xref: /linux/drivers/media/rc/rc-main.c (revision 32786fdc9506aeba98278c1844d4bfb766863832)
1 /* rc-main.c - Remote Controller core module
2  *
3  * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4  *
5  * This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation version 2 of the License.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <media/rc-core.h>
18 #include <linux/atomic.h>
19 #include <linux/spinlock.h>
20 #include <linux/delay.h>
21 #include <linux/input.h>
22 #include <linux/leds.h>
23 #include <linux/slab.h>
24 #include <linux/idr.h>
25 #include <linux/device.h>
26 #include <linux/module.h>
27 #include "rc-core-priv.h"
28 
29 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
30 #define IR_TAB_MIN_SIZE	256
31 #define IR_TAB_MAX_SIZE	8192
32 #define RC_DEV_MAX	256
33 
34 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
35 #define IR_KEYPRESS_TIMEOUT 250
36 
37 /* Used to keep track of known keymaps */
38 static LIST_HEAD(rc_map_list);
39 static DEFINE_SPINLOCK(rc_map_lock);
40 static struct led_trigger *led_feedback;
41 
42 /* Used to keep track of rc devices */
43 static DEFINE_IDA(rc_ida);
44 
45 static struct rc_map_list *seek_rc_map(const char *name)
46 {
47 	struct rc_map_list *map = NULL;
48 
49 	spin_lock(&rc_map_lock);
50 	list_for_each_entry(map, &rc_map_list, list) {
51 		if (!strcmp(name, map->map.name)) {
52 			spin_unlock(&rc_map_lock);
53 			return map;
54 		}
55 	}
56 	spin_unlock(&rc_map_lock);
57 
58 	return NULL;
59 }
60 
61 struct rc_map *rc_map_get(const char *name)
62 {
63 
64 	struct rc_map_list *map;
65 
66 	map = seek_rc_map(name);
67 #ifdef CONFIG_MODULES
68 	if (!map) {
69 		int rc = request_module("%s", name);
70 		if (rc < 0) {
71 			pr_err("Couldn't load IR keymap %s\n", name);
72 			return NULL;
73 		}
74 		msleep(20);	/* Give some time for IR to register */
75 
76 		map = seek_rc_map(name);
77 	}
78 #endif
79 	if (!map) {
80 		pr_err("IR keymap %s not found\n", name);
81 		return NULL;
82 	}
83 
84 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
85 
86 	return &map->map;
87 }
88 EXPORT_SYMBOL_GPL(rc_map_get);
89 
90 int rc_map_register(struct rc_map_list *map)
91 {
92 	spin_lock(&rc_map_lock);
93 	list_add_tail(&map->list, &rc_map_list);
94 	spin_unlock(&rc_map_lock);
95 	return 0;
96 }
97 EXPORT_SYMBOL_GPL(rc_map_register);
98 
99 void rc_map_unregister(struct rc_map_list *map)
100 {
101 	spin_lock(&rc_map_lock);
102 	list_del(&map->list);
103 	spin_unlock(&rc_map_lock);
104 }
105 EXPORT_SYMBOL_GPL(rc_map_unregister);
106 
107 
108 static struct rc_map_table empty[] = {
109 	{ 0x2a, KEY_COFFEE },
110 };
111 
112 static struct rc_map_list empty_map = {
113 	.map = {
114 		.scan    = empty,
115 		.size    = ARRAY_SIZE(empty),
116 		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
117 		.name    = RC_MAP_EMPTY,
118 	}
119 };
120 
121 /**
122  * ir_create_table() - initializes a scancode table
123  * @rc_map:	the rc_map to initialize
124  * @name:	name to assign to the table
125  * @rc_type:	ir type to assign to the new table
126  * @size:	initial size of the table
127  * @return:	zero on success or a negative error code
128  *
129  * This routine will initialize the rc_map and will allocate
130  * memory to hold at least the specified number of elements.
131  */
132 static int ir_create_table(struct rc_map *rc_map,
133 			   const char *name, u64 rc_type, size_t size)
134 {
135 	rc_map->name = kstrdup(name, GFP_KERNEL);
136 	if (!rc_map->name)
137 		return -ENOMEM;
138 	rc_map->rc_type = rc_type;
139 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
140 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
141 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
142 	if (!rc_map->scan) {
143 		kfree(rc_map->name);
144 		rc_map->name = NULL;
145 		return -ENOMEM;
146 	}
147 
148 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
149 		   rc_map->size, rc_map->alloc);
150 	return 0;
151 }
152 
153 /**
154  * ir_free_table() - frees memory allocated by a scancode table
155  * @rc_map:	the table whose mappings need to be freed
156  *
157  * This routine will free memory alloctaed for key mappings used by given
158  * scancode table.
159  */
160 static void ir_free_table(struct rc_map *rc_map)
161 {
162 	rc_map->size = 0;
163 	kfree(rc_map->name);
164 	rc_map->name = NULL;
165 	kfree(rc_map->scan);
166 	rc_map->scan = NULL;
167 }
168 
169 /**
170  * ir_resize_table() - resizes a scancode table if necessary
171  * @rc_map:	the rc_map to resize
172  * @gfp_flags:	gfp flags to use when allocating memory
173  * @return:	zero on success or a negative error code
174  *
175  * This routine will shrink the rc_map if it has lots of
176  * unused entries and grow it if it is full.
177  */
178 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
179 {
180 	unsigned int oldalloc = rc_map->alloc;
181 	unsigned int newalloc = oldalloc;
182 	struct rc_map_table *oldscan = rc_map->scan;
183 	struct rc_map_table *newscan;
184 
185 	if (rc_map->size == rc_map->len) {
186 		/* All entries in use -> grow keytable */
187 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
188 			return -ENOMEM;
189 
190 		newalloc *= 2;
191 		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
192 	}
193 
194 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
195 		/* Less than 1/3 of entries in use -> shrink keytable */
196 		newalloc /= 2;
197 		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
198 	}
199 
200 	if (newalloc == oldalloc)
201 		return 0;
202 
203 	newscan = kmalloc(newalloc, gfp_flags);
204 	if (!newscan) {
205 		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
206 		return -ENOMEM;
207 	}
208 
209 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
210 	rc_map->scan = newscan;
211 	rc_map->alloc = newalloc;
212 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
213 	kfree(oldscan);
214 	return 0;
215 }
216 
217 /**
218  * ir_update_mapping() - set a keycode in the scancode->keycode table
219  * @dev:	the struct rc_dev device descriptor
220  * @rc_map:	scancode table to be adjusted
221  * @index:	index of the mapping that needs to be updated
222  * @keycode:	the desired keycode
223  * @return:	previous keycode assigned to the mapping
224  *
225  * This routine is used to update scancode->keycode mapping at given
226  * position.
