * return:	the corresponding keycode, or KEY_RESERVED
562  */
563 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
564 {
565 	struct rc_map *rc_map = &dev->rc_map;
566 	unsigned int keycode;
567 	unsigned int index;
568 	unsigned long flags;
569 
570 	spin_lock_irqsave(&rc_map->lock, flags);
571 
572 	index = ir_lookup_by_scancode(rc_map, scancode);
573 	keycode = index < rc_map->len ?
574 			rc_map->scan[index].keycode : KEY_RESERVED;
575 
576 	spin_unlock_irqrestore(&rc_map->lock, flags);
577 
578 	if (keycode != KEY_RESERVED)
579 		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
580 			   dev->device_name, scancode, keycode);
581 
582 	return keycode;
583 }
584 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
585 
586 /**
587  * ir_do_keyup() - internal function to signal the release of a keypress
588  * @dev:	the struct rc_dev descriptor of the device
589  * @sync:	whether or not to call input_sync
590  *
591  * This function is used internally to release a keypress, it must be
592  * called with keylock held.
593  */
594 static void ir_do_keyup(struct rc_dev *dev, bool sync)
595 {
596 	if (!dev->keypressed)
597 		return;
598 
599 	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
600 	del_timer(&dev->timer_repeat);
601 	input_report_key(dev->input_dev, dev->last_keycode, 0);
602 	led_trigger_event(led_feedback, LED_OFF);
603 	if (sync)
604 		input_sync(dev->input_dev);
605 	dev->keypressed = false;
606 }
607 
608 /**
609  * rc_keyup() - signals the release of a keypress
610  * @dev:	the struct rc_dev descriptor of the device
611  *
612  * This routine is used to signal that a key has been released on the
613  * remote control.
614  */
615 void rc_keyup(struct rc_dev *dev)
616 {
617 	unsigned long flags;
618 
619 	spin_lock_irqsave(&dev->keylock, flags);
620 	ir_do_keyup(dev, true);
621 	spin_unlock_irqrestore(&dev->keylock, flags);
622 }
623 EXPORT_SYMBOL_GPL(rc_keyup);
624 
625 /**
626  * ir_timer_keyup() - generates a keyup event after a timeout
627  *
628  * @t:		a pointer to the struct timer_list
629  *
630  * This routine will generate a keyup event some time after a keydown event
631  * is generated when no further activity has been detected.
632  */
633 static void ir_timer_keyup(struct timer_list *t)
634 {
635 	struct rc_dev *dev = from_timer(dev, t, timer_keyup);
636 	unsigned long flags;
637 
638 	/*
639 	 * ir->keyup_jiffies is used to prevent a race condition if a
640 	 * hardware interrupt occurs at this point and the keyup timer
641 	 * event is moved further into the future as a result.
642 	 *
643 	 * The timer will then be reactivated and this function called
644 	 * again in the future. We need to exit gracefully in that case
645 	 * to allow the input subsystem to do its auto-repeat magic or
646 	 * a keyup event might follow immediately after the keydown.
647 	 */
648 	spin_lock_irqsave(&dev->keylock, flags);
649 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
650 		ir_do_keyup(dev, true);
651 	spin_unlock_irqrestore(&dev->keylock, flags);
652 }
653 
654 /**
655  * ir_timer_repeat() - generates a repeat event after a timeout
656  *
657  * @t:		a pointer to the struct timer_list
658  *
659  * This routine will generate a soft repeat event every REP_PERIOD
660  * milliseconds.
661  */
662 static void ir_timer_repeat(struct timer_list *t)
663 {
664 	struct rc_dev *dev = from_timer(dev, t, timer_repeat);
665 	struct input_dev *input = dev->input_dev;
666 	unsigned long flags;
667 
668 	spin_lock_irqsave(&dev->keylock, flags);
669 	if (dev->keypressed) {
670 		input_event(input, EV_KEY, dev->last_keycode, 2);
671 		input_sync(input);
672 		if (input->rep[REP_PERIOD])
673 			mod_timer(&dev->timer_repeat, jiffies +
674 				  msecs_to_jiffies(input->rep[REP_PERIOD]));
675 	}
676 	spin_unlock_irqrestore(&dev->keylock, flags);
677 }
678 
679 /**
680  * rc_repeat() - signals that a key is still pressed
681  * @dev:	the struct rc_dev descriptor of the device
682  *
683  * This routine is used by IR decoders when a repeat message which does
684  * not include the necessary bits to reproduce the scancode has been
685  * received.
686  */
687 void rc_repeat(struct rc_dev *dev)
688 {
689 	unsigned long flags;
690 	unsigned int timeout = protocols[dev->last_protocol].repeat_period;
691 	struct lirc_scancode sc = {
692 		.scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
693 		.keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
694 		.flags = LIRC_SCANCODE_FLAG_REPEAT |
695 			 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
696 	};
697 
698 	ir_lirc_scancode_event(dev, &sc);
699 
700 	spin_lock_irqsave(&dev->keylock, flags);
701 
702 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
703 	input_sync(dev->input_dev);
704 
705 	if (dev->keypressed) {
706 		dev->keyup_jiffies = jiffies + msecs_to_jiffies(timeout);
707 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
708 	}
709 
710 	spin_unlock_irqrestore(&dev->keylock, flags);
711 }
712 EXPORT_SYMBOL_GPL(rc_repeat);
713 
714 /**
715  * ir_do_keydown() - internal function to process a keypress
716  * @dev:	the struct rc_dev descriptor of the device
717  * @protocol:	the protocol of the keypress
718  * @scancode:   the scancode of the keypress
719  * @keycode:    the keycode of the keypress
720  * @toggle:     the toggle value of the keypress
721  *
722  * This function is used internally to register a keypress, it must be
723  * called with keylock held.
