xref: /linux/drivers/media/rc/nuvoton-cir.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
3  *
4  * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5  * Copyright (C) 2009 Nuvoton PS Team
6  *
7  * Special thanks to Nuvoton for providing hardware, spec sheets and
8  * sample code upon which portions of this driver are based. Indirect
9  * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10  * modeled after.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  */
22 
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/pnp.h>
28 #include <linux/io.h>
29 #include <linux/interrupt.h>
30 #include <linux/sched.h>
31 #include <linux/slab.h>
32 #include <media/rc-core.h>
33 #include <linux/pci_ids.h>
34 
35 #include "nuvoton-cir.h"
36 
37 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt);
38 
39 static const struct nvt_chip nvt_chips[] = {
40 	{ "w83667hg", NVT_W83667HG },
41 	{ "NCT6775F", NVT_6775F },
42 	{ "NCT6776F", NVT_6776F },
43 	{ "NCT6779D", NVT_6779D },
44 };
45 
46 static inline struct device *nvt_get_dev(const struct nvt_dev *nvt)
47 {
48 	return nvt->rdev->dev.parent;
49 }
50 
51 static inline bool is_w83667hg(struct nvt_dev *nvt)
52 {
53 	return nvt->chip_ver == NVT_W83667HG;
54 }
55 
56 /* write val to config reg */
57 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
58 {
59 	outb(reg, nvt->cr_efir);
60 	outb(val, nvt->cr_efdr);
61 }
62 
63 /* read val from config reg */
64 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
65 {
66 	outb(reg, nvt->cr_efir);
67 	return inb(nvt->cr_efdr);
68 }
69 
70 /* update config register bit without changing other bits */
71 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
72 {
73 	u8 tmp = nvt_cr_read(nvt, reg) | val;
74 	nvt_cr_write(nvt, tmp, reg);
75 }
76 
77 /* clear config register bit without changing other bits */
78 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
79 {
80 	u8 tmp = nvt_cr_read(nvt, reg) & ~val;
81 	nvt_cr_write(nvt, tmp, reg);
82 }
83 
84 /* enter extended function mode */
85 static inline int nvt_efm_enable(struct nvt_dev *nvt)
86 {
87 	if (!request_muxed_region(nvt->cr_efir, 2, NVT_DRIVER_NAME))
88 		return -EBUSY;
89 
90 	/* Enabling Extended Function Mode explicitly requires writing 2x */
91 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
92 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
93 
94 	return 0;
95 }
96 
97 /* exit extended function mode */
98 static inline void nvt_efm_disable(struct nvt_dev *nvt)
99 {
100 	outb(EFER_EFM_DISABLE, nvt->cr_efir);
101 
102 	release_region(nvt->cr_efir, 2);
103 }
104 
105 /*
106  * When you want to address a specific logical device, write its logical
107  * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
108  * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
109  */
110 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
111 {
112 	nvt_cr_write(nvt, ldev, CR_LOGICAL_DEV_SEL);
113 }
114 
115 /* select and enable logical device with setting EFM mode*/
116 static inline void nvt_enable_logical_dev(struct nvt_dev *nvt, u8 ldev)
117 {
118 	nvt_efm_enable(nvt);
119 	nvt_select_logical_dev(nvt, ldev);
120 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
121 	nvt_efm_disable(nvt);
122 }
123 
124 /* select and disable logical device with setting EFM mode*/
125 static inline void nvt_disable_logical_dev(struct nvt_dev *nvt, u8 ldev)
126 {
127 	nvt_efm_enable(nvt);
128 	nvt_select_logical_dev(nvt, ldev);
129 	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
130 	nvt_efm_disable(nvt);
131 }
132 
133 /* write val to cir config register */
134 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
135 {
136 	outb(val, nvt->cir_addr + offset);
137 }
138 
139 /* read val from cir config register */
140 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
141 {
142 	return inb(nvt->cir_addr + offset);
143 }
144 
145 /* write val to cir wake register */
146 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
147 					  u8 val, u8 offset)
148 {
149 	outb(val, nvt->cir_wake_addr + offset);
150 }
151 
152 /* read val from cir wake config register */
153 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
154 {
155 	return inb(nvt->cir_wake_addr + offset);
156 }
157 
158 /* don't override io address if one is set already */
159 static void nvt_set_ioaddr(struct nvt_dev *nvt, unsigned long *ioaddr)
160 {
161 	unsigned long old_addr;
162 
163 	old_addr = nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8;
164 	old_addr |= nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO);
165 
166 	if (old_addr)
167 		*ioaddr = old_addr;
168 	else {
169 		nvt_cr_write(nvt, *ioaddr >> 8, CR_CIR_BASE_ADDR_HI);
170 		nvt_cr_write(nvt, *ioaddr & 0xff, CR_CIR_BASE_ADDR_LO);
171 	}
172 }
173 
174 static void nvt_write_wakeup_codes(struct rc_dev *dev,
175 				   const u8 *wbuf, int count)
176 {
177 	u8 tolerance, config;
178 	struct nvt_dev *nvt = dev->priv;
179 	unsigned long flags;
180 	int i;
181 
182 	/* hardcode the tolerance to 10% */
183 	tolerance = DIV_ROUND_UP(count, 10);
184 
185 	spin_lock_irqsave(&nvt->lock, flags);
186 
187 	nvt_clear_cir_wake_fifo(nvt);
188 	nvt_cir_wake_reg_write(nvt, count, CIR_WAKE_FIFO_CMP_DEEP);
