1 /* rc-main.c - Remote Controller core module 2 * 3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation version 2 of the License. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <media/rc-core.h> 18 #include <linux/atomic.h> 19 #include <linux/spinlock.h> 20 #include <linux/delay.h> 21 #include <linux/input.h> 22 #include <linux/leds.h> 23 #include <linux/slab.h> 24 #include <linux/idr.h> 25 #include <linux/device.h> 26 #include <linux/module.h> 27 #include "rc-core-priv.h" 28 29 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */ 30 #define IR_TAB_MIN_SIZE 256 31 #define IR_TAB_MAX_SIZE 8192 32 #define RC_DEV_MAX 256 33 34 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */ 35 #define IR_KEYPRESS_TIMEOUT 250 36 37 /* Used to keep track of known keymaps */ 38 static LIST_HEAD(rc_map_list); 39 static DEFINE_SPINLOCK(rc_map_lock); 40 static struct led_trigger *led_feedback; 41 42 /* Used to keep track of rc devices */ 43 static DEFINE_IDA(rc_ida); 44 45 static struct rc_map_list *seek_rc_map(const char *name) 46 { 47 struct rc_map_list *map = NULL; 48 49 spin_lock(&rc_map_lock); 50 list_for_each_entry(map, &rc_map_list, list) { 51 if (!strcmp(name, map->map.name)) { 52 spin_unlock(&rc_map_lock); 53 return map; 54 } 55 } 56 spin_unlock(&rc_map_lock); 57 58 return NULL; 59 } 60 61 struct rc_map *rc_map_get(const char *name) 62 { 63 64 struct rc_map_list *map; 65 66 map = seek_rc_map(name); 67 #ifdef CONFIG_MODULES 68 if (!map) { 69 int rc = request_module("%s", name); 70 if (rc < 0) { 71 pr_err("Couldn't load IR keymap %s\n", name); 72 return NULL; 73 } 74 msleep(20); /* Give some time for IR to register */ 75 76 map = seek_rc_map(name); 77 } 78 #endif 79 if (!map) { 80 pr_err("IR keymap %s not found\n", name); 81 return NULL; 82 } 83 84 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name); 85 86 return &map->map; 87 } 88 EXPORT_SYMBOL_GPL(rc_map_get); 89 90 int rc_map_register(struct rc_map_list *map) 91 { 92 spin_lock(&rc_map_lock); 93 list_add_tail(&map->list, &rc_map_list); 94 spin_unlock(&rc_map_lock); 95 return 0; 96 } 97 EXPORT_SYMBOL_GPL(rc_map_register); 98 99 void rc_map_unregister(struct rc_map_list *map) 100 { 101 spin_lock(&rc_map_lock); 102 list_del(&map->list); 103 spin_unlock(&rc_map_lock); 104 } 105 EXPORT_SYMBOL_GPL(rc_map_unregister); 106 107 108 static struct rc_map_table empty[] = { 109 { 0x2a, KEY_COFFEE }, 110 }; 111 112 static struct rc_map_list empty_map = { 113 .map = { 114 .scan = empty, 115 .size = ARRAY_SIZE(empty), 116 .rc_type = RC_TYPE_UNKNOWN, /* Legacy IR type */ 117 .name = RC_MAP_EMPTY, 118 } 119 }; 120 121 /** 122 * ir_create_table() - initializes a scancode table 123 * @rc_map: the rc_map to initialize 124 * @name: name to assign to the table 125 * @rc_type: ir type to assign to the new table 126 * @size: initial size of the table 127 * @return: zero on success or a negative error code 128 * 129 * This routine will initialize the rc_map and will allocate 130 * memory to hold at least the specified number of elements. 131 */ 132 static int ir_create_table(struct rc_map *rc_map, 133 const char *name, u64 rc_type, size_t size) 134 { 135 rc_map->name = kstrdup(name, GFP_KERNEL); 136 if (!rc_map->name) 137 return -ENOMEM; 138 rc_map->rc_type = rc_type; 139 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table)); 140 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 141 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL); 142 if (!rc_map->scan) { 143 kfree(rc_map->name); 144 rc_map->name = NULL; 145 return -ENOMEM; 146 } 147 148 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n", 149 rc_map->size, rc_map->alloc); 150 return 0; 151 } 152 153 /** 154 * ir_free_table() - frees memory allocated by a scancode table 155 * @rc_map: the table whose mappings need to be freed 156 * 157 * This routine will free memory alloctaed for key mappings used by given 158 * scancode table. 159 */ 160 static void ir_free_table(struct rc_map *rc_map) 161 { 162 rc_map->size = 0; 163 kfree(rc_map->name); 164 rc_map->name = NULL; 165 kfree(rc_map->scan); 166 rc_map->scan = NULL; 167 } 168 169 /** 170 * ir_resize_table() - resizes a scancode table if necessary 171 * @rc_map: the rc_map to resize 172 * @gfp_flags: gfp flags to use when allocating memory 173 * @return: zero on success or a negative error code 174 * 175 * This routine will shrink the rc_map if it has lots of 176 * unused entries and grow it if it is full. 177 */ 178 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags) 179 { 180 unsigned int oldalloc = rc_map->alloc; 181 unsigned int newalloc = oldalloc; 182 struct rc_map_table *oldscan = rc_map->scan; 183 struct rc_map_table *newscan; 184 185 if (rc_map->size == rc_map->len) { 186 /* All entries in use -> grow keytable */ 187 if (rc_map->alloc >= IR_TAB_MAX_SIZE) 188 return -ENOMEM; 189 190 newalloc *= 2; 191 IR_dprintk(1, "Growing table to %u bytes\n", newalloc); 192 } 193 194 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) { 195 /* Less than 1/3 of entries in use -> shrink keytable */ 196 newalloc /= 2; 197 IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc); 198 } 199 200 if (newalloc == oldalloc) 201 return 0; 202 203 newscan = kmalloc(newalloc, gfp_flags); 204 if (!newscan) { 205 IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc); 206 return -ENOMEM; 207 } 208 209 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table)); 210 rc_map->scan = newscan; 211 rc_map->alloc = newalloc; 212 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 213 kfree(oldscan); 214 return 0; 215 } 216 217 /** 218 * ir_update_mapping() - set a keycode in the scancode->keycode table 219 * @dev: the struct rc_dev device descriptor 220 * @rc_map: scancode table to be adjusted 221 * @index: index of the mapping that needs to be updated 222 * @keycode: the desired keycode 223 * @return: previous keycode assigned to the mapping 224 * 225 * This routine is used to update scancode->keycode mapping at given 226 * position. 