xref: /linux/drivers/media/rc/rc-main.c (revision 7c66e12136c2fa421ae75497e02728f252108a1b)
1 /* rc-main.c - Remote Controller core module
2  *
3  * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4  *
5  * This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation version 2 of the License.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  */
14 
15 #include <media/rc-core.h>
16 #include <linux/atomic.h>
17 #include <linux/spinlock.h>
18 #include <linux/delay.h>
19 #include <linux/input.h>
20 #include <linux/leds.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/device.h>
24 #include <linux/module.h>
25 #include "rc-core-priv.h"
26 
27 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
28 #define IR_TAB_MIN_SIZE	256
29 #define IR_TAB_MAX_SIZE	8192
30 #define RC_DEV_MAX	256
31 
32 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
33 #define IR_KEYPRESS_TIMEOUT 250
34 
35 /* Used to keep track of known keymaps */
36 static LIST_HEAD(rc_map_list);
37 static DEFINE_SPINLOCK(rc_map_lock);
38 static struct led_trigger *led_feedback;
39 
40 /* Used to keep track of rc devices */
41 static DEFINE_IDA(rc_ida);
42 
43 static struct rc_map_list *seek_rc_map(const char *name)
44 {
45 	struct rc_map_list *map = NULL;
46 
47 	spin_lock(&rc_map_lock);
48 	list_for_each_entry(map, &rc_map_list, list) {
49 		if (!strcmp(name, map->map.name)) {
50 			spin_unlock(&rc_map_lock);
51 			return map;
52 		}
53 	}
54 	spin_unlock(&rc_map_lock);
55 
56 	return NULL;
57 }
58 
59 struct rc_map *rc_map_get(const char *name)
60 {
61 
62 	struct rc_map_list *map;
63 
64 	map = seek_rc_map(name);
65 #ifdef CONFIG_MODULES
66 	if (!map) {
67 		int rc = request_module("%s", name);
68 		if (rc < 0) {
69 			printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
70 			return NULL;
71 		}
72 		msleep(20);	/* Give some time for IR to register */
73 
74 		map = seek_rc_map(name);
75 	}
76 #endif
77 	if (!map) {
78 		printk(KERN_ERR "IR keymap %s not found\n", name);
79 		return NULL;
80 	}
81 
82 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
83 
84 	return &map->map;
85 }
86 EXPORT_SYMBOL_GPL(rc_map_get);
87 
88 int rc_map_register(struct rc_map_list *map)
89 {
90 	spin_lock(&rc_map_lock);
91 	list_add_tail(&map->list, &rc_map_list);
92 	spin_unlock(&rc_map_lock);
93 	return 0;
94 }
95 EXPORT_SYMBOL_GPL(rc_map_register);
96 
97 void rc_map_unregister(struct rc_map_list *map)
98 {
99 	spin_lock(&rc_map_lock);
100 	list_del(&map->list);
101 	spin_unlock(&rc_map_lock);
102 }
103 EXPORT_SYMBOL_GPL(rc_map_unregister);
104 
105 
106 static struct rc_map_table empty[] = {
107 	{ 0x2a, KEY_COFFEE },
108 };
109 
110 static struct rc_map_list empty_map = {
111 	.map = {
112 		.scan    = empty,
113 		.size    = ARRAY_SIZE(empty),
114 		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
115 		.name    = RC_MAP_EMPTY,
116 	}
117 };
118 
119 /**
120  * ir_create_table() - initializes a scancode table
121  * @rc_map:	the rc_map to initialize
122  * @name:	name to assign to the table
123  * @rc_type:	ir type to assign to the new table
124  * @size:	initial size of the table
125  * @return:	zero on success or a negative error code
126  *
127  * This routine will initialize the rc_map and will allocate
128  * memory to hold at least the specified number of elements.
129  */
130 static int ir_create_table(struct rc_map *rc_map,
131 			   const char *name, u64 rc_type, size_t size)
132 {
133 	rc_map->name = kstrdup(name, GFP_KERNEL);
134 	if (!rc_map->name)
135 		return -ENOMEM;
136 	rc_map->rc_type = rc_type;
137 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
138 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
139 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
140 	if (!rc_map->scan) {
141 		kfree(rc_map->name);
142 		rc_map->name = NULL;
143 		return -ENOMEM;
144 	}
145 
146 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
147 		   rc_map->size, rc_map->alloc);
148 	return 0;
149 }
150 
151 /**
152  * ir_free_table() - frees memory allocated by a scancode table
153  * @rc_map:	the table whose mappings need to be freed
154  *
155  * This routine will free memory alloctaed for key mappings used by given
156  * scancode table.
157  */
158 static void ir_free_table(struct rc_map *rc_map)
159 {
160 	rc_map->size = 0;
161 	kfree(rc_map->name);
162 	kfree(rc_map->scan);
163 	rc_map->scan = NULL;
164 }
165 
166 /**
167  * ir_resize_table() - resizes a scancode table if necessary
168  * @rc_map:	the rc_map to resize
169  * @gfp_flags:	gfp flags to use when allocating memory
170  * @return:	zero on success or a negative error code
171  *
172  * This routine will shrink the rc_map if it has lots of
173  * unused entries and grow it if it is full.
174  */
175 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
176 {
177 	unsigned int oldalloc = rc_map->alloc;
178 	unsigned int newalloc = oldalloc;
179 	struct rc_map_table *oldscan = rc_map->scan;
180 	struct rc_map_table *newscan;
181 
182 	if (rc_map->size == rc_map->len) {
183 		/* All entries in use -> grow keytable */
184 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
185 			return -ENOMEM;
186 
187 		newalloc *= 2;
188 		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
189 	}
190 
191 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
192 		/* Less than 1/3 of entries in use -> shrink keytable */
193 		newalloc /= 2;
194 		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
195 	}
196 
197 	if (newalloc == oldalloc)
198 		return 0;
199 
200 	newscan = kmalloc(newalloc, gfp_flags);
201 	if (!newscan) {
202 		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
203 		return -ENOMEM;
204 	}
205 
206 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
207 	rc_map->scan = newscan;
208 	rc_map->alloc = newalloc;
209 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
210 	kfree(oldscan);
211 	return 0;
212 }
213 
214 /**
215  * ir_update_mapping() - set a keycode in the scancode->keycode table
216  * @dev:	the struct rc_dev device descriptor
217  * @rc_map:	scancode table to be adjusted
218  * @index:	index of the mapping that needs to be updated
219  * @keycode:	the desired keycode
220  * @return:	previous keycode assigned to the mapping
221  *
222  * This routine is used to update scancode->keycode mapping at given
223  * position.
