xref: /linux/drivers/media/rc/rc-main.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /* rc-main.c - Remote Controller core module
2  *
3  * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4  *
5  * This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation version 2 of the License.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  */
14 
15 #include <media/rc-core.h>
16 #include <linux/atomic.h>
17 #include <linux/spinlock.h>
18 #include <linux/delay.h>
19 #include <linux/input.h>
20 #include <linux/leds.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/device.h>
24 #include <linux/module.h>
25 #include "rc-core-priv.h"
26 
27 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
28 #define IR_TAB_MIN_SIZE	256
29 #define IR_TAB_MAX_SIZE	8192
30 #define RC_DEV_MAX	256
31 
32 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
33 #define IR_KEYPRESS_TIMEOUT 250
34 
35 /* Used to keep track of known keymaps */
36 static LIST_HEAD(rc_map_list);
37 static DEFINE_SPINLOCK(rc_map_lock);
38 static struct led_trigger *led_feedback;
39 
40 /* Used to keep track of rc devices */
41 static DEFINE_IDA(rc_ida);
42 
43 static struct rc_map_list *seek_rc_map(const char *name)
44 {
45 	struct rc_map_list *map = NULL;
46 
47 	spin_lock(&rc_map_lock);
48 	list_for_each_entry(map, &rc_map_list, list) {
49 		if (!strcmp(name, map->map.name)) {
50 			spin_unlock(&rc_map_lock);
51 			return map;
52 		}
53 	}
54 	spin_unlock(&rc_map_lock);
55 
56 	return NULL;
57 }
58 
59 struct rc_map *rc_map_get(const char *name)
60 {
61 
62 	struct rc_map_list *map;
63 
64 	map = seek_rc_map(name);
65 #ifdef CONFIG_MODULES
66 	if (!map) {
67 		int rc = request_module("%s", name);
68 		if (rc < 0) {
69 			printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
70 			return NULL;
71 		}
72 		msleep(20);	/* Give some time for IR to register */
73 
74 		map = seek_rc_map(name);
75 	}
76 #endif
77 	if (!map) {
78 		printk(KERN_ERR "IR keymap %s not found\n", name);
79 		return NULL;
80 	}
81 
82 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
83 
84 	return &map->map;
85 }
86 EXPORT_SYMBOL_GPL(rc_map_get);
87 
88 int rc_map_register(struct rc_map_list *map)
89 {
90 	spin_lock(&rc_map_lock);
91 	list_add_tail(&map->list, &rc_map_list);
92 	spin_unlock(&rc_map_lock);
93 	return 0;
94 }
95 EXPORT_SYMBOL_GPL(rc_map_register);
96 
97 void rc_map_unregister(struct rc_map_list *map)
98 {
99 	spin_lock(&rc_map_lock);
100 	list_del(&map->list);
101 	spin_unlock(&rc_map_lock);
102 }
103 EXPORT_SYMBOL_GPL(rc_map_unregister);
104 
105 
106 static struct rc_map_table empty[] = {
107 	{ 0x2a, KEY_COFFEE },
108 };
109 
110 static struct rc_map_list empty_map = {
111 	.map = {
112 		.scan    = empty,
113 		.size    = ARRAY_SIZE(empty),
114 		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
115 		.name    = RC_MAP_EMPTY,
116 	}
117 };
118 
119 /**
120  * ir_create_table() - initializes a scancode table
121  * @rc_map:	the rc_map to initialize
122  * @name:	name to assign to the table
123  * @rc_type:	ir type to assign to the new table
124  * @size:	initial size of the table
125  * @return:	zero on success or a negative error code
126  *
127  * This routine will initialize the rc_map and will allocate
128  * memory to hold at least the specified number of elements.
129  */
130 static int ir_create_table(struct rc_map *rc_map,
131 			   const char *name, u64 rc_type, size_t size)
132 {
133 	rc_map->name = name;
134 	rc_map->rc_type = rc_type;
135 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
136 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
137 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
138 	if (!rc_map->scan)
139 		return -ENOMEM;
140 
141 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
142 		   rc_map->size, rc_map->alloc);
143 	return 0;
144 }
145 
146 /**
147  * ir_free_table() - frees memory allocated by a scancode table
148  * @rc_map:	the table whose mappings need to be freed
149  *
150  * This routine will free memory alloctaed for key mappings used by given
151  * scancode table.
152  */
153 static void ir_free_table(struct rc_map *rc_map)
154 {
155 	rc_map->size = 0;
156 	kfree(rc_map->scan);
157 	rc_map->scan = NULL;
158 }
159 
160 /**
161  * ir_resize_table() - resizes a scancode table if necessary
162  * @rc_map:	the rc_map to resize
163  * @gfp_flags:	gfp flags to use when allocating memory
164  * @return:	zero on success or a negative error code
165  *
166  * This routine will shrink the rc_map if it has lots of
167  * unused entries and grow it if it is full.
168  */
169 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
170 {
171 	unsigned int oldalloc = rc_map->alloc;
172 	unsigned int newalloc = oldalloc;
173 	struct rc_map_table *oldscan = rc_map->scan;
174 	struct rc_map_table *newscan;
175 
176 	if (rc_map->size == rc_map->len) {
177 		/* All entries in use -> grow keytable */
178 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
179 			return -ENOMEM;
180 
181 		newalloc *= 2;
182 		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
183 	}
184 
185 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
186 		/* Less than 1/3 of entries in use -> shrink keytable */
187 		newalloc /= 2;
188 		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
189 	}
190 
191 	if (newalloc == oldalloc)
192 		return 0;
193 
194 	newscan = kmalloc(newalloc, gfp_flags);
195 	if (!newscan) {
196 		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
197 		return -ENOMEM;
198 	}
199 
200 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
201 	rc_map->scan = newscan;
202 	rc_map->alloc = newalloc;
203 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
204 	kfree(oldscan);
205 	return 0;
206 }
207 
208 /**
209  * ir_update_mapping() - set a keycode in the scancode->keycode table
210  * @dev:	the struct rc_dev device descriptor
211  * @rc_map:	scancode table to be adjusted
212  * @index:	index of the mapping that needs to be updated
213  * @keycode:	the desired keycode
214  * @return:	previous keycode assigned to the mapping
215  *
216  * This routine is used to update scancode->keycode mapping at given
217  * position.