227 */ 228 static unsigned int ir_update_mapping(struct rc_dev *dev, 229 struct rc_map *rc_map, 230 unsigned int index, 231 unsigned int new_keycode) 232 { 233 int old_keycode = rc_map->scan[index].keycode; 234 int i; 235 236 /* Did the user wish to remove the mapping? */ 237 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) { 238 IR_dprintk(1, "#%d: Deleting scan 0x%04x\n", 239 index, rc_map->scan[index].scancode); 240 rc_map->len--; 241 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1], 242 (rc_map->len - index) * sizeof(struct rc_map_table)); 243 } else { 244 IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n", 245 index, 246 old_keycode == KEY_RESERVED ? "New" : "Replacing", 247 rc_map->scan[index].scancode, new_keycode); 248 rc_map->scan[index].keycode = new_keycode; 249 __set_bit(new_keycode, dev->input_dev->keybit); 250 } 251 252 if (old_keycode != KEY_RESERVED) { 253 /* A previous mapping was updated... */ 254 __clear_bit(old_keycode, dev->input_dev->keybit); 255 /* ... but another scancode might use the same keycode */ 256 for (i = 0; i < rc_map->len; i++) { 257 if (rc_map->scan[i].keycode == old_keycode) { 258 __set_bit(old_keycode, dev->input_dev->keybit); 259 break; 260 } 261 } 262 263 /* Possibly shrink the keytable, failure is not a problem */ 264 ir_resize_table(rc_map, GFP_ATOMIC); 265 } 266 267 return old_keycode; 268 } 269 270 /** 271 * ir_establish_scancode() - set a keycode in the scancode->keycode table 272 * @dev: the struct rc_dev device descriptor 273 * @rc_map: scancode table to be searched 274 * @scancode: the desired scancode 275 * @resize: controls whether we allowed to resize the table to 276 * accommodate not yet present scancodes 277 * @return: index of the mapping containing scancode in question 278 * or -1U in case of failure. 279 * 280 * This routine is used to locate given scancode in rc_map. 281 * If scancode is not yet present the routine will allocate a new slot 282 * for it. 283 */ 284 static unsigned int ir_establish_scancode(struct rc_dev *dev, 285 struct rc_map *rc_map, 286 unsigned int scancode, 287 bool resize) 288 { 289 unsigned int i; 290 291 /* 292 * Unfortunately, some hardware-based IR decoders don't provide 293 * all bits for the complete IR code. In general, they provide only 294 * the command part of the IR code. Yet, as it is possible to replace 295 * the provided IR with another one, it is needed to allow loading 296 * IR tables from other remotes. So, we support specifying a mask to 297 * indicate the valid bits of the scancodes. 298 */ 299 if (dev->scancode_mask) 300 scancode &= dev->scancode_mask; 301 302 /* First check if we already have a mapping for this ir command */ 303 for (i = 0; i < rc_map->len; i++) { 304 if (rc_map->scan[i].scancode == scancode) 305 return i; 306 307 /* Keytable is sorted from lowest to highest scancode */ 308 if (rc_map->scan[i].scancode >= scancode) 309 break; 310 } 311 312 /* No previous mapping found, we might need to grow the table */ 313 if (rc_map->size == rc_map->len) { 314 if (!resize || ir_resize_table(rc_map, GFP_ATOMIC)) 315 return -1U; 316 } 317 318 /* i is the proper index to insert our new keycode */ 319 if (i < rc_map->len) 320 memmove(&rc_map->scan[i + 1], &rc_map->scan[i], 321 (rc_map->len - i) * sizeof(struct rc_map_table)); 322 rc_map->scan[i].scancode = scancode; 323 rc_map->scan[i].keycode = KEY_RESERVED; 324 rc_map->len++; 325 326 return i; 327 } 328 329 /** 330 * ir_setkeycode() - set a keycode in the scancode->keycode table 331 * @idev: the struct input_dev device descriptor 332 * @scancode: the desired scancode 333 * @keycode: result 334 * @return: -EINVAL if the keycode could not be inserted, otherwise zero. 335 * 336 * This routine is used to handle evdev EVIOCSKEY ioctl. 337 */ 338 static int ir_setkeycode(struct input_dev *idev, 339 const struct input_keymap_entry *ke, 340 unsigned int *old_keycode) 341 { 342 struct rc_dev *rdev = input_get_drvdata(idev); 343 struct rc_map *rc_map = &rdev->rc_map; 344 unsigned int index; 345 unsigned int scancode; 346 int retval = 0; 347 unsigned long flags; 348 349 spin_lock_irqsave(&rc_map->lock, flags); 350 351 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 352 index = ke->index; 353 if (index >= rc_map->len) { 354 retval = -EINVAL; 355 goto out; 356 } 357 } else { 358 retval = input_scancode_to_scalar(ke, &scancode); 359 if (retval) 360 goto out; 361 362 index = ir_establish_scancode(rdev, rc_map, scancode, true); 363 if (index >= rc_map->len) { 364 retval = -ENOMEM; 365 goto out; 366 } 367 } 368 369 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode); 370 371 out: 372 spin_unlock_irqrestore(&rc_map->lock, flags); 373 return retval; 374 } 375 376 /** 377 * ir_setkeytable() - sets several entries in the scancode->keycode table 378 * @dev: the struct rc_dev device descriptor 379 * @to: the struct rc_map to copy entries to 380 * @from: the struct rc_map to copy entries from 381 * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero. 382 * 383 * This routine is used to handle table initialization. 384 */ 385 static int ir_setkeytable(struct rc_dev *dev, 386 const struct rc_map *from) 387 { 388 struct rc_map *rc_map = &dev->rc_map; 389 unsigned int i, index; 390 int rc; 391 392 rc = ir_create_table(rc_map, from->name, 393 from->rc_type, from->size); 394 if (rc) 395 return rc; 396 397 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n", 398 rc_map->size, rc_map->alloc); 399 400 for (i = 0; i < from->size; i++) { 401 index = ir_establish_scancode(dev, rc_map, 402 from->scan[i].scancode, false); 403 if (index >= rc_map->len) { 404 rc = -ENOMEM; 405 break; 406 } 407 408 ir_update_mapping(dev, rc_map, index, 409 from->scan[i].keycode); 410 } 411 412 if (rc) 413 ir_free_table(rc_map); 414 415 return rc; 416 } 417 418 /** 419 * ir_lookup_by_scancode() - locate mapping by scancode 420 * @rc_map: the struct rc_map to search 421 * @scancode: scancode to look for in the table 422 * @return: index in the table, -1U if not found 423 * 424 * This routine performs binary search in RC keykeymap table for 425 * given scancode. 