724  */
725 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
726 			  u32 scancode, u32 keycode, u8 toggle)
727 {
728 	bool new_event = (!dev->keypressed		 ||
729 			  dev->last_protocol != protocol ||
730 			  dev->last_scancode != scancode ||
731 			  dev->last_toggle   != toggle);
732 	struct lirc_scancode sc = {
733 		.scancode = scancode, .rc_proto = protocol,
734 		.flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0,
735 		.keycode = keycode
736 	};
737 
738 	ir_lirc_scancode_event(dev, &sc);
739 
740 	if (new_event && dev->keypressed)
741 		ir_do_keyup(dev, false);
742 
743 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
744 
745 	dev->last_protocol = protocol;
746 	dev->last_scancode = scancode;
747 	dev->last_toggle = toggle;
748 	dev->last_keycode = keycode;
749 
750 	if (new_event && keycode != KEY_RESERVED) {
751 		/* Register a keypress */
752 		dev->keypressed = true;
753 
754 		IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
755 			   dev->device_name, keycode, protocol, scancode);
756 		input_report_key(dev->input_dev, keycode, 1);
757 
758 		led_trigger_event(led_feedback, LED_FULL);
759 	}
760 
761 	/*
762 	 * For CEC, start sending repeat messages as soon as the first
763 	 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
764 	 * is non-zero. Otherwise, the input layer will generate repeat
765 	 * messages.
766 	 */
767 	if (!new_event && keycode != KEY_RESERVED &&
768 	    dev->allowed_protocols == RC_PROTO_BIT_CEC &&
769 	    !timer_pending(&dev->timer_repeat) &&
770 	    dev->input_dev->rep[REP_PERIOD] &&
771 	    !dev->input_dev->rep[REP_DELAY]) {
772 		input_event(dev->input_dev, EV_KEY, keycode, 2);
773 		mod_timer(&dev->timer_repeat, jiffies +
774 			  msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
775 	}
776 
777 	input_sync(dev->input_dev);
778 }
779 
780 /**
781  * rc_keydown() - generates input event for a key press
782  * @dev:	the struct rc_dev descriptor of the device
783  * @protocol:	the protocol for the keypress
784  * @scancode:	the scancode for the keypress
785  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
786  *              support toggle values, this should be set to zero)
787  *
788  * This routine is used to signal that a key has been pressed on the
789  * remote control.
790  */
791 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode,
792 		u8 toggle)
793 {
794 	unsigned long flags;
795 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
796 
797 	spin_lock_irqsave(&dev->keylock, flags);
798 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
799 
800 	if (dev->keypressed) {
801 		dev->keyup_jiffies = jiffies +
802 			msecs_to_jiffies(protocols[protocol].repeat_period);
803 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
804 	}
805 	spin_unlock_irqrestore(&dev->keylock, flags);
806 }
807 EXPORT_SYMBOL_GPL(rc_keydown);
808 
809 /**
810  * rc_keydown_notimeout() - generates input event for a key press without
811  *                          an automatic keyup event at a later time
812  * @dev:	the struct rc_dev descriptor of the device
813  * @protocol:	the protocol for the keypress
814  * @scancode:	the scancode for the keypress
815  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
816  *              support toggle values, this should be set to zero)
817  *
818  * This routine is used to signal that a key has been pressed on the
819  * remote control. The driver must manually call rc_keyup() at a later stage.
820  */
821 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
822 			  u32 scancode, u8 toggle)
823 {
824 	unsigned long flags;
825 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
826 
827 	spin_lock_irqsave(&dev->keylock, flags);
828 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
829 	spin_unlock_irqrestore(&dev->keylock, flags);
830 }
831 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
832 
833 /**
834  * rc_validate_scancode() - checks that a scancode is valid for a protocol.
835  *	For nec, it should do the opposite of ir_nec_bytes_to_scancode()
836  * @proto:	protocol
837  * @scancode:	scancode
838  */
839 bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
840 {
841 	switch (proto) {
842 	/*
843 	 * NECX has a 16-bit address; if the lower 8 bits match the upper
844 	 * 8 bits inverted, then the address would match regular nec.
845 	 */
846 	case RC_PROTO_NECX:
847 		if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
848 			return false;
849 		break;
850 	/*
851 	 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
852 	 * of the command match the upper 8 bits inverted, then it would
853 	 * be either NEC or NECX.
854 	 */
855 	case RC_PROTO_NEC32:
856 		if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
857 			return false;
858 		break;
859 	/*
860 	 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
861 	 * is regular mode-6a 32 bit
862 	 */
863 	case RC_PROTO_RC6_MCE:
864 		if ((scancode & 0xffff0000) != 0x800f0000)
865 			return false;
866 		break;
867 	case RC_PROTO_RC6_6A_32:
868 		if ((scancode & 0xffff0000) == 0x800f0000)
869 			return false;
870 		break;
871 	default:
872 		break;
873 	}
874 
875 	return true;
876 }
877 
878 /**
879  * rc_validate_filter() - checks that the scancode and mask are valid and
880  *			  provides sensible defaults
881  * @dev:	the struct rc_dev descriptor of the device
882  * @filter:	the scancode and mask
883  *
884  * return:	0 or -EINVAL if the filter is not valid
885  */
886 static int rc_validate_filter(struct rc_dev *dev,
887 			      struct rc_scancode_filter *filter)
888 {
889 	u32 mask, s = filter->data;
890 	enum rc_proto protocol = dev->wakeup_protocol;
891 
892 	if (protocol >= ARRAY_SIZE(protocols))
893 		return -EINVAL;
894 
895 	mask = protocols[protocol].scancode_bits;
896 
897 	if (!rc_validate_scancode(protocol, s))
898 		return -EINVAL;
899 
900 	filter->data &= mask;
901 	filter->mask &= mask;
902 
903 	/*
904 	 * If we have to raw encode the IR for wakeup, we cannot have a mask
905 	 */
906 	if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
907 		return -EINVAL;
908 
909 	return 0;
910 }
911 
912 int rc_open(struct rc_dev *rdev)
913 {
914 	int rval = 0;
915 
916 	if (!rdev)
917 		return -EINVAL;
918 
919 	mutex_lock(&rdev->lock);
920 
921 	if (!rdev->registered) {
922 		rval = -ENODEV;
923 	} else {
924 		if (!rdev->users++ && rdev->open)
925 			rval = rdev->open(rdev);
926 
927 		if (rval)
928 			rdev->users--;
929 	}
930 
931 	mutex_unlock(&rdev->lock);
932 
933 	return rval;
934 }
935 
936 static int ir_open(struct input_dev *idev)
937 {
938 	struct rc_dev *rdev = input_get_drvdata(idev);
939 
940 	return rc_open(rdev);
941 }
942 
943 void rc_close(struct rc_dev *rdev)
944 {
945 	if (rdev) {
946 		mutex_lock(&rdev->lock);
947 
948 		if (!--rdev->users && rdev->close && rdev->registered)
949 			rdev->close(rdev);
950 
951 		mutex_unlock(&rdev->lock);
952 	}
953 }
954 
955 static void ir_close(struct input_dev *idev)
956 {
957 	struct rc_dev *rdev = input_get_drvdata(idev);
958 	rc_close(rdev);
959 }
960 
961 /* class for /sys/class/rc */
962 static char *rc_devnode(struct device *dev, umode_t *mode)
963 {
964 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
965 }
966 
967 static struct class rc_class = {
968 	.name		= "rc",
969 	.devnode	= rc_devnode,
970 };
971 
972 /*
973  * These are the protocol textual descriptions that are
974  * used by the sysfs protocols file. Note that the order
975  * of the entries is relevant.