224  */
225 static unsigned int ir_update_mapping(struct rc_dev *dev,
226 				      struct rc_map *rc_map,
227 				      unsigned int index,
228 				      unsigned int new_keycode)
229 {
230 	int old_keycode = rc_map->scan[index].keycode;
231 	int i;
232 
233 	/* Did the user wish to remove the mapping? */
234 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
235 		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
236 			   index, rc_map->scan[index].scancode);
237 		rc_map->len--;
238 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
239 			(rc_map->len - index) * sizeof(struct rc_map_table));
240 	} else {
241 		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
242 			   index,
243 			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
244 			   rc_map->scan[index].scancode, new_keycode);
245 		rc_map->scan[index].keycode = new_keycode;
246 		__set_bit(new_keycode, dev->input_dev->keybit);
247 	}
248 
249 	if (old_keycode != KEY_RESERVED) {
250 		/* A previous mapping was updated... */
251 		__clear_bit(old_keycode, dev->input_dev->keybit);
252 		/* ... but another scancode might use the same keycode */
253 		for (i = 0; i < rc_map->len; i++) {
254 			if (rc_map->scan[i].keycode == old_keycode) {
255 				__set_bit(old_keycode, dev->input_dev->keybit);
256 				break;
257 			}
258 		}
259 
260 		/* Possibly shrink the keytable, failure is not a problem */
261 		ir_resize_table(rc_map, GFP_ATOMIC);
262 	}
263 
264 	return old_keycode;
265 }
266 
267 /**
268  * ir_establish_scancode() - set a keycode in the scancode->keycode table
269  * @dev:	the struct rc_dev device descriptor
270  * @rc_map:	scancode table to be searched
271  * @scancode:	the desired scancode
272  * @resize:	controls whether we allowed to resize the table to
273  *		accommodate not yet present scancodes
274  * @return:	index of the mapping containing scancode in question
275  *		or -1U in case of failure.
276  *
277  * This routine is used to locate given scancode in rc_map.
278  * If scancode is not yet present the routine will allocate a new slot
279  * for it.
280  */
281 static unsigned int ir_establish_scancode(struct rc_dev *dev,
282 					  struct rc_map *rc_map,
283 					  unsigned int scancode,
284 					  bool resize)
285 {
286 	unsigned int i;
287 
288 	/*
289 	 * Unfortunately, some hardware-based IR decoders don't provide
290 	 * all bits for the complete IR code. In general, they provide only
291 	 * the command part of the IR code. Yet, as it is possible to replace
292 	 * the provided IR with another one, it is needed to allow loading
293 	 * IR tables from other remotes. So, we support specifying a mask to
294 	 * indicate the valid bits of the scancodes.
295 	 */
296 	if (dev->scancode_mask)
297 		scancode &= dev->scancode_mask;
298 
299 	/* First check if we already have a mapping for this ir command */
300 	for (i = 0; i < rc_map->len; i++) {
301 		if (rc_map->scan[i].scancode == scancode)
302 			return i;
303 
304 		/* Keytable is sorted from lowest to highest scancode */
305 		if (rc_map->scan[i].scancode >= scancode)
306 			break;
307 	}
308 
309 	/* No previous mapping found, we might need to grow the table */
310 	if (rc_map->size == rc_map->len) {
311 		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
312 			return -1U;
313 	}
314 
315 	/* i is the proper index to insert our new keycode */
316 	if (i < rc_map->len)
317 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
318 			(rc_map->len - i) * sizeof(struct rc_map_table));
319 	rc_map->scan[i].scancode = scancode;
320 	rc_map->scan[i].keycode = KEY_RESERVED;
321 	rc_map->len++;
322 
323 	return i;
324 }
325 
326 /**
327  * ir_setkeycode() - set a keycode in the scancode->keycode table
328  * @idev:	the struct input_dev device descriptor
329  * @scancode:	the desired scancode
330  * @keycode:	result
331  * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
332  *
333  * This routine is used to handle evdev EVIOCSKEY ioctl.
334  */
335 static int ir_setkeycode(struct input_dev *idev,
336 			 const struct input_keymap_entry *ke,
337 			 unsigned int *old_keycode)
338 {
339 	struct rc_dev *rdev = input_get_drvdata(idev);
340 	struct rc_map *rc_map = &rdev->rc_map;
341 	unsigned int index;
342 	unsigned int scancode;
343 	int retval = 0;
344 	unsigned long flags;
345 
346 	spin_lock_irqsave(&rc_map->lock, flags);
347 
348 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
349 		index = ke->index;
350 		if (index >= rc_map->len) {
351 			retval = -EINVAL;
352 			goto out;
353 		}
354 	} else {
355 		retval = input_scancode_to_scalar(ke, &scancode);
356 		if (retval)
357 			goto out;
358 
359 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
360 		if (index >= rc_map->len) {
361 			retval = -ENOMEM;
362 			goto out;
363 		}
364 	}
365 
366 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
367 
368 out:
369 	spin_unlock_irqrestore(&rc_map->lock, flags);
370 	return retval;
371 }
372 
373 /**
374  * ir_setkeytable() - sets several entries in the scancode->keycode table
375  * @dev:	the struct rc_dev device descriptor
376  * @to:		the struct rc_map to copy entries to
377  * @from:	the struct rc_map to copy entries from
378  * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
379  *
380  * This routine is used to handle table initialization.
381  */
382 static int ir_setkeytable(struct rc_dev *dev,
383 			  const struct rc_map *from)
384 {
385 	struct rc_map *rc_map = &dev->rc_map;
386 	unsigned int i, index;
387 	int rc;
388 
389 	rc = ir_create_table(rc_map, from->name,
390 			     from->rc_type, from->size);
391 	if (rc)
392 		return rc;
393 
394 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
395 		   rc_map->size, rc_map->alloc);
396 
397 	for (i = 0; i < from->size; i++) {
398 		index = ir_establish_scancode(dev, rc_map,
399 					      from->scan[i].scancode, false);
400 		if (index >= rc_map->len) {
401 			rc = -ENOMEM;
402 			break;
403 		}
404 
405 		ir_update_mapping(dev, rc_map, index,
406 				  from->scan[i].keycode);
407 	}
408 
409 	if (rc)
410 		ir_free_table(rc_map);
411 
412 	return rc;
413 }
414 
415 /**
416  * ir_lookup_by_scancode() - locate mapping by scancode
417  * @rc_map:	the struct rc_map to search
418  * @scancode:	scancode to look for in the table
419  * @return:	index in the table, -1U if not found
420  *
421  * This routine performs binary search in RC keykeymap table for
422  * given scancode.