426 */ 427 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map, 428 unsigned int scancode) 429 { 430 int start = 0; 431 int end = rc_map->len - 1; 432 int mid; 433 434 while (start <= end) { 435 mid = (start + end) / 2; 436 if (rc_map->scan[mid].scancode < scancode) 437 start = mid + 1; 438 else if (rc_map->scan[mid].scancode > scancode) 439 end = mid - 1; 440 else 441 return mid; 442 } 443 444 return -1U; 445 } 446 447 /** 448 * ir_getkeycode() - get a keycode from the scancode->keycode table 449 * @idev: the struct input_dev device descriptor 450 * @scancode: the desired scancode 451 * @keycode: used to return the keycode, if found, or KEY_RESERVED 452 * @return: always returns zero. 453 * 454 * This routine is used to handle evdev EVIOCGKEY ioctl. 455 */ 456 static int ir_getkeycode(struct input_dev *idev, 457 struct input_keymap_entry *ke) 458 { 459 struct rc_dev *rdev = input_get_drvdata(idev); 460 struct rc_map *rc_map = &rdev->rc_map; 461 struct rc_map_table *entry; 462 unsigned long flags; 463 unsigned int index; 464 unsigned int scancode; 465 int retval; 466 467 spin_lock_irqsave(&rc_map->lock, flags); 468 469 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 470 index = ke->index; 471 } else { 472 retval = input_scancode_to_scalar(ke, &scancode); 473 if (retval) 474 goto out; 475 476 index = ir_lookup_by_scancode(rc_map, scancode); 477 } 478 479 if (index < rc_map->len) { 480 entry = &rc_map->scan[index]; 481 482 ke->index = index; 483 ke->keycode = entry->keycode; 484 ke->len = sizeof(entry->scancode); 485 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode)); 486 487 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) { 488 /* 489 * We do not really know the valid range of scancodes 490 * so let's respond with KEY_RESERVED to anything we 491 * do not have mapping for [yet]. 492 */ 493 ke->index = index; 494 ke->keycode = KEY_RESERVED; 495 } else { 496 retval = -EINVAL; 497 goto out; 498 } 499 500 retval = 0; 501 502 out: 503 spin_unlock_irqrestore(&rc_map->lock, flags); 504 return retval; 505 } 506 507 /** 508 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode 509 * @dev: the struct rc_dev descriptor of the device 510 * @scancode: the scancode to look for 511 * @return: the corresponding keycode, or KEY_RESERVED 512 * 513 * This routine is used by drivers which need to convert a scancode to a 514 * keycode. Normally it should not be used since drivers should have no 515 * interest in keycodes. 516 */ 517 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode) 518 { 519 struct rc_map *rc_map = &dev->rc_map; 520 unsigned int keycode; 521 unsigned int index; 522 unsigned long flags; 523 524 spin_lock_irqsave(&rc_map->lock, flags); 525 526 index = ir_lookup_by_scancode(rc_map, scancode); 527 keycode = index < rc_map->len ? 528 rc_map->scan[index].keycode : KEY_RESERVED; 529 530 spin_unlock_irqrestore(&rc_map->lock, flags); 531 532 if (keycode != KEY_RESERVED) 533 IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n", 534 dev->input_name, scancode, keycode); 535 536 return keycode; 537 } 538 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table); 539 540 /** 541 * ir_do_keyup() - internal function to signal the release of a keypress 542 * @dev: the struct rc_dev descriptor of the device 543 * @sync: whether or not to call input_sync 544 * 545 * This function is used internally to release a keypress, it must be 546 * called with keylock held. 547 */ 548 static void ir_do_keyup(struct rc_dev *dev, bool sync) 549 { 550 if (!dev->keypressed) 551 return; 552 553 IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode); 554 input_report_key(dev->input_dev, dev->last_keycode, 0); 555 led_trigger_event(led_feedback, LED_OFF); 556 if (sync) 557 input_sync(dev->input_dev); 558 dev->keypressed = false; 559 } 560 561 /** 562 * rc_keyup() - signals the release of a keypress 563 * @dev: the struct rc_dev descriptor of the device 564 * 565 * This routine is used to signal that a key has been released on the 566 * remote control. 567 */ 568 void rc_keyup(struct rc_dev *dev) 569 { 570 unsigned long flags; 571 572 spin_lock_irqsave(&dev->keylock, flags); 573 ir_do_keyup(dev, true); 574 spin_unlock_irqrestore(&dev->keylock, flags); 575 } 576 EXPORT_SYMBOL_GPL(rc_keyup); 577 578 /** 579 * ir_timer_keyup() - generates a keyup event after a timeout 580 * @cookie: a pointer to the struct rc_dev for the device 581 * 582 * This routine will generate a keyup event some time after a keydown event 583 * is generated when no further activity has been detected. 584 */ 585 static void ir_timer_keyup(unsigned long cookie) 586 { 587 struct rc_dev *dev = (struct rc_dev *)cookie; 588 unsigned long flags; 589 590 /* 591 * ir->keyup_jiffies is used to prevent a race condition if a 592 * hardware interrupt occurs at this point and the keyup timer 593 * event is moved further into the future as a result. 594 * 595 * The timer will then be reactivated and this function called 596 * again in the future. We need to exit gracefully in that case 597 * to allow the input subsystem to do its auto-repeat magic or 598 * a keyup event might follow immediately after the keydown. 599 */ 600 spin_lock_irqsave(&dev->keylock, flags); 601 if (time_is_before_eq_jiffies(dev->keyup_jiffies)) 602 ir_do_keyup(dev, true); 603 spin_unlock_irqrestore(&dev->keylock, flags); 604 } 605 606 /** 607 * rc_repeat() - signals that a key is still pressed 608 * @dev: the struct rc_dev descriptor of the device 609 * 610 * This routine is used by IR decoders when a repeat message which does 611 * not include the necessary bits to reproduce the scancode has been 612 * received. 