976  */
977 static const struct {
978 	u64	type;
979 	const char	*name;
980 	const char	*module_name;
981 } proto_names[] = {
982 	{ RC_PROTO_BIT_NONE,	"none",		NULL			},
983 	{ RC_PROTO_BIT_OTHER,	"other",	NULL			},
984 	{ RC_PROTO_BIT_UNKNOWN,	"unknown",	NULL			},
985 	{ RC_PROTO_BIT_RC5 |
986 	  RC_PROTO_BIT_RC5X_20,	"rc-5",		"ir-rc5-decoder"	},
987 	{ RC_PROTO_BIT_NEC |
988 	  RC_PROTO_BIT_NECX |
989 	  RC_PROTO_BIT_NEC32,	"nec",		"ir-nec-decoder"	},
990 	{ RC_PROTO_BIT_RC6_0 |
991 	  RC_PROTO_BIT_RC6_6A_20 |
992 	  RC_PROTO_BIT_RC6_6A_24 |
993 	  RC_PROTO_BIT_RC6_6A_32 |
994 	  RC_PROTO_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
995 	{ RC_PROTO_BIT_JVC,	"jvc",		"ir-jvc-decoder"	},
996 	{ RC_PROTO_BIT_SONY12 |
997 	  RC_PROTO_BIT_SONY15 |
998 	  RC_PROTO_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
999 	{ RC_PROTO_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
1000 	{ RC_PROTO_BIT_SANYO,	"sanyo",	"ir-sanyo-decoder"	},
1001 	{ RC_PROTO_BIT_SHARP,	"sharp",	"ir-sharp-decoder"	},
1002 	{ RC_PROTO_BIT_MCIR2_KBD |
1003 	  RC_PROTO_BIT_MCIR2_MSE, "mce_kbd",	"ir-mce_kbd-decoder"	},
1004 	{ RC_PROTO_BIT_XMP,	"xmp",		"ir-xmp-decoder"	},
1005 	{ RC_PROTO_BIT_CEC,	"cec",		NULL			},
1006 };
1007 
1008 /**
1009  * struct rc_filter_attribute - Device attribute relating to a filter type.
1010  * @attr:	Device attribute.
1011  * @type:	Filter type.
1012  * @mask:	false for filter value, true for filter mask.
1013  */
1014 struct rc_filter_attribute {
1015 	struct device_attribute		attr;
1016 	enum rc_filter_type		type;
1017 	bool				mask;
1018 };
1019 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1020 
1021 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
1022 	struct rc_filter_attribute dev_attr_##_name = {			\
1023 		.attr = __ATTR(_name, _mode, _show, _store),		\
1024 		.type = (_type),					\
1025 		.mask = (_mask),					\
1026 	}
1027 
1028 /**
1029  * show_protocols() - shows the current IR protocol(s)
1030  * @device:	the device descriptor
1031  * @mattr:	the device attribute struct
1032  * @buf:	a pointer to the output buffer
1033  *
1034  * This routine is a callback routine for input read the IR protocol type(s).
1035  * it is trigged by reading /sys/class/rc/rc?/protocols.
1036  * It returns the protocol names of supported protocols.
1037  * Enabled protocols are printed in brackets.
1038  *
1039  * dev->lock is taken to guard against races between
1040  * store_protocols and show_protocols.
1041  */
1042 static ssize_t show_protocols(struct device *device,
1043 			      struct device_attribute *mattr, char *buf)
1044 {
1045 	struct rc_dev *dev = to_rc_dev(device);
1046 	u64 allowed, enabled;
1047 	char *tmp = buf;
1048 	int i;
1049 
1050 	mutex_lock(&dev->lock);
1051 
1052 	enabled = dev->enabled_protocols;
1053 	allowed = dev->allowed_protocols;
1054 	if (dev->raw && !allowed)
1055 		allowed = ir_raw_get_allowed_protocols();
1056 
1057 	mutex_unlock(&dev->lock);
1058 
1059 	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1060 		   __func__, (long long)allowed, (long long)enabled);
1061 
1062 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1063 		if (allowed & enabled & proto_names[i].type)
1064 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
1065 		else if (allowed & proto_names[i].type)
1066 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
1067 
1068 		if (allowed & proto_names[i].type)
1069 			allowed &= ~proto_names[i].type;
1070 	}
1071 
1072 #ifdef CONFIG_LIRC
1073 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1074 		tmp += sprintf(tmp, "[lirc] ");
1075 #endif
1076 
1077 	if (tmp != buf)
1078 		tmp--;
1079 	*tmp = '\n';
1080 
1081 	return tmp + 1 - buf;
1082 }
1083 
1084 /**
1085  * parse_protocol_change() - parses a protocol change request
1086  * @protocols:	pointer to the bitmask of current protocols
1087  * @buf:	pointer to the buffer with a list of changes
1088  *
1089  * Writing "+proto" will add a protocol to the protocol mask.