227  */
228 static unsigned int ir_update_mapping(struct rc_dev *dev,
229 				      struct rc_map *rc_map,
230 				      unsigned int index,
231 				      unsigned int new_keycode)
232 {
233 	int old_keycode = rc_map->scan[index].keycode;
234 	int i;
235 
236 	/* Did the user wish to remove the mapping? */
237 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
238 		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
239 			   index, rc_map->scan[index].scancode);
240 		rc_map->len--;
241 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
242 			(rc_map->len - index) * sizeof(struct rc_map_table));
243 	} else {
244 		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
245 			   index,
246 			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
247 			   rc_map->scan[index].scancode, new_keycode);
248 		rc_map->scan[index].keycode = new_keycode;
249 		__set_bit(new_keycode, dev->input_dev->keybit);
250 	}
251 
252 	if (old_keycode != KEY_RESERVED) {
253 		/* A previous mapping was updated... */
254 		__clear_bit(old_keycode, dev->input_dev->keybit);
255 		/* ... but another scancode might use the same keycode */
256 		for (i = 0; i < rc_map->len; i++) {
257 			if (rc_map->scan[i].keycode == old_keycode) {
258 				__set_bit(old_keycode, dev->input_dev->keybit);
259 				break;
260 			}
261 		}
262 
263 		/* Possibly shrink the keytable, failure is not a problem */
264 		ir_resize_table(rc_map, GFP_ATOMIC);
265 	}
266 
267 	return old_keycode;
268 }
269 
270 /**
271  * ir_establish_scancode() - set a keycode in the scancode->keycode table
272  * @dev:	the struct rc_dev device descriptor
273  * @rc_map:	scancode table to be searched
274  * @scancode:	the desired scancode
275  * @resize:	controls whether we allowed to resize the table to
276  *		accommodate not yet present scancodes
277  * @return:	index of the mapping containing scancode in question
278  *		or -1U in case of failure.
279  *
280  * This routine is used to locate given scancode in rc_map.
281  * If scancode is not yet present the routine will allocate a new slot
282  * for it.
283  */
284 static unsigned int ir_establish_scancode(struct rc_dev *dev,
285 					  struct rc_map *rc_map,
286 					  unsigned int scancode,
287 					  bool resize)
288 {
289 	unsigned int i;
290 
291 	/*
292 	 * Unfortunately, some hardware-based IR decoders don't provide
293 	 * all bits for the complete IR code. In general, they provide only
294 	 * the command part of the IR code. Yet, as it is possible to replace
295 	 * the provided IR with another one, it is needed to allow loading
296 	 * IR tables from other remotes. So, we support specifying a mask to
297 	 * indicate the valid bits of the scancodes.
298 	 */
299 	if (dev->scancode_mask)
300 		scancode &= dev->scancode_mask;
301 
302 	/* First check if we already have a mapping for this ir command */
303 	for (i = 0; i < rc_map->len; i++) {
304 		if (rc_map->scan[i].scancode == scancode)
305 			return i;
306 
307 		/* Keytable is sorted from lowest to highest scancode */
308 		if (rc_map->scan[i].scancode >= scancode)
309 			break;
310 	}
311 
312 	/* No previous mapping found, we might need to grow the table */
313 	if (rc_map->size == rc_map->len) {
314 		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
315 			return -1U;
316 	}
317 
318 	/* i is the proper index to insert our new keycode */
319 	if (i < rc_map->len)
320 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
321 			(rc_map->len - i) * sizeof(struct rc_map_table));
322 	rc_map->scan[i].scancode = scancode;
323 	rc_map->scan[i].keycode = KEY_RESERVED;
324 	rc_map->len++;
325 
326 	return i;
327 }
328 
329 /**
330  * ir_setkeycode() - set a keycode in the scancode->keycode table
331  * @idev:	the struct input_dev device descriptor
332  * @scancode:	the desired scancode
333  * @keycode:	result
334  * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
335  *
336  * This routine is used to handle evdev EVIOCSKEY ioctl.
337  */
338 static int ir_setkeycode(struct input_dev *idev,
339 			 const struct input_keymap_entry *ke,
340 			 unsigned int *old_keycode)
341 {
342 	struct rc_dev *rdev = input_get_drvdata(idev);
343 	struct rc_map *rc_map = &rdev->rc_map;
344 	unsigned int index;
345 	unsigned int scancode;
346 	int retval = 0;
347 	unsigned long flags;
348 
349 	spin_lock_irqsave(&rc_map->lock, flags);
350 
351 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
352 		index = ke->index;
353 		if (index >= rc_map->len) {
354 			retval = -EINVAL;
355 			goto out;
356 		}
357 	} else {
358 		retval = input_scancode_to_scalar(ke, &scancode);
359 		if (retval)
360 			goto out;
361 
362 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
363 		if (index >= rc_map->len) {
364 			retval = -ENOMEM;
365 			goto out;
366 		}
367 	}
368 
369 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
370 
371 out:
372 	spin_unlock_irqrestore(&rc_map->lock, flags);
373 	return retval;
374 }
375 
376 /**
377  * ir_setkeytable() - sets several entries in the scancode->keycode table
378  * @dev:	the struct rc_dev device descriptor
379  * @to:		the struct rc_map to copy entries to
380  * @from:	the struct rc_map to copy entries from
381  * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
382  *
383  * This routine is used to handle table initialization.
384  */
385 static int ir_setkeytable(struct rc_dev *dev,
386 			  const struct rc_map *from)
387 {
388 	struct rc_map *rc_map = &dev->rc_map;
389 	unsigned int i, index;
390 	int rc;
391 
392 	rc = ir_create_table(rc_map, from->name,
393 			     from->rc_type, from->size);
394 	if (rc)
395 		return rc;
396 
397 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
398 		   rc_map->size, rc_map->alloc);
399 
400 	for (i = 0; i < from->size; i++) {
401 		index = ir_establish_scancode(dev, rc_map,
402 					      from->scan[i].scancode, false);
403 		if (index >= rc_map->len) {
404 			rc = -ENOMEM;
405 			break;
406 		}
407 
408 		ir_update_mapping(dev, rc_map, index,
409 				  from->scan[i].keycode);
410 	}
411 
412 	if (rc)
413 		ir_free_table(rc_map);
414 
415 	return rc;
416 }
417 
418 /**
419  * ir_lookup_by_scancode() - locate mapping by scancode
420  * @rc_map:	the struct rc_map to search
421  * @scancode:	scancode to look for in the table
422  * @return:	index in the table, -1U if not found
423  *
424  * This routine performs binary search in RC keykeymap table for
425  * given scancode.
