xref: /linux/drivers/media/rc/rc-ir-raw.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 // SPDX-License-Identifier: GPL-2.0
2 // rc-ir-raw.c - handle IR pulse/space events
3 //
4 // Copyright (C) 2010 by Mauro Carvalho Chehab
5 
6 #include <linux/export.h>
7 #include <linux/kthread.h>
8 #include <linux/mutex.h>
9 #include <linux/kmod.h>
10 #include <linux/sched.h>
11 #include "rc-core-priv.h"
12 
13 /* Used to keep track of IR raw clients, protected by ir_raw_handler_lock */
14 static LIST_HEAD(ir_raw_client_list);
15 
16 /* Used to handle IR raw handler extensions */
17 static DEFINE_MUTEX(ir_raw_handler_lock);
18 static LIST_HEAD(ir_raw_handler_list);
19 static atomic64_t available_protocols = ATOMIC64_INIT(0);
20 
21 static int ir_raw_event_thread(void *data)
22 {
23 	struct ir_raw_event ev;
24 	struct ir_raw_handler *handler;
25 	struct ir_raw_event_ctrl *raw = (struct ir_raw_event_ctrl *)data;
26 
27 	while (1) {
28 		mutex_lock(&ir_raw_handler_lock);
29 		while (kfifo_out(&raw->kfifo, &ev, 1)) {
30 			list_for_each_entry(handler, &ir_raw_handler_list, list)
31 				if (raw->dev->enabled_protocols &
32 				    handler->protocols || !handler->protocols)
33 					handler->decode(raw->dev, ev);
34 			ir_lirc_raw_event(raw->dev, ev);
35 			raw->prev_ev = ev;
36 		}
37 		mutex_unlock(&ir_raw_handler_lock);
38 
39 		set_current_state(TASK_INTERRUPTIBLE);
40 
41 		if (kthread_should_stop()) {
42 			__set_current_state(TASK_RUNNING);
43 			break;
44 		} else if (!kfifo_is_empty(&raw->kfifo))
45 			set_current_state(TASK_RUNNING);
46 
47 		schedule();
48 	}
49 
50 	return 0;
51 }
52 
53 /**
54  * ir_raw_event_store() - pass a pulse/space duration to the raw ir decoders
55  * @dev:	the struct rc_dev device descriptor
56  * @ev:		the struct ir_raw_event descriptor of the pulse/space
57  *
58  * This routine (which may be called from an interrupt context) stores a
59  * pulse/space duration for the raw ir decoding state machines. Pulses are
60  * signalled as positive values and spaces as negative values. A zero value
61  * will reset the decoding state machines.
62  */
63 int ir_raw_event_store(struct rc_dev *dev, struct ir_raw_event *ev)
64 {
65 	if (!dev->raw)
66 		return -EINVAL;
67 
68 	IR_dprintk(2, "sample: (%05dus %s)\n",
69 		   TO_US(ev->duration), TO_STR(ev->pulse));
70 
71 	if (!kfifo_put(&dev->raw->kfifo, *ev)) {
72 		dev_err(&dev->dev, "IR event FIFO is full!\n");
73 		return -ENOSPC;
74 	}
75 
76 	return 0;
77 }
78 EXPORT_SYMBOL_GPL(ir_raw_event_store);
79 
80 /**
81  * ir_raw_event_store_edge() - notify raw ir decoders of the start of a pulse/space
82  * @dev:	the struct rc_dev device descriptor
83  * @pulse:	true for pulse, false for space
84  *
85  * This routine (which may be called from an interrupt context) is used to
86  * store the beginning of an ir pulse or space (or the start/end of ir
87  * reception) for the raw ir decoding state machines. This is used by
88  * hardware which does not provide durations directly but only interrupts
89  * (or similar events) on state change.