1090  * Writing "-proto" will remove a protocol from protocol mask.
1091  * Writing "proto" will enable only "proto".
1092  * Writing "none" will disable all protocols.
1093  * Returns the number of changes performed or a negative error code.
1094  */
1095 static int parse_protocol_change(u64 *protocols, const char *buf)
1096 {
1097 	const char *tmp;
1098 	unsigned count = 0;
1099 	bool enable, disable;
1100 	u64 mask;
1101 	int i;
1102 
1103 	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1104 		if (!*tmp)
1105 			break;
1106 
1107 		if (*tmp == '+') {
1108 			enable = true;
1109 			disable = false;
1110 			tmp++;
1111 		} else if (*tmp == '-') {
1112 			enable = false;
1113 			disable = true;
1114 			tmp++;
1115 		} else {
1116 			enable = false;
1117 			disable = false;
1118 		}
1119 
1120 		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1121 			if (!strcasecmp(tmp, proto_names[i].name)) {
1122 				mask = proto_names[i].type;
1123 				break;
1124 			}
1125 		}
1126 
1127 		if (i == ARRAY_SIZE(proto_names)) {
1128 			if (!strcasecmp(tmp, "lirc"))
1129 				mask = 0;
1130 			else {
1131 				IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
1132 				return -EINVAL;
1133 			}
1134 		}
1135 
1136 		count++;
1137 
1138 		if (enable)
1139 			*protocols |= mask;
1140 		else if (disable)
1141 			*protocols &= ~mask;
1142 		else
1143 			*protocols = mask;
1144 	}
1145 
1146 	if (!count) {
1147 		IR_dprintk(1, "Protocol not specified\n");
1148 		return -EINVAL;
1149 	}
1150 
1151 	return count;
1152 }
1153 
1154 void ir_raw_load_modules(u64 *protocols)
1155 {
1156 	u64 available;
1157 	int i, ret;
1158 
1159 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1160 		if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1161 		    proto_names[i].type & (RC_PROTO_BIT_OTHER |
1162 					   RC_PROTO_BIT_UNKNOWN))
1163 			continue;
1164 
1165 		available = ir_raw_get_allowed_protocols();
1166 		if (!(*protocols & proto_names[i].type & ~available))
1167 			continue;
1168 
1169 		if (!proto_names[i].module_name) {
1170 			pr_err("Can't enable IR protocol %s\n",
1171 			       proto_names[i].name);
1172 			*protocols &= ~proto_names[i].type;
1173 			continue;
1174 		}
1175 
1176 		ret = request_module("%s", proto_names[i].module_name);
1177 		if (ret < 0) {
1178 			pr_err("Couldn't load IR protocol module %s\n",
1179 			       proto_names[i].module_name);
1180 			*protocols &= ~proto_names[i].type;
1181 			continue;
1182 		}
1183 		msleep(20);
1184 		available = ir_raw_get_allowed_protocols();
1185 		if (!(*protocols & proto_names[i].type & ~available))
1186 			continue;
1187 
1188 		pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1189 		       proto_names[i].module_name,
1190 		       proto_names[i].name);
1191 		*protocols &= ~proto_names[i].type;
1192 	}
1193 }
1194 
1195 /**
1196  * store_protocols() - changes the current/wakeup IR protocol(s)
1197  * @device:	the device descriptor
1198  * @mattr:	the device attribute struct
1199  * @buf:	a pointer to the input buffer
1200  * @len:	length of the input buffer
1201  *
1202  * This routine is for changing the IR protocol type.
1203  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1204  * See parse_protocol_change() for the valid commands.
1205  * Returns @len on success or a negative error code.
1206  *
1207  * dev->lock is taken to guard against races between
1208  * store_protocols and show_protocols.
1209  */
1210 static ssize_t store_protocols(struct device *device,
1211 			       struct device_attribute *mattr,
1212 			       const char *buf, size_t len)
1213 {
1214 	struct rc_dev *dev = to_rc_dev(device);
1215 	u64 *current_protocols;
1216 	struct rc_scancode_filter *filter;
1217 	u64 old_protocols, new_protocols;
1218 	ssize_t rc;
1219 
1220 	IR_dprintk(1, "Normal protocol change requested\n");
1221 	current_protocols = &dev->enabled_protocols;
1222 	filter = &dev->scancode_filter;
1223 
1224 	if (!dev->change_protocol) {
1225 		IR_dprintk(1, "Protocol switching not supported\n");
1226 		return -EINVAL;
1227 	}
1228 
1229 	mutex_lock(&dev->lock);
1230 
1231 	old_protocols = *current_protocols;
1232 	new_protocols = old_protocols;
1233 	rc = parse_protocol_change(&new_protocols, buf);
1234 	if (rc < 0)
1235 		goto out;
1236 
1237 	rc = dev->change_protocol(dev, &new_protocols);
1238 	if (rc < 0) {
1239 		IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1240 			   (long long)new_protocols);
1241 		goto out;
1242 	}
1243 
1244 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1245 		ir_raw_load_modules(&new_protocols);
1246 
1247 	if (new_protocols != old_protocols) {
1248 		*current_protocols = new_protocols;
1249 		IR_dprintk(1, "Protocols changed to 0x%llx\n",
1250 			   (long long)new_protocols);
1251 	}
1252 
1253 	/*
1254 	 * If a protocol change was attempted the filter may need updating, even
1255 	 * if the actual protocol mask hasn't changed (since the driver may have
1256 	 * cleared the filter).