423  */
424 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
425 					  unsigned int scancode)
426 {
427 	int start = 0;
428 	int end = rc_map->len - 1;
429 	int mid;
430 
431 	while (start <= end) {
432 		mid = (start + end) / 2;
433 		if (rc_map->scan[mid].scancode < scancode)
434 			start = mid + 1;
435 		else if (rc_map->scan[mid].scancode > scancode)
436 			end = mid - 1;
437 		else
438 			return mid;
439 	}
440 
441 	return -1U;
442 }
443 
444 /**
445  * ir_getkeycode() - get a keycode from the scancode->keycode table
446  * @idev:	the struct input_dev device descriptor
447  * @scancode:	the desired scancode
448  * @keycode:	used to return the keycode, if found, or KEY_RESERVED
449  * @return:	always returns zero.
450  *
451  * This routine is used to handle evdev EVIOCGKEY ioctl.
452  */
453 static int ir_getkeycode(struct input_dev *idev,
454 			 struct input_keymap_entry *ke)
455 {
456 	struct rc_dev *rdev = input_get_drvdata(idev);
457 	struct rc_map *rc_map = &rdev->rc_map;
458 	struct rc_map_table *entry;
459 	unsigned long flags;
460 	unsigned int index;
461 	unsigned int scancode;
462 	int retval;
463 
464 	spin_lock_irqsave(&rc_map->lock, flags);
465 
466 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
467 		index = ke->index;
468 	} else {
469 		retval = input_scancode_to_scalar(ke, &scancode);
470 		if (retval)
471 			goto out;
472 
473 		index = ir_lookup_by_scancode(rc_map, scancode);
474 	}
475 
476 	if (index < rc_map->len) {
477 		entry = &rc_map->scan[index];
478 
479 		ke->index = index;
480 		ke->keycode = entry->keycode;
481 		ke->len = sizeof(entry->scancode);
482 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
483 
484 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
485 		/*
486 		 * We do not really know the valid range of scancodes
487 		 * so let's respond with KEY_RESERVED to anything we
488 		 * do not have mapping for [yet].
489 		 */
490 		ke->index = index;
491 		ke->keycode = KEY_RESERVED;
492 	} else {
493 		retval = -EINVAL;
494 		goto out;
495 	}
496 
497 	retval = 0;
498 
499 out:
500 	spin_unlock_irqrestore(&rc_map->lock, flags);
501 	return retval;
502 }
503 
504 /**
505  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
506  * @dev:	the struct rc_dev descriptor of the device
507  * @scancode:	the scancode to look for
508  * @return:	the corresponding keycode, or KEY_RESERVED
509  *
510  * This routine is used by drivers which need to convert a scancode to a
511  * keycode. Normally it should not be used since drivers should have no
512  * interest in keycodes.
513  */
514 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
515 {
516 	struct rc_map *rc_map = &dev->rc_map;
517 	unsigned int keycode;
518 	unsigned int index;
519 	unsigned long flags;
520 
521 	spin_lock_irqsave(&rc_map->lock, flags);
522 
523 	index = ir_lookup_by_scancode(rc_map, scancode);
524 	keycode = index < rc_map->len ?
525 			rc_map->scan[index].keycode : KEY_RESERVED;
526 
527 	spin_unlock_irqrestore(&rc_map->lock, flags);
528 
529 	if (keycode != KEY_RESERVED)
530 		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
531 			   dev->input_name, scancode, keycode);
532 
533 	return keycode;
534 }
535 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
536 
537 /**
538  * ir_do_keyup() - internal function to signal the release of a keypress
539  * @dev:	the struct rc_dev descriptor of the device
540  * @sync:	whether or not to call input_sync
541  *
542  * This function is used internally to release a keypress, it must be
543  * called with keylock held.
544  */
545 static void ir_do_keyup(struct rc_dev *dev, bool sync)
546 {
547 	if (!dev->keypressed)
548 		return;
549 
550 	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
551 	input_report_key(dev->input_dev, dev->last_keycode, 0);
552 	led_trigger_event(led_feedback, LED_OFF);
553 	if (sync)
554 		input_sync(dev->input_dev);
555 	dev->keypressed = false;
556 }
557 
558 /**
559  * rc_keyup() - signals the release of a keypress
560  * @dev:	the struct rc_dev descriptor of the device
561  *
562  * This routine is used to signal that a key has been released on the
563  * remote control.
564  */
565 void rc_keyup(struct rc_dev *dev)
566 {
567 	unsigned long flags;
568 
569 	spin_lock_irqsave(&dev->keylock, flags);
570 	ir_do_keyup(dev, true);
571 	spin_unlock_irqrestore(&dev->keylock, flags);
572 }
573 EXPORT_SYMBOL_GPL(rc_keyup);
574 
575 /**
576  * ir_timer_keyup() - generates a keyup event after a timeout
577  * @cookie:	a pointer to the struct rc_dev for the device
578  *
579  * This routine will generate a keyup event some time after a keydown event
580  * is generated when no further activity has been detected.
581  */
582 static void ir_timer_keyup(unsigned long cookie)
583 {
584 	struct rc_dev *dev = (struct rc_dev *)cookie;
585 	unsigned long flags;
586 
587 	/*
588 	 * ir->keyup_jiffies is used to prevent a race condition if a
589 	 * hardware interrupt occurs at this point and the keyup timer
590 	 * event is moved further into the future as a result.
591 	 *
592 	 * The timer will then be reactivated and this function called
593 	 * again in the future. We need to exit gracefully in that case
594 	 * to allow the input subsystem to do its auto-repeat magic or
595 	 * a keyup event might follow immediately after the keydown.
596 	 */
597 	spin_lock_irqsave(&dev->keylock, flags);
598 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
599 		ir_do_keyup(dev, true);
600 	spin_unlock_irqrestore(&dev->keylock, flags);
601 }
602 
603 /**
604  * rc_repeat() - signals that a key is still pressed
605  * @dev:	the struct rc_dev descriptor of the device
606  *
607  * This routine is used by IR decoders when a repeat message which does
608  * not include the necessary bits to reproduce the scancode has been
609  * received.
610  */
611 void rc_repeat(struct rc_dev *dev)
612 {
613 	unsigned long flags;
614 
615 	spin_lock_irqsave(&dev->keylock, flags);
616 
617 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
618 	input_sync(dev->input_dev);
619 
620 	if (!dev->keypressed)
621 		goto out;
622 
623 	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
624 	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
625 
626 out:
627 	spin_unlock_irqrestore(&dev->keylock, flags);
628 }
629 EXPORT_SYMBOL_GPL(rc_repeat);
630 
631 /**
632  * ir_do_keydown() - internal function to process a keypress
633  * @dev:	the struct rc_dev descriptor of the device
634  * @protocol:	the protocol of the keypress
635  * @scancode:   the scancode of the keypress
636  * @keycode:    the keycode of the keypress
637  * @toggle:     the toggle value of the keypress
638  *
639  * This function is used internally to register a keypress, it must be
640  * called with keylock held.