613 */ 614 void rc_repeat(struct rc_dev *dev) 615 { 616 unsigned long flags; 617 618 spin_lock_irqsave(&dev->keylock, flags); 619 620 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode); 621 input_sync(dev->input_dev); 622 623 if (!dev->keypressed) 624 goto out; 625 626 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT); 627 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 628 629 out: 630 spin_unlock_irqrestore(&dev->keylock, flags); 631 } 632 EXPORT_SYMBOL_GPL(rc_repeat); 633 634 /** 635 * ir_do_keydown() - internal function to process a keypress 636 * @dev: the struct rc_dev descriptor of the device 637 * @protocol: the protocol of the keypress 638 * @scancode: the scancode of the keypress 639 * @keycode: the keycode of the keypress 640 * @toggle: the toggle value of the keypress 641 * 642 * This function is used internally to register a keypress, it must be 643 * called with keylock held. 644 */ 645 static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol, 646 u32 scancode, u32 keycode, u8 toggle) 647 { 648 bool new_event = (!dev->keypressed || 649 dev->last_protocol != protocol || 650 dev->last_scancode != scancode || 651 dev->last_toggle != toggle); 652 653 if (new_event && dev->keypressed) 654 ir_do_keyup(dev, false); 655 656 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode); 657 658 if (new_event && keycode != KEY_RESERVED) { 659 /* Register a keypress */ 660 dev->keypressed = true; 661 dev->last_protocol = protocol; 662 dev->last_scancode = scancode; 663 dev->last_toggle = toggle; 664 dev->last_keycode = keycode; 665 666 IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n", 667 dev->input_name, keycode, protocol, scancode); 668 input_report_key(dev->input_dev, keycode, 1); 669 670 led_trigger_event(led_feedback, LED_FULL); 671 } 672 673 input_sync(dev->input_dev); 674 } 675 676 /** 677 * rc_keydown() - generates input event for a key press 678 * @dev: the struct rc_dev descriptor of the device 679 * @protocol: the protocol for the keypress 680 * @scancode: the scancode for the keypress 681 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 682 * support toggle values, this should be set to zero) 683 * 684 * This routine is used to signal that a key has been pressed on the 685 * remote control. 686 */ 687 void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle) 688 { 689 unsigned long flags; 690 u32 keycode = rc_g_keycode_from_table(dev, scancode); 691 692 spin_lock_irqsave(&dev->keylock, flags); 693 ir_do_keydown(dev, protocol, scancode, keycode, toggle); 694 695 if (dev->keypressed) { 696 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT); 697 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 698 } 699 spin_unlock_irqrestore(&dev->keylock, flags); 700 } 701 EXPORT_SYMBOL_GPL(rc_keydown); 702 703 /** 704 * rc_keydown_notimeout() - generates input event for a key press without 705 * an automatic keyup event at a later time 706 * @dev: the struct rc_dev descriptor of the device 707 * @protocol: the protocol for the keypress 708 * @scancode: the scancode for the keypress 709 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 710 * support toggle values, this should be set to zero) 711 * 712 * This routine is used to signal that a key has been pressed on the 713 * remote control. The driver must manually call rc_keyup() at a later stage. 714 */ 715 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol, 716 u32 scancode, u8 toggle) 717 { 718 unsigned long flags; 719 u32 keycode = rc_g_keycode_from_table(dev, scancode); 720 721 spin_lock_irqsave(&dev->keylock, flags); 722 ir_do_keydown(dev, protocol, scancode, keycode, toggle); 723 spin_unlock_irqrestore(&dev->keylock, flags); 724 } 725 EXPORT_SYMBOL_GPL(rc_keydown_notimeout); 726 727 int rc_open(struct rc_dev *rdev) 728 { 729 int rval = 0; 730 731 if (!rdev) 732 return -EINVAL; 733 734 mutex_lock(&rdev->lock); 735 736 if (!rdev->users++ && rdev->open != NULL) 737 rval = rdev->open(rdev); 738 739 if (rval) 740 rdev->users--; 741 742 mutex_unlock(&rdev->lock); 743 744 return rval; 745 } 746 EXPORT_SYMBOL_GPL(rc_open); 747 748 static int ir_open(struct input_dev *idev) 749 { 750 struct rc_dev *rdev = input_get_drvdata(idev); 751 752 return rc_open(rdev); 753 } 754 755 void rc_close(struct rc_dev *rdev) 756 { 757 if (rdev) { 758 mutex_lock(&rdev->lock); 759 760 if (!--rdev->users && rdev->close != NULL) 761 rdev->close(rdev); 762 763 mutex_unlock(&rdev->lock); 764 } 765 } 766 EXPORT_SYMBOL_GPL(rc_close); 767 768 static void ir_close(struct input_dev *idev) 769 { 770 struct rc_dev *rdev = input_get_drvdata(idev); 771 rc_close(rdev); 772 } 773 774 /* class for /sys/class/rc */ 775 static char *rc_devnode(struct device *dev, umode_t *mode) 776 { 777 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev)); 778 } 779 780 static struct class rc_class = { 781 .name = "rc", 782 .devnode = rc_devnode, 783 }; 784 785 /* 786 * These are the protocol textual descriptions that are 787 * used by the sysfs protocols file. Note that the order 788 * of the entries is relevant. 789 */ 790 static const struct { 791 u64 type; 792 const char *name; 793 const char *module_name; 794 } proto_names[] = { 795 { RC_BIT_NONE, "none", NULL }, 796 { RC_BIT_OTHER, "other", NULL }, 797 { RC_BIT_UNKNOWN, "unknown", NULL }, 798 { RC_BIT_RC5 | 799 RC_BIT_RC5X, "rc-5", "ir-rc5-decoder" }, 800 { RC_BIT_NEC | 801 RC_BIT_NECX | 802 RC_BIT_NEC32, "nec", "ir-nec-decoder" }, 803 { RC_BIT_RC6_0 | 804 RC_BIT_RC6_6A_20 | 805 RC_BIT_RC6_6A_24 | 806 RC_BIT_RC6_6A_32 | 807 RC_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" }, 808 { RC_BIT_JVC, "jvc", "ir-jvc-decoder" }, 809 { RC_BIT_SONY12 | 810 RC_BIT_SONY15 | 811 RC_BIT_SONY20, "sony", "ir-sony-decoder" }, 812 { RC_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" }, 813 { RC_BIT_SANYO, "sanyo", "ir-sanyo-decoder" }, 814 { RC_BIT_SHARP, "sharp", "ir-sharp-decoder" }, 815 { RC_BIT_MCE_KBD, "mce_kbd", "ir-mce_kbd-decoder" }, 816 { RC_BIT_XMP, "xmp", "ir-xmp-decoder" }, 817 { RC_BIT_CEC, "cec", NULL }, 818 }; 819 820 /** 821 * struct rc_filter_attribute - Device attribute relating to a filter type. 822 * @attr: Device attribute. 