90  */
91 int ir_raw_event_store_edge(struct rc_dev *dev, bool pulse)
92 {
93 	ktime_t			now;
94 	DEFINE_IR_RAW_EVENT(ev);
95 	int			rc = 0;
96 
97 	if (!dev->raw)
98 		return -EINVAL;
99 
100 	now = ktime_get();
101 	ev.duration = ktime_to_ns(ktime_sub(now, dev->raw->last_event));
102 	ev.pulse = !pulse;
103 
104 	rc = ir_raw_event_store(dev, &ev);
105 
106 	dev->raw->last_event = now;
107 
108 	/* timer could be set to timeout (125ms by default) */
109 	if (!timer_pending(&dev->raw->edge_handle) ||
110 	    time_after(dev->raw->edge_handle.expires,
111 		       jiffies + msecs_to_jiffies(15))) {
112 		mod_timer(&dev->raw->edge_handle,
113 			  jiffies + msecs_to_jiffies(15));
114 	}
115 
116 	return rc;
117 }
118 EXPORT_SYMBOL_GPL(ir_raw_event_store_edge);
119 
120 /**
121  * ir_raw_event_store_with_filter() - pass next pulse/space to decoders with some processing
122  * @dev:	the struct rc_dev device descriptor
123  * @ev:		the event that has occurred
124  *
125  * This routine (which may be called from an interrupt context) works
126  * in similar manner to ir_raw_event_store_edge.
127  * This routine is intended for devices with limited internal buffer
128  * It automerges samples of same type, and handles timeouts. Returns non-zero
129  * if the event was added, and zero if the event was ignored due to idle
130  * processing.
131  */
132 int ir_raw_event_store_with_filter(struct rc_dev *dev, struct ir_raw_event *ev)
133 {
134 	if (!dev->raw)
135 		return -EINVAL;
136 
137 	/* Ignore spaces in idle mode */
138 	if (dev->idle && !ev->pulse)
139 		return 0;
140 	else if (dev->idle)
141 		ir_raw_event_set_idle(dev, false);
142 
143 	if (!dev->raw->this_ev.duration)
144 		dev->raw->this_ev = *ev;
145 	else if (ev->pulse == dev->raw->this_ev.pulse)
146 		dev->raw->this_ev.duration += ev->duration;
147 	else {
148 		ir_raw_event_store(dev, &dev->raw->this_ev);
149 		dev->raw->this_ev = *ev;
150 	}
151 
152 	/* Enter idle mode if nessesary */
153 	if (!ev->pulse && dev->timeout &&
154 	    dev->raw->this_ev.duration >= dev->timeout)
155 		ir_raw_event_set_idle(dev, true);
156 
157 	return 1;
158 }
159 EXPORT_SYMBOL_GPL(ir_raw_event_store_with_filter);
160 
161 /**
162  * ir_raw_event_set_idle() - provide hint to rc-core when the device is idle or not
163  * @dev:	the struct rc_dev device descriptor
164  * @idle:	whether the device is idle or not
165  */
166 void ir_raw_event_set_idle(struct rc_dev *dev, bool idle)
167 {
168 	if (!dev->raw)
169 		return;
170 
171 	IR_dprintk(2, "%s idle mode\n", idle ? "enter" : "leave");
172 
173 	if (idle) {
174 		dev->raw->this_ev.timeout = true;
175 		ir_raw_event_store(dev, &dev->raw->this_ev);
176 		init_ir_raw_event(&dev->raw->this_ev);
177 	}
178 
179 	if (dev->s_idle)
180 		dev->s_idle(dev, idle);
181 
182 	dev->idle = idle;
183 }
184 EXPORT_SYMBOL_GPL(ir_raw_event_set_idle);
185 
186 /**
187  * ir_raw_event_handle() - schedules the decoding of stored ir data
188  * @dev:	the struct rc_dev device descriptor
189  *
190  * This routine will tell rc-core to start decoding stored ir data.