641  */
642 static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
643 			  u32 scancode, u32 keycode, u8 toggle)
644 {
645 	bool new_event = (!dev->keypressed		 ||
646 			  dev->last_protocol != protocol ||
647 			  dev->last_scancode != scancode ||
648 			  dev->last_toggle   != toggle);
649 
650 	if (new_event && dev->keypressed)
651 		ir_do_keyup(dev, false);
652 
653 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
654 
655 	if (new_event && keycode != KEY_RESERVED) {
656 		/* Register a keypress */
657 		dev->keypressed = true;
658 		dev->last_protocol = protocol;
659 		dev->last_scancode = scancode;
660 		dev->last_toggle = toggle;
661 		dev->last_keycode = keycode;
662 
663 		IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
664 			   dev->input_name, keycode, protocol, scancode);
665 		input_report_key(dev->input_dev, keycode, 1);
666 
667 		led_trigger_event(led_feedback, LED_FULL);
668 	}
669 
670 	input_sync(dev->input_dev);
671 }
672 
673 /**
674  * rc_keydown() - generates input event for a key press
675  * @dev:	the struct rc_dev descriptor of the device
676  * @protocol:	the protocol for the keypress
677  * @scancode:	the scancode for the keypress
678  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
679  *              support toggle values, this should be set to zero)
680  *
681  * This routine is used to signal that a key has been pressed on the
682  * remote control.
683  */
684 void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
685 {
686 	unsigned long flags;
687 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
688 
689 	spin_lock_irqsave(&dev->keylock, flags);
690 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
691 
692 	if (dev->keypressed) {
693 		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
694 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
695 	}
696 	spin_unlock_irqrestore(&dev->keylock, flags);
697 }
698 EXPORT_SYMBOL_GPL(rc_keydown);
699 
700 /**
701  * rc_keydown_notimeout() - generates input event for a key press without
702  *                          an automatic keyup event at a later time
703  * @dev:	the struct rc_dev descriptor of the device
704  * @protocol:	the protocol for the keypress
705  * @scancode:	the scancode for the keypress
706  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
707  *              support toggle values, this should be set to zero)
708  *
709  * This routine is used to signal that a key has been pressed on the
710  * remote control. The driver must manually call rc_keyup() at a later stage.
711  */
712 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
713 			  u32 scancode, u8 toggle)
714 {
715 	unsigned long flags;
716 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
717 
718 	spin_lock_irqsave(&dev->keylock, flags);
719 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
720 	spin_unlock_irqrestore(&dev->keylock, flags);
721 }
722 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
723 
724 int rc_open(struct rc_dev *rdev)
725 {
726 	int rval = 0;
727 
728 	if (!rdev)
729 		return -EINVAL;
730 
731 	mutex_lock(&rdev->lock);
732 
733 	if (!rdev->users++ && rdev->open != NULL)
734 		rval = rdev->open(rdev);
735 
736 	if (rval)
737 		rdev->users--;
738 
739 	mutex_unlock(&rdev->lock);
740 
741 	return rval;
742 }
743 EXPORT_SYMBOL_GPL(rc_open);
744 
745 static int ir_open(struct input_dev *idev)
746 {
747 	struct rc_dev *rdev = input_get_drvdata(idev);
748 
749 	return rc_open(rdev);
750 }
751 
752 void rc_close(struct rc_dev *rdev)
753 {
754 	if (rdev) {
755 		mutex_lock(&rdev->lock);
756 
757 		if (!--rdev->users && rdev->close != NULL)
758 			rdev->close(rdev);
759 
760 		mutex_unlock(&rdev->lock);
761 	}
762 }
763 EXPORT_SYMBOL_GPL(rc_close);
764 
765 static void ir_close(struct input_dev *idev)
766 {
767 	struct rc_dev *rdev = input_get_drvdata(idev);
768 	rc_close(rdev);
769 }
770 
771 /* class for /sys/class/rc */
772 static char *rc_devnode(struct device *dev, umode_t *mode)
773 {
774 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
775 }
776 
777 static struct class rc_class = {
778 	.name		= "rc",
779 	.devnode	= rc_devnode,
780 };
781 
782 /*
783  * These are the protocol textual descriptions that are
784  * used by the sysfs protocols file. Note that the order
785  * of the entries is relevant.
786  */
787 static const struct {
788 	u64	type;
789 	const char	*name;
790 	const char	*module_name;
791 } proto_names[] = {
792 	{ RC_BIT_NONE,		"none",		NULL			},
793 	{ RC_BIT_OTHER,		"other",	NULL			},
794 	{ RC_BIT_UNKNOWN,	"unknown",	NULL			},
795 	{ RC_BIT_RC5 |
796 	  RC_BIT_RC5X,		"rc-5",		"ir-rc5-decoder"	},
797 	{ RC_BIT_NEC |
798 	  RC_BIT_NECX |
799 	  RC_BIT_NEC32,		"nec",		"ir-nec-decoder"	},
800 	{ RC_BIT_RC6_0 |
801 	  RC_BIT_RC6_6A_20 |
802 	  RC_BIT_RC6_6A_24 |
803 	  RC_BIT_RC6_6A_32 |
804 	  RC_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
805 	{ RC_BIT_JVC,		"jvc",		"ir-jvc-decoder"	},
806 	{ RC_BIT_SONY12 |
807 	  RC_BIT_SONY15 |
808 	  RC_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
809 	{ RC_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
810 	{ RC_BIT_SANYO,		"sanyo",	"ir-sanyo-decoder"	},
811 	{ RC_BIT_SHARP,		"sharp",	"ir-sharp-decoder"	},
812 	{ RC_BIT_MCE_KBD,	"mce_kbd",	"ir-mce_kbd-decoder"	},
813 	{ RC_BIT_XMP,		"xmp",		"ir-xmp-decoder"	},
814 	{ RC_BIT_CEC,		"cec",		NULL			},
815 };
816 
817 /**
818  * struct rc_filter_attribute - Device attribute relating to a filter type.
819  * @attr:	Device attribute.
820  * @type:	Filter type.
821  * @mask:	false for filter value, true for filter mask.