823 * @type: Filter type. 824 * @mask: false for filter value, true for filter mask. 825 */ 826 struct rc_filter_attribute { 827 struct device_attribute attr; 828 enum rc_filter_type type; 829 bool mask; 830 }; 831 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr) 832 833 #define RC_PROTO_ATTR(_name, _mode, _show, _store, _type) \ 834 struct rc_filter_attribute dev_attr_##_name = { \ 835 .attr = __ATTR(_name, _mode, _show, _store), \ 836 .type = (_type), \ 837 } 838 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \ 839 struct rc_filter_attribute dev_attr_##_name = { \ 840 .attr = __ATTR(_name, _mode, _show, _store), \ 841 .type = (_type), \ 842 .mask = (_mask), \ 843 } 844 845 static bool lirc_is_present(void) 846 { 847 #if defined(CONFIG_LIRC_MODULE) 848 struct module *lirc; 849 850 mutex_lock(&module_mutex); 851 lirc = find_module("lirc_dev"); 852 mutex_unlock(&module_mutex); 853 854 return lirc ? true : false; 855 #elif defined(CONFIG_LIRC) 856 return true; 857 #else 858 return false; 859 #endif 860 } 861 862 /** 863 * show_protocols() - shows the current/wakeup IR protocol(s) 864 * @device: the device descriptor 865 * @mattr: the device attribute struct 866 * @buf: a pointer to the output buffer 867 * 868 * This routine is a callback routine for input read the IR protocol type(s). 869 * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols. 870 * It returns the protocol names of supported protocols. 871 * Enabled protocols are printed in brackets. 872 * 873 * dev->lock is taken to guard against races between device 874 * registration, store_protocols and show_protocols. 875 */ 876 static ssize_t show_protocols(struct device *device, 877 struct device_attribute *mattr, char *buf) 878 { 879 struct rc_dev *dev = to_rc_dev(device); 880 struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr); 881 u64 allowed, enabled; 882 char *tmp = buf; 883 int i; 884 885 /* Device is being removed */ 886 if (!dev) 887 return -EINVAL; 888 889 if (!atomic_read(&dev->initialized)) 890 return -ERESTARTSYS; 891 892 mutex_lock(&dev->lock); 893 894 if (fattr->type == RC_FILTER_NORMAL) { 895 enabled = dev->enabled_protocols; 896 allowed = dev->allowed_protocols; 897 if (dev->raw && !allowed) 898 allowed = ir_raw_get_allowed_protocols(); 899 } else { 900 enabled = dev->enabled_wakeup_protocols; 901 allowed = dev->allowed_wakeup_protocols; 902 } 903 904 mutex_unlock(&dev->lock); 905 906 IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n", 907 __func__, (long long)allowed, (long long)enabled); 908 909 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 910 if (allowed & enabled & proto_names[i].type) 911 tmp += sprintf(tmp, "[%s] ", proto_names[i].name); 912 else if (allowed & proto_names[i].type) 913 tmp += sprintf(tmp, "%s ", proto_names[i].name); 914 915 if (allowed & proto_names[i].type) 916 allowed &= ~proto_names[i].type; 917 } 918 919 if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present()) 920 tmp += sprintf(tmp, "[lirc] "); 921 922 if (tmp != buf) 923 tmp--; 924 *tmp = '\n'; 925 926 return tmp + 1 - buf; 927 } 928 929 /** 930 * parse_protocol_change() - parses a protocol change request 931 * @protocols: pointer to the bitmask of current protocols 932 * @buf: pointer to the buffer with a list of changes 933 * 934 * Writing "+proto" will add a protocol to the protocol mask. 935 * Writing "-proto" will remove a protocol from protocol mask. 936 * Writing "proto" will enable only "proto". 937 * Writing "none" will disable all protocols. 938 * Returns the number of changes performed or a negative error code. 939 */ 940 static int parse_protocol_change(u64 *protocols, const char *buf) 941 { 942 const char *tmp; 943 unsigned count = 0; 944 bool enable, disable; 945 u64 mask; 946 int i; 947 948 while ((tmp = strsep((char **)&buf, " \n")) != NULL) { 949 if (!*tmp) 950 break; 951 952 if (*tmp == '+') { 953 enable = true; 954 disable = false; 955 tmp++; 956 } else if (*tmp == '-') { 957 enable = false; 958 disable = true; 959 tmp++; 960 } else { 961 enable = false; 962 disable = false; 963 } 964 965 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 966 if (!strcasecmp(tmp, proto_names[i].name)) { 967 mask = proto_names[i].type; 968 break; 969 } 970 } 971 972 if (i == ARRAY_SIZE(proto_names)) { 973 if (!strcasecmp(tmp, "lirc")) 974 mask = 0; 975 else { 976 IR_dprintk(1, "Unknown protocol: '%s'\n", tmp); 977 return -EINVAL; 978 } 979 } 980 981 count++; 982 983 if (enable) 984 *protocols |= mask; 985 else if (disable) 986 *protocols &= ~mask; 987 else 988 *protocols = mask; 989 } 990 991 if (!count) { 992 IR_dprintk(1, "Protocol not specified\n"); 993 return -EINVAL; 994 } 995 996 return count; 997 } 998 999 static void ir_raw_load_modules(u64 *protocols) 1000 1001 { 1002 u64 available; 1003 int i, ret; 1004 1005 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 1006 if (proto_names[i].type == RC_BIT_NONE || 1007 proto_names[i].type & (RC_BIT_OTHER | RC_BIT_UNKNOWN)) 1008 continue; 1009 1010 available = ir_raw_get_allowed_protocols(); 1011 if (!(*protocols & proto_names[i].type & ~available)) 1012 continue; 1013 1014 if (!proto_names[i].module_name) { 1015 pr_err("Can't enable IR protocol %s\n", 1016 proto_names[i].name); 1017 *protocols &= ~proto_names[i].type; 1018 continue; 1019 } 1020 1021 ret = request_module("%s", proto_names[i].module_name); 1022 if (ret < 0) { 1023 pr_err("Couldn't load IR protocol module %s\n", 1024 proto_names[i].module_name); 1025 *protocols &= ~proto_names[i].type; 1026 continue; 1027 } 1028 msleep(20); 1029 available = ir_raw_get_allowed_protocols(); 1030 if (!