191  */
192 void ir_raw_event_handle(struct rc_dev *dev)
193 {
194 	if (!dev->raw || !dev->raw->thread)
195 		return;
196 
197 	wake_up_process(dev->raw->thread);
198 }
199 EXPORT_SYMBOL_GPL(ir_raw_event_handle);
200 
201 /* used internally by the sysfs interface */
202 u64
203 ir_raw_get_allowed_protocols(void)
204 {
205 	return atomic64_read(&available_protocols);
206 }
207 
208 static int change_protocol(struct rc_dev *dev, u64 *rc_proto)
209 {
210 	/* the caller will update dev->enabled_protocols */
211 	return 0;
212 }
213 
214 static void ir_raw_disable_protocols(struct rc_dev *dev, u64 protocols)
215 {
216 	mutex_lock(&dev->lock);
217 	dev->enabled_protocols &= ~protocols;
218 	mutex_unlock(&dev->lock);
219 }
220 
221 /**
222  * ir_raw_gen_manchester() - Encode data with Manchester (bi-phase) modulation.
223  * @ev:		Pointer to pointer to next free event. *@ev is incremented for
224  *		each raw event filled.
225  * @max:	Maximum number of raw events to fill.
226  * @timings:	Manchester modulation timings.
227  * @n:		Number of bits of data.
228  * @data:	Data bits to encode.
229  *
230  * Encodes the @n least significant bits of @data using Manchester (bi-phase)
231  * modulation with the timing characteristics described by @timings, writing up
232  * to @max raw IR events using the *@ev pointer.
233  *
234  * Returns:	0 on success.
235  *		-ENOBUFS if there isn't enough space in the array to fit the
236  *		full encoded data. In this case all @max events will have been
237  *		written.
238  */
239 int ir_raw_gen_manchester(struct ir_raw_event **ev, unsigned int max,
240 			  const struct ir_raw_timings_manchester *timings,
241 			  unsigned int n, u64 data)
242 {
243 	bool need_pulse;
244 	u64 i;
245 	int ret = -ENOBUFS;
246 
247 	i = BIT_ULL(n - 1);
248 
249 	if (timings->leader_pulse) {
250 		if (!max--)
251 			return ret;
252 		init_ir_raw_event_duration((*ev), 1, timings->leader_pulse);
253 		if (timings->leader_space) {
254 			if (!max--)
255 				return ret;
256 			init_ir_raw_event_duration(++(*ev), 0,
257 						   timings->leader_space);
258 		}
259 	} else {
260 		/* continue existing signal */
261 		--(*ev);
262 	}
263 	/* from here on *ev will point to the last event rather than the next */
264 
265 	while (n && i > 0) {
266 		need_pulse = !(data & i);
267 		if (timings->invert)
268 			need_pulse = !need_pulse;
269 		if (need_pulse == !!(*ev)->pulse) {
270 			(*ev)->duration += timings->clock;
271 		} else {
272 			if (!max--)
273 				goto nobufs;
274 			init_ir_raw_event_duration(++(*ev), need_pulse,
275 						   timings->clock);
276 		}
277 
278 		if (!max--)
279 			goto nobufs;
280 		init_ir_raw_event_duration(++(*ev), !need_pulse,
281 					   timings->clock);
282 		i >>= 1;
283 	}
284 
285 	if (timings->trailer_space) {
286 		if (!(*ev)->pulse)
287 			(*ev)->duration += timings->trailer_space;
288 		else if (!max--)
289 			goto nobufs;
290 		else
291 			init_ir_raw_event_duration(++(*ev), 0,
292 						   timings->trailer_space);
293 	}
294 
295 	ret = 0;
296 nobufs:
297 	/* point to the next event rather than last event before returning */
298 	++(*ev);
299 	return ret;
300 }
301 EXPORT_SYMBOL(ir_raw_gen_manchester);
302 
303 /**
304  * ir_raw_gen_pd() - Encode data to raw events with pulse-distance modulation.
305  * @ev:		Pointer to pointer to next free event. *@ev is incremented for
306  *		each raw event filled.
