1 /* 2 * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR 3 * 4 * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com> 5 * Copyright (C) 2009 Nuvoton PS Team 6 * 7 * Special thanks to Nuvoton for providing hardware, spec sheets and 8 * sample code upon which portions of this driver are based. Indirect 9 * thanks also to Maxim Levitsky, whose ene_ir driver this driver is 10 * modeled after. 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License as 14 * published by the Free Software Foundation; either version 2 of the 15 * License, or (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, but 18 * WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 20 * General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 25 * USA 26 */ 27 28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 29 30 #include <linux/kernel.h> 31 #include <linux/module.h> 32 #include <linux/pnp.h> 33 #include <linux/io.h> 34 #include <linux/interrupt.h> 35 #include <linux/sched.h> 36 #include <linux/slab.h> 37 #include <media/rc-core.h> 38 #include <linux/pci_ids.h> 39 40 #include "nuvoton-cir.h" 41 42 /* write val to config reg */ 43 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg) 44 { 45 outb(reg, nvt->cr_efir); 46 outb(val, nvt->cr_efdr); 47 } 48 49 /* read val from config reg */ 50 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg) 51 { 52 outb(reg, nvt->cr_efir); 53 return inb(nvt->cr_efdr); 54 } 55 56 /* update config register bit without changing other bits */ 57 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg) 58 { 59 u8 tmp = nvt_cr_read(nvt, reg) | val; 60 nvt_cr_write(nvt, tmp, reg); 61 } 62 63 /* clear config register bit without changing other bits */ 64 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg) 65 { 66 u8 tmp = nvt_cr_read(nvt, reg) & ~val; 67 nvt_cr_write(nvt, tmp, reg); 68 } 69 70 /* enter extended function mode */ 71 static inline void nvt_efm_enable(struct nvt_dev *nvt) 72 { 73 /* Enabling Extended Function Mode explicitly requires writing 2x */ 74 outb(EFER_EFM_ENABLE, nvt->cr_efir); 75 outb(EFER_EFM_ENABLE, nvt->cr_efir); 76 } 77 78 /* exit extended function mode */ 79 static inline void nvt_efm_disable(struct nvt_dev *nvt) 80 { 81 outb(EFER_EFM_DISABLE, nvt->cr_efir); 82 } 83 84 /* 85 * When you want to address a specific logical device, write its logical 86 * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing 87 * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN. 88 */ 89 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev) 90 { 91 outb(CR_LOGICAL_DEV_SEL, nvt->cr_efir); 92 outb(ldev, nvt->cr_efdr); 93 } 94 95 /* write val to cir config register */ 96 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset) 97 { 98 outb(val, nvt->cir_addr + offset); 99 } 100 101 /* read val from cir config register */ 102 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset) 103 { 104 u8 val; 105 106 val = inb(nvt->cir_addr + offset); 107 108 return val; 109 } 110 111 /* write val to cir wake register */ 112 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt, 113 u8 val, u8 offset) 114 { 115 outb(val, nvt->cir_wake_addr + offset); 116 } 117 118 /* read val from cir wake config register */ 119 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset) 120 { 121 u8 val; 122 123 val = inb(nvt->cir_wake_addr + offset); 124 125 return val; 126 } 127 128 /* dump current cir register contents */ 129 static void cir_dump_regs(struct nvt_dev *nvt) 130 { 131 nvt_efm_enable(nvt); 132 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); 133 134 pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME); 135 pr_info(" * CR CIR ACTIVE : 0x%x\n", 136 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN)); 137 pr_info(" * CR CIR BASE ADDR: 0x%x\n", 138 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) | 139 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO)); 140 pr_info(" * CR CIR IRQ NUM: 0x%x\n", 141 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC)); 142 143 nvt_efm_disable(nvt); 144 145 pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME); 146 pr_info(" * IRCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON)); 147 pr_info(" * IRSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS)); 148 pr_info(" * IREN: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN)); 149 pr_info(" * RXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT)); 