(*protocols & proto_names[i].type & ~available)) 1031 continue; 1032 1033 pr_err("Loaded IR protocol module %s, \ 1034 but protocol %s still not available\n", 1035 proto_names[i].module_name, 1036 proto_names[i].name); 1037 *protocols &= ~proto_names[i].type; 1038 } 1039 } 1040 1041 /** 1042 * store_protocols() - changes the current/wakeup IR protocol(s) 1043 * @device: the device descriptor 1044 * @mattr: the device attribute struct 1045 * @buf: a pointer to the input buffer 1046 * @len: length of the input buffer 1047 * 1048 * This routine is for changing the IR protocol type. 1049 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols. 1050 * See parse_protocol_change() for the valid commands. 1051 * Returns @len on success or a negative error code. 1052 * 1053 * dev->lock is taken to guard against races between device 1054 * registration, store_protocols and show_protocols. 1055 */ 1056 static ssize_t store_protocols(struct device *device, 1057 struct device_attribute *mattr, 1058 const char *buf, size_t len) 1059 { 1060 struct rc_dev *dev = to_rc_dev(device); 1061 struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr); 1062 u64 *current_protocols; 1063 int (*change_protocol)(struct rc_dev *dev, u64 *rc_type); 1064 struct rc_scancode_filter *filter; 1065 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter); 1066 u64 old_protocols, new_protocols; 1067 ssize_t rc; 1068 1069 /* Device is being removed */ 1070 if (!dev) 1071 return -EINVAL; 1072 1073 if (!atomic_read(&dev->initialized)) 1074 return -ERESTARTSYS; 1075 1076 if (fattr->type == RC_FILTER_NORMAL) { 1077 IR_dprintk(1, "Normal protocol change requested\n"); 1078 current_protocols = &dev->enabled_protocols; 1079 change_protocol = dev->change_protocol; 1080 filter = &dev->scancode_filter; 1081 set_filter = dev->s_filter; 1082 } else { 1083 IR_dprintk(1, "Wakeup protocol change requested\n"); 1084 current_protocols = &dev->enabled_wakeup_protocols; 1085 change_protocol = dev->change_wakeup_protocol; 1086 filter = &dev->scancode_wakeup_filter; 1087 set_filter = dev->s_wakeup_filter; 1088 } 1089 1090 if (!change_protocol) { 1091 IR_dprintk(1, "Protocol switching not supported\n"); 1092 return -EINVAL; 1093 } 1094 1095 mutex_lock(&dev->lock); 1096 1097 old_protocols = *current_protocols; 1098 new_protocols = old_protocols; 1099 rc = parse_protocol_change(&new_protocols, buf); 1100 if (rc < 0) 1101 goto out; 1102 1103 rc = change_protocol(dev, &new_protocols); 1104 if (rc < 0) { 1105 IR_dprintk(1, "Error setting protocols to 0x%llx\n", 1106 (long long)new_protocols); 1107 goto out; 1108 } 1109 1110 if (dev->driver_type == RC_DRIVER_IR_RAW) 1111 ir_raw_load_modules(&new_protocols); 1112 1113 if (new_protocols != old_protocols) { 1114 *current_protocols = new_protocols; 1115 IR_dprintk(1, "Protocols changed to 0x%llx\n", 1116 (long long)new_protocols); 1117 } 1118 1119 /* 1120 * If a protocol change was attempted the filter may need updating, even 1121 * if the actual protocol mask hasn't changed (since the driver may have 1122 * cleared the filter). 1123 * Try setting the same filter with the new protocol (if any). 1124 * Fall back to clearing the filter. 1125 */ 1126 if (set_filter && filter->mask) { 1127 if (new_protocols) 1128 rc = set_filter(dev, filter); 1129 else 1130 rc = -1; 1131 1132 if (rc < 0) { 1133 filter->data = 0; 1134 filter->mask = 0; 1135 set_filter(dev, filter); 1136 } 1137 } 1138 1139 rc = len; 1140 1141 out: 1142 mutex_unlock(&dev->lock); 1143 return rc; 1144 } 1145 1146 /** 1147 * show_filter() - shows the current scancode filter value or mask 1148 * @device: the device descriptor 1149 * @attr: the device attribute struct 1150 * @buf: a pointer to the output buffer 1151 * 1152 * This routine is a callback routine to read a scancode filter value or mask. 1153 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask]. 1154 * It prints the current scancode filter value or mask of the appropriate filter 1155 * type in hexadecimal into @buf and returns the size of the buffer. 1156 * 1157 * Bits of the filter value corresponding to set bits in the filter mask are 1158 * compared against input scancodes and non-matching scancodes are discarded. 1159 * 1160 * dev->lock is taken to guard against races between device registration, 1161 * store_filter and show_filter. 1162 */ 1163 static ssize_t show_filter(struct device *device, 1164 struct device_attribute *attr, 1165 char *buf) 1166 { 1167 struct rc_dev *dev = to_rc_dev(device); 1168 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); 1169 struct rc_scancode_filter *filter; 1170 u32 val; 1171 1172 /* Device is being removed */ 1173 if (!dev) 1174 return -EINVAL; 1175 1176 if (!atomic_read(&dev->initialized)) 1177 return -ERESTARTSYS; 1178 1179 mutex_lock(&dev->lock); 1180 1181 if (fattr->type == RC_FILTER_NORMAL) 1182 filter = &dev->scancode_filter; 1183 else 1184 filter = &dev->scancode_wakeup_filter; 1185 1186 if (fattr->mask) 1187 val = filter->mask; 1188 else 1189 val = filter->data; 1190 mutex_unlock(&dev->lock); 1191 1192 return sprintf(buf, "%#x\n", val); 1193 } 1194 1195 /** 1196 * store_filter() - changes the scancode filter value 1197 * @device: the device descriptor 1198 * @attr: the device attribute struct 1199 * @buf: a pointer to the input buffer 1200 * @len: length of the input buffer 1201 * 1202 * This routine is for changing a scancode filter value or mask. 1203 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask]. 1204 * Returns -EINVAL if an invalid filter value for the current protocol was 1205 * specified or if scancode filtering is not supported by the driver, otherwise 1206 * returns @len. 1207 * 1208 * Bits of the filter value corresponding to set bits in the filter mask are 1209 * compared against input scancodes and non-matching scancodes are discarded. 1210 * 1211 * dev->lock is taken to guard against races between device registration, 1212 * store_filter and show_filter. 