822  */
823 struct rc_filter_attribute {
824 	struct device_attribute		attr;
825 	enum rc_filter_type		type;
826 	bool				mask;
827 };
828 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
829 
830 #define RC_PROTO_ATTR(_name, _mode, _show, _store, _type)		\
831 	struct rc_filter_attribute dev_attr_##_name = {			\
832 		.attr = __ATTR(_name, _mode, _show, _store),		\
833 		.type = (_type),					\
834 	}
835 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
836 	struct rc_filter_attribute dev_attr_##_name = {			\
837 		.attr = __ATTR(_name, _mode, _show, _store),		\
838 		.type = (_type),					\
839 		.mask = (_mask),					\
840 	}
841 
842 static bool lirc_is_present(void)
843 {
844 #if defined(CONFIG_LIRC_MODULE)
845 	struct module *lirc;
846 
847 	mutex_lock(&module_mutex);
848 	lirc = find_module("lirc_dev");
849 	mutex_unlock(&module_mutex);
850 
851 	return lirc ? true : false;
852 #elif defined(CONFIG_LIRC)
853 	return true;
854 #else
855 	return false;
856 #endif
857 }
858 
859 /**
860  * show_protocols() - shows the current/wakeup IR protocol(s)
861  * @device:	the device descriptor
862  * @mattr:	the device attribute struct
863  * @buf:	a pointer to the output buffer
864  *
865  * This routine is a callback routine for input read the IR protocol type(s).
866  * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
867  * It returns the protocol names of supported protocols.
868  * Enabled protocols are printed in brackets.
869  *
870  * dev->lock is taken to guard against races between device
871  * registration, store_protocols and show_protocols.
872  */
873 static ssize_t show_protocols(struct device *device,
874 			      struct device_attribute *mattr, char *buf)
875 {
876 	struct rc_dev *dev = to_rc_dev(device);
877 	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
878 	u64 allowed, enabled;
879 	char *tmp = buf;
880 	int i;
881 
882 	/* Device is being removed */
883 	if (!dev)
884 		return -EINVAL;
885 
886 	if (!atomic_read(&dev->initialized))
887 		return -ERESTARTSYS;
888 
889 	mutex_lock(&dev->lock);
890 
891 	if (fattr->type == RC_FILTER_NORMAL) {
892 		enabled = dev->enabled_protocols;
893 		allowed = dev->allowed_protocols;
894 		if (dev->raw && !allowed)
895 			allowed = ir_raw_get_allowed_protocols();
896 	} else {
897 		enabled = dev->enabled_wakeup_protocols;
898 		allowed = dev->allowed_wakeup_protocols;
899 	}
900 
901 	mutex_unlock(&dev->lock);
902 
903 	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
904 		   __func__, (long long)allowed, (long long)enabled);
905 
906 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
907 		if (allowed & enabled & proto_names[i].type)
908 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
909 		else if (allowed & proto_names[i].type)
910 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
911 
912 		if (allowed & proto_names[i].type)
913 			allowed &= ~proto_names[i].type;
914 	}
915 
916 	if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
917 		tmp += sprintf(tmp, "[lirc] ");
918 
919 	if (tmp != buf)
920 		tmp--;
921 	*tmp = '\n';
922 
923 	return tmp + 1 - buf;
924 }
925 
926 /**
927  * parse_protocol_change() - parses a protocol change request
928  * @protocols:	pointer to the bitmask of current protocols
929  * @buf:	pointer to the buffer with a list of changes
930  *
931  * Writing "+proto" will add a protocol to the protocol mask.
932  * Writing "-proto" will remove a protocol from protocol mask.
933  * Writing "proto" will enable only "proto".
934  * Writing "none" will disable all protocols.
935  * Returns the number of changes performed or a negative error code.
936  */
937 static int parse_protocol_change(u64 *protocols, const char *buf)
938 {
939 	const char *tmp;
940 	unsigned count = 0;
941 	bool enable, disable;
942 	u64 mask;
943 	int i;
944 
945 	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
946 		if (!*tmp)
947 			break;
948 
949 		if (*tmp == '+') {
950 			enable = true;
951 			disable = false;
952 			tmp++;
953 		} else if (*tmp == '-') {
954 			enable = false;
955 			disable = true;
956 			tmp++;
957 		} else {
958 			enable = false;
959 			disable = false;
960 		}
961 
962 		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
963 			if (!strcasecmp(tmp, proto_names[i].name)) {
964 				mask = proto_names[i].type;
965 				break;
966 			}
967 		}
968 
969 		if (i == ARRAY_SIZE(proto_names)) {
970 			if (!strcasecmp(tmp, "lirc"))
971 				mask = 0;
972 			else {
973 				IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
974 				return -EINVAL;
975 			}
976 		}
977 
978 		count++;
979 
980 		if (enable)
981 			*protocols |= mask;
982 		else if (disable)
983 			*protocols &= ~mask;
984 		else
985 			*protocols = mask;
986 	}
987 
988 	if (!count) {
989 		IR_dprintk(1, "Protocol not specified\n");
990 		return -EINVAL;
991 	}
992 
993 	return count;
994 }
995 
996 static void ir_raw_load_modules(u64 *protocols)
997 
998 {
999 	u64 available;
1000 	int i, ret;
1001 
1002 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1003 		if (proto_names[i].type == RC_BIT_NONE ||
1004 		    proto_names[i].type & (RC_BIT_OTHER | RC_BIT_UNKNOWN))
1005 			continue;
1006 
1007 		available = ir_raw_get_allowed_protocols();
1008 		if (!(*protocols & proto_names[i].type & ~available))
1009 			continue;
1010 
1011 		if (!proto_names[i].module_name) {
1012 			pr_err("Can't enable IR protocol %s\n",
1013 			       proto_names[i].name);
1014 			*protocols &= ~proto_names[i].type;
1015 			continue;
1016 		}
1017 
1018 		ret = request_module("%s", proto_names[i].module_name);
1019 		if (ret < 0) {
1020 			pr_err("Couldn't load IR protocol module %s\n",
1021 			       proto_names[i].module_name);
1022 			*protocols &= ~proto_names[i].type;
1023 			continue;
1024 		}
1025 		msleep(20);
1026 		available = ir_raw_get_allowed_protocols();
1027 		if (!(*protocols & proto_names[i].type & ~available))
1028 			continue;
1029 
1030 		pr_err("Loaded IR protocol module %s, \
1031 		       but protocol %s still not available\n",
1032 		       proto_names[i].module_name,
1033 		       proto_names[i].name);
1034 		*protocols &= ~proto_names[i].type;
1035 	}
1036 }
1037 
1038 /**
1039  * store_protocols() - changes the current/wakeup IR protocol(s)
1040  * @device:	the device descriptor
1041  * @mattr:	the device attribute struct
1042  * @buf:	a pointer to the input buffer
1043  * @len:	length of the input buffer
1044  *
1045  * This routine is for changing the IR protocol type.
1046  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1047  * See parse_protocol_change() for the valid commands.
1048  * Returns @len on success or a negative error code.