218  */
219 static unsigned int ir_update_mapping(struct rc_dev *dev,
220 				      struct rc_map *rc_map,
221 				      unsigned int index,
222 				      unsigned int new_keycode)
223 {
224 	int old_keycode = rc_map->scan[index].keycode;
225 	int i;
226 
227 	/* Did the user wish to remove the mapping? */
228 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
229 		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
230 			   index, rc_map->scan[index].scancode);
231 		rc_map->len--;
232 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
233 			(rc_map->len - index) * sizeof(struct rc_map_table));
234 	} else {
235 		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
236 			   index,
237 			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
238 			   rc_map->scan[index].scancode, new_keycode);
239 		rc_map->scan[index].keycode = new_keycode;
240 		__set_bit(new_keycode, dev->input_dev->keybit);
241 	}
242 
243 	if (old_keycode != KEY_RESERVED) {
244 		/* A previous mapping was updated... */
245 		__clear_bit(old_keycode, dev->input_dev->keybit);
246 		/* ... but another scancode might use the same keycode */
247 		for (i = 0; i < rc_map->len; i++) {
248 			if (rc_map->scan[i].keycode == old_keycode) {
249 				__set_bit(old_keycode, dev->input_dev->keybit);
250 				break;
251 			}
252 		}
253 
254 		/* Possibly shrink the keytable, failure is not a problem */
255 		ir_resize_table(rc_map, GFP_ATOMIC);
256 	}
257 
258 	return old_keycode;
259 }
260 
261 /**
262  * ir_establish_scancode() - set a keycode in the scancode->keycode table
263  * @dev:	the struct rc_dev device descriptor
264  * @rc_map:	scancode table to be searched
265  * @scancode:	the desired scancode
266  * @resize:	controls whether we allowed to resize the table to
267  *		accommodate not yet present scancodes
268  * @return:	index of the mapping containing scancode in question
269  *		or -1U in case of failure.
270  *
271  * This routine is used to locate given scancode in rc_map.
272  * If scancode is not yet present the routine will allocate a new slot
273  * for it.
274  */
275 static unsigned int ir_establish_scancode(struct rc_dev *dev,
276 					  struct rc_map *rc_map,
277 					  unsigned int scancode,
278 					  bool resize)
279 {
280 	unsigned int i;
281 
282 	/*
283 	 * Unfortunately, some hardware-based IR decoders don't provide
284 	 * all bits for the complete IR code. In general, they provide only
285 	 * the command part of the IR code. Yet, as it is possible to replace
286 	 * the provided IR with another one, it is needed to allow loading
287 	 * IR tables from other remotes. So, we support specifying a mask to
288 	 * indicate the valid bits of the scancodes.
289 	 */
290 	if (dev->scancode_mask)
291 		scancode &= dev->scancode_mask;
292 
293 	/* First check if we already have a mapping for this ir command */
294 	for (i = 0; i < rc_map->len; i++) {
295 		if (rc_map->scan[i].scancode == scancode)
296 			return i;
297 
298 		/* Keytable is sorted from lowest to highest scancode */
299 		if (rc_map->scan[i].scancode >= scancode)
300 			break;
301 	}
302 
303 	/* No previous mapping found, we might need to grow the table */
304 	if (rc_map->size == rc_map->len) {
305 		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
306 			return -1U;
307 	}
308 
309 	/* i is the proper index to insert our new keycode */
310 	if (i < rc_map->len)
311 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
312 			(rc_map->len - i) * sizeof(struct rc_map_table));
313 	rc_map->scan[i].scancode = scancode;
314 	rc_map->scan[i].keycode = KEY_RESERVED;
315 	rc_map->len++;
316 
317 	return i;
318 }
319 
320 /**
321  * ir_setkeycode() - set a keycode in the scancode->keycode table
322  * @idev:	the struct input_dev device descriptor
323  * @scancode:	the desired scancode
324  * @keycode:	result
325  * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
326  *
327  * This routine is used to handle evdev EVIOCSKEY ioctl.
328  */
329 static int ir_setkeycode(struct input_dev *idev,
330 			 const struct input_keymap_entry *ke,
331 			 unsigned int *old_keycode)
332 {
333 	struct rc_dev *rdev = input_get_drvdata(idev);
334 	struct rc_map *rc_map = &rdev->rc_map;
335 	unsigned int index;
336 	unsigned int scancode;
337 	int retval = 0;
338 	unsigned long flags;
339 
340 	spin_lock_irqsave(&rc_map->lock, flags);
341 
342 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
343 		index = ke->index;
344 		if (index >= rc_map->len) {
345 			retval = -EINVAL;
346 			goto out;
347 		}
348 	} else {
349 		retval = input_scancode_to_scalar(ke, &scancode);
350 		if (retval)
351 			goto out;
352 
353 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
354 		if (index >= rc_map->len) {
355 			retval = -ENOMEM;
356 			goto out;
357 		}
358 	}
359 
360 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
361 
362 out:
363 	spin_unlock_irqrestore(&rc_map->lock, flags);
364 	return retval;
365 }
366 
367 /**
368  * ir_setkeytable() - sets several entries in the scancode->keycode table
369  * @dev:	the struct rc_dev device descriptor
370  * @to:		the struct rc_map to copy entries to
371  * @from:	the struct rc_map to copy entries from
372  * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
373  *
374  * This routine is used to handle table initialization.
375  */
376 static int ir_setkeytable(struct rc_dev *dev,
377 			  const struct rc_map *from)
378 {
379 	struct rc_map *rc_map = &dev->rc_map;
380 	unsigned int i, index;
381 	int rc;
382 
383 	rc = ir_create_table(rc_map, from->name,
384 			     from->rc_type, from->size);
385 	if (rc)
386 		return rc;
387 
388 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
389 		   rc_map->size, rc_map->alloc);
390 
391 	for (i = 0; i < from->size; i++) {
392 		index = ir_establish_scancode(dev, rc_map,
393 					      from->scan[i].scancode, false);
394 		if (index >= rc_map->len) {
395 			rc = -ENOMEM;
396 			break;
397 		}
398 
399 		ir_update_mapping(dev, rc_map, index,
400 				  from->scan[i].keycode);
401 	}
402 
403 	if (rc)
404 		ir_free_table(rc_map);
405 
406 	return rc;
407 }
408 
409 /**
410  * ir_lookup_by_scancode() - locate mapping by scancode
411  * @rc_map:	the struct rc_map to search
412  * @scancode:	scancode to look for in the table
413  * @return:	index in the table, -1U if not found
414  *
415  * This routine performs binary search in RC keykeymap table for
416  * given scancode.