1213 */ 1214 static ssize_t store_filter(struct device *device, 1215 struct device_attribute *attr, 1216 const char *buf, size_t len) 1217 { 1218 struct rc_dev *dev = to_rc_dev(device); 1219 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); 1220 struct rc_scancode_filter new_filter, *filter; 1221 int ret; 1222 unsigned long val; 1223 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter); 1224 u64 *enabled_protocols; 1225 1226 /* Device is being removed */ 1227 if (!dev) 1228 return -EINVAL; 1229 1230 if (!atomic_read(&dev->initialized)) 1231 return -ERESTARTSYS; 1232 1233 ret = kstrtoul(buf, 0, &val); 1234 if (ret < 0) 1235 return ret; 1236 1237 if (fattr->type == RC_FILTER_NORMAL) { 1238 set_filter = dev->s_filter; 1239 enabled_protocols = &dev->enabled_protocols; 1240 filter = &dev->scancode_filter; 1241 } else { 1242 set_filter = dev->s_wakeup_filter; 1243 enabled_protocols = &dev->enabled_wakeup_protocols; 1244 filter = &dev->scancode_wakeup_filter; 1245 } 1246 1247 if (!set_filter) 1248 return -EINVAL; 1249 1250 mutex_lock(&dev->lock); 1251 1252 new_filter = *filter; 1253 if (fattr->mask) 1254 new_filter.mask = val; 1255 else 1256 new_filter.data = val; 1257 1258 if (!*enabled_protocols && val) { 1259 /* refuse to set a filter unless a protocol is enabled */ 1260 ret = -EINVAL; 1261 goto unlock; 1262 } 1263 1264 ret = set_filter(dev, &new_filter); 1265 if (ret < 0) 1266 goto unlock; 1267 1268 *filter = new_filter; 1269 1270 unlock: 1271 mutex_unlock(&dev->lock); 1272 return (ret < 0) ? ret : len; 1273 } 1274 1275 static void rc_dev_release(struct device *device) 1276 { 1277 struct rc_dev *dev = to_rc_dev(device); 1278 1279 kfree(dev); 1280 } 1281 1282 #define ADD_HOTPLUG_VAR(fmt, val...) \ 1283 do { \ 1284 int err = add_uevent_var(env, fmt, val); \ 1285 if (err) \ 1286 return err; \ 1287 } while (0) 1288 1289 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1290 { 1291 struct rc_dev *dev = to_rc_dev(device); 1292 1293 if (dev->rc_map.name) 1294 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name); 1295 if (dev->driver_name) 1296 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name); 1297 1298 return 0; 1299 } 1300 1301 /* 1302 * Static device attribute struct with the sysfs attributes for IR's 1303 */ 1304 static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR, 1305 show_protocols, store_protocols, RC_FILTER_NORMAL); 1306 static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR, 1307 show_protocols, store_protocols, RC_FILTER_WAKEUP); 1308 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR, 1309 show_filter, store_filter, RC_FILTER_NORMAL, false); 1310 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR, 1311 show_filter, store_filter, RC_FILTER_NORMAL, true); 1312 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR, 1313 show_filter, store_filter, RC_FILTER_WAKEUP, false); 1314 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR, 1315 show_filter, store_filter, RC_FILTER_WAKEUP, true); 1316 1317 static struct attribute *rc_dev_protocol_attrs[] = { 1318 &dev_attr_protocols.attr.attr, 1319 NULL, 1320 }; 1321 1322 static struct attribute_group rc_dev_protocol_attr_grp = { 1323 .attrs = rc_dev_protocol_attrs, 1324 }; 1325 1326 static struct attribute *rc_dev_wakeup_protocol_attrs[] = { 1327 &dev_attr_wakeup_protocols.attr.attr, 1328 NULL, 1329 }; 1330 1331 static struct attribute_group rc_dev_wakeup_protocol_attr_grp = { 1332 .attrs = rc_dev_wakeup_protocol_attrs, 1333 }; 1334 1335 static struct attribute *rc_dev_filter_attrs[] = { 1336 &dev_attr_filter.attr.attr, 1337 &dev_attr_filter_mask.attr.attr, 1338 NULL, 1339 }; 1340 1341 static struct attribute_group rc_dev_filter_attr_grp = { 1342 .attrs = rc_dev_filter_attrs, 1343 }; 1344 1345 static struct attribute *rc_dev_wakeup_filter_attrs[] = { 1346 &dev_attr_wakeup_filter.attr.attr, 1347 &dev_attr_wakeup_filter_mask.attr.attr, 1348 NULL, 1349 }; 1350 1351 static struct attribute_group rc_dev_wakeup_filter_attr_grp = { 1352 .attrs = rc_dev_wakeup_filter_attrs, 1353 }; 1354 1355 static struct device_type rc_dev_type = { 1356 .release = rc_dev_release, 1357 .uevent = rc_dev_uevent, 1358 }; 1359 1360 struct rc_dev *rc_allocate_device(void) 1361 { 1362 struct rc_dev *dev; 1363 1364 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1365 if (!dev) 1366 return NULL; 1367 1368 dev->input_dev = input_allocate_device(); 1369 if (!dev->input_dev) { 1370 kfree(dev); 1371 return NULL; 1372 } 1373 1374 dev->input_dev->getkeycode = ir_getkeycode; 1375 dev->input_dev->setkeycode = ir_setkeycode; 1376 input_set_drvdata(dev->input_dev, dev); 1377 1378 spin_lock_init(&dev->rc_map.lock); 1379 spin_lock_init(&dev->keylock); 1380 mutex_init(&dev->lock); 1381 setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev); 1382 1383 dev->dev.type = &rc_dev_type; 1384 dev->dev.class = &rc_class; 1385 device_initialize(&dev->dev); 1386 1387 __module_get(THIS_MODULE); 1388 return dev; 1389 } 1390 EXPORT_SYMBOL_GPL(rc_allocate_device); 1391 1392 void rc_free_device(struct rc_dev *dev) 1393 { 1394 if (!dev) 1395 return; 1396 1397 input_free_device(dev->input_dev); 1398 1399 put_device(&dev->dev); 1400 1401 /* kfree(dev) will be called by the callback function 1402 rc_dev_release() */ 1403 1404 module_put(THIS_MODULE); 1405 } 1406 EXPORT_SYMBOL_GPL(rc_free_device); 1407 1408 static void devm_rc_alloc_release(struct device *dev, void *res) 1409 { 1410 rc_free_device(*(struct rc_dev **)res); 1411 } 1412 1413 struct rc_dev *devm_rc_allocate_device(struct device *dev) 1414 { 1415 struct rc_dev **dr, *rc; 1416 1417 dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL); 1418 if (!dr) 1419 return NULL; 1420 1421 rc = rc_allocate_device(); 1422 if (!rc) { 1423 devres_free(dr); 1424 return NULL; 1425 } 1426 1427 rc->dev.parent = dev; 1428 rc->managed_alloc = true; 1429 *dr = rc; 1430 devres_add(dev, dr); 1431 1432 return rc; 1433 } 1434 EXPORT_SYMBOL_GPL(devm_rc_allocate_device); 1435 1436 int rc_register_device(struct rc_dev *dev) 1437 { 1438 static bool