189 	nvt_cir_wake_reg_write(nvt, tolerance, CIR_WAKE_FIFO_CMP_TOL);
190 
191 	config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
192 
193 	/* enable writes to wake fifo */
194 	nvt_cir_wake_reg_write(nvt, config | CIR_WAKE_IRCON_MODE1,
195 			       CIR_WAKE_IRCON);
196 
197 	if (count)
198 		pr_info("Wake samples (%d) =", count);
199 	else
200 		pr_info("Wake sample fifo cleared");
201 
202 	for (i = 0; i < count; i++)
203 		nvt_cir_wake_reg_write(nvt, wbuf[i], CIR_WAKE_WR_FIFO_DATA);
204 
205 	nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
206 
207 	spin_unlock_irqrestore(&nvt->lock, flags);
208 }
209 
210 static ssize_t wakeup_data_show(struct device *dev,
211 				struct device_attribute *attr,
212 				char *buf)
213 {
214 	struct rc_dev *rc_dev = to_rc_dev(dev);
215 	struct nvt_dev *nvt = rc_dev->priv;
216 	int fifo_len, duration;
217 	unsigned long flags;
218 	ssize_t buf_len = 0;
219 	int i;
220 
221 	spin_lock_irqsave(&nvt->lock, flags);
222 
223 	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
224 	fifo_len = min(fifo_len, WAKEUP_MAX_SIZE);
225 
226 	/* go to first element to be read */
227 	while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX))
228 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
229 
230 	for (i = 0; i < fifo_len; i++) {
231 		duration = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
232 		duration = (duration & BUF_LEN_MASK) * SAMPLE_PERIOD;
233 		buf_len += snprintf(buf + buf_len, PAGE_SIZE - buf_len,
234 				    "%d ", duration);
235 	}
236 	buf_len += snprintf(buf + buf_len, PAGE_SIZE - buf_len, "\n");
237 
238 	spin_unlock_irqrestore(&nvt->lock, flags);
239 
240 	return buf_len;
241 }
242 
243 static ssize_t wakeup_data_store(struct device *dev,
244 				 struct device_attribute *attr,
245 				 const char *buf, size_t len)
246 {
247 	struct rc_dev *rc_dev = to_rc_dev(dev);
248 	u8 wake_buf[WAKEUP_MAX_SIZE];
249 	char **argv;
250 	int i, count;
251 	unsigned int val;
252 	ssize_t ret;
253 
254 	argv = argv_split(GFP_KERNEL, buf, &count);
255 	if (!argv)
256 		return -ENOMEM;
257 	if (!count || count > WAKEUP_MAX_SIZE) {
258 		ret = -EINVAL;
259 		goto out;
260 	}
261 
262 	for (i = 0; i < count; i++) {
263 		ret = kstrtouint(argv[i], 10, &val);
264 		if (ret)
265 			goto out;
266 		val = DIV_ROUND_CLOSEST(val, SAMPLE_PERIOD);
267 		if (!val || val > 0x7f) {
268 			ret = -EINVAL;
269 			goto out;
270 		}
271 		wake_buf[i] = val;
272 		/* sequence must start with a pulse */
273 		if (i % 2 == 0)
274 			wake_buf[i] |= BUF_PULSE_BIT;
275 	}
276 
277 	nvt_write_wakeup_codes(rc_dev, wake_buf, count);
278 
279 	ret = len;
280 out:
281 	argv_free(argv);
282 	return ret;
283 }
284 static DEVICE_ATTR_RW(wakeup_data);
285 
286 /* dump current cir register contents */
287 static void cir_dump_regs(struct nvt_dev *nvt)
288 {
289 	nvt_efm_enable(nvt);
290 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
291 
292 	pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
293 	pr_info(" * CR CIR ACTIVE :   0x%x\n",
294 		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
295 	pr_info(" * CR CIR BASE ADDR: 0x%x\n",
296 		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
297 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
298 	pr_info(" * CR CIR IRQ NUM:   0x%x\n",
299 		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
300 
301 	nvt_efm_disable(nvt);
302 
303 	pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
304 	pr_info(" * IRCON:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
305 	pr_info(" * IRSTS:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
306 	pr_info(" * IREN:      0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
307 	pr_info(" * RXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
308 	pr_info(" * CP:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
309 	pr_info(" * CC:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
310 	pr_info(" * SLCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
311 	pr_info(" * SLCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
312 	pr_info(" * FIFOCON:   0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
313 	pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
314 	pr_info(" * SRXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
315 	pr_info(" * TXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
316 	pr_info(" * STXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
317 	pr_info(" * FCCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
318 	pr_info(" * FCCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
319 	pr_info(" * IRFSM:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
320 }
321 
322 /* dump current cir wake register contents */
323 static void cir_wake_dump_regs(struct nvt_dev *nvt)
324 {
325 	u8 i, fifo_len;
326 
327 	nvt_efm_enable(nvt);
328 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
329 
330 	pr_info("%s: Dump CIR WAKE logical device registers:\n",
331 		NVT_DRIVER_NAME);
332 	pr_info(" * CR CIR WAKE ACTIVE :   0x%x\n",
333 		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
334 	pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
335 		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
336 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