426  */
427 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
428 					  unsigned int scancode)
429 {
430 	int start = 0;
431 	int end = rc_map->len - 1;
432 	int mid;
433 
434 	while (start <= end) {
435 		mid = (start + end) / 2;
436 		if (rc_map->scan[mid].scancode < scancode)
437 			start = mid + 1;
438 		else if (rc_map->scan[mid].scancode > scancode)
439 			end = mid - 1;
440 		else
441 			return mid;
442 	}
443 
444 	return -1U;
445 }
446 
447 /**
448  * ir_getkeycode() - get a keycode from the scancode->keycode table
449  * @idev:	the struct input_dev device descriptor
450  * @scancode:	the desired scancode
451  * @keycode:	used to return the keycode, if found, or KEY_RESERVED
452  * @return:	always returns zero.
453  *
454  * This routine is used to handle evdev EVIOCGKEY ioctl.
455  */
456 static int ir_getkeycode(struct input_dev *idev,
457 			 struct input_keymap_entry *ke)
458 {
459 	struct rc_dev *rdev = input_get_drvdata(idev);
460 	struct rc_map *rc_map = &rdev->rc_map;
461 	struct rc_map_table *entry;
462 	unsigned long flags;
463 	unsigned int index;
464 	unsigned int scancode;
465 	int retval;
466 
467 	spin_lock_irqsave(&rc_map->lock, flags);
468 
469 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
470 		index = ke->index;
471 	} else {
472 		retval = input_scancode_to_scalar(ke, &scancode);
473 		if (retval)
474 			goto out;
475 
476 		index = ir_lookup_by_scancode(rc_map, scancode);
477 	}
478 
479 	if (index < rc_map->len) {
480 		entry = &rc_map->scan[index];
481 
482 		ke->index = index;
483 		ke->keycode = entry->keycode;
484 		ke->len = sizeof(entry->scancode);
485 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
486 
487 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
488 		/*
489 		 * We do not really know the valid range of scancodes
490 		 * so let's respond with KEY_RESERVED to anything we
491 		 * do not have mapping for [yet].
492 		 */
493 		ke->index = index;
494 		ke->keycode = KEY_RESERVED;
495 	} else {
496 		retval = -EINVAL;
497 		goto out;
498 	}
499 
500 	retval = 0;
501 
502 out:
503 	spin_unlock_irqrestore(&rc_map->lock, flags);
504 	return retval;
505 }
506 
507 /**
508  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
509  * @dev:	the struct rc_dev descriptor of the device
510  * @scancode:	the scancode to look for
511  * @return:	the corresponding keycode, or KEY_RESERVED
512  *
513  * This routine is used by drivers which need to convert a scancode to a
514  * keycode. Normally it should not be used since drivers should have no
515  * interest in keycodes.
516  */
517 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
518 {
519 	struct rc_map *rc_map = &dev->rc_map;
520 	unsigned int keycode;
521 	unsigned int index;
522 	unsigned long flags;
523 
524 	spin_lock_irqsave(&rc_map->lock, flags);
525 
526 	index = ir_lookup_by_scancode(rc_map, scancode);
527 	keycode = index < rc_map->len ?
528 			rc_map->scan[index].keycode : KEY_RESERVED;
529 
530 	spin_unlock_irqrestore(&rc_map->lock, flags);
531 
532 	if (keycode != KEY_RESERVED)
533 		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
534 			   dev->input_name, scancode, keycode);
535 
536 	return keycode;
537 }
538 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
539 
540 /**
541  * ir_do_keyup() - internal function to signal the release of a keypress
542  * @dev:	the struct rc_dev descriptor of the device
543  * @sync:	whether or not to call input_sync
544  *
545  * This function is used internally to release a keypress, it must be
546  * called with keylock held.
547  */
548 static void ir_do_keyup(struct rc_dev *dev, bool sync)
549 {
550 	if (!dev->keypressed)
551 		return;
552 
553 	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
554 	input_report_key(dev->input_dev, dev->last_keycode, 0);
555 	led_trigger_event(led_feedback, LED_OFF);
556 	if (sync)
557 		input_sync(dev->input_dev);
558 	dev->keypressed = false;
559 }
560 
561 /**
562  * rc_keyup() - signals the release of a keypress
563  * @dev:	the struct rc_dev descriptor of the device
564  *
565  * This routine is used to signal that a key has been released on the
566  * remote control.
567  */
568 void rc_keyup(struct rc_dev *dev)
569 {
570 	unsigned long flags;
571 
572 	spin_lock_irqsave(&dev->keylock, flags);
573 	ir_do_keyup(dev, true);
574 	spin_unlock_irqrestore(&dev->keylock, flags);
575 }
576 EXPORT_SYMBOL_GPL(rc_keyup);
577 
578 /**
579  * ir_timer_keyup() - generates a keyup event after a timeout
580  * @cookie:	a pointer to the struct rc_dev for the device
581  *
582  * This routine will generate a keyup event some time after a keydown event
583  * is generated when no further activity has been detected.
584  */
585 static void ir_timer_keyup(unsigned long cookie)
586 {
587 	struct rc_dev *dev = (struct rc_dev *)cookie;
588 	unsigned long flags;
589 
590 	/*
591 	 * ir->keyup_jiffies is used to prevent a race condition if a
592 	 * hardware interrupt occurs at this point and the keyup timer
593 	 * event is moved further into the future as a result.
594 	 *
595 	 * The timer will then be reactivated and this function called
596 	 * again in the future. We need to exit gracefully in that case
597 	 * to allow the input subsystem to do its auto-repeat magic or
598 	 * a keyup event might follow immediately after the keydown.
599 	 */
600 	spin_lock_irqsave(&dev->keylock, flags);
601 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
602 		ir_do_keyup(dev, true);
603 	spin_unlock_irqrestore(&dev->keylock, flags);
604 }
605 
606 /**
607  * rc_repeat() - signals that a key is still pressed
608  * @dev:	the struct rc_dev descriptor of the device
609  *
610  * This routine is used by IR decoders when a repeat message which does
611  * not include the necessary bits to reproduce the scancode has been
612  * received.
613  */
614 void rc_repeat(struct rc_dev *dev)
615 {
616 	unsigned long flags;
617 
618 	spin_lock_irqsave(&dev->keylock, flags);
619 
620 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
621 	input_sync(dev->input_dev);
622 
623 	if (!dev->keypressed)
624 		goto out;
625 
626 	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
627 	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
628 
629 out:
630 	spin_unlock_irqrestore(&dev->keylock, flags);
631 }
632 EXPORT_SYMBOL_GPL(rc_repeat);
633 
634 /**
635  * ir_do_keydown() - internal function to process a keypress
636  * @dev:	the struct rc_dev descriptor of the device
637  * @protocol:	the protocol of the keypress
638  * @scancode:   the scancode of the keypress
639  * @keycode:    the keycode of the keypress
640  * @toggle:     the toggle value of the keypress
641  *
642  * This function is used internally to register a keypress, it must be
643  * called with keylock held.