raw_init = false; /* raw decoders loaded? */ 1439 struct rc_map *rc_map; 1440 const char *path; 1441 int attr = 0; 1442 int minor; 1443 int rc; 1444 1445 if (!dev || !dev->map_name) 1446 return -EINVAL; 1447 1448 rc_map = rc_map_get(dev->map_name); 1449 if (!rc_map) 1450 rc_map = rc_map_get(RC_MAP_EMPTY); 1451 if (!rc_map || !rc_map->scan || rc_map->size == 0) 1452 return -EINVAL; 1453 1454 set_bit(EV_KEY, dev->input_dev->evbit); 1455 set_bit(EV_REP, dev->input_dev->evbit); 1456 set_bit(EV_MSC, dev->input_dev->evbit); 1457 set_bit(MSC_SCAN, dev->input_dev->mscbit); 1458 if (dev->open) 1459 dev->input_dev->open = ir_open; 1460 if (dev->close) 1461 dev->input_dev->close = ir_close; 1462 1463 minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL); 1464 if (minor < 0) 1465 return minor; 1466 1467 dev->minor = minor; 1468 dev_set_name(&dev->dev, "rc%u", dev->minor); 1469 dev_set_drvdata(&dev->dev, dev); 1470 atomic_set(&dev->initialized, 0); 1471 1472 dev->dev.groups = dev->sysfs_groups; 1473 dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp; 1474 if (dev->s_filter) 1475 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp; 1476 if (dev->s_wakeup_filter) 1477 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp; 1478 if (dev->change_wakeup_protocol) 1479 dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp; 1480 dev->sysfs_groups[attr++] = NULL; 1481 1482 rc = device_add(&dev->dev); 1483 if (rc) 1484 goto out_unlock; 1485 1486 rc = ir_setkeytable(dev, rc_map); 1487 if (rc) 1488 goto out_dev; 1489 1490 dev->input_dev->dev.parent = &dev->dev; 1491 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id)); 1492 dev->input_dev->phys = dev->input_phys; 1493 dev->input_dev->name = dev->input_name; 1494 1495 rc = input_register_device(dev->input_dev); 1496 if (rc) 1497 goto out_table; 1498 1499 /* 1500 * Default delay of 250ms is too short for some protocols, especially 1501 * since the timeout is currently set to 250ms. Increase it to 500ms, 1502 * to avoid wrong repetition of the keycodes. Note that this must be 1503 * set after the call to input_register_device(). 1504 */ 1505 dev->input_dev->rep[REP_DELAY] = 500; 1506 1507 /* 1508 * As a repeat event on protocols like RC-5 and NEC take as long as 1509 * 110/114ms, using 33ms as a repeat period is not the right thing 1510 * to do. 1511 */ 1512 dev->input_dev->rep[REP_PERIOD] = 125; 1513 1514 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1515 dev_info(&dev->dev, "%s as %s\n", 1516 dev->input_name ?: "Unspecified device", path ?: "N/A"); 1517 kfree(path); 1518 1519 if (dev->driver_type == RC_DRIVER_IR_RAW) { 1520 if (!raw_init) { 1521 request_module_nowait("ir-lirc-codec"); 1522 raw_init = true; 1523 } 1524 rc = ir_raw_event_register(dev); 1525 if (rc < 0) 1526 goto out_input; 1527 } 1528 1529 if (dev->change_protocol) { 1530 u64 rc_type = (1ll << rc_map->rc_type); 1531 rc = dev->change_protocol(dev, &rc_type); 1532 if (rc < 0) 1533 goto out_raw; 1534 dev->enabled_protocols = rc_type; 1535 } 1536 1537 /* Allow the RC sysfs nodes to be accessible */ 1538 atomic_set(&dev->initialized, 1); 1539 1540 IR_dprintk(1, "Registered rc%u (driver: %s, remote: %s, mode %s)\n", 1541 dev->minor, 1542 dev->driver_name ? dev->driver_name : "unknown", 1543 rc_map->name ? rc_map->name : "unknown", 1544 dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked"); 1545 1546 return 0; 1547 1548 out_raw: 1549 if (dev->driver_type == RC_DRIVER_IR_RAW) 1550 ir_raw_event_unregister(dev); 1551 out_input: 1552 input_unregister_device(dev->input_dev); 1553 dev->input_dev = NULL; 1554 out_table: 1555 ir_free_table(&dev->rc_map); 1556 out_dev: 1557 device_del(&dev->dev); 1558 out_unlock: 1559 ida_simple_remove(&rc_ida, minor); 1560 return rc; 1561 } 1562 EXPORT_SYMBOL_GPL(rc_register_device); 1563 1564 static void devm_rc_release(struct device *dev, void *res) 1565 { 1566 rc_unregister_device(*(struct rc_dev **)res); 1567 } 1568 1569 int devm_rc_register_device(struct device *parent, struct rc_dev *dev) 1570 { 1571 struct rc_dev **dr; 1572 int ret; 1573 1574 dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL); 1575 if (!dr) 1576 return -ENOMEM; 1577 1578 ret = rc_register_device(dev); 1579 if (ret) { 1580 devres_free(dr); 1581 return ret; 1582 } 1583 1584 *dr = dev; 1585 devres_add(parent, dr); 1586 1587 return 0; 1588 } 1589 EXPORT_SYMBOL_GPL(devm_rc_register_device); 1590 1591 void rc_unregister_device(struct rc_dev *dev) 1592 { 1593 if (!dev) 1594 return; 1595 1596 del_timer_sync(&dev->timer_keyup); 1597 1598 if (dev->driver_type == RC_DRIVER_IR_RAW) 1599 ir_raw_event_unregister(dev); 1600 1601 /* Freeing the table should also call the stop callback */ 1602 ir_free_table(&dev->rc_map); 1603 IR_dprintk(1, "Freed keycode table\n"); 1604 1605 input_unregister_device(dev->input_dev); 1606 dev->input_dev = NULL; 1607 1608 device_del(&dev->dev); 1609 1610 ida_simple_remove(&rc_ida, dev->minor); 1611 1612 if (!dev->managed_alloc) 1613 rc_free_device(dev); 1614 } 1615 1616 EXPORT_SYMBOL_GPL(rc_unregister_device); 1617 1618 /* 1619 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1620 */ 1621 1622 static int __init rc_core_init(void) 1623 { 1624 int rc = class_register(&rc_class); 1625 if (rc) { 1626 pr_err("rc_core: unable to register rc class\n"); 1627 return rc; 1628 } 1629 1630 led_trigger_register_simple("rc-feedback", &led_feedback); 1631 rc_map_register(&empty_map); 1632 1633 return 0; 1634 } 1635 1636 static void __exit rc_core_exit(void) 1637 { 1638 class_unregister(&rc_class); 1639 led_trigger_unregister_simple(led_feedback); 1640 rc_map_unregister(&empty_map); 1641 } 1642 1643 subsys_initcall(rc_core_init); 1644 module_exit(rc_core_exit); 1645 1646 int rc_core_debug; /* ir_debug level (0,1,2) */ 1647 EXPORT_SYMBOL_GPL(rc_core_debug); 1648 module_param_named(debug, rc_core_debug, int, 0644); 1649 1650 MODULE_AUTHOR("Mauro Carvalho Chehab"); 1651 MODULE_LICENSE("GPL"); 1652