417  */
418 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
419 					  unsigned int scancode)
420 {
421 	int start = 0;
422 	int end = rc_map->len - 1;
423 	int mid;
424 
425 	while (start <= end) {
426 		mid = (start + end) / 2;
427 		if (rc_map->scan[mid].scancode < scancode)
428 			start = mid + 1;
429 		else if (rc_map->scan[mid].scancode > scancode)
430 			end = mid - 1;
431 		else
432 			return mid;
433 	}
434 
435 	return -1U;
436 }
437 
438 /**
439  * ir_getkeycode() - get a keycode from the scancode->keycode table
440  * @idev:	the struct input_dev device descriptor
441  * @scancode:	the desired scancode
442  * @keycode:	used to return the keycode, if found, or KEY_RESERVED
443  * @return:	always returns zero.
444  *
445  * This routine is used to handle evdev EVIOCGKEY ioctl.
446  */
447 static int ir_getkeycode(struct input_dev *idev,
448 			 struct input_keymap_entry *ke)
449 {
450 	struct rc_dev *rdev = input_get_drvdata(idev);
451 	struct rc_map *rc_map = &rdev->rc_map;
452 	struct rc_map_table *entry;
453 	unsigned long flags;
454 	unsigned int index;
455 	unsigned int scancode;
456 	int retval;
457 
458 	spin_lock_irqsave(&rc_map->lock, flags);
459 
460 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
461 		index = ke->index;
462 	} else {
463 		retval = input_scancode_to_scalar(ke, &scancode);
464 		if (retval)
465 			goto out;
466 
467 		index = ir_lookup_by_scancode(rc_map, scancode);
468 	}
469 
470 	if (index < rc_map->len) {
471 		entry = &rc_map->scan[index];
472 
473 		ke->index = index;
474 		ke->keycode = entry->keycode;
475 		ke->len = sizeof(entry->scancode);
476 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
477 
478 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
479 		/*
480 		 * We do not really know the valid range of scancodes
481 		 * so let's respond with KEY_RESERVED to anything we
482 		 * do not have mapping for [yet].
483 		 */
484 		ke->index = index;
485 		ke->keycode = KEY_RESERVED;
486 	} else {
487 		retval = -EINVAL;
488 		goto out;
489 	}
490 
491 	retval = 0;
492 
493 out:
494 	spin_unlock_irqrestore(&rc_map->lock, flags);
495 	return retval;
496 }
497 
498 /**
499  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
500  * @dev:	the struct rc_dev descriptor of the device
501  * @scancode:	the scancode to look for
502  * @return:	the corresponding keycode, or KEY_RESERVED
503  *
504  * This routine is used by drivers which need to convert a scancode to a
505  * keycode. Normally it should not be used since drivers should have no
506  * interest in keycodes.
507  */
508 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
509 {
510 	struct rc_map *rc_map = &dev->rc_map;
511 	unsigned int keycode;
512 	unsigned int index;
513 	unsigned long flags;
514 
515 	spin_lock_irqsave(&rc_map->lock, flags);
516 
517 	index = ir_lookup_by_scancode(rc_map, scancode);
518 	keycode = index < rc_map->len ?
519 			rc_map->scan[index].keycode : KEY_RESERVED;
520 
521 	spin_unlock_irqrestore(&rc_map->lock, flags);
522 
523 	if (keycode != KEY_RESERVED)
524 		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
525 			   dev->input_name, scancode, keycode);
526 
527 	return keycode;
528 }
529 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
530 
531 /**
532  * ir_do_keyup() - internal function to signal the release of a keypress
533  * @dev:	the struct rc_dev descriptor of the device
534  * @sync:	whether or not to call input_sync
535  *
536  * This function is used internally to release a keypress, it must be
537  * called with keylock held.
538  */
539 static void ir_do_keyup(struct rc_dev *dev, bool sync)
540 {
541 	if (!dev->keypressed)
542 		return;
543 
544 	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
545 	input_report_key(dev->input_dev, dev->last_keycode, 0);
546 	led_trigger_event(led_feedback, LED_OFF);
547 	if (sync)
548 		input_sync(dev->input_dev);
549 	dev->keypressed = false;
550 }
551 
552 /**
553  * rc_keyup() - signals the release of a keypress
554  * @dev:	the struct rc_dev descriptor of the device
555  *
556  * This routine is used to signal that a key has been released on the
557  * remote control.
558  */
559 void rc_keyup(struct rc_dev *dev)
560 {
561 	unsigned long flags;
562 
563 	spin_lock_irqsave(&dev->keylock, flags);
564 	ir_do_keyup(dev, true);
565 	spin_unlock_irqrestore(&dev->keylock, flags);
566 }
567 EXPORT_SYMBOL_GPL(rc_keyup);
568 
569 /**
570  * ir_timer_keyup() - generates a keyup event after a timeout
571  * @cookie:	a pointer to the struct rc_dev for the device
572  *
573  * This routine will generate a keyup event some time after a keydown event
574  * is generated when no further activity has been detected.
575  */
576 static void ir_timer_keyup(unsigned long cookie)
577 {
578 	struct rc_dev *dev = (struct rc_dev *)cookie;
579 	unsigned long flags;
580 
581 	/*
582 	 * ir->keyup_jiffies is used to prevent a race condition if a
583 	 * hardware interrupt occurs at this point and the keyup timer
584 	 * event is moved further into the future as a result.
585 	 *
586 	 * The timer will then be reactivated and this function called
587 	 * again in the future. We need to exit gracefully in that case
588 	 * to allow the input subsystem to do its auto-repeat magic or
589 	 * a keyup event might follow immediately after the keydown.
590 	 */
591 	spin_lock_irqsave(&dev->keylock, flags);
592 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
593 		ir_do_keyup(dev, true);
594 	spin_unlock_irqrestore(&dev->keylock, flags);
595 }
596 
597 /**
598  * rc_repeat() - signals that a key is still pressed
599  * @dev:	the struct rc_dev descriptor of the device
600  *
601  * This routine is used by IR decoders when a repeat message which does
602  * not include the necessary bits to reproduce the scancode has been
603  * received.