150 pr_info(" * CP: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CP)); 151 pr_info(" * CC: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CC)); 152 pr_info(" * SLCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH)); 153 pr_info(" * SLCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL)); 154 pr_info(" * FIFOCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON)); 155 pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS)); 156 pr_info(" * SRXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO)); 157 pr_info(" * TXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT)); 158 pr_info(" * STXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO)); 159 pr_info(" * FCCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH)); 160 pr_info(" * FCCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL)); 161 pr_info(" * IRFSM: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM)); 162 } 163 164 /* dump current cir wake register contents */ 165 static void cir_wake_dump_regs(struct nvt_dev *nvt) 166 { 167 u8 i, fifo_len; 168 169 nvt_efm_enable(nvt); 170 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE); 171 172 pr_info("%s: Dump CIR WAKE logical device registers:\n", 173 NVT_DRIVER_NAME); 174 pr_info(" * CR CIR WAKE ACTIVE : 0x%x\n", 175 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN)); 176 pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n", 177 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) | 178 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO)); 179 pr_info(" * CR CIR WAKE IRQ NUM: 0x%x\n", 180 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC)); 181 182 nvt_efm_disable(nvt); 183 184 pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME); 185 pr_info(" * IRCON: 0x%x\n", 186 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON)); 187 pr_info(" * IRSTS: 0x%x\n", 188 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS)); 189 pr_info(" * IREN: 0x%x\n", 190 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN)); 191 pr_info(" * FIFO CMP DEEP: 0x%x\n", 192 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP)); 193 pr_info(" * FIFO CMP TOL: 0x%x\n", 194 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL)); 195 pr_info(" * FIFO COUNT: 0x%x\n", 196 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT)); 197 pr_info(" * SLCH: 0x%x\n", 198 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH)); 199 pr_info(" * SLCL: 0x%x\n", 200 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL)); 201 pr_info(" * FIFOCON: 0x%x\n", 202 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON)); 203 pr_info(" * SRXFSTS: 0x%x\n", 204 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS)); 205 pr_info(" * SAMPLE RX FIFO: 0x%x\n", 206 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO)); 207 pr_info(" * WR FIFO DATA: 0x%x\n", 208 nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA)); 209 pr_info(" * RD FIFO ONLY: 0x%x\n", 210 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY)); 211 pr_info(" * RD FIFO ONLY IDX: 0x%x\n", 212 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)); 213 pr_info(" * FIFO IGNORE: 0x%x\n", 214 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE)); 215 pr_info(" * IRFSM: 0x%x\n", 216 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM)); 217 218 fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT); 219 pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len); 220 pr_info("* Contents ="); 221 for (i = 0; i < fifo_len; i++) 222 pr_cont(" %02x", 223 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY)); 224 pr_cont("\n"); 225 } 226 227 /* detect hardware features */ 228 static int nvt_hw_detect(struct nvt_dev *nvt) 229 { 230 unsigned long flags; 231 u8 chip_major, chip_minor; 232 char chip_id[12]; 233 bool chip_unknown = false; 234 235 nvt_efm_enable(nvt); 236 237 /* Check if we're wired for the alternate EFER setup */ 238 chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI); 239 if (chip_major == 0xff) { 240 nvt->cr_efir = CR_EFIR2; 241 nvt->cr_efdr = CR_EFDR2; 242 nvt_efm_enable(nvt); 243 chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI); 244 } 245 246 chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO); 247 248 /* these are the known working chip revisions... */ 249 switch (chip_major) { 250 case CHIP_ID_HIGH_667: 251 strcpy(chip_id, "w83667hg\0"); 252 if (chip_minor != CHIP_ID_LOW_667) 253 chip_unknown = true; 254 break; 255 case CHIP_ID_HIGH_677B: 256 strcpy(chip_id, "w83677hg\0"); 257 if (chip_minor != CHIP_ID_LOW_677B2 && 258 chip_minor != CHIP_ID_LOW_677B3) 259 chip_unknown = true; 260 break; 261 case CHIP_ID_HIGH_677C: 262 strcpy(chip_id, "w83677hg-c\0"); 263 if (chip_minor != CHIP_ID_LOW_677C) 264 chip_unknown = true; 265 break; 266 default: 267 strcpy(chip_id, "w836x7hg\0"); 268 chip_unknown = true; 269 break; 270 } 271 272 /* warn, but still let the driver load, if we don't know this chip */ 273 if (chip_unknown) 274 nvt_pr(KERN_WARNING, "%s: unknown chip, id: 0x%02x 0x%02x, " 275 "it may not work...", chip_id, chip_major, chip_minor); 276 else 277 nvt_dbg("%s: chip id: 0x%02x 0x%02x", 278 chip_id, chip_major, chip_minor); 279 280 nvt_efm_disable(nvt); 281 282 spin_lock_irqsave(&nvt->nvt_lock, flags); 283 nvt->chip_major = chip_major; 284 nvt->chip_minor = chip_minor; 285 spin_unlock_irqrestore(&nvt->nvt_lock, flags); 286 287 return 0; 288 } 289 290 static void nvt_cir_ldev_init(struct nvt_dev *nvt) 291 { 292 u8 val, psreg, psmask, psval; 293 294 if (nvt->chip_major == CHIP_ID_HIGH_667) { 295 psreg = CR_MULTIFUNC_PIN_SEL; 296 psmask = MULTIFUNC_PIN_SEL_MASK; 297 psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB; 298 } else { 299 psreg = CR_OUTPUT_PIN_SEL; 300 psmask = OUTPUT_PIN_SEL_MASK; 301 psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB; 302 } 303 304 /* output pin selection: enable CIR, with WB sensor enabled */ 305 val = nvt_cr_read(nvt, psreg); 306 val &= psmask; 307 val |= psval; 308 nvt_cr_write(nvt, val, psreg); 309 310 /* Select CIR logical device and enable */ 311 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); 312 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); 313 314 nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI); 315 nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO); 316 317 nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC); 318 319 nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d", 320 nvt->cir_addr, nvt->cir_irq); 321 } 322 323 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt) 324 { 325 /* Select ACPI logical device, enable it and CIR Wake */ 326 nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI); 327 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); 328 329 /* Enable CIR Wake via PSOUT# (Pin60) */ 330 nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE); 331 332 /* enable pme interrupt of cir wakeup event */ 333 nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2); 334 335 /* Select CIR Wake logical device and enable */ 336 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE); 337 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); 338 339 nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI); 340 nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO); 341 342 nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC); 343 344 nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d", 345 nvt->cir_wake_addr, nvt->cir_wake_irq); 346 } 347 348 /* clear out the hardware's cir rx fifo */ 349 static void nvt_clear_cir_fifo(struct nvt_dev *nvt) 350 { 351 u8 val; 352 353 val = nvt_cir_reg_read(nvt, CIR_FIFOCON); 354 nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON); 355 } 356 357 /* clear out the hardware's cir wake rx fifo */ 358 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt) 359 { 360 u8 val; 361 362 val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON); 363 nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR, 364 CIR_WAKE_FIFOCON); 365 } 366 367 /* clear out the hardware's cir tx fifo */ 368 static void nvt_clear_tx_fifo(struct nvt_dev *nvt) 369 { 370 u8 val; 371 372 val = nvt_cir_reg_read(nvt, CIR_FIFOCON); 373 nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON); 374 } 375 376 /* enable RX Trigger Level Reach and Packet End interrupts */ 377 static void nvt_set_cir_iren(struct nvt_dev *nvt) 378 { 379 u8 iren; 380 381 iren = CIR_IREN_RTR | CIR_IREN_PE; 382 nvt_cir_reg_write(nvt, iren, CIR_IREN); 383 } 384 385 static void nvt_cir_regs_init(struct nvt_dev *nvt) 386 { 387 /* set sample limit count (PE interrupt raised when reached) */ 388 nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH); 389 nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL); 390 391 /* set fifo irq trigger levels */ 392 nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV | 393 CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON); 394 395 /* 396 * Enable TX and RX, specify carrier on = low, off = high, and set 397 * sample period (currently 50us) 398 */ 399 nvt_cir_reg_write(nvt, 400 CIR_IRCON_TXEN | CIR_IRCON_RXEN | 401 CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL, 402 CIR_IRCON); 403 404 /* clear hardware rx and tx fifos */ 405 nvt_clear_cir_fifo(nvt); 406 nvt_clear_tx_fifo(nvt); 407 408 /* clear any and all stray interrupts */ 409 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS); 410 411 /* and finally, enable interrupts */ 412 nvt_set_cir_iren(nvt); 413 } 414 415 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt) 416 { 417 /* set number of bytes needed for wake from s3 (default 65) */ 418 nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES, 419 CIR_WAKE_FIFO_CMP_DEEP); 420 421 /* set tolerance/variance allowed per byte during wake compare */ 422 nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE, 423 CIR_WAKE_FIFO_CMP_TOL); 424 425 /* set sample limit count (PE interrupt raised when reached) */ 426 nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH); 427 nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL); 428 429 /* set cir wake fifo rx trigger level (currently 67) */ 430 nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV, 431 CIR_WAKE_FIFOCON); 432 433 /* 434 * Enable TX and RX, specific carrier on = low, off = high, and set 435 * sample period (currently 50us) 436 */ 437 nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN | 438 CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV | 439 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL, 440 CIR_WAKE_IRCON); 441 442 /* clear cir wake rx fifo */ 443 nvt_clear_cir_wake_fifo(nvt); 444 445 /* clear any and all stray interrupts */ 446 nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS); 447 } 448 449 static void nvt_enable_wake(struct nvt_dev *nvt) 450 { 451 nvt_efm_enable(nvt); 452 453 nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI); 454 nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE); 455 nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2); 456 457 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE); 458 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); 459 460 nvt_efm_disable(nvt); 461 462 nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN | 463 CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV | 464 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL, 465 CIR_WAKE_IRCON); 466 nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS); 467 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN); 468 } 469 470 #if 0 /* Currently unused */ 471 /* rx carrier detect only works in learning mode, must be called w/nvt_lock */ 472 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt) 473 { 474 u32 count, carrier, duration = 0; 475 int i; 476 477 count = nvt_cir_reg_read(nvt, CIR_FCCL) | 478 nvt_cir_reg_read(nvt, CIR_FCCH) << 8; 479 480 for (i = 0; i < nvt->pkts; i++) { 481 if (nvt->buf[i] & BUF_PULSE_BIT) 482 duration += nvt->buf[i] & BUF_LEN_MASK; 483 } 484 485 duration *= SAMPLE_PERIOD; 486 487 if (!count || !duration) { 488 nvt_pr(KERN_NOTICE, "Unable to determine carrier! (c:%u, d:%u)", 489 count, duration); 490 return 0; 491 } 492 493 carrier = MS_TO_NS(count) / duration; 494 495 if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER)) 496 nvt_dbg("WTF? Carrier frequency out of range!"); 497 498 nvt_dbg("Carrier frequency: %u (count %u, duration %u)", 499 carrier, count, duration); 500 501 return carrier; 502 } 503 #endif 504 /* 505 * set carrier frequency 506 * 507 * set carrier on 2 registers: CP & CC 508 * always set CP as 0x81 509 * set CC by SPEC, CC = 3MHz/carrier - 1 510 */ 511 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier) 512 { 513 struct nvt_dev *nvt = dev->priv; 514 u16 val; 515 516 if (carrier == 0) 517 return -EINVAL; 518 519 nvt_cir_reg_write(nvt, 1, CIR_CP); 520 val = 3000000 / (carrier) - 1; 521 nvt_cir_reg_write(nvt, val & 0xff, CIR_CC); 522 523 nvt_dbg("cp: 0x%x cc: 0x%x\n", 524 nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC)); 525 526 return 0; 527 } 528 529 /* 530 * nvt_tx_ir 531 * 532 * 1) clean TX fifo first (handled by AP) 533 * 2) copy data from user space 534 * 3) disable RX interrupts, enable TX interrupts: TTR & TFU 535 * 4) send 9 