644  */
645 static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
646 			  u32 scancode, u32 keycode, u8 toggle)
647 {
648 	bool new_event = (!dev->keypressed		 ||
649 			  dev->last_protocol != protocol ||
650 			  dev->last_scancode != scancode ||
651 			  dev->last_toggle   != toggle);
652 
653 	if (new_event && dev->keypressed)
654 		ir_do_keyup(dev, false);
655 
656 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
657 
658 	if (new_event && keycode != KEY_RESERVED) {
659 		/* Register a keypress */
660 		dev->keypressed = true;
661 		dev->last_protocol = protocol;
662 		dev->last_scancode = scancode;
663 		dev->last_toggle = toggle;
664 		dev->last_keycode = keycode;
665 
666 		IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
667 			   dev->input_name, keycode, protocol, scancode);
668 		input_report_key(dev->input_dev, keycode, 1);
669 
670 		led_trigger_event(led_feedback, LED_FULL);
671 	}
672 
673 	input_sync(dev->input_dev);
674 }
675 
676 /**
677  * rc_keydown() - generates input event for a key press
678  * @dev:	the struct rc_dev descriptor of the device
679  * @protocol:	the protocol for the keypress
680  * @scancode:	the scancode for the keypress
681  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
682  *              support toggle values, this should be set to zero)
683  *
684  * This routine is used to signal that a key has been pressed on the
685  * remote control.
686  */
687 void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
688 {
689 	unsigned long flags;
690 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
691 
692 	spin_lock_irqsave(&dev->keylock, flags);
693 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
694 
695 	if (dev->keypressed) {
696 		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
697 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
698 	}
699 	spin_unlock_irqrestore(&dev->keylock, flags);
700 }
701 EXPORT_SYMBOL_GPL(rc_keydown);
702 
703 /**
704  * rc_keydown_notimeout() - generates input event for a key press without
705  *                          an automatic keyup event at a later time
706  * @dev:	the struct rc_dev descriptor of the device
707  * @protocol:	the protocol for the keypress
708  * @scancode:	the scancode for the keypress
709  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
710  *              support toggle values, this should be set to zero)
711  *
712  * This routine is used to signal that a key has been pressed on the
713  * remote control. The driver must manually call rc_keyup() at a later stage.
714  */
715 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
716 			  u32 scancode, u8 toggle)
717 {
718 	unsigned long flags;
719 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
720 
721 	spin_lock_irqsave(&dev->keylock, flags);
722 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
723 	spin_unlock_irqrestore(&dev->keylock, flags);
724 }
725 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
726 
727 int rc_open(struct rc_dev *rdev)
728 {
729 	int rval = 0;
730 
731 	if (!rdev)
732 		return -EINVAL;
733 
734 	mutex_lock(&rdev->lock);
735 
736 	if (!rdev->users++ && rdev->open != NULL)
737 		rval = rdev->open(rdev);
738 
739 	if (rval)
740 		rdev->users--;
741 
742 	mutex_unlock(&rdev->lock);
743 
744 	return rval;
745 }
746 EXPORT_SYMBOL_GPL(rc_open);
747 
748 static int ir_open(struct input_dev *idev)
749 {
750 	struct rc_dev *rdev = input_get_drvdata(idev);
751 
752 	return rc_open(rdev);
753 }
754 
755 void rc_close(struct rc_dev *rdev)
756 {
757 	if (rdev) {
758 		mutex_lock(&rdev->lock);
759 
760 		if (!--rdev->users && rdev->close != NULL)
761 			rdev->close(rdev);
762 
763 		mutex_unlock(&rdev->lock);
764 	}
765 }
766 EXPORT_SYMBOL_GPL(rc_close);
767 
768 static void ir_close(struct input_dev *idev)
769 {
770 	struct rc_dev *rdev = input_get_drvdata(idev);
771 	rc_close(rdev);
772 }
773 
774 /* class for /sys/class/rc */
775 static char *rc_devnode(struct device *dev, umode_t *mode)
776 {
777 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
778 }
779 
780 static struct class rc_class = {
781 	.name		= "rc",
782 	.devnode	= rc_devnode,
783 };
784 
785 /*
786  * These are the protocol textual descriptions that are
787  * used by the sysfs protocols file. Note that the order
788  * of the entries is relevant.
789  */
790 static const struct {
791 	u64	type;
792 	const char	*name;
793 	const char	*module_name;
794 } proto_names[] = {
795 	{ RC_BIT_NONE,		"none",		NULL			},
796 	{ RC_BIT_OTHER,		"other",	NULL			},
797 	{ RC_BIT_UNKNOWN,	"unknown",	NULL			},
798 	{ RC_BIT_RC5 |
799 	  RC_BIT_RC5X,		"rc-5",		"ir-rc5-decoder"	},
800 	{ RC_BIT_NEC |
801 	  RC_BIT_NECX |
802 	  RC_BIT_NEC32,		"nec",		"ir-nec-decoder"	},
803 	{ RC_BIT_RC6_0 |
804 	  RC_BIT_RC6_6A_20 |
805 	  RC_BIT_RC6_6A_24 |
806 	  RC_BIT_RC6_6A_32 |
807 	  RC_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
808 	{ RC_BIT_JVC,		"jvc",		"ir-jvc-decoder"	},
809 	{ RC_BIT_SONY12 |
810 	  RC_BIT_SONY15 |
811 	  RC_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
812 	{ RC_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
813 	{ RC_BIT_SANYO,		"sanyo",	"ir-sanyo-decoder"	},
814 	{ RC_BIT_SHARP,		"sharp",	"ir-sharp-decoder"	},
815 	{ RC_BIT_MCE_KBD,	"mce_kbd",	"ir-mce_kbd-decoder"	},
816 	{ RC_BIT_XMP,		"xmp",		"ir-xmp-decoder"	},
817 	{ RC_BIT_CEC,		"cec",		NULL			},
818 };
819 
820 /**
821  * struct rc_filter_attribute - Device attribute relating to a filter type.
822  * @attr:	Device attribute.
823  * @type:	Filter type.
824  * @mask:	false for filter value, true for filter mask.