604  */
605 void rc_repeat(struct rc_dev *dev)
606 {
607 	unsigned long flags;
608 
609 	spin_lock_irqsave(&dev->keylock, flags);
610 
611 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
612 	input_sync(dev->input_dev);
613 
614 	if (!dev->keypressed)
615 		goto out;
616 
617 	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
618 	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
619 
620 out:
621 	spin_unlock_irqrestore(&dev->keylock, flags);
622 }
623 EXPORT_SYMBOL_GPL(rc_repeat);
624 
625 /**
626  * ir_do_keydown() - internal function to process a keypress
627  * @dev:	the struct rc_dev descriptor of the device
628  * @protocol:	the protocol of the keypress
629  * @scancode:   the scancode of the keypress
630  * @keycode:    the keycode of the keypress
631  * @toggle:     the toggle value of the keypress
632  *
633  * This function is used internally to register a keypress, it must be
634  * called with keylock held.
635  */
636 static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
637 			  u32 scancode, u32 keycode, u8 toggle)
638 {
639 	bool new_event = (!dev->keypressed		 ||
640 			  dev->last_protocol != protocol ||
641 			  dev->last_scancode != scancode ||
642 			  dev->last_toggle   != toggle);
643 
644 	if (new_event && dev->keypressed)
645 		ir_do_keyup(dev, false);
646 
647 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
648 
649 	if (new_event && keycode != KEY_RESERVED) {
650 		/* Register a keypress */
651 		dev->keypressed = true;
652 		dev->last_protocol = protocol;
653 		dev->last_scancode = scancode;
654 		dev->last_toggle = toggle;
655 		dev->last_keycode = keycode;
656 
657 		IR_dprintk(1, "%s: key down event, "
658 			   "key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
659 			   dev->input_name, keycode, protocol, scancode);
660 		input_report_key(dev->input_dev, keycode, 1);
661 
662 		led_trigger_event(led_feedback, LED_FULL);
663 	}
664 
665 	input_sync(dev->input_dev);
666 }
667 
668 /**
669  * rc_keydown() - generates input event for a key press
670  * @dev:	the struct rc_dev descriptor of the device
671  * @protocol:	the protocol for the keypress
672  * @scancode:	the scancode for the keypress
673  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
674  *              support toggle values, this should be set to zero)
675  *
676  * This routine is used to signal that a key has been pressed on the
677  * remote control.
678  */
679 void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
680 {
681 	unsigned long flags;
682 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
683 
684 	spin_lock_irqsave(&dev->keylock, flags);
685 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
686 
687 	if (dev->keypressed) {
688 		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
689 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
690 	}
691 	spin_unlock_irqrestore(&dev->keylock, flags);
692 }
693 EXPORT_SYMBOL_GPL(rc_keydown);
694 
695 /**
696  * rc_keydown_notimeout() - generates input event for a key press without
697  *                          an automatic keyup event at a later time
698  * @dev:	the struct rc_dev descriptor of the device
699  * @protocol:	the protocol for the keypress
700  * @scancode:	the scancode for the keypress
701  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
702  *              support toggle values, this should be set to zero)
703  *
704  * This routine is used to signal that a key has been pressed on the
705  * remote control. The driver must manually call rc_keyup() at a later stage.
706  */
707 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
708 			  u32 scancode, u8 toggle)
709 {
710 	unsigned long flags;
711 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
712 
713 	spin_lock_irqsave(&dev->keylock, flags);
714 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
715 	spin_unlock_irqrestore(&dev->keylock, flags);
716 }
717 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
718 
719 int rc_open(struct rc_dev *rdev)
720 {
721 	int rval = 0;
722 
723 	if (!rdev)
724 		return -EINVAL;
725 
726 	mutex_lock(&rdev->lock);
727 
728 	if (!rdev->users++ && rdev->open != NULL)
729 		rval = rdev->open(rdev);
730 
731 	if (rval)
732 		rdev->users--;
733 
734 	mutex_unlock(&rdev->lock);
735 
736 	return rval;
737 }
738 EXPORT_SYMBOL_GPL(rc_open);
739 
740 static int ir_open(struct input_dev *idev)
741 {
742 	struct rc_dev *rdev = input_get_drvdata(idev);
743 
744 	return rc_open(rdev);
745 }
746 
747 void rc_close(struct rc_dev *rdev)
748 {
749 	if (rdev) {
750 		mutex_lock(&rdev->lock);
751 
752 		if (!--rdev->users && rdev->close != NULL)
753 			rdev->close(rdev);
754 
755 		mutex_unlock(&rdev->lock);
756 	}
757 }
758 EXPORT_SYMBOL_GPL(rc_close);
759 
760 static void ir_close(struct input_dev *idev)
761 {
762 	struct rc_dev *rdev = input_get_drvdata(idev);
763 	rc_close(rdev);
764 }
765 
766 /* class for /sys/class/rc */
767 static char *rc_devnode(struct device *dev, umode_t *mode)
768 {
769 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
770 }
771 
772 static struct class rc_class = {
773 	.name		= "rc",
774 	.devnode	= rc_devnode,
775 };
776 
777 /*
778  * These are the protocol textual descriptions that are
779  * used by the sysfs protocols file. Note that the order
780  * of the entries is relevant.
781  */
782 static const struct {
783 	u64	type;
784 	const char	*name;
785 	const char	*module_name;
786 } proto_names[] = {
787 	{ RC_BIT_NONE,		"none",		NULL			},
788 	{ RC_BIT_OTHER,		"other",	NULL			},
789 	{ RC_BIT_UNKNOWN,	"unknown",	NULL			},
790 	{ RC_BIT_RC5 |
791 	  RC_BIT_RC5X,		"rc-5",		"ir-rc5-decoder"	},
792 	{ RC_BIT_NEC,		"nec",		"ir-nec-decoder"	},
793 	{ RC_BIT_RC6_0 |
794 	  RC_BIT_RC6_6A_20 |
795 	  RC_BIT_RC6_6A_24 |
796 	  RC_BIT_RC6_6A_32 |
797 	  RC_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
798 	{ RC_BIT_JVC,		"jvc",		"ir-jvc-decoder"	},
799 	{ RC_BIT_SONY12 |
800 	  RC_BIT_SONY15 |
801 	  RC_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
802 	{ RC_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
803 	{ RC_BIT_SANYO,		"sanyo",	"ir-sanyo-decoder"	},
804 	{ RC_BIT_SHARP,		"sharp",	"ir-sharp-decoder"	},
805 	{ RC_BIT_MCE_KBD,	"mce_kbd",	"ir-mce_kbd-decoder"	},
806 	{ RC_BIT_XMP,		"xmp",		"ir-xmp-decoder"	},
807 };
808 
809 /**
810  * struct rc_filter_attribute - Device attribute relating to a filter type.