1049  *
1050  * dev->lock is taken to guard against races between device
1051  * registration, store_protocols and show_protocols.
1052  */
1053 static ssize_t store_protocols(struct device *device,
1054 			       struct device_attribute *mattr,
1055 			       const char *buf, size_t len)
1056 {
1057 	struct rc_dev *dev = to_rc_dev(device);
1058 	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
1059 	u64 *current_protocols;
1060 	int (*change_protocol)(struct rc_dev *dev, u64 *rc_type);
1061 	struct rc_scancode_filter *filter;
1062 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1063 	u64 old_protocols, new_protocols;
1064 	ssize_t rc;
1065 
1066 	/* Device is being removed */
1067 	if (!dev)
1068 		return -EINVAL;
1069 
1070 	if (!atomic_read(&dev->initialized))
1071 		return -ERESTARTSYS;
1072 
1073 	if (fattr->type == RC_FILTER_NORMAL) {
1074 		IR_dprintk(1, "Normal protocol change requested\n");
1075 		current_protocols = &dev->enabled_protocols;
1076 		change_protocol = dev->change_protocol;
1077 		filter = &dev->scancode_filter;
1078 		set_filter = dev->s_filter;
1079 	} else {
1080 		IR_dprintk(1, "Wakeup protocol change requested\n");
1081 		current_protocols = &dev->enabled_wakeup_protocols;
1082 		change_protocol = dev->change_wakeup_protocol;
1083 		filter = &dev->scancode_wakeup_filter;
1084 		set_filter = dev->s_wakeup_filter;
1085 	}
1086 
1087 	if (!change_protocol) {
1088 		IR_dprintk(1, "Protocol switching not supported\n");
1089 		return -EINVAL;
1090 	}
1091 
1092 	mutex_lock(&dev->lock);
1093 
1094 	old_protocols = *current_protocols;
1095 	new_protocols = old_protocols;
1096 	rc = parse_protocol_change(&new_protocols, buf);
1097 	if (rc < 0)
1098 		goto out;
1099 
1100 	rc = change_protocol(dev, &new_protocols);
1101 	if (rc < 0) {
1102 		IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1103 			   (long long)new_protocols);
1104 		goto out;
1105 	}
1106 
1107 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1108 		ir_raw_load_modules(&new_protocols);
1109 
1110 	if (new_protocols != old_protocols) {
1111 		*current_protocols = new_protocols;
1112 		IR_dprintk(1, "Protocols changed to 0x%llx\n",
1113 			   (long long)new_protocols);
1114 	}
1115 
1116 	/*
1117 	 * If a protocol change was attempted the filter may need updating, even
1118 	 * if the actual protocol mask hasn't changed (since the driver may have
1119 	 * cleared the filter).
1120 	 * Try setting the same filter with the new protocol (if any).
1121 	 * Fall back to clearing the filter.
1122 	 */
1123 	if (set_filter && filter->mask) {
1124 		if (new_protocols)
1125 			rc = set_filter(dev, filter);
1126 		else
1127 			rc = -1;
1128 
1129 		if (rc < 0) {
1130 			filter->data = 0;
1131 			filter->mask = 0;
1132 			set_filter(dev, filter);
1133 		}
1134 	}
1135 
1136 	rc = len;
1137 
1138 out:
1139 	mutex_unlock(&dev->lock);
1140 	return rc;
1141 }
1142 
1143 /**
1144  * show_filter() - shows the current scancode filter value or mask
1145  * @device:	the device descriptor
1146  * @attr:	the device attribute struct
1147  * @buf:	a pointer to the output buffer
1148  *
1149  * This routine is a callback routine to read a scancode filter value or mask.
1150  * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1151  * It prints the current scancode filter value or mask of the appropriate filter
1152  * type in hexadecimal into @buf and returns the size of the buffer.
1153  *
1154  * Bits of the filter value corresponding to set bits in the filter mask are
1155  * compared against input scancodes and non-matching scancodes are discarded.
1156  *
1157  * dev->lock is taken to guard against races between device registration,
1158  * store_filter and show_filter.
1159  */
1160 static ssize_t show_filter(struct device *device,
1161 			   struct device_attribute *attr,
1162 			   char *buf)
1163 {
1164 	struct rc_dev *dev = to_rc_dev(device);
1165 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1166 	struct rc_scancode_filter *filter;
1167 	u32 val;
1168 
1169 	/* Device is being removed */
1170 	if (!dev)
1171 		return -EINVAL;
1172 
1173 	if (!atomic_read(&dev->initialized))
1174 		return -ERESTARTSYS;
1175 
1176 	mutex_lock(&dev->lock);
1177 
1178 	if (fattr->type == RC_FILTER_NORMAL)
1179 		filter = &dev->scancode_filter;
1180 	else
1181 		filter = &dev->scancode_wakeup_filter;
1182 
1183 	if (fattr->mask)
1184 		val = filter->mask;
1185 	else
1186 		val = filter->data;
1187 	mutex_unlock(&dev->lock);
1188 
1189 	return sprintf(buf, "%#x\n", val);
1190 }
1191 
1192 /**
1193  * store_filter() - changes the scancode filter value
1194  * @device:	the device descriptor
1195  * @attr:	the device attribute struct
1196  * @buf:	a pointer to the input buffer
1197  * @len:	length of the input buffer
1198  *
1199  * This routine is for changing a scancode filter value or mask.
1200  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1201  * Returns -EINVAL if an invalid filter value for the current protocol was
1202  * specified or if scancode filtering is not supported by the driver, otherwise
1203  * returns @len.
1204  *
1205  * Bits of the filter value corresponding to set bits in the filter mask are
1206  * compared against input scancodes and non-matching scancodes are discarded.
1207  *
1208  * dev->lock is taken to guard against races between device registration,
1209  * store_filter and show_filter.