825  */
826 struct rc_filter_attribute {
827 	struct device_attribute		attr;
828 	enum rc_filter_type		type;
829 	bool				mask;
830 };
831 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
832 
833 #define RC_PROTO_ATTR(_name, _mode, _show, _store, _type)		\
834 	struct rc_filter_attribute dev_attr_##_name = {			\
835 		.attr = __ATTR(_name, _mode, _show, _store),		\
836 		.type = (_type),					\
837 	}
838 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
839 	struct rc_filter_attribute dev_attr_##_name = {			\
840 		.attr = __ATTR(_name, _mode, _show, _store),		\
841 		.type = (_type),					\
842 		.mask = (_mask),					\
843 	}
844 
845 static bool lirc_is_present(void)
846 {
847 #if defined(CONFIG_LIRC_MODULE)
848 	struct module *lirc;
849 
850 	mutex_lock(&module_mutex);
851 	lirc = find_module("lirc_dev");
852 	mutex_unlock(&module_mutex);
853 
854 	return lirc ? true : false;
855 #elif defined(CONFIG_LIRC)
856 	return true;
857 #else
858 	return false;
859 #endif
860 }
861 
862 /**
863  * show_protocols() - shows the current/wakeup IR protocol(s)
864  * @device:	the device descriptor
865  * @mattr:	the device attribute struct
866  * @buf:	a pointer to the output buffer
867  *
868  * This routine is a callback routine for input read the IR protocol type(s).
869  * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
870  * It returns the protocol names of supported protocols.
871  * Enabled protocols are printed in brackets.
872  *
873  * dev->lock is taken to guard against races between device
874  * registration, store_protocols and show_protocols.
875  */
876 static ssize_t show_protocols(struct device *device,
877 			      struct device_attribute *mattr, char *buf)
878 {
879 	struct rc_dev *dev = to_rc_dev(device);
880 	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
881 	u64 allowed, enabled;
882 	char *tmp = buf;
883 	int i;
884 
885 	/* Device is being removed */
886 	if (!dev)
887 		return -EINVAL;
888 
889 	if (!atomic_read(&dev->initialized))
890 		return -ERESTARTSYS;
891 
892 	mutex_lock(&dev->lock);
893 
894 	if (fattr->type == RC_FILTER_NORMAL) {
895 		enabled = dev->enabled_protocols;
896 		allowed = dev->allowed_protocols;
897 		if (dev->raw && !allowed)
898 			allowed = ir_raw_get_allowed_protocols();
899 	} else {
900 		enabled = dev->enabled_wakeup_protocols;
901 		allowed = dev->allowed_wakeup_protocols;
902 	}
903 
904 	mutex_unlock(&dev->lock);
905 
906 	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
907 		   __func__, (long long)allowed, (long long)enabled);
908 
909 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
910 		if (allowed & enabled & proto_names[i].type)
911 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
912 		else if (allowed & proto_names[i].type)
913 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
914 
915 		if (allowed & proto_names[i].type)
916 			allowed &= ~proto_names[i].type;
917 	}
918 
919 	if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
920 		tmp += sprintf(tmp, "[lirc] ");
921 
922 	if (tmp != buf)
923 		tmp--;
924 	*tmp = '\n';
925 
926 	return tmp + 1 - buf;
927 }
928 
929 /**
930  * parse_protocol_change() - parses a protocol change request
931  * @protocols:	pointer to the bitmask of current protocols
932  * @buf:	pointer to the buffer with a list of changes
933  *
934  * Writing "+proto" will add a protocol to the protocol mask.
935  * Writing "-proto" will remove a protocol from protocol mask.
936  * Writing "proto" will enable only "proto".
937  * Writing "none" will disable all protocols.
938  * Returns the number of changes performed or a negative error code.
939  */
940 static int parse_protocol_change(u64 *protocols, const char *buf)
941 {
942 	const char *tmp;
943 	unsigned count = 0;
944 	bool enable, disable;
945 	u64 mask;
946 	int i;
947 
948 	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
949 		if (!*tmp)
950 			break;
951 
952 		if (*tmp == '+') {
953 			enable = true;
954 			disable = false;
955 			tmp++;
956 		} else if (*tmp == '-') {
957 			enable = false;
958 			disable = true;
959 			tmp++;
960 		} else {
961 			enable = false;
962 			disable = false;
963 		}
964 
965 		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
966 			if (!strcasecmp(tmp, proto_names[i].name)) {
967 				mask = proto_names[i].type;
968 				break;
969 			}
970 		}
971 
972 		if (i == ARRAY_SIZE(proto_names)) {
973 			if (!strcasecmp(tmp, "lirc"))
974 				mask = 0;
975 			else {
976 				IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
977 				return -EINVAL;
978 			}
979 		}
980 
981 		count++;
982 
983 		if (enable)
984 			*protocols |= mask;
985 		else if (disable)
986 			*protocols &= ~mask;
987 		else
988 			*protocols = mask;
989 	}
990 
991 	if (!count) {
992 		IR_dprintk(1, "Protocol not specified\n");
993 		return -EINVAL;
994 	}
995 
996 	return count;
997 }
998 
999 static void ir_raw_load_modules(u64 *protocols)
1000 
1001 {
1002 	u64 available;
1003 	int i, ret;
1004 
1005 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1006 		if (proto_names[i].type == RC_BIT_NONE ||
1007 		    proto_names[i].type & (RC_BIT_OTHER | RC_BIT_UNKNOWN))
1008 			continue;
1009 
1010 		available = ir_raw_get_allowed_protocols();
1011 		if (!(*protocols & proto_names[i].type & ~available))
1012 			continue;
1013 
1014 		if (!proto_names[i].module_name) {
1015 			pr_err("Can't enable IR protocol %s\n",
1016 			       proto_names[i].name);
1017 			*protocols &= ~proto_names[i].type;
1018 			continue;
1019 		}
1020 
1021 		ret = request_module("%s", proto_names[i].module_name);
1022 		if (ret < 0) {
1023 			pr_err("Couldn't load IR protocol module %s\n",
1024 			       proto_names[i].module_name);
1025 			*protocols &= ~proto_names[i].type;
1026 			continue;
1027 		}
1028 		msleep(20);
1029 		available = ir_raw_get_allowed_protocols();
1030 		if (!(*protocols & proto_names[i].type & ~available))
1031 			continue;
1032 
1033 		pr_err("Loaded IR protocol module %s, \
1034 		       but protocol %s still not available\n",
1035 		       proto_names[i].module_name,
1036 		       proto_names[i].name);
1037 		*protocols &= ~proto_names[i].type;
1038 	}
1039 }
1040 
1041 /**
1042  * store_protocols() - changes the current/wakeup IR protocol(s)
1043  * @device:	the device descriptor
1044  * @mattr:	the device attribute struct
1045  * @buf:	a pointer to the input buffer
1046  * @len:	length of the input buffer
1047  *
1048  * This routine is for changing the IR protocol type.
1049  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1050  * See parse_protocol_change() for the valid commands.
1051  * Returns @len on success or a negative error code.