337 	pr_info(" * CR CIR WAKE IRQ NUM:   0x%x\n",
338 		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
339 
340 	nvt_efm_disable(nvt);
341 
342 	pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
343 	pr_info(" * IRCON:          0x%x\n",
344 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
345 	pr_info(" * IRSTS:          0x%x\n",
346 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
347 	pr_info(" * IREN:           0x%x\n",
348 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
349 	pr_info(" * FIFO CMP DEEP:  0x%x\n",
350 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
351 	pr_info(" * FIFO CMP TOL:   0x%x\n",
352 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
353 	pr_info(" * FIFO COUNT:     0x%x\n",
354 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
355 	pr_info(" * SLCH:           0x%x\n",
356 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
357 	pr_info(" * SLCL:           0x%x\n",
358 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
359 	pr_info(" * FIFOCON:        0x%x\n",
360 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
361 	pr_info(" * SRXFSTS:        0x%x\n",
362 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
363 	pr_info(" * SAMPLE RX FIFO: 0x%x\n",
364 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
365 	pr_info(" * WR FIFO DATA:   0x%x\n",
366 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
367 	pr_info(" * RD FIFO ONLY:   0x%x\n",
368 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
369 	pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
370 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
371 	pr_info(" * FIFO IGNORE:    0x%x\n",
372 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
373 	pr_info(" * IRFSM:          0x%x\n",
374 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
375 
376 	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
377 	pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
378 	pr_info("* Contents =");
379 	for (i = 0; i < fifo_len; i++)
380 		pr_cont(" %02x",
381 			nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
382 	pr_cont("\n");
383 }
384 
385 static inline const char *nvt_find_chip(struct nvt_dev *nvt, int id)
386 {
387 	int i;
388 
389 	for (i = 0; i < ARRAY_SIZE(nvt_chips); i++)
390 		if ((id & SIO_ID_MASK) == nvt_chips[i].chip_ver) {
391 			nvt->chip_ver = nvt_chips[i].chip_ver;
392 			return nvt_chips[i].name;
393 		}
394 
395 	return NULL;
396 }
397 
398 
399 /* detect hardware features */
400 static int nvt_hw_detect(struct nvt_dev *nvt)
401 {
402 	struct device *dev = nvt_get_dev(nvt);
403 	const char *chip_name;
404 	int chip_id;
405 
406 	nvt_efm_enable(nvt);
407 
408 	/* Check if we're wired for the alternate EFER setup */
409 	nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
410 	if (nvt->chip_major == 0xff) {
411 		nvt_efm_disable(nvt);
412 		nvt->cr_efir = CR_EFIR2;
413 		nvt->cr_efdr = CR_EFDR2;
414 		nvt_efm_enable(nvt);
415 		nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
416 	}
417 	nvt->chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
418 
419 	nvt_efm_disable(nvt);
420 
421 	chip_id = nvt->chip_major << 8 | nvt->chip_minor;
422 	if (chip_id == NVT_INVALID) {
423 		dev_err(dev, "No device found on either EFM port\n");
424 		return -ENODEV;
425 	}
426 
427 	chip_name = nvt_find_chip(nvt, chip_id);
428 
429 	/* warn, but still let the driver load, if we don't know this chip */
430 	if (!chip_name)
431 		dev_warn(dev,
432 			 "unknown chip, id: 0x%02x 0x%02x, it may not work...",
433 			 nvt->chip_major, nvt->chip_minor);
434 	else
435 		dev_info(dev, "found %s or compatible: chip id: 0x%02x 0x%02x",
436 			 chip_name, nvt->chip_major, nvt->chip_minor);
437 
438 	return 0;
439 }
440 
441 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
442 {
443 	u8 val, psreg, psmask, psval;
444 
445 	if (is_w83667hg(nvt)) {
446 		psreg = CR_MULTIFUNC_PIN_SEL;
447 		psmask = MULTIFUNC_PIN_SEL_MASK;
448 		psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
449 	} else {
450 		psreg = CR_OUTPUT_PIN_SEL;
451 		psmask = OUTPUT_PIN_SEL_MASK;
452 		psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
453 	}
454 
455 	/* output pin selection: enable CIR, with WB sensor enabled */
456 	val = nvt_cr_read(nvt, psreg);
457 	val &= psmask;
458 	val |= psval;
459 	nvt_cr_write(nvt, val, psreg);
460 
461 	/* Select CIR logical device */
462 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
463 
464 	nvt_set_ioaddr(nvt, &nvt->cir_addr);
465 
466 	nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
467 
468 	nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
469 		nvt->cir_addr, nvt->cir_irq);
470 }
471 
472 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
473 {
474 	/* Select ACPI logical device and anable it */
475 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
476 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
477 
478 	/* Enable CIR Wake via PSOUT# (Pin60) */
479 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
480 
481 	/* enable pme interrupt of cir wakeup event */
482 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
483 
484 	/* Select CIR Wake logical device */
485 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