307  * @max:	Maximum number of raw events to fill.
308  * @timings:	Pulse distance modulation timings.
309  * @n:		Number of bits of data.
310  * @data:	Data bits to encode.
311  *
312  * Encodes the @n least significant bits of @data using pulse-distance
313  * modulation with the timing characteristics described by @timings, writing up
314  * to @max raw IR events using the *@ev pointer.
315  *
316  * Returns:	0 on success.
317  *		-ENOBUFS if there isn't enough space in the array to fit the
318  *		full encoded data. In this case all @max events will have been
319  *		written.
320  */
321 int ir_raw_gen_pd(struct ir_raw_event **ev, unsigned int max,
322 		  const struct ir_raw_timings_pd *timings,
323 		  unsigned int n, u64 data)
324 {
325 	int i;
326 	int ret;
327 	unsigned int space;
328 
329 	if (timings->header_pulse) {
330 		ret = ir_raw_gen_pulse_space(ev, &max, timings->header_pulse,
331 					     timings->header_space);
332 		if (ret)
333 			return ret;
334 	}
335 
336 	if (timings->msb_first) {
337 		for (i = n - 1; i >= 0; --i) {
338 			space = timings->bit_space[(data >> i) & 1];
339 			ret = ir_raw_gen_pulse_space(ev, &max,
340 						     timings->bit_pulse,
341 						     space);
342 			if (ret)
343 				return ret;
344 		}
345 	} else {
346 		for (i = 0; i < n; ++i, data >>= 1) {
347 			space = timings->bit_space[data & 1];
348 			ret = ir_raw_gen_pulse_space(ev, &max,
349 						     timings->bit_pulse,
350 						     space);
351 			if (ret)
352 				return ret;
353 		}
354 	}
355 
356 	ret = ir_raw_gen_pulse_space(ev, &max, timings->trailer_pulse,
357 				     timings->trailer_space);
358 	return ret;
359 }
360 EXPORT_SYMBOL(ir_raw_gen_pd);
361 
362 /**
363  * ir_raw_gen_pl() - Encode data to raw events with pulse-length modulation.
364  * @ev:		Pointer to pointer to next free event. *@ev is incremented for
365  *		each raw event filled.
366  * @max:	Maximum number of raw events to fill.
367  * @timings:	Pulse distance modulation timings.
368  * @n:		Number of bits of data.
369  * @data:	Data bits to encode.
370  *
371  * Encodes the @n least significant bits of @data using space-distance
372  * modulation with the timing characteristics described by @timings, writing up
373  * to @max raw IR events using the *@ev pointer.
374  *
375  * Returns:	0 on success.
376  *		-ENOBUFS if there isn't enough space in the array to fit the
377  *		full encoded data. In this case all @max events will have been
378  *		written.
379  */
380 int ir_raw_gen_pl(struct ir_raw_event **ev, unsigned int max,
381 		  const struct ir_raw_timings_pl *timings,
382 		  unsigned int n, u64 data)
383 {
384 	int i;
385 	int ret = -ENOBUFS;
386 	unsigned int pulse;
387 
388 	if (!max--)
389 		return ret;
390 
391 	init_ir_raw_event_duration((*ev)++, 1, timings->header_pulse);
392 
393 	if (timings->msb_first) {
394 		for (i = n - 1; i >= 0; --i) {
395 			if (!max--)
396 				return ret;
397 			init_ir_raw_event_duration((*ev)++, 0,
398 						   timings->bit_space);
399 			if (!max--)
400 				return ret;
401 			pulse = timings->bit_pulse[(data >> i) & 1];
402 			init_ir_raw_event_duration((*ev)++, 1, pulse);
403 		}
404 	} else {
405 		for (i = 0; i < n; ++i, data >>= 1) {
406 			if (!max--)
407 				return ret;
408 			init_ir_raw_event_duration((*ev)++, 0,
409 						   timings->bit_space);
410 			if (!max--)
411 				return ret;
412 			pulse = timings->bit_pulse[data & 1];
413 			init_ir_raw_event_duration((*ev)++, 1, pulse);
414 		}
415 	}
416 
417 	if (!max--)
418 		return ret;
419 
420 	init_ir_raw_event_duration((*ev)++, 0, timings->trailer_space);
421 
422 	return 0;
423 }
424 EXPORT_SYMBOL(ir_raw_gen_pl);
425 
426 /**
427  * ir_raw_encode_scancode() - Encode a scancode as raw events
428  *
429  * @protocol:		protocol
430  * @scancode:		scancode filter describing a single scancode
431  * @events:		array of raw events to write into
432  * @max:		max number of raw events
433  *
434  * Attempts to encode the scancode as raw events.