1052  *
1053  * dev->lock is taken to guard against races between device
1054  * registration, store_protocols and show_protocols.
1055  */
1056 static ssize_t store_protocols(struct device *device,
1057 			       struct device_attribute *mattr,
1058 			       const char *buf, size_t len)
1059 {
1060 	struct rc_dev *dev = to_rc_dev(device);
1061 	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
1062 	u64 *current_protocols;
1063 	int (*change_protocol)(struct rc_dev *dev, u64 *rc_type);
1064 	struct rc_scancode_filter *filter;
1065 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1066 	u64 old_protocols, new_protocols;
1067 	ssize_t rc;
1068 
1069 	/* Device is being removed */
1070 	if (!dev)
1071 		return -EINVAL;
1072 
1073 	if (!atomic_read(&dev->initialized))
1074 		return -ERESTARTSYS;
1075 
1076 	if (fattr->type == RC_FILTER_NORMAL) {
1077 		IR_dprintk(1, "Normal protocol change requested\n");
1078 		current_protocols = &dev->enabled_protocols;
1079 		change_protocol = dev->change_protocol;
1080 		filter = &dev->scancode_filter;
1081 		set_filter = dev->s_filter;
1082 	} else {
1083 		IR_dprintk(1, "Wakeup protocol change requested\n");
1084 		current_protocols = &dev->enabled_wakeup_protocols;
1085 		change_protocol = dev->change_wakeup_protocol;
1086 		filter = &dev->scancode_wakeup_filter;
1087 		set_filter = dev->s_wakeup_filter;
1088 	}
1089 
1090 	if (!change_protocol) {
1091 		IR_dprintk(1, "Protocol switching not supported\n");
1092 		return -EINVAL;
1093 	}
1094 
1095 	mutex_lock(&dev->lock);
1096 
1097 	old_protocols = *current_protocols;
1098 	new_protocols = old_protocols;
1099 	rc = parse_protocol_change(&new_protocols, buf);
1100 	if (rc < 0)
1101 		goto out;
1102 
1103 	rc = change_protocol(dev, &new_protocols);
1104 	if (rc < 0) {
1105 		IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1106 			   (long long)new_protocols);
1107 		goto out;
1108 	}
1109 
1110 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1111 		ir_raw_load_modules(&new_protocols);
1112 
1113 	if (new_protocols != old_protocols) {
1114 		*current_protocols = new_protocols;
1115 		IR_dprintk(1, "Protocols changed to 0x%llx\n",
1116 			   (long long)new_protocols);
1117 	}
1118 
1119 	/*
1120 	 * If a protocol change was attempted the filter may need updating, even
1121 	 * if the actual protocol mask hasn't changed (since the driver may have
1122 	 * cleared the filter).
1123 	 * Try setting the same filter with the new protocol (if any).
1124 	 * Fall back to clearing the filter.
1125 	 */
1126 	if (set_filter && filter->mask) {
1127 		if (new_protocols)
1128 			rc = set_filter(dev, filter);
1129 		else
1130 			rc = -1;
1131 
1132 		if (rc < 0) {
1133 			filter->data = 0;
1134 			filter->mask = 0;
1135 			set_filter(dev, filter);
1136 		}
1137 	}
1138 
1139 	rc = len;
1140 
1141 out:
1142 	mutex_unlock(&dev->lock);
1143 	return rc;
1144 }
1145 
1146 /**
1147  * show_filter() - shows the current scancode filter value or mask
1148  * @device:	the device descriptor
1149  * @attr:	the device attribute struct
1150  * @buf:	a pointer to the output buffer
1151  *
1152  * This routine is a callback routine to read a scancode filter value or mask.
1153  * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1154  * It prints the current scancode filter value or mask of the appropriate filter
1155  * type in hexadecimal into @buf and returns the size of the buffer.
1156  *
1157  * Bits of the filter value corresponding to set bits in the filter mask are
1158  * compared against input scancodes and non-matching scancodes are discarded.
1159  *
1160  * dev->lock is taken to guard against races between device registration,
1161  * store_filter and show_filter.
1162  */
1163 static ssize_t show_filter(struct device *device,
1164 			   struct device_attribute *attr,
1165 			   char *buf)
1166 {
1167 	struct rc_dev *dev = to_rc_dev(device);
1168 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1169 	struct rc_scancode_filter *filter;
1170 	u32 val;
1171 
1172 	/* Device is being removed */
1173 	if (!dev)
1174 		return -EINVAL;
1175 
1176 	if (!atomic_read(&dev->initialized))
1177 		return -ERESTARTSYS;
1178 
1179 	mutex_lock(&dev->lock);
1180 
1181 	if (fattr->type == RC_FILTER_NORMAL)
1182 		filter = &dev->scancode_filter;
1183 	else
1184 		filter = &dev->scancode_wakeup_filter;
1185 
1186 	if (fattr->mask)
1187 		val = filter->mask;
1188 	else
1189 		val = filter->data;
1190 	mutex_unlock(&dev->lock);
1191 
1192 	return sprintf(buf, "%#x\n", val);
1193 }
1194 
1195 /**
1196  * store_filter() - changes the scancode filter value
1197  * @device:	the device descriptor
1198  * @attr:	the device attribute struct
1199  * @buf:	a pointer to the input buffer
1200  * @len:	length of the input buffer
1201  *
1202  * This routine is for changing a scancode filter value or mask.
1203  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1204  * Returns -EINVAL if an invalid filter value for the current protocol was
1205  * specified or if scancode filtering is not supported by the driver, otherwise
1206  * returns @len.
1207  *
1208  * Bits of the filter value corresponding to set bits in the filter mask are
1209  * compared against input scancodes and non-matching scancodes are discarded.
1210  *
1211  * dev->lock is taken to guard against races between device registration,
1212  * store_filter and show_filter.