486 
487 	nvt_set_ioaddr(nvt, &nvt->cir_wake_addr);
488 
489 	nvt_dbg("CIR Wake initialized, base io port address: 0x%lx",
490 		nvt->cir_wake_addr);
491 }
492 
493 /* clear out the hardware's cir rx fifo */
494 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
495 {
496 	u8 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
497 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
498 }
499 
500 /* clear out the hardware's cir wake rx fifo */
501 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
502 {
503 	u8 val, config;
504 
505 	config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
506 
507 	/* clearing wake fifo works in learning mode only */
508 	nvt_cir_wake_reg_write(nvt, config & ~CIR_WAKE_IRCON_MODE0,
509 			       CIR_WAKE_IRCON);
510 
511 	val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
512 	nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
513 			       CIR_WAKE_FIFOCON);
514 
515 	nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
516 }
517 
518 /* clear out the hardware's cir tx fifo */
519 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
520 {
521 	u8 val;
522 
523 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
524 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
525 }
526 
527 /* enable RX Trigger Level Reach and Packet End interrupts */
528 static void nvt_set_cir_iren(struct nvt_dev *nvt)
529 {
530 	u8 iren;
531 
532 	iren = CIR_IREN_RTR | CIR_IREN_PE | CIR_IREN_RFO;
533 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
534 }
535 
536 static void nvt_cir_regs_init(struct nvt_dev *nvt)
537 {
538 	/* set sample limit count (PE interrupt raised when reached) */
539 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
540 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
541 
542 	/* set fifo irq trigger levels */
543 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
544 			  CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
545 
546 	/*
547 	 * Enable TX and RX, specify carrier on = low, off = high, and set
548 	 * sample period (currently 50us)
549 	 */
550 	nvt_cir_reg_write(nvt,
551 			  CIR_IRCON_TXEN | CIR_IRCON_RXEN |
552 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
553 			  CIR_IRCON);
554 
555 	/* clear hardware rx and tx fifos */
556 	nvt_clear_cir_fifo(nvt);
557 	nvt_clear_tx_fifo(nvt);
558 
559 	/* clear any and all stray interrupts */
560 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
561 
562 	/* and finally, enable interrupts */
563 	nvt_set_cir_iren(nvt);
564 
565 	/* enable the CIR logical device */
566 	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
567 }
568 
569 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
570 {
571 	/*
572 	 * Disable RX, set specific carrier on = low, off = high,
573 	 * and sample period (currently 50us)
574 	 */
575 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 |
576 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
577 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
578 			       CIR_WAKE_IRCON);
579 
580 	/* clear any and all stray interrupts */
581 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
582 
583 	/* enable the CIR WAKE logical device */
584 	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
585 }
586 
587 static void nvt_enable_wake(struct nvt_dev *nvt)
588 {
589 	unsigned long flags;
590 
591 	nvt_efm_enable(nvt);
592 
593 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
594 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
595 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
596 
597 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
598 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
599 
600 	nvt_efm_disable(nvt);
601 
602 	spin_lock_irqsave(&nvt->lock, flags);
603 
604 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
605 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
606 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
607 			       CIR_WAKE_IRCON);
608 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
609 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
610 
611 	spin_unlock_irqrestore(&nvt->lock, flags);
612 }
613 
614 #if 0 /* Currently unused */
615 /* rx carrier detect only works in learning mode, must be called w/lock */
616 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
617 {
618 	u32 count, carrier, duration = 0;
619 	int i;
620 
621 	count = nvt_cir_reg_read(nvt, CIR_FCCL) |
622 		nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
623 
624 	for (i = 0; i < nvt->pkts; i++) {
625 		if (nvt->buf[i] & BUF_PULSE_BIT)
626 			duration += nvt->buf[i] & BUF_LEN_MASK;
627 	}
628 
629 	duration *= SAMPLE_PERIOD;
630 
631 	if (!count || !duration) {
632 		dev_notice(nvt_get_dev(nvt),
633 			   "Unable to determine carrier! (c:%u, d:%u)",
634 			   count, duration);
635 		return 0;
636 	}
637 
638 	carrier = MS_TO_NS(count) / duration;
639 
640 	if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
641 		nvt_dbg("WTF? Carrier frequency out of range!");
642 
643 	nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
644 		carrier, count, duration);
645 
646 	return carrier;
647 }
648 #endif
649 /*
650  * set carrier frequency
651  *