435  *
436  * Returns:	The number of events written.
437  *		-ENOBUFS if there isn't enough space in the array to fit the
438  *		encoding. In this case all @max events will have been written.
439  *		-EINVAL if the scancode is ambiguous or invalid, or if no
440  *		compatible encoder was found.
441  */
442 int ir_raw_encode_scancode(enum rc_proto protocol, u32 scancode,
443 			   struct ir_raw_event *events, unsigned int max)
444 {
445 	struct ir_raw_handler *handler;
446 	int ret = -EINVAL;
447 	u64 mask = 1ULL << protocol;
448 
449 	ir_raw_load_modules(&mask);
450 
451 	mutex_lock(&ir_raw_handler_lock);
452 	list_for_each_entry(handler, &ir_raw_handler_list, list) {
453 		if (handler->protocols & mask && handler->encode) {
454 			ret = handler->encode(protocol, scancode, events, max);
455 			if (ret >= 0 || ret == -ENOBUFS)
456 				break;
457 		}
458 	}
459 	mutex_unlock(&ir_raw_handler_lock);
460 
461 	return ret;
462 }
463 EXPORT_SYMBOL(ir_raw_encode_scancode);
464 
465 static void edge_handle(struct timer_list *t)
466 {
467 	struct ir_raw_event_ctrl *raw = from_timer(raw, t, edge_handle);
468 	struct rc_dev *dev = raw->dev;
469 	ktime_t interval = ktime_sub(ktime_get(), dev->raw->last_event);
470 
471 	if (ktime_to_ns(interval) >= dev->timeout) {
472 		DEFINE_IR_RAW_EVENT(ev);
473 
474 		ev.timeout = true;
475 		ev.duration = ktime_to_ns(interval);
476 
477 		ir_raw_event_store(dev, &ev);
478 	} else {
479 		mod_timer(&dev->raw->edge_handle,
480 			  jiffies + nsecs_to_jiffies(dev->timeout -
481 						     ktime_to_ns(interval)));
482 	}
483 
484 	ir_raw_event_handle(dev);
485 }
486 
487 /**
488  * ir_raw_encode_carrier() - Get carrier used for protocol
489  *
490  * @protocol:		protocol
491  *
492  * Attempts to find the carrier for the specified protocol
493  *
494  * Returns:	The carrier in Hz
495  *		-EINVAL if the protocol is invalid, or if no
496  *		compatible encoder was found.