811  * @attr:	Device attribute.
812  * @type:	Filter type.
813  * @mask:	false for filter value, true for filter mask.
814  */
815 struct rc_filter_attribute {
816 	struct device_attribute		attr;
817 	enum rc_filter_type		type;
818 	bool				mask;
819 };
820 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
821 
822 #define RC_PROTO_ATTR(_name, _mode, _show, _store, _type)		\
823 	struct rc_filter_attribute dev_attr_##_name = {			\
824 		.attr = __ATTR(_name, _mode, _show, _store),		\
825 		.type = (_type),					\
826 	}
827 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
828 	struct rc_filter_attribute dev_attr_##_name = {			\
829 		.attr = __ATTR(_name, _mode, _show, _store),		\
830 		.type = (_type),					\
831 		.mask = (_mask),					\
832 	}
833 
834 static bool lirc_is_present(void)
835 {
836 #if defined(CONFIG_LIRC_MODULE)
837 	struct module *lirc;
838 
839 	mutex_lock(&module_mutex);
840 	lirc = find_module("lirc_dev");
841 	mutex_unlock(&module_mutex);
842 
843 	return lirc ? true : false;
844 #elif defined(CONFIG_LIRC)
845 	return true;
846 #else
847 	return false;
848 #endif
849 }
850 
851 /**
852  * show_protocols() - shows the current/wakeup IR protocol(s)
853  * @device:	the device descriptor
854  * @mattr:	the device attribute struct
855  * @buf:	a pointer to the output buffer
856  *
857  * This routine is a callback routine for input read the IR protocol type(s).
858  * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
859  * It returns the protocol names of supported protocols.
860  * Enabled protocols are printed in brackets.
861  *
862  * dev->lock is taken to guard against races between device
863  * registration, store_protocols and show_protocols.
864  */
865 static ssize_t show_protocols(struct device *device,
866 			      struct device_attribute *mattr, char *buf)
867 {
868 	struct rc_dev *dev = to_rc_dev(device);
869 	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
870 	u64 allowed, enabled;
871 	char *tmp = buf;
872 	int i;
873 
874 	/* Device is being removed */
875 	if (!dev)
876 		return -EINVAL;
877 
878 	if (!atomic_read(&dev->initialized))
879 		return -ERESTARTSYS;
880 
881 	mutex_lock(&dev->lock);
882 
883 	if (fattr->type == RC_FILTER_NORMAL) {
884 		enabled = dev->enabled_protocols;
885 		allowed = dev->allowed_protocols;
886 		if (dev->raw && !allowed)
887 			allowed = ir_raw_get_allowed_protocols();
888 	} else {
889 		enabled = dev->enabled_wakeup_protocols;
890 		allowed = dev->allowed_wakeup_protocols;
891 	}
892 
893 	mutex_unlock(&dev->lock);
894 
895 	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
896 		   __func__, (long long)allowed, (long long)enabled);
897 
898 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
899 		if (allowed & enabled & proto_names[i].type)
900 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
901 		else if (allowed & proto_names[i].type)
902 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
903 
904 		if (allowed & proto_names[i].type)
905 			allowed &= ~proto_names[i].type;
906 	}
907 
908 	if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
909 		tmp += sprintf(tmp, "[lirc] ");
910 
911 	if (tmp != buf)
912 		tmp--;
913 	*tmp = '\n';
914 
915 	return tmp + 1 - buf;
916 }
917 
918 /**
919  * parse_protocol_change() - parses a protocol change request
920  * @protocols:	pointer to the bitmask of current protocols
921  * @buf:	pointer to the buffer with a list of changes
922  *
923  * Writing "+proto" will add a protocol to the protocol mask.
924  * Writing "-proto" will remove a protocol from protocol mask.
925  * Writing "proto" will enable only "proto".
926  * Writing "none" will disable all protocols.
927  * Returns the number of changes performed or a negative error code.
928  */
929 static int parse_protocol_change(u64 *protocols, const char *buf)
930 {
931 	const char *tmp;
932 	unsigned count = 0;
933 	bool enable, disable;
934 	u64 mask;
935 	int i;
936 
937 	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
938 		if (!*tmp)
939 			break;
940 
941 		if (*tmp == '+') {
942 			enable = true;
943 			disable = false;
944 			tmp++;
945 		} else if (*tmp == '-') {
946 			enable = false;
947 			disable = true;
948 			tmp++;
949 		} else {
950 			enable = false;
951 			disable = false;
952 		}
953 
954 		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
955 			if (!strcasecmp(tmp, proto_names[i].name)) {
956 				mask = proto_names[i].type;
957 				break;
958 			}
959 		}
960 
961 		if (i == ARRAY_SIZE(proto_names)) {
962 			if (!strcasecmp(tmp, "lirc"))
963 				mask = 0;
964 			else {
965 				IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
966 				return -EINVAL;
967 			}
968 		}
969 
970 		count++;
971 
972 		if (enable)
973 			*protocols |= mask;
974 		else if (disable)
975 			*protocols &= ~mask;
976 		else
977 			*protocols = mask;
978 	}
979 
980 	if (!count) {
981 		IR_dprintk(1, "Protocol not specified\n");
982 		return -EINVAL;
983 	}
984 
985 	return count;
986 }
987 
988 static void ir_raw_load_modules(u64 *protocols)
989 
990 {
991 	u64 available;
992 	int i, ret;
993 
994 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
995 		if (proto_names[i].type == RC_BIT_NONE ||
996 		    proto_names[i].type & (RC_BIT_OTHER | RC_BIT_UNKNOWN))
997 			continue;
998 
999 		available = ir_raw_get_allowed_protocols();
1000 		if (!(*protocols & proto_names[i].type & ~available))
1001 			continue;
1002 
1003 		if (!proto_names[i].module_name) {
1004 			pr_err("Can't enable IR protocol %s\n",
1005 			       proto_names[i].name);
1006 			*protocols &= ~proto_names[i].type;
1007 			continue;
1008 		}
1009 
1010 		ret = request_module("%s", proto_names[i].module_name);
1011 		if (ret < 0) {
1012 			pr_err("Couldn't load IR protocol module %s\n",
1013 			       proto_names[i].module_name);
1014 			*protocols &= ~proto_names[i].type;
1015 			continue;
1016 		}
1017 		msleep(20);
1018 		available = ir_raw_get_allowed_protocols();
1019 		if (!(*protocols & proto_names[i].type & ~available))
1020 			continue;
1021 
1022 		pr_err("Loaded IR protocol module %s, \
1023 		       but protocol %s still not available\n",
1024 		       proto_names[i].module_name,
1025 		       proto_names[i].name);
1026 		*protocols &= ~proto_names[i].type;
1027 	}
1028 }
1029 
1030 /**
1031  * store_protocols() - changes the current/wakeup IR protocol(s)
1032  * @device:	the device descriptor
1033  * @mattr:	the device attribute struct
1034  * @buf:	a pointer to the input buffer
1035  * @len:	length of the input buffer
1036  *
1037  * This routine is for changing the IR protocol type.