652  * set carrier on 2 registers: CP & CC
653  * always set CP as 0x81
654  * set CC by SPEC, CC = 3MHz/carrier - 1
655  */
656 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
657 {
658 	struct nvt_dev *nvt = dev->priv;
659 	u16 val;
660 
661 	if (carrier == 0)
662 		return -EINVAL;
663 
664 	nvt_cir_reg_write(nvt, 1, CIR_CP);
665 	val = 3000000 / (carrier) - 1;
666 	nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
667 
668 	nvt_dbg("cp: 0x%x cc: 0x%x\n",
669 		nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
670 
671 	return 0;
672 }
673 
674 static int nvt_ir_raw_set_wakeup_filter(struct rc_dev *dev,
675 					struct rc_scancode_filter *sc_filter)
676 {
677 	u8 buf_val;
678 	int i, ret, count;
679 	unsigned int val;
680 	struct ir_raw_event *raw;
681 	u8 wake_buf[WAKEUP_MAX_SIZE];
682 	bool complete;
683 
684 	/* Require mask to be set */
685 	if (!sc_filter->mask)
686 		return 0;
687 
688 	raw = kmalloc_array(WAKEUP_MAX_SIZE, sizeof(*raw), GFP_KERNEL);
689 	if (!raw)
690 		return -ENOMEM;
691 
692 	ret = ir_raw_encode_scancode(dev->wakeup_protocol, sc_filter->data,
693 				     raw, WAKEUP_MAX_SIZE);
694 	complete = (ret != -ENOBUFS);
695 	if (!complete)
696 		ret = WAKEUP_MAX_SIZE;
697 	else if (ret < 0)
698 		goto out_raw;
699 
700 	/* Inspect the ir samples */
701 	for (i = 0, count = 0; i < ret && count < WAKEUP_MAX_SIZE; ++i) {
702 		/* NS to US */
703 		val = DIV_ROUND_UP(raw[i].duration, 1000L) / SAMPLE_PERIOD;
704 
705 		/* Split too large values into several smaller ones */
706 		while (val > 0 && count < WAKEUP_MAX_SIZE) {
707 			/* Skip last value for better comparison tolerance */
708 			if (complete && i == ret - 1 && val < BUF_LEN_MASK)
709 				break;
710 
711 			/* Clamp values to BUF_LEN_MASK at most */
712 			buf_val = (val > BUF_LEN_MASK) ? BUF_LEN_MASK : val;
713 
714 			wake_buf[count] = buf_val;
715 			val -= buf_val;
716 			if ((raw[i]).pulse)
717 				wake_buf[count] |= BUF_PULSE_BIT;
718 			count++;
719 		}
720 	}
721 
722 	nvt_write_wakeup_codes(dev, wake_buf, count);
723 	ret = 0;
724 out_raw:
725 	kfree(raw);
726 
727 	return ret;
728 }
729 
730 /*
731  * nvt_tx_ir
732  *
733  * 1) clean TX fifo first (handled by AP)
734  * 2) copy data from user space
735  * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
736  * 4) send 9 packets to TX FIFO to open TTR
737  * in interrupt_handler:
738  * 5) send all data out
739  * go back to write():
740  * 6) disable TX interrupts, re-enable RX interupts
741  *
742  * The key problem of this function is user space data may larger than
743  * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
744  * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
745  * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
746  * set TXFCONT as 0xff, until buf_count less than 0xff.
747  */
748 static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n)
749 {
750 	struct nvt_dev *nvt = dev->priv;
751 	unsigned long flags;
752 	unsigned int i;
753 	u8 iren;
754 	int ret;
755 
756 	spin_lock_irqsave(&nvt->lock, flags);
757 
758 	ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n);
759 	nvt->tx.buf_count = (ret * sizeof(unsigned));
760 
761 	memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
762 
763 	nvt->tx.cur_buf_num = 0;
764 
765 	/* save currently enabled interrupts */
766 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
767 
768 	/* now disable all interrupts, save TFU & TTR */
769 	nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
770 
771 	nvt->tx.tx_state = ST_TX_REPLY;
772 
773 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
774 			  CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
775 
776 	/* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
777 	for (i = 0; i < 9; i++)
778 		nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
779 
780 	spin_unlock_irqrestore(&nvt->lock, flags);
781 
782 	wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
783 
784 	spin_lock_irqsave(&nvt->lock, flags);
785 	nvt->tx.tx_state = ST_TX_NONE;
786 	spin_unlock_irqrestore(&nvt->lock, flags);
787 
788 	/* restore enabled interrupts to prior state */
789 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
790 
791 	return ret;
792 }
793 
794 /* dump contents of the last rx buffer we got from the hw rx fifo */
795 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
796 {
797 	int i;
798 
799 	printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
800 	for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
801 		printk(KERN_CONT "0x%02x ", nvt->buf[i]);
802 	printk(KERN_CONT "\n");
803 }
804 
805 /*
806  * Process raw data in rx driver buffer, store it in raw IR event kfifo,
807  * trigger decode when appropriate.
808  *
809  * We get IR data samples one byte at a time. If the msb is set, its a pulse,
810  * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
811  * (default 50us) intervals for that pulse/space. A discrete signal is
812  * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
813  * to signal more IR coming (repeats) or end of IR, respectively. We store
814  * sample data in the raw event kfifo until we see 0x7<something> (except f)
815  * or 0x80, at which time, we trigger a decode operation.