1213  */
1214 static ssize_t store_filter(struct device *device,
1215 			    struct device_attribute *attr,
1216 			    const char *buf, size_t len)
1217 {
1218 	struct rc_dev *dev = to_rc_dev(device);
1219 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1220 	struct rc_scancode_filter new_filter, *filter;
1221 	int ret;
1222 	unsigned long val;
1223 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1224 	u64 *enabled_protocols;
1225 
1226 	/* Device is being removed */
1227 	if (!dev)
1228 		return -EINVAL;
1229 
1230 	if (!atomic_read(&dev->initialized))
1231 		return -ERESTARTSYS;
1232 
1233 	ret = kstrtoul(buf, 0, &val);
1234 	if (ret < 0)
1235 		return ret;
1236 
1237 	if (fattr->type == RC_FILTER_NORMAL) {
1238 		set_filter = dev->s_filter;
1239 		enabled_protocols = &dev->enabled_protocols;
1240 		filter = &dev->scancode_filter;
1241 	} else {
1242 		set_filter = dev->s_wakeup_filter;
1243 		enabled_protocols = &dev->enabled_wakeup_protocols;
1244 		filter = &dev->scancode_wakeup_filter;
1245 	}
1246 
1247 	if (!set_filter)
1248 		return -EINVAL;
1249 
1250 	mutex_lock(&dev->lock);
1251 
1252 	new_filter = *filter;
1253 	if (fattr->mask)
1254 		new_filter.mask = val;
1255 	else
1256 		new_filter.data = val;
1257 
1258 	if (!*enabled_protocols && val) {
1259 		/* refuse to set a filter unless a protocol is enabled */
1260 		ret = -EINVAL;
1261 		goto unlock;
1262 	}
1263 
1264 	ret = set_filter(dev, &new_filter);
1265 	if (ret < 0)
1266 		goto unlock;
1267 
1268 	*filter = new_filter;
1269 
1270 unlock:
1271 	mutex_unlock(&dev->lock);
1272 	return (ret < 0) ? ret : len;
1273 }
1274 
1275 static void rc_dev_release(struct device *device)
1276 {
1277 	struct rc_dev *dev = to_rc_dev(device);
1278 
1279 	kfree(dev);
1280 }
1281 
1282 #define ADD_HOTPLUG_VAR(fmt, val...)					\
1283 	do {								\
1284 		int err = add_uevent_var(env, fmt, val);		\
1285 		if (err)						\
1286 			return err;					\
1287 	} while (0)
1288 
1289 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1290 {
1291 	struct rc_dev *dev = to_rc_dev(device);
1292 
1293 	if (dev->rc_map.name)
1294 		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1295 	if (dev->driver_name)
1296 		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1297 
1298 	return 0;
1299 }
1300 
1301 /*
1302  * Static device attribute struct with the sysfs attributes for IR's
1303  */
1304 static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR,
1305 		     show_protocols, store_protocols, RC_FILTER_NORMAL);
1306 static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR,
1307 		     show_protocols, store_protocols, RC_FILTER_WAKEUP);
1308 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1309 		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1310 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1311 		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1312 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1313 		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1314 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1315 		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1316 
1317 static struct attribute *rc_dev_protocol_attrs[] = {
1318 	&dev_attr_protocols.attr.attr,
1319 	NULL,
1320 };
1321 
1322 static struct attribute_group rc_dev_protocol_attr_grp = {
1323 	.attrs	= rc_dev_protocol_attrs,
1324 };
1325 
1326 static struct attribute *rc_dev_wakeup_protocol_attrs[] = {
1327 	&dev_attr_wakeup_protocols.attr.attr,
1328 	NULL,
1329 };
1330 
1331 static struct attribute_group rc_dev_wakeup_protocol_attr_grp = {
1332 	.attrs	= rc_dev_wakeup_protocol_attrs,
1333 };
1334 
1335 static struct attribute *rc_dev_filter_attrs[] = {
1336 	&dev_attr_filter.attr.attr,
1337 	&dev_attr_filter_mask.attr.attr,
1338 	NULL,
1339 };
1340 
1341 static struct attribute_group rc_dev_filter_attr_grp = {
1342 	.attrs	= rc_dev_filter_attrs,
1343 };
1344 
1345 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1346 	&dev_attr_wakeup_filter.attr.attr,
1347 	&dev_attr_wakeup_filter_mask.attr.attr,
1348 	NULL,
1349 };
1350 
1351 static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1352 	.attrs	= rc_dev_wakeup_filter_attrs,
1353 };
1354 
1355 static struct device_type rc_dev_type = {
1356 	.release	= rc_dev_release,
1357 	.uevent		= rc_dev_uevent,
1358 };
1359 
1360 struct rc_dev *rc_allocate_device(void)
1361 {
1362 	struct rc_dev *dev;
1363 
1364 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1365 	if (!dev)
1366 		return NULL;
1367 
1368 	dev->input_dev = input_allocate_device();
1369 	if (!dev->input_dev) {
1370 		kfree(dev);
1371 		return NULL;
1372 	}
1373 
1374 	dev->input_dev->getkeycode = ir_getkeycode;
1375 	dev->input_dev->setkeycode = ir_setkeycode;
1376 	input_set_drvdata(dev->input_dev, dev);
1377 
1378 	spin_lock_init(&dev->rc_map.lock);
1379 	spin_lock_init(&dev->keylock);
1380 	mutex_init(&dev->lock);
1381 	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1382 
1383 	dev->dev.type = &rc_dev_type;
1384 	dev->dev.class = &rc_class;
1385 	device_initialize(&dev->dev);
1386 
1387 	__module_get(THIS_MODULE);
1388 	return dev;
1389 }
1390 EXPORT_SYMBOL_GPL(rc_allocate_device);
1391 
1392 void rc_free_device(struct rc_dev *dev)
1393 {
1394 	if (!dev)
1395 		return;
1396 
1397 	input_free_device(dev->input_dev);
1398 
1399 	put_device(&dev->dev);
1400 
1401 	/* kfree(dev) will be called by the callback function
1402 	   rc_dev_release() */
1403 
1404 	module_put(THIS_MODULE);
1405 }
1406 EXPORT_SYMBOL_GPL(rc_free_device);
1407 
1408 static void devm_rc_alloc_release(struct device *dev, void *res)
1409 {
1410 	rc_free_device(*(struct rc_dev **)res);
1411 }
1412 
1413 struct rc_dev *devm_rc_allocate_device(struct device *dev)
1414 {
1415 	struct rc_dev **dr, *rc;
1416 
1417 	dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1418 	if (!dr)
1419 		return NULL;
1420 
1421 	rc = rc_allocate_device();
1422 	if (!rc) {
1423 		devres_free(dr);
1424 		return NULL;
1425 	}
1426 
1427 	rc->dev.parent = dev;
1428 	rc->managed_alloc = true;
1429 	*dr = rc;
1430 	devres_add(dev, dr);
1431 
1432 	return rc;
1433 }
1434 EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1435 
1436 int rc_register_device(struct rc_dev *dev)
1437 {
1438 	static bool raw_init = false; /* raw decoders loaded? */
1439 	struct rc_map *rc_map;
1440 	const char *path;
1441 	int attr = 0;
1442 	int minor;
1443 	int rc;
1444 
1445 	if (!dev || !dev->map_name)
1446 		return -EINVAL;
1447 
1448 	rc_map = rc_map_get(dev->map_name);
1449 	if (!rc_map)
1450 		rc_map = rc_map_get(RC_MAP_EMPTY);
1451 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1452 		return -EINVAL;
1453 
1454 	set_bit(EV_KEY, dev->input_dev->evbit);
1455 	set_bit(EV_REP, dev->input_dev->evbit);
1456 	set_bit(EV_MSC, dev->input_dev->evbit);
1457 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1458 	if (dev->open)
1459 		dev->input_dev->open = ir_open;
1460 	if (dev->close)
1461 		dev->input_dev->close = ir_close;
1462 
1463 	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1464 	if (minor < 0)
1465 		return minor;
1466 
1467 	dev->minor = minor;
1468 	dev_set_name(&dev->dev, "rc%u", dev->minor);
1469 	dev_set_drvdata(&dev->dev, dev);
1470 	atomic_set(&dev->initialized, 0);
1471 
1472 	dev->dev.groups = dev->sysfs_groups;
1473 	dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1474 	if (dev->s_filter)
1475 		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1476 	if (dev->s_wakeup_filter)
1477 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1478 	if (dev->change_wakeup_protocol)
1479 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp;
1480 	dev->sysfs_groups[attr++] = NULL;
1481 
1482 	rc = device_add(&dev->dev);
1483 	if (rc)
1484 		goto out_unlock;
1485 
1486 	rc = ir_setkeytable(dev, rc_map);
1487 	if (rc)
1488 		goto out_dev;
1489 
1490 	dev->input_dev->dev.parent = &dev->dev;
1491 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1492 	dev->input_dev->phys = dev->input_phys;
1493 	dev->input_dev->name = dev->input_name;
1494 
1495 	rc = input_register_device(dev->input_dev);
1496 	if (rc)
1497 		goto out_table;
1498 
1499 	/*
1500 	 * Default delay of 250ms is too short for some protocols, especially
1501 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1502 	 * to avoid wrong repetition of the keycodes. Note that this must be
1503 	 * set after the call to input_register_device().