1038  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1039  * See parse_protocol_change() for the valid commands.
1040  * Returns @len on success or a negative error code.
1041  *
1042  * dev->lock is taken to guard against races between device
1043  * registration, store_protocols and show_protocols.
1044  */
1045 static ssize_t store_protocols(struct device *device,
1046 			       struct device_attribute *mattr,
1047 			       const char *buf, size_t len)
1048 {
1049 	struct rc_dev *dev = to_rc_dev(device);
1050 	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
1051 	u64 *current_protocols;
1052 	int (*change_protocol)(struct rc_dev *dev, u64 *rc_type);
1053 	struct rc_scancode_filter *filter;
1054 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1055 	u64 old_protocols, new_protocols;
1056 	ssize_t rc;
1057 
1058 	/* Device is being removed */
1059 	if (!dev)
1060 		return -EINVAL;
1061 
1062 	if (!atomic_read(&dev->initialized))
1063 		return -ERESTARTSYS;
1064 
1065 	if (fattr->type == RC_FILTER_NORMAL) {
1066 		IR_dprintk(1, "Normal protocol change requested\n");
1067 		current_protocols = &dev->enabled_protocols;
1068 		change_protocol = dev->change_protocol;
1069 		filter = &dev->scancode_filter;
1070 		set_filter = dev->s_filter;
1071 	} else {
1072 		IR_dprintk(1, "Wakeup protocol change requested\n");
1073 		current_protocols = &dev->enabled_wakeup_protocols;
1074 		change_protocol = dev->change_wakeup_protocol;
1075 		filter = &dev->scancode_wakeup_filter;
1076 		set_filter = dev->s_wakeup_filter;
1077 	}
1078 
1079 	if (!change_protocol) {
1080 		IR_dprintk(1, "Protocol switching not supported\n");
1081 		return -EINVAL;
1082 	}
1083 
1084 	mutex_lock(&dev->lock);
1085 
1086 	old_protocols = *current_protocols;
1087 	new_protocols = old_protocols;
1088 	rc = parse_protocol_change(&new_protocols, buf);
1089 	if (rc < 0)
1090 		goto out;
1091 
1092 	rc = change_protocol(dev, &new_protocols);
1093 	if (rc < 0) {
1094 		IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1095 			   (long long)new_protocols);
1096 		goto out;
1097 	}
1098 
1099 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1100 		ir_raw_load_modules(&new_protocols);
1101 
1102 	if (new_protocols != old_protocols) {
1103 		*current_protocols = new_protocols;
1104 		IR_dprintk(1, "Protocols changed to 0x%llx\n",
1105 			   (long long)new_protocols);
1106 	}
1107 
1108 	/*
1109 	 * If a protocol change was attempted the filter may need updating, even
1110 	 * if the actual protocol mask hasn't changed (since the driver may have
1111 	 * cleared the filter).
1112 	 * Try setting the same filter with the new protocol (if any).
1113 	 * Fall back to clearing the filter.
1114 	 */
1115 	if (set_filter && filter->mask) {
1116 		if (new_protocols)
1117 			rc = set_filter(dev, filter);
1118 		else
1119 			rc = -1;
1120 
1121 		if (rc < 0) {
1122 			filter->data = 0;
1123 			filter->mask = 0;
1124 			set_filter(dev, filter);
1125 		}
1126 	}
1127 
1128 	rc = len;
1129 
1130 out:
1131 	mutex_unlock(&dev->lock);
1132 	return rc;
1133 }
1134 
1135 /**
1136  * show_filter() - shows the current scancode filter value or mask
1137  * @device:	the device descriptor
1138  * @attr:	the device attribute struct
1139  * @buf:	a pointer to the output buffer
1140  *
1141  * This routine is a callback routine to read a scancode filter value or mask.
1142  * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1143  * It prints the current scancode filter value or mask of the appropriate filter
1144  * type in hexadecimal into @buf and returns the size of the buffer.
1145  *
1146  * Bits of the filter value corresponding to set bits in the filter mask are
1147  * compared against input scancodes and non-matching scancodes are discarded.
1148  *
1149  * dev->lock is taken to guard against races between device registration,
1150  * store_filter and show_filter.
1151  */
1152 static ssize_t show_filter(struct device *device,
1153 			   struct device_attribute *attr,
1154 			   char *buf)
1155 {
1156 	struct rc_dev *dev = to_rc_dev(device);
1157 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1158 	struct rc_scancode_filter *filter;
1159 	u32 val;
1160 
1161 	/* Device is being removed */
1162 	if (!dev)
1163 		return -EINVAL;
1164 
1165 	if (!atomic_read(&dev->initialized))
1166 		return -ERESTARTSYS;
1167 
1168 	mutex_lock(&dev->lock);
1169 
1170 	if (fattr->type == RC_FILTER_NORMAL)
1171 		filter = &dev->scancode_filter;
1172 	else
1173 		filter = &dev->scancode_wakeup_filter;
1174 
1175 	if (fattr->mask)
1176 		val = filter->mask;
1177 	else
1178 		val = filter->data;
1179 	mutex_unlock(&dev->lock);
1180 
1181 	return sprintf(buf, "%#x\n", val);
1182 }
1183 
1184 /**
1185  * store_filter() - changes the scancode filter value
1186  * @device:	the device descriptor
1187  * @attr:	the device attribute struct
1188  * @buf:	a pointer to the input buffer
1189  * @len:	length of the input buffer
1190  *
1191  * This routine is for changing a scancode filter value or mask.
1192  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1193  * Returns -EINVAL if an invalid filter value for the current protocol was
1194  * specified or if scancode filtering is not supported by the driver, otherwise
1195  * returns @len.
1196  *
1197  * Bits of the filter value corresponding to set bits in the filter mask are
1198  * compared against input scancodes and non-matching scancodes are discarded.