816  */
817 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
818 {
819 	DEFINE_IR_RAW_EVENT(rawir);
820 	u8 sample;
821 	int i;
822 
823 	nvt_dbg_verbose("%s firing", __func__);
824 
825 	if (debug)
826 		nvt_dump_rx_buf(nvt);
827 
828 	nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
829 
830 	for (i = 0; i < nvt->pkts; i++) {
831 		sample = nvt->buf[i];
832 
833 		rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
834 		rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
835 					  * SAMPLE_PERIOD);
836 
837 		nvt_dbg("Storing %s with duration %d",
838 			rawir.pulse ? "pulse" : "space", rawir.duration);
839 
840 		ir_raw_event_store_with_filter(nvt->rdev, &rawir);
841 	}
842 
843 	nvt->pkts = 0;
844 
845 	nvt_dbg("Calling ir_raw_event_handle\n");
846 	ir_raw_event_handle(nvt->rdev);
847 
848 	nvt_dbg_verbose("%s done", __func__);
849 }
850 
851 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
852 {
853 	dev_warn(nvt_get_dev(nvt), "RX FIFO overrun detected, flushing data!");
854 
855 	nvt->pkts = 0;
856 	nvt_clear_cir_fifo(nvt);
857 	ir_raw_event_reset(nvt->rdev);
858 }
859 
860 /* copy data from hardware rx fifo into driver buffer */
861 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
862 {
863 	u8 fifocount;
864 	int i;
865 
866 	/* Get count of how many bytes to read from RX FIFO */
867 	fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
868 
869 	nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
870 
871 	/* Read fifocount bytes from CIR Sample RX FIFO register */
872 	for (i = 0; i < fifocount; i++)
873 		nvt->buf[i] = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
874 
875 	nvt->pkts = fifocount;
876 	nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
877 
878 	nvt_process_rx_ir_data(nvt);
879 }
880 
881 static void nvt_cir_log_irqs(u8 status, u8 iren)
882 {
883 	nvt_dbg("IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
884 		status, iren,
885 		status & CIR_IRSTS_RDR	? " RDR"	: "",
886 		status & CIR_IRSTS_RTR	? " RTR"	: "",
887 		status & CIR_IRSTS_PE	? " PE"		: "",
888 		status & CIR_IRSTS_RFO	? " RFO"	: "",
889 		status & CIR_IRSTS_TE	? " TE"		: "",
890 		status & CIR_IRSTS_TTR	? " TTR"	: "",
891 		status & CIR_IRSTS_TFU	? " TFU"	: "",
892 		status & CIR_IRSTS_GH	? " GH"		: "",
893 		status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
894 			   CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
895 			   CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
896 }
897 
898 static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
899 {
900 	return nvt->tx.tx_state == ST_TX_NONE;
901 }
902 
903 /* interrupt service routine for incoming and outgoing CIR data */
904 static irqreturn_t nvt_cir_isr(int irq, void *data)
905 {
906 	struct nvt_dev *nvt = data;
907 	u8 status, iren;
908 
909 	nvt_dbg_verbose("%s firing", __func__);
910 
911 	spin_lock(&nvt->lock);
912 
913 	/*
914 	 * Get IR Status register contents. Write 1 to ack/clear
915 	 *
916 	 * bit: reg name      - description
917 	 *   7: CIR_IRSTS_RDR - RX Data Ready
918 	 *   6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
919 	 *   5: CIR_IRSTS_PE  - Packet End
920 	 *   4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
921 	 *   3: CIR_IRSTS_TE  - TX FIFO Empty
922 	 *   2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
923 	 *   1: CIR_IRSTS_TFU - TX FIFO Underrun
924 	 *   0: CIR_IRSTS_GH  - Min Length Detected
925 	 */
926 	status = nvt_cir_reg_read(nvt, CIR_IRSTS);
927 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
928 
929 	/* At least NCT6779D creates a spurious interrupt when the
930 	 * logical device is being disabled.
931 	 */
932 	if (status == 0xff && iren == 0xff) {
933 		spin_unlock(&nvt->lock);
934 		nvt_dbg_verbose("Spurious interrupt detected");
935 		return IRQ_HANDLED;
936 	}
937 
938 	/* IRQ may be shared with CIR WAKE, therefore check for each
939 	 * status bit whether the related interrupt source is enabled
940 	 */
941 	if (!(status & iren)) {
942 		spin_unlock(&nvt->lock);
943 		nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
944 		return IRQ_NONE;
945 	}
946 
947 	/* ack/clear all irq flags we've got */
948 	nvt_cir_reg_write(nvt, status, CIR_IRSTS);
949 	nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
950 
951 	nvt_cir_log_irqs(status, iren);
952 
953 	if (status & CIR_IRSTS_RFO)
954 		nvt_handle_rx_fifo_overrun(nvt);
955 
956 	else if (status & (CIR_IRSTS_RTR | CIR_IRSTS_PE)) {