1257 	 * Try setting the same filter with the new protocol (if any).
1258 	 * Fall back to clearing the filter.
1259 	 */
1260 	if (dev->s_filter && filter->mask) {
1261 		if (new_protocols)
1262 			rc = dev->s_filter(dev, filter);
1263 		else
1264 			rc = -1;
1265 
1266 		if (rc < 0) {
1267 			filter->data = 0;
1268 			filter->mask = 0;
1269 			dev->s_filter(dev, filter);
1270 		}
1271 	}
1272 
1273 	rc = len;
1274 
1275 out:
1276 	mutex_unlock(&dev->lock);
1277 	return rc;
1278 }
1279 
1280 /**
1281  * show_filter() - shows the current scancode filter value or mask
1282  * @device:	the device descriptor
1283  * @attr:	the device attribute struct
1284  * @buf:	a pointer to the output buffer
1285  *
1286  * This routine is a callback routine to read a scancode filter value or mask.
1287  * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1288  * It prints the current scancode filter value or mask of the appropriate filter
1289  * type in hexadecimal into @buf and returns the size of the buffer.
1290  *
1291  * Bits of the filter value corresponding to set bits in the filter mask are
1292  * compared against input scancodes and non-matching scancodes are discarded.
1293  *
1294  * dev->lock is taken to guard against races between
1295  * store_filter and show_filter.
1296  */
1297 static ssize_t show_filter(struct device *device,
1298 			   struct device_attribute *attr,
1299 			   char *buf)
1300 {
1301 	struct rc_dev *dev = to_rc_dev(device);
1302 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1303 	struct rc_scancode_filter *filter;
1304 	u32 val;
1305 
1306 	mutex_lock(&dev->lock);
1307 
1308 	if (fattr->type == RC_FILTER_NORMAL)
1309 		filter = &dev->scancode_filter;
1310 	else
1311 		filter = &dev->scancode_wakeup_filter;
1312 
1313 	if (fattr->mask)
1314 		val = filter->mask;
1315 	else
1316 		val = filter->data;
1317 	mutex_unlock(&dev->lock);
1318 
1319 	return sprintf(buf, "%#x\n", val);
1320 }
1321 
1322 /**
1323  * store_filter() - changes the scancode filter value
1324  * @device:	the device descriptor
1325  * @attr:	the device attribute struct
1326  * @buf:	a pointer to the input buffer
1327  * @len:	length of the input buffer
1328  *
1329  * This routine is for changing a scancode filter value or mask.
1330  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1331  * Returns -EINVAL if an invalid filter value for the current protocol was
1332  * specified or if scancode filtering is not supported by the driver, otherwise
1333  * returns @len.
1334  *
1335  * Bits of the filter value corresponding to set bits in the filter mask are
1336  * compared against input scancodes and non-matching scancodes are discarded.
1337  *
1338  * dev->lock is taken to guard against races between
1339  * store_filter and show_filter.
1340  */
1341 static ssize_t store_filter(struct device *device,
1342 			    struct device_attribute *attr,
1343 			    const char *buf, size_t len)
1344 {
1345 	struct rc_dev *dev = to_rc_dev(device);
1346 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1347 	struct rc_scancode_filter new_filter, *filter;
1348 	int ret;
1349 	unsigned long val;
1350 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1351 
1352 	ret = kstrtoul(buf, 0, &val);
1353 	if (ret < 0)
1354 		return ret;
1355 
1356 	if (fattr->type == RC_FILTER_NORMAL) {
1357 		set_filter = dev->s_filter;
1358 		filter = &dev->scancode_filter;
1359 	} else {
1360 		set_filter = dev->s_wakeup_filter;
1361 		filter = &dev->scancode_wakeup_filter;
1362 	}
1363 
1364 	if (!set_filter)
1365 		return -EINVAL;
1366 
1367 	mutex_lock(&dev->lock);
1368 
1369 	new_filter = *filter;
1370 	if (fattr->mask)
1371 		new_filter.mask = val;
1372 	else
1373 		new_filter.data = val;
1374 
1375 	if (fattr->type == RC_FILTER_WAKEUP) {
1376 		/*
1377 		 * Refuse to set a filter unless a protocol is enabled
1378 		 * and the filter is valid for that protocol
1379 		 */
1380 		if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1381 			ret = rc_validate_filter(dev, &new_filter);
1382 		else
1383 			ret = -EINVAL;
1384 
1385 		if (ret != 0)
1386 			goto unlock;
1387 	}
1388 
1389 	if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1390 	    val) {
1391 		/* refuse to set a filter unless a protocol is enabled */
1392 		ret = -EINVAL;
1393 		goto unlock;
1394 	}
1395 
1396 	ret = set_filter(dev, &new_filter);
1397 	if (ret < 0)
1398 		goto unlock;
1399 
1400 	*filter = new_filter;
1401 
1402 unlock:
1403 	mutex_unlock(&dev->lock);
1404 	return (ret < 0) ? ret : len;
1405 }
1406 
1407 /**
1408  * show_wakeup_protocols() - shows the wakeup IR protocol
1409  * @device:	the device descriptor
1410  * @mattr:	the device attribute struct
1411  * @buf:	a pointer to the output buffer
1412  *
1413  * This routine is a callback routine for input read the IR protocol type(s).
1414  * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1415  * It returns the protocol names of supported protocols.
1416  * The enabled protocols are printed in brackets.
1417  *
1418  * dev->lock is taken to guard against races between
1419  * store_wakeup_protocols and show_wakeup_protocols.