1199  *
1200  * dev->lock is taken to guard against races between device registration,
1201  * store_filter and show_filter.
1202  */
1203 static ssize_t store_filter(struct device *device,
1204 			    struct device_attribute *attr,
1205 			    const char *buf, size_t len)
1206 {
1207 	struct rc_dev *dev = to_rc_dev(device);
1208 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1209 	struct rc_scancode_filter new_filter, *filter;
1210 	int ret;
1211 	unsigned long val;
1212 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1213 	u64 *enabled_protocols;
1214 
1215 	/* Device is being removed */
1216 	if (!dev)
1217 		return -EINVAL;
1218 
1219 	if (!atomic_read(&dev->initialized))
1220 		return -ERESTARTSYS;
1221 
1222 	ret = kstrtoul(buf, 0, &val);
1223 	if (ret < 0)
1224 		return ret;
1225 
1226 	if (fattr->type == RC_FILTER_NORMAL) {
1227 		set_filter = dev->s_filter;
1228 		enabled_protocols = &dev->enabled_protocols;
1229 		filter = &dev->scancode_filter;
1230 	} else {
1231 		set_filter = dev->s_wakeup_filter;
1232 		enabled_protocols = &dev->enabled_wakeup_protocols;
1233 		filter = &dev->scancode_wakeup_filter;
1234 	}
1235 
1236 	if (!set_filter)
1237 		return -EINVAL;
1238 
1239 	mutex_lock(&dev->lock);
1240 
1241 	new_filter = *filter;
1242 	if (fattr->mask)
1243 		new_filter.mask = val;
1244 	else
1245 		new_filter.data = val;
1246 
1247 	if (!*enabled_protocols && val) {
1248 		/* refuse to set a filter unless a protocol is enabled */
1249 		ret = -EINVAL;
1250 		goto unlock;
1251 	}
1252 
1253 	ret = set_filter(dev, &new_filter);
1254 	if (ret < 0)
1255 		goto unlock;
1256 
1257 	*filter = new_filter;
1258 
1259 unlock:
1260 	mutex_unlock(&dev->lock);
1261 	return (ret < 0) ? ret : len;
1262 }
1263 
1264 static void rc_dev_release(struct device *device)
1265 {
1266 	struct rc_dev *dev = to_rc_dev(device);
1267 
1268 	kfree(dev);
1269 }
1270 
1271 #define ADD_HOTPLUG_VAR(fmt, val...)					\
1272 	do {								\
1273 		int err = add_uevent_var(env, fmt, val);		\
1274 		if (err)						\
1275 			return err;					\
1276 	} while (0)
1277 
1278 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1279 {
1280 	struct rc_dev *dev = to_rc_dev(device);
1281 
1282 	if (dev->rc_map.name)
1283 		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1284 	if (dev->driver_name)
1285 		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1286 
1287 	return 0;
1288 }
1289 
1290 /*
1291  * Static device attribute struct with the sysfs attributes for IR's
1292  */
1293 static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR,
1294 		     show_protocols, store_protocols, RC_FILTER_NORMAL);
1295 static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR,
1296 		     show_protocols, store_protocols, RC_FILTER_WAKEUP);
1297 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1298 		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1299 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1300 		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1301 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1302 		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1303 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1304 		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1305 
1306 static struct attribute *rc_dev_protocol_attrs[] = {
1307 	&dev_attr_protocols.attr.attr,
1308 	NULL,
1309 };
1310 
1311 static struct attribute_group rc_dev_protocol_attr_grp = {
1312 	.attrs	= rc_dev_protocol_attrs,
1313 };
1314 
1315 static struct attribute *rc_dev_wakeup_protocol_attrs[] = {
1316 	&dev_attr_wakeup_protocols.attr.attr,
1317 	NULL,
1318 };
1319 
1320 static struct attribute_group rc_dev_wakeup_protocol_attr_grp = {
1321 	.attrs	= rc_dev_wakeup_protocol_attrs,
1322 };
1323 
1324 static struct attribute *rc_dev_filter_attrs[] = {
1325 	&dev_attr_filter.attr.attr,
1326 	&dev_attr_filter_mask.attr.attr,
1327 	NULL,
1328 };
1329 
1330 static struct attribute_group rc_dev_filter_attr_grp = {
1331 	.attrs	= rc_dev_filter_attrs,
1332 };
1333 
1334 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1335 	&dev_attr_wakeup_filter.attr.attr,
1336 	&dev_attr_wakeup_filter_mask.attr.attr,
1337 	NULL,
1338 };
1339 
1340 static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1341 	.attrs	= rc_dev_wakeup_filter_attrs,
1342 };
1343 
1344 static struct device_type rc_dev_type = {
1345 	.release	= rc_dev_release,
1346 	.uevent		= rc_dev_uevent,
1347 };
1348 
1349 struct rc_dev *rc_allocate_device(void)
1350 {
1351 	struct rc_dev *dev;
1352 
1353 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1354 	if (!dev)
1355 		return NULL;
1356 
1357 	dev->input_dev = input_allocate_device();
1358 	if (!dev->input_dev) {
1359 		kfree(dev);
1360 		return NULL;
1361 	}
1362 
1363 	dev->input_dev->getkeycode = ir_getkeycode;
1364 	dev->input_dev->setkeycode = ir_setkeycode;
1365 	input_set_drvdata(dev->input_dev, dev);
1366 
1367 	spin_lock_init(&dev->rc_map.lock);
1368 	spin_lock_init(&dev->keylock);
1369 	mutex_init(&dev->lock);
1370 	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1371 
1372 	dev->dev.type = &rc_dev_type;
1373 	dev->dev.class = &rc_class;
1374 	device_initialize(&dev->dev);
1375 
1376 	__module_get(THIS_MODULE);
1377 	return dev;
1378 }
1379 EXPORT_SYMBOL_GPL(rc_allocate_device);
1380 
1381 void rc_free_device(struct rc_dev *dev)
1382 {
1383 	if (!dev)
1384 		return;
1385 
1386 	input_free_device(dev->input_dev);
1387 
1388 	put_device(&dev->dev);
1389 
1390 	/* kfree(dev) will be called by the callback function
1391 	   rc_dev_release() */
1392 
1393 	module_put(THIS_MODULE);
1394 }
1395 EXPORT_SYMBOL_GPL(rc_free_device);