packets to TX FIFO to open TTR 536 * in interrupt_handler: 537 * 5) send all data out 538 * go back to write(): 539 * 6) disable TX interrupts, re-enable RX interupts 540 * 541 * The key problem of this function is user space data may larger than 542 * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to 543 * buf, and keep current copied data buf num in cur_buf_num. But driver's buf 544 * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to 545 * set TXFCONT as 0xff, until buf_count less than 0xff. 546 */ 547 static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n) 548 { 549 struct nvt_dev *nvt = dev->priv; 550 unsigned long flags; 551 unsigned int i; 552 u8 iren; 553 int ret; 554 555 spin_lock_irqsave(&nvt->tx.lock, flags); 556 557 ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n); 558 nvt->tx.buf_count = (ret * sizeof(unsigned)); 559 560 memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count); 561 562 nvt->tx.cur_buf_num = 0; 563 564 /* save currently enabled interrupts */ 565 iren = nvt_cir_reg_read(nvt, CIR_IREN); 566 567 /* now disable all interrupts, save TFU & TTR */ 568 nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN); 569 570 nvt->tx.tx_state = ST_TX_REPLY; 571 572 nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 | 573 CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON); 574 575 /* trigger TTR interrupt by writing out ones, (yes, it's ugly) */ 576 for (i = 0; i < 9; i++) 577 nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO); 578 579 spin_unlock_irqrestore(&nvt->tx.lock, flags); 580 581 wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST); 582 583 spin_lock_irqsave(&nvt->tx.lock, flags); 584 nvt->tx.tx_state = ST_TX_NONE; 585 spin_unlock_irqrestore(&nvt->tx.lock, flags); 586 587 /* restore enabled interrupts to prior state */ 588 nvt_cir_reg_write(nvt, iren, CIR_IREN); 589 590 return ret; 591 } 592 593 /* dump contents of the last rx buffer we got from the hw rx fifo */ 594 static void nvt_dump_rx_buf(struct nvt_dev *nvt) 595 { 596 int i; 597 598 printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts); 599 for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++) 600 printk(KERN_CONT "0x%02x ", nvt->buf[i]); 601 printk(KERN_CONT "\n"); 602 } 603 604 /* 605 * Process raw data in rx driver buffer, store it in raw IR event kfifo, 606 * trigger decode when appropriate. 607 * 608 * We get IR data samples one byte at a time. If the msb is set, its a pulse, 609 * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD 610 * (default 50us) intervals for that pulse/space. A discrete signal is 611 * followed by a series of 0x7f packets, then either 0x7<something> or 0x80 612 * to signal more IR coming (repeats) or end of IR, respectively. We store 613 * sample data in the raw event kfifo until we see 0x7<something> (except f) 614 * or 0x80, at which time, we trigger a decode operation. 615 */ 616 static void nvt_process_rx_ir_data(struct nvt_dev *nvt) 617 { 618 DEFINE_IR_RAW_EVENT(rawir); 619 u8 sample; 620 int i; 621 622 nvt_dbg_verbose("%s firing", __func__); 623 624 if (debug) 625 nvt_dump_rx_buf(nvt); 626 627 nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts); 628 629 init_ir_raw_event(&rawir); 630 631 for (i = 0; i < nvt->pkts; i++) { 632 sample = nvt->buf[i]; 633 634 rawir.pulse = ((sample & BUF_PULSE_BIT) != 0); 635 rawir.duration = US_TO_NS((sample & BUF_LEN_MASK) 636 * SAMPLE_PERIOD); 637 638 nvt_dbg("Storing %s with duration %d", 639 rawir.pulse ? "pulse" : "space", rawir.duration); 640 641 ir_raw_event_store_with_filter(nvt->rdev, &rawir); 642 643 /* 644 * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE 645 * indicates end of IR signal, but new data incoming. In both 646 * cases, it means we're ready to call ir_raw_event_handle 647 */ 648 if ((sample == BUF_PULSE_BIT) && (i + 1 < nvt->pkts)) { 649 nvt_dbg("Calling ir_raw_event_handle (signal end)\n"); 650 ir_raw_event_handle(nvt->rdev); 651 } 652 } 653 654 nvt->pkts = 0; 655 656 nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n"); 657 ir_raw_event_handle(nvt->rdev); 658 659 nvt_dbg_verbose("%s done", __func__); 660 } 661 662 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt) 663 { 664 nvt_pr(KERN_WARNING, "RX FIFO overrun detected, flushing data!"); 665 666 nvt->pkts = 0; 667 nvt_clear_cir_fifo(nvt); 668 ir_raw_event_reset(nvt->rdev); 669 } 670 671 /* copy data