1210  */
1211 static ssize_t store_filter(struct device *device,
1212 			    struct device_attribute *attr,
1213 			    const char *buf, size_t len)
1214 {
1215 	struct rc_dev *dev = to_rc_dev(device);
1216 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1217 	struct rc_scancode_filter new_filter, *filter;
1218 	int ret;
1219 	unsigned long val;
1220 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1221 	u64 *enabled_protocols;
1222 
1223 	/* Device is being removed */
1224 	if (!dev)
1225 		return -EINVAL;
1226 
1227 	if (!atomic_read(&dev->initialized))
1228 		return -ERESTARTSYS;
1229 
1230 	ret = kstrtoul(buf, 0, &val);
1231 	if (ret < 0)
1232 		return ret;
1233 
1234 	if (fattr->type == RC_FILTER_NORMAL) {
1235 		set_filter = dev->s_filter;
1236 		enabled_protocols = &dev->enabled_protocols;
1237 		filter = &dev->scancode_filter;
1238 	} else {
1239 		set_filter = dev->s_wakeup_filter;
1240 		enabled_protocols = &dev->enabled_wakeup_protocols;
1241 		filter = &dev->scancode_wakeup_filter;
1242 	}
1243 
1244 	if (!set_filter)
1245 		return -EINVAL;
1246 
1247 	mutex_lock(&dev->lock);
1248 
1249 	new_filter = *filter;
1250 	if (fattr->mask)
1251 		new_filter.mask = val;
1252 	else
1253 		new_filter.data = val;
1254 
1255 	if (!*enabled_protocols && val) {
1256 		/* refuse to set a filter unless a protocol is enabled */
1257 		ret = -EINVAL;
1258 		goto unlock;
1259 	}
1260 
1261 	ret = set_filter(dev, &new_filter);
1262 	if (ret < 0)
1263 		goto unlock;
1264 
1265 	*filter = new_filter;
1266 
1267 unlock:
1268 	mutex_unlock(&dev->lock);
1269 	return (ret < 0) ? ret : len;
1270 }
1271 
1272 static void rc_dev_release(struct device *device)
1273 {
1274 	struct rc_dev *dev = to_rc_dev(device);
1275 
1276 	kfree(dev);
1277 }
1278 
1279 #define ADD_HOTPLUG_VAR(fmt, val...)					\
1280 	do {								\
1281 		int err = add_uevent_var(env, fmt, val);		\
1282 		if (err)						\
1283 			return err;					\
1284 	} while (0)
1285 
1286 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1287 {
1288 	struct rc_dev *dev = to_rc_dev(device);
1289 
1290 	if (dev->rc_map.name)
1291 		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1292 	if (dev->driver_name)
1293 		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1294 
1295 	return 0;
1296 }
1297 
1298 /*
1299  * Static device attribute struct with the sysfs attributes for IR's
1300  */
1301 static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR,
1302 		     show_protocols, store_protocols, RC_FILTER_NORMAL);
1303 static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR,
1304 		     show_protocols, store_protocols, RC_FILTER_WAKEUP);
1305 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1306 		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1307 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1308 		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1309 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1310 		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1311 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1312 		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1313 
1314 static struct attribute *rc_dev_protocol_attrs[] = {
1315 	&dev_attr_protocols.attr.attr,
1316 	NULL,
1317 };
1318 
1319 static struct attribute_group rc_dev_protocol_attr_grp = {
1320 	.attrs	= rc_dev_protocol_attrs,
1321 };
1322 
1323 static struct attribute *rc_dev_wakeup_protocol_attrs[] = {
1324 	&dev_attr_wakeup_protocols.attr.attr,
1325 	NULL,
1326 };
1327 
1328 static struct attribute_group rc_dev_wakeup_protocol_attr_grp = {
1329 	.attrs	= rc_dev_wakeup_protocol_attrs,
1330 };
1331 
1332 static struct attribute *rc_dev_filter_attrs[] = {
1333 	&dev_attr_filter.attr.attr,
1334 	&dev_attr_filter_mask.attr.attr,
1335 	NULL,
1336 };
1337 
1338 static struct attribute_group rc_dev_filter_attr_grp = {
1339 	.attrs	= rc_dev_filter_attrs,
1340 };
1341 
1342 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1343 	&dev_attr_wakeup_filter.attr.attr,
1344 	&dev_attr_wakeup_filter_mask.attr.attr,
1345 	NULL,
1346 };
1347 
1348 static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1349 	.attrs	= rc_dev_wakeup_filter_attrs,
1350 };
1351 
1352 static struct device_type rc_dev_type = {
1353 	.release	= rc_dev_release,
1354 	.uevent		= rc_dev_uevent,
1355 };
1356 
1357 struct rc_dev *rc_allocate_device(void)
1358 {
1359 	struct rc_dev *dev;
1360 
1361 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1362 	if (!dev)
1363 		return NULL;
1364 
1365 	dev->input_dev = input_allocate_device();
1366 	if (!dev->input_dev) {
1367 		kfree(dev);
1368 		return NULL;
1369 	}
1370 
1371 	dev->input_dev->getkeycode = ir_getkeycode;
1372 	dev->input_dev->setkeycode = ir_setkeycode;
1373 	input_set_drvdata(dev->input_dev, dev);
1374 
1375 	spin_lock_init(&dev->rc_map.lock);
1376 	spin_lock_init(&dev->keylock);
1377 	mutex_init(&dev->lock);
1378 	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1379 
1380 	dev->dev.type = &rc_dev_type;
1381 	dev->dev.class = &rc_class;
1382 	device_initialize(&dev->dev);
1383 
1384 	__module_get(THIS_MODULE);
1385 	return dev;
1386 }
1387 EXPORT_SYMBOL_GPL(rc_allocate_device);
1388 
1389 void rc_free_device(struct rc_dev *dev)
1390 {
1391 	if (!dev)
1392 		return;
1393 
1394 	input_free_device(dev->input_dev);
1395 
1396 	put_device(&dev->dev);
1397 
1398 	/* kfree(dev) will be called by the callback function
1399 	   rc_dev_release() */
1400 
1401 	module_put(THIS_MODULE);
1402 }
1403 EXPORT_SYMBOL_GPL(rc_free_device);
1404 
1405 static void devm_rc_alloc_release(struct device *dev, void *res)
1406 {
1407 	rc_free_device(*(struct rc_dev **)res);
1408 }
1409 
1410 struct rc_dev *devm_rc_allocate_device(struct device *dev)
1411 {
1412 	struct rc_dev **dr, *rc;
1413 
1414 	dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1415 	if (!dr)
1416 		return NULL;
1417 
1418 	rc = rc_allocate_device();
1419 	if (!rc) {
1420 		devres_free(dr);
1421 		return NULL;
1422 	}
1423 
1424 	rc->dev.parent = dev;
1425 	rc->managed_alloc = true;
1426 	*dr = rc;
1427 	devres_add(dev, dr);
1428 
1429 	return rc;
1430 }
1431 EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1432 
1433 int rc_register_device(struct rc_dev *dev)
1434 {
1435 	static bool raw_init = false; /* raw decoders loaded? */
1436 	struct rc_map *rc_map;
1437 	const char *path;
1438 	int attr = 0;
1439 	int minor;
1440 	int rc;
1441 
1442 	if (!dev || !dev->map_name)
1443 		return -EINVAL;
1444 
1445 	rc_map = rc_map_get(dev->map_name);
1446 	if (!rc_map)
1447 		rc_map = rc_map_get(RC_MAP_EMPTY);
1448 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1449 		return -EINVAL;
1450 
1451 	set_bit(EV_KEY, dev->input_dev->evbit);
1452 	set_bit(EV_REP, dev->input_dev->evbit);
1453 	set_bit(EV_MSC, dev->input_dev->evbit);
1454 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1455 	if (dev->open)
1456 		dev->input_dev->open = ir_open;
1457 	if (dev->close)
1458 		dev->input_dev->close = ir_close;
1459 
1460 	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1461 	if (minor < 0)
1462 		return minor;
1463 
1464 	dev->minor = minor;
1465 	dev_set_name(&dev->dev, "rc%u", dev->minor);
1466 	dev_set_drvdata(&dev->dev, dev);
1467 	atomic_set(&dev->initialized, 0);
1468 
1469 	dev->dev.groups = dev->sysfs_groups;
1470 	dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1471 	if (dev->s_filter)
1472 		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1473 	if (dev->s_wakeup_filter)
1474 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1475 	if (dev->change_wakeup_protocol)
1476 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp;
1477 	dev->sysfs_groups[attr++] = NULL;
1478 
1479 	rc = device_add(&dev->dev);
1480 	if (rc)
1481 		goto out_unlock;
1482 
1483 	rc = ir_setkeytable(dev, rc_map);
1484 	if (rc)
1485 		goto out_dev;
1486 
1487 	dev->input_dev->dev.parent = &dev->dev;
1488 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1489 	dev->input_dev->phys = dev->input_phys;
1490 	dev->input_dev->name = dev->input_name;
1491 
1492 	rc = input_register_device(dev->input_dev);
1493 	if (rc)
1494 		goto out_table;
1495 
1496 	/*
1497 	 * Default delay of 250ms is too short for some protocols, especially
1498 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1499 	 * to avoid wrong repetition of the keycodes. Note that this must be
1500 	 * set after the call to input_register_device().