1420  */
1421 static ssize_t show_wakeup_protocols(struct device *device,
1422 				     struct device_attribute *mattr,
1423 				     char *buf)
1424 {
1425 	struct rc_dev *dev = to_rc_dev(device);
1426 	u64 allowed;
1427 	enum rc_proto enabled;
1428 	char *tmp = buf;
1429 	int i;
1430 
1431 	mutex_lock(&dev->lock);
1432 
1433 	allowed = dev->allowed_wakeup_protocols;
1434 	enabled = dev->wakeup_protocol;
1435 
1436 	mutex_unlock(&dev->lock);
1437 
1438 	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - %d\n",
1439 		   __func__, (long long)allowed, enabled);
1440 
1441 	for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1442 		if (allowed & (1ULL << i)) {
1443 			if (i == enabled)
1444 				tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1445 			else
1446 				tmp += sprintf(tmp, "%s ", protocols[i].name);
1447 		}
1448 	}
1449 
1450 	if (tmp != buf)
1451 		tmp--;
1452 	*tmp = '\n';
1453 
1454 	return tmp + 1 - buf;
1455 }
1456 
1457 /**
1458  * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1459  * @device:	the device descriptor
1460  * @mattr:	the device attribute struct
1461  * @buf:	a pointer to the input buffer
1462  * @len:	length of the input buffer
1463  *
1464  * This routine is for changing the IR protocol type.
1465  * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1466  * Returns @len on success or a negative error code.
1467  *
1468  * dev->lock is taken to guard against races between
1469  * store_wakeup_protocols and show_wakeup_protocols.
1470  */
1471 static ssize_t store_wakeup_protocols(struct device *device,
1472 				      struct device_attribute *mattr,
1473 				      const char *buf, size_t len)
1474 {
1475 	struct rc_dev *dev = to_rc_dev(device);
1476 	enum rc_proto protocol;
1477 	ssize_t rc;
1478 	u64 allowed;
1479 	int i;
1480 
1481 	mutex_lock(&dev->lock);
1482 
1483 	allowed = dev->allowed_wakeup_protocols;
1484 
1485 	if (sysfs_streq(buf, "none")) {
1486 		protocol = RC_PROTO_UNKNOWN;
1487 	} else {
1488 		for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1489 			if ((allowed & (1ULL << i)) &&
1490 			    sysfs_streq(buf, protocols[i].name)) {
1491 				protocol = i;
1492 				break;
1493 			}
1494 		}
1495 
1496 		if (i == ARRAY_SIZE(protocols)) {
1497 			rc = -EINVAL;
1498 			goto out;
1499 		}
1500 
1501 		if (dev->encode_wakeup) {
1502 			u64 mask = 1ULL << protocol;
1503 
1504 			ir_raw_load_modules(&mask);
1505 			if (!mask) {
1506 				rc = -EINVAL;
1507 				goto out;
1508 			}
1509 		}
1510 	}
1511 
1512 	if (dev->wakeup_protocol != protocol) {
1513 		dev->wakeup_protocol = protocol;
1514 		IR_dprintk(1, "Wakeup protocol changed to %d\n", protocol);
1515 
1516 		if (protocol == RC_PROTO_RC6_MCE)
1517 			dev->scancode_wakeup_filter.data = 0x800f0000;
1518 		else
1519 			dev->scancode_wakeup_filter.data = 0;
1520 		dev->scancode_wakeup_filter.mask = 0;
1521 
1522 		rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1523 		if (rc == 0)
1524 			rc = len;
1525 	} else {
1526 		rc = len;
1527 	}
1528 
1529 out:
1530 	mutex_unlock(&dev->lock);
1531 	return rc;
1532 }
1533 
1534 static void rc_dev_release(struct device *device)
1535 {
1536 	struct rc_dev *dev = to_rc_dev(device);
1537 
1538 	kfree(dev);
1539 }
1540 
1541 #define ADD_HOTPLUG_VAR(fmt, val...)					\
1542 	do {								\
1543 		int err = add_uevent_var(env, fmt, val);		\
1544 		if (err)						\
1545 			return err;					\
1546 	} while (0)
1547 
1548 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1549 {
1550 	struct rc_dev *dev = to_rc_dev(device);
1551 
1552 	if (dev->rc_map.name)
1553 		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1554 	if (dev->driver_name)
1555 		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1556 	if (dev->device_name)
1557 		ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name);
1558 
1559 	return 0;
1560 }
1561 
1562 /*
1563  * Static device attribute struct with the sysfs attributes for IR's
1564  */
1565 static struct device_attribute dev_attr_ro_protocols =
1566 __ATTR(protocols, 0444, show_protocols, NULL);
1567 static struct device_attribute dev_attr_rw_protocols =
1568 __ATTR(protocols, 0644, show_protocols, store_protocols);
1569 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1570 		   store_wakeup_protocols);
1571 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1572 		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1573 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1574 		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1575 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1576 		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1577 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1578 		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1579 
1580 static struct attribute *rc_dev_rw_protocol_attrs[] = {
1581 	&dev_attr_rw_protocols.attr,
1582 	NULL,
1583 };
1584 
1585 static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1586 	.attrs	= rc_dev_rw_protocol_attrs,
1587 };
1588 
1589 static struct attribute *rc_dev_ro_protocol_attrs[] = {
1590 	&dev_attr_ro_protocols.attr,
1591 	NULL,
1592 };
1593 
1594 static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1595 	.attrs	= rc_dev_ro_protocol_attrs,