957 		/* We only do rx if not tx'ing */
958 		if (nvt_cir_tx_inactive(nvt))
959 			nvt_get_rx_ir_data(nvt);
960 	}
961 
962 	if (status & CIR_IRSTS_TE)
963 		nvt_clear_tx_fifo(nvt);
964 
965 	if (status & CIR_IRSTS_TTR) {
966 		unsigned int pos, count;
967 		u8 tmp;
968 
969 		pos = nvt->tx.cur_buf_num;
970 		count = nvt->tx.buf_count;
971 
972 		/* Write data into the hardware tx fifo while pos < count */
973 		if (pos < count) {
974 			nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
975 			nvt->tx.cur_buf_num++;
976 		/* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
977 		} else {
978 			tmp = nvt_cir_reg_read(nvt, CIR_IREN);
979 			nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
980 		}
981 	}
982 
983 	if (status & CIR_IRSTS_TFU) {
984 		if (nvt->tx.tx_state == ST_TX_REPLY) {
985 			nvt->tx.tx_state = ST_TX_REQUEST;
986 			wake_up(&nvt->tx.queue);
987 		}
988 	}
989 
990 	spin_unlock(&nvt->lock);
991 
992 	nvt_dbg_verbose("%s done", __func__);
993 	return IRQ_HANDLED;
994 }
995 
996 static void nvt_disable_cir(struct nvt_dev *nvt)
997 {
998 	unsigned long flags;
999 
1000 	spin_lock_irqsave(&nvt->lock, flags);
1001 
1002 	/* disable CIR interrupts */
1003 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1004 
1005 	/* clear any and all pending interrupts */
1006 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
1007 
1008 	/* clear all function enable flags */
1009 	nvt_cir_reg_write(nvt, 0, CIR_IRCON);
1010 
1011 	/* clear hardware rx and tx fifos */
1012 	nvt_clear_cir_fifo(nvt);
1013 	nvt_clear_tx_fifo(nvt);
1014 
1015 	spin_unlock_irqrestore(&nvt->lock, flags);
1016 
1017 	/* disable the CIR logical device */
1018 	nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
1019 }
1020 
1021 static int nvt_open(struct rc_dev *dev)
1022 {
1023 	struct nvt_dev *nvt = dev->priv;
1024 	unsigned long flags;
1025 
1026 	spin_lock_irqsave(&nvt->lock, flags);
1027 
1028 	/* set function enable flags */
1029 	nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
1030 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
1031 			  CIR_IRCON);
1032 
1033 	/* clear all pending interrupts */
1034 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
1035 
1036 	/* enable interrupts */
1037 	nvt_set_cir_iren(nvt);
1038 
1039 	spin_unlock_irqrestore(&nvt->lock, flags);
1040 
1041 	/* enable the CIR logical device */
1042 	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
1043 
1044 	return 0;
1045 }
1046 
1047 static void nvt_close(struct rc_dev *dev)
1048 {
1049 	struct nvt_dev *nvt = dev->priv;
1050 
1051 	nvt_disable_cir(nvt);
1052 }
1053 
1054 /* Allocate memory, probe hardware, and initialize everything */
1055 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
1056 {
1057 	struct nvt_dev *nvt;
1058 	struct rc_dev *rdev;
1059 	int ret;
1060 
1061 	nvt = devm_kzalloc(&pdev->dev, sizeof(struct nvt_dev), GFP_KERNEL);
1062 	if (!nvt)
1063 		return -ENOMEM;
1064 
1065 	/* input device for IR remote (and tx) */
1066 	nvt->rdev = devm_rc_allocate_device(&pdev->dev, RC_DRIVER_IR_RAW);
1067 	if (!nvt->rdev)
1068 		return -ENOMEM;
1069 	rdev = nvt->rdev;
1070 
1071 	/* activate pnp device */
1072 	ret = pnp_activate_dev(pdev);
1073 	if (ret) {
1074 		dev_err(&pdev->dev, "Could not activate PNP device!\n");
1075 		return ret;
1076 	}
1077 
1078 	/* validate pnp resources */
1079 	if (!pnp_port_valid(pdev, 0) ||
1080 	    pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
1081 		dev_err(&pdev->dev, "IR PNP Port not valid!\n");
1082 		return -EINVAL;
1083 	}
1084 
1085 	if (!pnp_irq_valid(pdev, 0)) {
1086 		dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1087 		return -EINVAL;
1088 	}
1089 
1090 	if (!pnp_port_valid(pdev, 1) ||
1091 	    pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
1092 		dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1093 		return -EINVAL;
1094 	}
1095 
1096 	nvt->cir_addr = pnp_port_start(pdev, 0);
1097 	nvt->cir_irq  = pnp_irq(pdev, 0);
1098 
1099 	nvt->cir_wake_addr = pnp_port_start(pdev, 1);
1100 
1101 	nvt->cr_efir = CR_EFIR;
1102 	nvt->cr_efdr = CR_EFDR;
1103 
1104 	spin_lock_init(&nvt->lock);
1105 
1106 	pnp_set_drvdata(pdev, nvt);
1107 
1108 	init_waitqueue_head(&nvt->tx.queue);
1109 
1110 	ret = nvt_hw_detect(nvt);
1111 	if (ret)
1112 		return ret;
1113 
1114 	/* Initialize CIR & CIR Wake Logical Devices */
1115 	nvt_efm_enable(nvt);
1116 	nvt_cir_ldev_init(nvt);
1117 	nvt_cir_wake_ldev_init(nvt);
1118 	nvt_efm_disable(nvt);