1396 
1397 int rc_register_device(struct rc_dev *dev)
1398 {
1399 	static bool raw_init = false; /* raw decoders loaded? */
1400 	struct rc_map *rc_map;
1401 	const char *path;
1402 	int attr = 0;
1403 	int minor;
1404 	int rc;
1405 
1406 	if (!dev || !dev->map_name)
1407 		return -EINVAL;
1408 
1409 	rc_map = rc_map_get(dev->map_name);
1410 	if (!rc_map)
1411 		rc_map = rc_map_get(RC_MAP_EMPTY);
1412 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1413 		return -EINVAL;
1414 
1415 	set_bit(EV_KEY, dev->input_dev->evbit);
1416 	set_bit(EV_REP, dev->input_dev->evbit);
1417 	set_bit(EV_MSC, dev->input_dev->evbit);
1418 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1419 	if (dev->open)
1420 		dev->input_dev->open = ir_open;
1421 	if (dev->close)
1422 		dev->input_dev->close = ir_close;
1423 
1424 	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1425 	if (minor < 0)
1426 		return minor;
1427 
1428 	dev->minor = minor;
1429 	dev_set_name(&dev->dev, "rc%u", dev->minor);
1430 	dev_set_drvdata(&dev->dev, dev);
1431 	atomic_set(&dev->initialized, 0);
1432 
1433 	dev->dev.groups = dev->sysfs_groups;
1434 	dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1435 	if (dev->s_filter)
1436 		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1437 	if (dev->s_wakeup_filter)
1438 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1439 	if (dev->change_wakeup_protocol)
1440 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp;
1441 	dev->sysfs_groups[attr++] = NULL;
1442 
1443 	rc = device_add(&dev->dev);
1444 	if (rc)
1445 		goto out_unlock;
1446 
1447 	rc = ir_setkeytable(dev, rc_map);
1448 	if (rc)
1449 		goto out_dev;
1450 
1451 	dev->input_dev->dev.parent = &dev->dev;
1452 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1453 	dev->input_dev->phys = dev->input_phys;
1454 	dev->input_dev->name = dev->input_name;
1455 
1456 	/*
1457 	 * Default delay of 250ms is too short for some protocols, especially
1458 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1459 	 * to avoid wrong repetition of the keycodes. Note that this must be
1460 	 * set after the call to input_register_device().
1461 	 */
1462 	dev->input_dev->rep[REP_DELAY] = 500;
1463 
1464 	/*
1465 	 * As a repeat event on protocols like RC-5 and NEC take as long as
1466 	 * 110/114ms, using 33ms as a repeat period is not the right thing
1467 	 * to do.
1468 	 */
1469 	dev->input_dev->rep[REP_PERIOD] = 125;
1470 
1471 	/* rc_open will be called here */
1472 	rc = input_register_device(dev->input_dev);
1473 	if (rc)
1474 		goto out_table;
1475 
1476 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1477 	dev_info(&dev->dev, "%s as %s\n",
1478 		dev->input_name ?: "Unspecified device", path ?: "N/A");
1479 	kfree(path);
1480 
1481 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1482 		if (!raw_init) {
1483 			request_module_nowait("ir-lirc-codec");
1484 			raw_init = true;
1485 		}
1486 		rc = ir_raw_event_register(dev);
1487 		if (rc < 0)
1488 			goto out_input;
1489 	}
1490 
1491 	if (dev->change_protocol) {
1492 		u64 rc_type = (1ll << rc_map->rc_type);
1493 		rc = dev->change_protocol(dev, &rc_type);
1494 		if (rc < 0)
1495 			goto out_raw;
1496 		dev->enabled_protocols = rc_type;
1497 	}
1498 
1499 	/* Allow the RC sysfs nodes to be accessible */
1500 	atomic_set(&dev->initialized, 1);
1501 
1502 	IR_dprintk(1, "Registered rc%u (driver: %s, remote: %s, mode %s)\n",
1503 		   dev->minor,
1504 		   dev->driver_name ? dev->driver_name : "unknown",
1505 		   rc_map->name ? rc_map->name : "unknown",
1506 		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1507 
1508 	return 0;
1509 
1510 out_raw:
1511 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1512 		ir_raw_event_unregister(dev);
1513 out_input:
1514 	input_unregister_device(dev->input_dev);
1515 	dev->input_dev = NULL;
1516 out_table:
1517 	ir_free_table(&dev->rc_map);
1518 out_dev:
1519 	device_del(&dev->dev);
1520 out_unlock:
1521 	ida_simple_remove(&rc_ida, minor);
1522 	return rc;
1523 }
1524 EXPORT_SYMBOL_GPL(rc_register_device);
1525 
1526 void rc_unregister_device(struct rc_dev *dev)
1527 {
1528 	if (!dev)
1529 		return;
1530 
1531 	del_timer_sync(&dev->timer_keyup);
1532 
1533 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1534 		ir_raw_event_unregister(dev);
1535 
1536 	/* Freeing the table should also call the stop callback */
1537 	ir_free_table(&dev->rc_map);
1538 	IR_dprintk(1, "Freed keycode table\n");
1539 
1540 	input_unregister_device(dev->input_dev);
1541 	dev->input_dev = NULL;
1542 
1543 	device_del(&dev->dev);
1544 
1545 	ida_simple_remove(&rc_ida, dev->minor);
1546 
1547 	rc_free_device(dev);
1548 }
1549 
1550 EXPORT_SYMBOL_GPL(rc_unregister_device);
1551 
1552 /*
1553  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1554  */
1555 
1556 static int __init rc_core_init(void)
1557 {
1558 	int rc = class_register(&rc_class);
1559 	if (rc) {
1560 		printk(KERN_ERR "rc_core: unable to register rc class\n");
1561 		return rc;
1562 	}
1563 
1564 	led_trigger_register_simple("rc-feedback", &led_feedback);
1565 	rc_map_register(&empty_map);
1566 
1567 	return 0;
1568 }
1569 
1570 static void __exit rc_core_exit(void)
1571 {
1572 	class_unregister(&rc_class);
1573 	led_trigger_unregister_simple(led_feedback);
1574 	rc_map_unregister(&empty_map);
1575 }
1576 
1577 subsys_initcall(rc_core_init);
1578 module_exit(rc_core_exit);
1579 
1580 int rc_core_debug;    /* ir_debug level (0,1,2) */
1581 EXPORT_SYMBOL_GPL(rc_core_debug);
1582 module_param_named(debug, rc_core_debug, int, 0644);
1583 
1584 MODULE_AUTHOR("Mauro Carvalho Chehab");
1585 MODULE_LICENSE("GPL");
1586