1596 };
1597 
1598 static struct attribute *rc_dev_filter_attrs[] = {
1599 	&dev_attr_filter.attr.attr,
1600 	&dev_attr_filter_mask.attr.attr,
1601 	NULL,
1602 };
1603 
1604 static const struct attribute_group rc_dev_filter_attr_grp = {
1605 	.attrs	= rc_dev_filter_attrs,
1606 };
1607 
1608 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1609 	&dev_attr_wakeup_filter.attr.attr,
1610 	&dev_attr_wakeup_filter_mask.attr.attr,
1611 	&dev_attr_wakeup_protocols.attr,
1612 	NULL,
1613 };
1614 
1615 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1616 	.attrs	= rc_dev_wakeup_filter_attrs,
1617 };
1618 
1619 static const struct device_type rc_dev_type = {
1620 	.release	= rc_dev_release,
1621 	.uevent		= rc_dev_uevent,
1622 };
1623 
1624 struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1625 {
1626 	struct rc_dev *dev;
1627 
1628 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1629 	if (!dev)
1630 		return NULL;
1631 
1632 	if (type != RC_DRIVER_IR_RAW_TX) {
1633 		dev->input_dev = input_allocate_device();
1634 		if (!dev->input_dev) {
1635 			kfree(dev);
1636 			return NULL;
1637 		}
1638 
1639 		dev->input_dev->getkeycode = ir_getkeycode;
1640 		dev->input_dev->setkeycode = ir_setkeycode;
1641 		input_set_drvdata(dev->input_dev, dev);
1642 
1643 		timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
1644 		timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
1645 
1646 		spin_lock_init(&dev->rc_map.lock);
1647 		spin_lock_init(&dev->keylock);
1648 	}
1649 	mutex_init(&dev->lock);
1650 
1651 	dev->dev.type = &rc_dev_type;
1652 	dev->dev.class = &rc_class;
1653 	device_initialize(&dev->dev);
1654 
1655 	dev->driver_type = type;
1656 
1657 	__module_get(THIS_MODULE);
1658 	return dev;
1659 }
1660 EXPORT_SYMBOL_GPL(rc_allocate_device);
1661 
1662 void rc_free_device(struct rc_dev *dev)
1663 {
1664 	if (!dev)
1665 		return;
1666 
1667 	input_free_device(dev->input_dev);
1668 
1669 	put_device(&dev->dev);
1670 
1671 	/* kfree(dev) will be called by the callback function
1672 	   rc_dev_release() */
1673 
1674 	module_put(THIS_MODULE);
1675 }
1676 EXPORT_SYMBOL_GPL(rc_free_device);
1677 
1678 static void devm_rc_alloc_release(struct device *dev, void *res)
1679 {
1680 	rc_free_device(*(struct rc_dev **)res);
1681 }
1682 
1683 struct rc_dev *devm_rc_allocate_device(struct device *dev,
1684 				       enum rc_driver_type type)
1685 {
1686 	struct rc_dev **dr, *rc;
1687 
1688 	dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1689 	if (!dr)
1690 		return NULL;
1691 
1692 	rc = rc_allocate_device(type);
1693 	if (!rc) {
1694 		devres_free(dr);
1695 		return NULL;
1696 	}
1697 
1698 	rc->dev.parent = dev;
1699 	rc->managed_alloc = true;
1700 	*dr = rc;
1701 	devres_add(dev, dr);
1702 
1703 	return rc;
1704 }
1705 EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1706 
1707 static int rc_prepare_rx_device(struct rc_dev *dev)
1708 {
1709 	int rc;
1710 	struct rc_map *rc_map;
1711 	u64 rc_proto;
1712 
1713 	if (!dev->map_name)
1714 		return -EINVAL;
1715 
1716 	rc_map = rc_map_get(dev->map_name);
1717 	if (!rc_map)
1718 		rc_map = rc_map_get(RC_MAP_EMPTY);
1719 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1720 		return -EINVAL;
1721 
1722 	rc = ir_setkeytable(dev, rc_map);
1723 	if (rc)
1724 		return rc;
1725 
1726 	rc_proto = BIT_ULL(rc_map->rc_proto);
1727 
1728 	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1729 		dev->enabled_protocols = dev->allowed_protocols;
1730 
1731 	if (dev->change_protocol) {
1732 		rc = dev->change_protocol(dev, &rc_proto);
1733 		if (rc < 0)
1734 			goto out_table;
1735 		dev->enabled_protocols = rc_proto;
1736 	}
1737 
1738 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1739 		ir_raw_load_modules(&rc_proto);
1740 
1741 	set_bit(EV_KEY, dev->input_dev->evbit);
1742 	set_bit(EV_REP, dev->input_dev->evbit);
1743 	set_bit(EV_MSC, dev->input_dev->evbit);
1744 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1745 	if (dev->open)
1746 		dev->input_dev->open = ir_open;
1747 	if (dev->close)
1748 		dev->input_dev->close = ir_close;
1749 
1750 	dev->input_dev->dev.parent = &dev->dev;
1751 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1752 	dev->input_dev->phys = dev->input_phys;
1753 	dev->input_dev->name = dev->device_name;
1754 
1755 	return 0;
1756 
1757 out_table:
1758 	ir_free_table(&dev->rc_map);
1759 
1760 	return rc;
1761 }
1762 
1763 static int rc_setup_rx_device(struct rc_dev *dev)
1764 {
1765 	int rc;
1766 
1767 	/* rc_open will be called here */
1768 	rc = input_register_device(dev->input_dev);
1769 	if (rc)
1770 		return rc;
1771 
1772 	/*
1773 	 * Default delay of 250ms is too short for some protocols, especially
1774 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1775 	 * to avoid wrong repetition of the keycodes. Note that this must be
1776 	 * set after the call to input_register_device().
1777 	 */
1778 	if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
1779 		dev->input_dev->rep[REP_DELAY] = 0;
1780 	else
1781 		dev->input_dev->rep[REP_DELAY] = 500;
1782 
1783 	/*
1784 	 * As a repeat event on protocols like RC-5 and NEC take as long as
1785 	 * 110/114ms, using 33ms as a repeat period is not the right thing
1786 	 * to do.