497  */
498 int ir_raw_encode_carrier(enum rc_proto protocol)
499 {
500 	struct ir_raw_handler *handler;
501 	int ret = -EINVAL;
502 	u64 mask = BIT_ULL(protocol);
503 
504 	mutex_lock(&ir_raw_handler_lock);
505 	list_for_each_entry(handler, &ir_raw_handler_list, list) {
506 		if (handler->protocols & mask && handler->encode) {
507 			ret = handler->carrier;
508 			break;
509 		}
510 	}
511 	mutex_unlock(&ir_raw_handler_lock);
512 
513 	return ret;
514 }
515 EXPORT_SYMBOL(ir_raw_encode_carrier);
516 
517 /*
518  * Used to (un)register raw event clients
519  */
520 int ir_raw_event_prepare(struct rc_dev *dev)
521 {
522 	if (!dev)
523 		return -EINVAL;
524 
525 	dev->raw = kzalloc(sizeof(*dev->raw), GFP_KERNEL);
526 	if (!dev->raw)
527 		return -ENOMEM;
528 
529 	dev->raw->dev = dev;
530 	dev->change_protocol = change_protocol;
531 	timer_setup(&dev->raw->edge_handle, edge_handle, 0);
532 	INIT_KFIFO(dev->raw->kfifo);
533 
534 	return 0;
535 }
536 
537 int ir_raw_event_register(struct rc_dev *dev)
538 {
539 	struct ir_raw_handler *handler;
540 	struct task_struct *thread;
541 
542 	thread = kthread_run(ir_raw_event_thread, dev->raw, "rc%u", dev->minor);
543 	if (IS_ERR(thread))
544 		return PTR_ERR(thread);
545 
546 	dev->raw->thread = thread;
547 
548 	mutex_lock(&ir_raw_handler_lock);
549 	list_add_tail(&dev->raw->list, &ir_raw_client_list);
550 	list_for_each_entry(handler, &ir_raw_handler_list, list)
551 		if (handler->raw_register)
552 			handler->raw_register(dev);
553 	mutex_unlock(&ir_raw_handler_lock);
554 
555 	return 0;
556 }
557 
558 void ir_raw_event_free(struct rc_dev *dev)
559 {
560 	if (!dev)
561 		return;
562 
563 	kfree(dev->raw);
564 	dev->raw = NULL;
565 }
566 
567 void ir_raw_event_unregister(struct rc_dev *dev)
568 {
569 	struct ir_raw_handler *handler;
570 
571 	if (!dev || !dev->raw)
572 		return;
573 
574 	kthread_stop(dev->raw->thread);
575 	del_timer_sync(&dev->raw->edge_handle);
576 
577 	mutex_lock(&ir_raw_handler_lock);
578 	list_del(&dev->raw->list);
579 	list_for_each_entry(handler, &ir_raw_handler_list, list)
580 		if (handler->raw_unregister)
581 			handler->raw_unregister(dev);
582 	mutex_unlock(&ir_raw_handler_lock);
583 
584 	ir_raw_event_free(dev);
585 }
586 
587 /*
588  * Extension interface - used to register the IR decoders
589  */
590 
591 int ir_raw_handler_register(struct ir_raw_handler *ir_raw_handler)
592 {
593 	struct ir_raw_event_ctrl *raw;
594 
595 	mutex_lock(&ir_raw_handler_lock);
596 	list_add_tail(&ir_raw_handler->list, &ir_raw_handler_list);
597 	if (ir_raw_handler->raw_register)
598 		list_for_each_entry(raw, &ir_raw_client_list, list)
599 			ir_raw_handler->raw_register(raw->dev);
600 	atomic64_or(ir_raw_handler->protocols, &available_protocols);
601 	mutex_unlock(&ir_raw_handler_lock);
602 
603 	return 0;
604 }
605 EXPORT_SYMBOL(ir_raw_handler_register);
606 
607 void ir_raw_handler_unregister(struct ir_raw_handler *ir_raw_handler)
608 {
609 	struct ir_raw_event_ctrl *raw;
610 	u64 protocols = ir_raw_handler->protocols;
611 
612 	mutex_lock(&ir_raw_handler_lock);
613 	list_del(&ir_raw_handler->list);
614 	list_for_each_entry(raw, &ir_raw_client_list, list) {
615 		ir_raw_disable_protocols(raw->dev, protocols);
616 		if (ir_raw_handler->raw_unregister)
617 			ir_raw_handler->raw_unregister(raw->dev);
618 	}
619 	atomic64_andnot(protocols, &available_protocols);
620 	mutex_unlock(&ir_raw_handler_lock);
621 }
622 EXPORT_SYMBOL(ir_raw_handler_unregister);
623