1504 	 */
1505 	dev->input_dev->rep[REP_DELAY] = 500;
1506 
1507 	/*
1508 	 * As a repeat event on protocols like RC-5 and NEC take as long as
1509 	 * 110/114ms, using 33ms as a repeat period is not the right thing
1510 	 * to do.
1511 	 */
1512 	dev->input_dev->rep[REP_PERIOD] = 125;
1513 
1514 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1515 	dev_info(&dev->dev, "%s as %s\n",
1516 		dev->input_name ?: "Unspecified device", path ?: "N/A");
1517 	kfree(path);
1518 
1519 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1520 		if (!raw_init) {
1521 			request_module_nowait("ir-lirc-codec");
1522 			raw_init = true;
1523 		}
1524 		rc = ir_raw_event_register(dev);
1525 		if (rc < 0)
1526 			goto out_input;
1527 	}
1528 
1529 	if (dev->change_protocol) {
1530 		u64 rc_type = (1ll << rc_map->rc_type);
1531 		rc = dev->change_protocol(dev, &rc_type);
1532 		if (rc < 0)
1533 			goto out_raw;
1534 		dev->enabled_protocols = rc_type;
1535 	}
1536 
1537 	/* Allow the RC sysfs nodes to be accessible */
1538 	atomic_set(&dev->initialized, 1);
1539 
1540 	IR_dprintk(1, "Registered rc%u (driver: %s, remote: %s, mode %s)\n",
1541 		   dev->minor,
1542 		   dev->driver_name ? dev->driver_name : "unknown",
1543 		   rc_map->name ? rc_map->name : "unknown",
1544 		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1545 
1546 	return 0;
1547 
1548 out_raw:
1549 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1550 		ir_raw_event_unregister(dev);
1551 out_input:
1552 	input_unregister_device(dev->input_dev);
1553 	dev->input_dev = NULL;
1554 out_table:
1555 	ir_free_table(&dev->rc_map);
1556 out_dev:
1557 	device_del(&dev->dev);
1558 out_unlock:
1559 	ida_simple_remove(&rc_ida, minor);
1560 	return rc;
1561 }
1562 EXPORT_SYMBOL_GPL(rc_register_device);
1563 
1564 static void devm_rc_release(struct device *dev, void *res)
1565 {
1566 	rc_unregister_device(*(struct rc_dev **)res);
1567 }
1568 
1569 int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1570 {
1571 	struct rc_dev **dr;
1572 	int ret;
1573 
1574 	dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1575 	if (!dr)
1576 		return -ENOMEM;
1577 
1578 	ret = rc_register_device(dev);
1579 	if (ret) {
1580 		devres_free(dr);
1581 		return ret;
1582 	}
1583 
1584 	*dr = dev;
1585 	devres_add(parent, dr);
1586 
1587 	return 0;
1588 }
1589 EXPORT_SYMBOL_GPL(devm_rc_register_device);
1590 
1591 void rc_unregister_device(struct rc_dev *dev)
1592 {
1593 	if (!dev)
1594 		return;
1595 
1596 	del_timer_sync(&dev->timer_keyup);
1597 
1598 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1599 		ir_raw_event_unregister(dev);
1600 
1601 	/* Freeing the table should also call the stop callback */
1602 	ir_free_table(&dev->rc_map);
1603 	IR_dprintk(1, "Freed keycode table\n");
1604 
1605 	input_unregister_device(dev->input_dev);
1606 	dev->input_dev = NULL;
1607 
1608 	device_del(&dev->dev);
1609 
1610 	ida_simple_remove(&rc_ida, dev->minor);
1611 
1612 	if (!dev->managed_alloc)
1613 		rc_free_device(dev);
1614 }
1615 
1616 EXPORT_SYMBOL_GPL(rc_unregister_device);
1617 
1618 /*
1619  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1620  */
1621 
1622 static int __init rc_core_init(void)
1623 {
1624 	int rc = class_register(&rc_class);
1625 	if (rc) {
1626 		pr_err("rc_core: unable to register rc class\n");
1627 		return rc;
1628 	}
1629 
1630 	led_trigger_register_simple("rc-feedback", &led_feedback);
1631 	rc_map_register(&empty_map);
1632 
1633 	return 0;
1634 }
1635 
1636 static void __exit rc_core_exit(void)
1637 {
1638 	class_unregister(&rc_class);
1639 	led_trigger_unregister_simple(led_feedback);
1640 	rc_map_unregister(&empty_map);
1641 }
1642 
1643 subsys_initcall(rc_core_init);
1644 module_exit(rc_core_exit);
1645 
1646 int rc_core_debug;    /* ir_debug level (0,1,2) */
1647 EXPORT_SYMBOL_GPL(rc_core_debug);
1648 module_param_named(debug, rc_core_debug, int, 0644);
1649 
1650 MODULE_AUTHOR("Mauro Carvalho Chehab");
1651 MODULE_LICENSE("GPL");
1652