1119 
1120 	/*
1121 	 * Initialize CIR & CIR Wake Config Registers
1122 	 * and enable logical devices
1123 	 */
1124 	nvt_cir_regs_init(nvt);
1125 	nvt_cir_wake_regs_init(nvt);
1126 
1127 	/* Set up the rc device */
1128 	rdev->priv = nvt;
1129 	rdev->allowed_protocols = RC_BIT_ALL_IR_DECODER;
1130 	rdev->allowed_wakeup_protocols = RC_BIT_ALL_IR_ENCODER;
1131 	rdev->encode_wakeup = true;
1132 	rdev->open = nvt_open;
1133 	rdev->close = nvt_close;
1134 	rdev->tx_ir = nvt_tx_ir;
1135 	rdev->s_tx_carrier = nvt_set_tx_carrier;
1136 	rdev->s_wakeup_filter = nvt_ir_raw_set_wakeup_filter;
1137 	rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1138 	rdev->input_phys = "nuvoton/cir0";
1139 	rdev->input_id.bustype = BUS_HOST;
1140 	rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1141 	rdev->input_id.product = nvt->chip_major;
1142 	rdev->input_id.version = nvt->chip_minor;
1143 	rdev->driver_name = NVT_DRIVER_NAME;
1144 	rdev->map_name = RC_MAP_RC6_MCE;
1145 	rdev->timeout = MS_TO_NS(100);
1146 	/* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1147 	rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1148 #if 0
1149 	rdev->min_timeout = XYZ;
1150 	rdev->max_timeout = XYZ;
1151 	/* tx bits */
1152 	rdev->tx_resolution = XYZ;
1153 #endif
1154 	ret = devm_rc_register_device(&pdev->dev, rdev);
1155 	if (ret)
1156 		return ret;
1157 
1158 	/* now claim resources */
1159 	if (!devm_request_region(&pdev->dev, nvt->cir_addr,
1160 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1161 		return -EBUSY;
1162 
1163 	ret = devm_request_irq(&pdev->dev, nvt->cir_irq, nvt_cir_isr,
1164 			       IRQF_SHARED, NVT_DRIVER_NAME, nvt);
1165 	if (ret)
1166 		return ret;
1167 
1168 	if (!devm_request_region(&pdev->dev, nvt->cir_wake_addr,
1169 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME "-wake"))
1170 		return -EBUSY;
1171 
1172 	ret = device_create_file(&rdev->dev, &dev_attr_wakeup_data);
1173 	if (ret)
1174 		return ret;
1175 
1176 	device_init_wakeup(&pdev->dev, true);
1177 
1178 	dev_notice(&pdev->dev, "driver has been successfully loaded\n");
1179 	if (debug) {
1180 		cir_dump_regs(nvt);
1181 		cir_wake_dump_regs(nvt);
1182 	}
1183 
1184 	return 0;
1185 }
1186 
1187 static void nvt_remove(struct pnp_dev *pdev)
1188 {
1189 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1190 
1191 	device_remove_file(&nvt->rdev->dev, &dev_attr_wakeup_data);
1192 
1193 	nvt_disable_cir(nvt);
1194 
1195 	/* enable CIR Wake (for IR power-on) */
1196 	nvt_enable_wake(nvt);
1197 }
1198 
1199 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1200 {
1201 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1202 	unsigned long flags;
1203 
1204 	nvt_dbg("%s called", __func__);
1205 
1206 	spin_lock_irqsave(&nvt->lock, flags);
1207 
1208 	nvt->tx.tx_state = ST_TX_NONE;
1209 
1210 	/* disable all CIR interrupts */
1211 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1212 
1213 	spin_unlock_irqrestore(&nvt->lock, flags);
1214 
1215 	/* disable cir logical dev */
1216 	nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
1217 
1218 	/* make sure wake is enabled */
1219 	nvt_enable_wake(nvt);
1220 
1221 	return 0;
1222 }
1223 
1224 static int nvt_resume(struct pnp_dev *pdev)
1225 {
1226 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1227 
1228 	nvt_dbg("%s called", __func__);
1229 
1230 	nvt_cir_regs_init(nvt);
1231 	nvt_cir_wake_regs_init(nvt);
1232 
1233 	return 0;
1234 }
1235 
1236 static void nvt_shutdown(struct pnp_dev *pdev)
1237 {
1238 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1239 
1240 	nvt_enable_wake(nvt);
1241 }
1242 
1243 static const struct pnp_device_id nvt_ids[] = {
1244 	{ "WEC0530", 0 },   /* CIR */
1245 	{ "NTN0530", 0 },   /* CIR for new chip's pnp id*/
1246 	{ "", 0 },
1247 };
1248 
1249 static struct pnp_driver nvt_driver = {
1250 	.name		= NVT_DRIVER_NAME,
1251 	.id_table	= nvt_ids,
1252 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1253 	.probe		= nvt_probe,
1254 	.remove		= nvt_remove,
1255 	.suspend	= nvt_suspend,
1256 	.resume		= nvt_resume,
1257 	.shutdown	= nvt_shutdown,
1258 };
1259 
1260 module_param(debug, int, S_IRUGO | S_IWUSR);
1261 MODULE_PARM_DESC(debug, "Enable debugging output");
1262 
1263 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1264 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1265 
1266 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1267 MODULE_LICENSE("GPL");
1268 
1269 module_pnp_driver(nvt_driver);
1270