1787 	 */
1788 	dev->input_dev->rep[REP_PERIOD] = 125;
1789 
1790 	return 0;
1791 }
1792 
1793 static void rc_free_rx_device(struct rc_dev *dev)
1794 {
1795 	if (!dev)
1796 		return;
1797 
1798 	if (dev->input_dev) {
1799 		input_unregister_device(dev->input_dev);
1800 		dev->input_dev = NULL;
1801 	}
1802 
1803 	ir_free_table(&dev->rc_map);
1804 }
1805 
1806 int rc_register_device(struct rc_dev *dev)
1807 {
1808 	const char *path;
1809 	int attr = 0;
1810 	int minor;
1811 	int rc;
1812 
1813 	if (!dev)
1814 		return -EINVAL;
1815 
1816 	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1817 	if (minor < 0)
1818 		return minor;
1819 
1820 	dev->minor = minor;
1821 	dev_set_name(&dev->dev, "rc%u", dev->minor);
1822 	dev_set_drvdata(&dev->dev, dev);
1823 
1824 	dev->dev.groups = dev->sysfs_groups;
1825 	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1826 		dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1827 	else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1828 		dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
1829 	if (dev->s_filter)
1830 		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1831 	if (dev->s_wakeup_filter)
1832 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1833 	dev->sysfs_groups[attr++] = NULL;
1834 
1835 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1836 		rc = ir_raw_event_prepare(dev);
1837 		if (rc < 0)
1838 			goto out_minor;
1839 	}
1840 
1841 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1842 		rc = rc_prepare_rx_device(dev);
1843 		if (rc)
1844 			goto out_raw;
1845 	}
1846 
1847 	rc = device_add(&dev->dev);
1848 	if (rc)
1849 		goto out_rx_free;
1850 
1851 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1852 	dev_info(&dev->dev, "%s as %s\n",
1853 		 dev->device_name ?: "Unspecified device", path ?: "N/A");
1854 	kfree(path);
1855 
1856 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1857 		rc = rc_setup_rx_device(dev);
1858 		if (rc)
1859 			goto out_dev;
1860 	}
1861 
1862 	/* Ensure that the lirc kfifo is setup before we start the thread */
1863 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
1864 		rc = ir_lirc_register(dev);
1865 		if (rc < 0)
1866 			goto out_rx;
1867 	}
1868 
1869 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1870 		rc = ir_raw_event_register(dev);
1871 		if (rc < 0)
1872 			goto out_lirc;
1873 	}
1874 
1875 	dev->registered = true;
1876 
1877 	IR_dprintk(1, "Registered rc%u (driver: %s)\n",
1878 		   dev->minor,
1879 		   dev->driver_name ? dev->driver_name : "unknown");
1880 
1881 	return 0;
1882 
1883 out_lirc:
1884 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1885 		ir_lirc_unregister(dev);
1886 out_rx:
1887 	rc_free_rx_device(dev);
1888 out_dev:
1889 	device_del(&dev->dev);
1890 out_rx_free:
1891 	ir_free_table(&dev->rc_map);
1892 out_raw:
1893 	ir_raw_event_free(dev);
1894 out_minor:
1895 	ida_simple_remove(&rc_ida, minor);
1896 	return rc;
1897 }
1898 EXPORT_SYMBOL_GPL(rc_register_device);
1899 
1900 static void devm_rc_release(struct device *dev, void *res)
1901 {
1902 	rc_unregister_device(*(struct rc_dev **)res);
1903 }
1904 
1905 int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1906 {
1907 	struct rc_dev **dr;
1908 	int ret;
1909 
1910 	dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1911 	if (!dr)
1912 		return -ENOMEM;
1913 
1914 	ret = rc_register_device(dev);
1915 	if (ret) {
1916 		devres_free(dr);
1917 		return ret;
1918 	}
1919 
1920 	*dr = dev;
1921 	devres_add(parent, dr);
1922 
1923 	return 0;
1924 }
1925 EXPORT_SYMBOL_GPL(devm_rc_register_device);
1926 
1927 void rc_unregister_device(struct rc_dev *dev)
1928 {
1929 	if (!dev)
1930 		return;
1931 
1932 	del_timer_sync(&dev->timer_keyup);
1933 	del_timer_sync(&dev->timer_repeat);
1934 
1935 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1936 		ir_raw_event_unregister(dev);
1937 
1938 	rc_free_rx_device(dev);
1939 
1940 	mutex_lock(&dev->lock);
1941 	dev->registered = false;
1942 	mutex_unlock(&dev->lock);
1943 
1944 	/*
1945 	 * lirc device should be freed with dev->registered = false, so
1946 	 * that userspace polling will get notified.
1947 	 */
1948 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1949 		ir_lirc_unregister(dev);
1950 
1951 	device_del(&dev->dev);
1952 
1953 	ida_simple_remove(&rc_ida, dev->minor);
1954 
1955 	if (!dev->managed_alloc)
1956 		rc_free_device(dev);
1957 }
1958 
1959 EXPORT_SYMBOL_GPL(rc_unregister_device);
1960 
1961 /*
1962  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1963  */
1964 
1965 static int __init rc_core_init(void)
1966 {
1967 	int rc = class_register(&rc_class);
1968 	if (rc) {
1969 		pr_err("rc_core: unable to register rc class\n");
1970 		return rc;
1971 	}
1972 
1973 	rc = lirc_dev_init();
1974 	if (rc) {
1975 		pr_err("rc_core: unable to init lirc\n");
1976 		class_unregister(&rc_class);
1977 		return 0;
1978 	}
1979 
1980 	led_trigger_register_simple("rc-feedback", &led_feedback);
1981 	rc_map_register(&empty_map);
1982 
1983 	return 0;
1984 }
1985 
1986 static void __exit rc_core_exit(void)
1987 {
1988 	lirc_dev_exit();
1989 	class_unregister(&rc_class);
1990 	led_trigger_unregister_simple(led_feedback);
1991 	rc_map_unregister(&empty_map);
1992 }
1993 
1994 subsys_initcall(rc_core_init);
1995 module_exit(rc_core_exit);
1996 
1997 int rc_core_debug;    /* ir_debug level (0,1,2) */
1998 EXPORT_SYMBOL_GPL(rc_core_debug);
1999 module_param_named(debug, rc_core_debug, int, 0644);
2000 
2001 MODULE_AUTHOR("Mauro Carvalho Chehab");
2002 MODULE_LICENSE("GPL v2");
2003