1501 	 */
1502 	dev->input_dev->rep[REP_DELAY] = 500;
1503 
1504 	/*
1505 	 * As a repeat event on protocols like RC-5 and NEC take as long as
1506 	 * 110/114ms, using 33ms as a repeat period is not the right thing
1507 	 * to do.
1508 	 */
1509 	dev->input_dev->rep[REP_PERIOD] = 125;
1510 
1511 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1512 	dev_info(&dev->dev, "%s as %s\n",
1513 		dev->input_name ?: "Unspecified device", path ?: "N/A");
1514 	kfree(path);
1515 
1516 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1517 		if (!raw_init) {
1518 			request_module_nowait("ir-lirc-codec");
1519 			raw_init = true;
1520 		}
1521 		rc = ir_raw_event_register(dev);
1522 		if (rc < 0)
1523 			goto out_input;
1524 	}
1525 
1526 	if (dev->change_protocol) {
1527 		u64 rc_type = (1ll << rc_map->rc_type);
1528 		rc = dev->change_protocol(dev, &rc_type);
1529 		if (rc < 0)
1530 			goto out_raw;
1531 		dev->enabled_protocols = rc_type;
1532 	}
1533 
1534 	/* Allow the RC sysfs nodes to be accessible */
1535 	atomic_set(&dev->initialized, 1);
1536 
1537 	IR_dprintk(1, "Registered rc%u (driver: %s, remote: %s, mode %s)\n",
1538 		   dev->minor,
1539 		   dev->driver_name ? dev->driver_name : "unknown",
1540 		   rc_map->name ? rc_map->name : "unknown",
1541 		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1542 
1543 	return 0;
1544 
1545 out_raw:
1546 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1547 		ir_raw_event_unregister(dev);
1548 out_input:
1549 	input_unregister_device(dev->input_dev);
1550 	dev->input_dev = NULL;
1551 out_table:
1552 	ir_free_table(&dev->rc_map);
1553 out_dev:
1554 	device_del(&dev->dev);
1555 out_unlock:
1556 	ida_simple_remove(&rc_ida, minor);
1557 	return rc;
1558 }
1559 EXPORT_SYMBOL_GPL(rc_register_device);
1560 
1561 static void devm_rc_release(struct device *dev, void *res)
1562 {
1563 	rc_unregister_device(*(struct rc_dev **)res);
1564 }
1565 
1566 int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1567 {
1568 	struct rc_dev **dr;
1569 	int ret;
1570 
1571 	dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1572 	if (!dr)
1573 		return -ENOMEM;
1574 
1575 	ret = rc_register_device(dev);
1576 	if (ret) {
1577 		devres_free(dr);
1578 		return ret;
1579 	}
1580 
1581 	*dr = dev;
1582 	devres_add(parent, dr);
1583 
1584 	return 0;
1585 }
1586 EXPORT_SYMBOL_GPL(devm_rc_register_device);
1587 
1588 void rc_unregister_device(struct rc_dev *dev)
1589 {
1590 	if (!dev)
1591 		return;
1592 
1593 	del_timer_sync(&dev->timer_keyup);
1594 
1595 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1596 		ir_raw_event_unregister(dev);
1597 
1598 	/* Freeing the table should also call the stop callback */
1599 	ir_free_table(&dev->rc_map);
1600 	IR_dprintk(1, "Freed keycode table\n");
1601 
1602 	input_unregister_device(dev->input_dev);
1603 	dev->input_dev = NULL;
1604 
1605 	device_del(&dev->dev);
1606 
1607 	ida_simple_remove(&rc_ida, dev->minor);
1608 
1609 	if (!dev->managed_alloc)
1610 		rc_free_device(dev);
1611 }
1612 
1613 EXPORT_SYMBOL_GPL(rc_unregister_device);
1614 
1615 /*
1616  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1617  */
1618 
1619 static int __init rc_core_init(void)
1620 {
1621 	int rc = class_register(&rc_class);
1622 	if (rc) {
1623 		printk(KERN_ERR "rc_core: unable to register rc class\n");
1624 		return rc;
1625 	}
1626 
1627 	led_trigger_register_simple("rc-feedback", &led_feedback);
1628 	rc_map_register(&empty_map);
1629 
1630 	return 0;
1631 }
1632 
1633 static void __exit rc_core_exit(void)
1634 {
1635 	class_unregister(&rc_class);
1636 	led_trigger_unregister_simple(led_feedback);
1637 	rc_map_unregister(&empty_map);
1638 }
1639 
1640 subsys_initcall(rc_core_init);
1641 module_exit(rc_core_exit);
1642 
1643 int rc_core_debug;    /* ir_debug level (0,1,2) */
1644 EXPORT_SYMBOL_GPL(rc_core_debug);
1645 module_param_named(debug, rc_core_debug, int, 0644);
1646 
1647 MODULE_AUTHOR("Mauro Carvalho Chehab");
1648 MODULE_LICENSE("GPL");
1649