from hardware rx fifo into driver buffer */ 672 static void nvt_get_rx_ir_data(struct nvt_dev *nvt) 673 { 674 unsigned long flags; 675 u8 fifocount, val; 676 unsigned int b_idx; 677 bool overrun = false; 678 int i; 679 680 /* Get count of how many bytes to read from RX FIFO */ 681 fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT); 682 /* if we get 0xff, probably means the logical dev is disabled */ 683 if (fifocount == 0xff) 684 return; 685 /* watch out for a fifo overrun condition */ 686 else if (fifocount > RX_BUF_LEN) { 687 overrun = true; 688 fifocount = RX_BUF_LEN; 689 } 690 691 nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount); 692 693 spin_lock_irqsave(&nvt->nvt_lock, flags); 694 695 b_idx = nvt->pkts; 696 697 /* This should never happen, but lets check anyway... */ 698 if (b_idx + fifocount > RX_BUF_LEN) { 699 nvt_process_rx_ir_data(nvt); 700 b_idx = 0; 701 } 702 703 /* Read fifocount bytes from CIR Sample RX FIFO register */ 704 for (i = 0; i < fifocount; i++) { 705 val = nvt_cir_reg_read(nvt, CIR_SRXFIFO); 706 nvt->buf[b_idx + i] = val; 707 } 708 709 nvt->pkts += fifocount; 710 nvt_dbg("%s: pkts now %d", __func__, nvt->pkts); 711 712 nvt_process_rx_ir_data(nvt); 713 714 if (overrun) 715 nvt_handle_rx_fifo_overrun(nvt); 716 717 spin_unlock_irqrestore(&nvt->nvt_lock, flags); 718 } 719 720 static void nvt_cir_log_irqs(u8 status, u8 iren) 721 { 722 nvt_pr(KERN_INFO, "IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s", 723 status, iren, 724 status & CIR_IRSTS_RDR ? " RDR" : "", 725 status & CIR_IRSTS_RTR ? " RTR" : "", 726 status & CIR_IRSTS_PE ? " PE" : "", 727 status & CIR_IRSTS_RFO ? " RFO" : "", 728 status & CIR_IRSTS_TE ? " TE" : "", 729 status & CIR_IRSTS_TTR ? " TTR" : "", 730 status & CIR_IRSTS_TFU ? " TFU" : "", 731 status & CIR_IRSTS_GH ? " GH" : "", 732 status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE | 733 CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR | 734 CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : ""); 735 } 736 737 static bool nvt_cir_tx_inactive(struct nvt_dev *nvt) 738 { 739 unsigned long flags; 740 bool tx_inactive; 741 u8 tx_state; 742 743 spin_lock_irqsave(&nvt->tx.lock, flags); 744 tx_state = nvt->tx.tx_state; 745 spin_unlock_irqrestore(&nvt->tx.lock, flags); 746 747 tx_inactive = (tx_state == ST_TX_NONE); 748 749 return tx_inactive; 750 } 751 752 /* interrupt service routine for incoming and outgoing CIR data */ 753 static irqreturn_t nvt_cir_isr(int irq, void *data) 754 { 755 struct nvt_dev *nvt = data; 756 u8 status, iren, cur_state; 757 unsigned long flags; 758 759 nvt_dbg_verbose("%s firing", __func__); 760 761 nvt_efm_enable(nvt); 762 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); 763 nvt_efm_disable(nvt); 764 765 /* 766 * Get IR Status register contents. Write 1 to ack/clear 767 * 768 * bit: reg name - description 769 * 7: CIR_IRSTS_RDR - RX Data Ready 770 * 6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach 771 * 5: CIR_IRSTS_PE - Packet End 772 * 4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set) 773 * 3: CIR_IRSTS_TE - TX FIFO Empty 774 * 2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach 775 * 1: CIR_IRSTS_TFU - TX FIFO Underrun 776 * 0: CIR_IRSTS_GH - Min Length Detected 777 */ 778 status = nvt_cir_reg_read(nvt, CIR_IRSTS); 779 if (!status) { 780 nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__); 781 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS); 782 return IRQ_RETVAL(IRQ_NONE); 783 } 784 785 /* ack/clear all irq flags we've got */ 786 nvt_cir_reg_write(nvt, status, CIR_IRSTS); 787 nvt_cir_reg_write(nvt, 0, CIR_IRSTS); 788 789 /* Interrupt may be shared with CIR Wake, bail if CIR not enabled */ 790 iren = nvt_cir_reg_read(nvt, CIR_IREN); 791 if (!iren) { 792 nvt_dbg_verbose("%s exiting, CIR not enabled", __func__); 793 return IRQ_RETVAL(IRQ_NONE); 794 } 795 796 if (debug) 797 nvt_cir_log_irqs(status, iren); 798 799 if (status & CIR_IRSTS_RTR) { 800 /* FIXME: add code for study/learn mode */ 801 /* We only do rx if not tx'ing */ 802 if (nvt_cir_tx_inactive(nvt)) 803 nvt_get_rx_ir_data(nvt); 804 } 805 806 if (status & CIR_IRSTS_PE) { 807 if (nvt_cir_tx_inactive(nvt)) 808 nvt_get_rx_ir_data(nvt); 809 810 spin_lock_irqsave(&nvt->nvt_lock, flags); 811 812 cur_state = nvt->study_state; 813 814 spin_unlock_irqrestore(&nvt->nvt_lock, flags); 815 816 if (cur_state == ST_STUDY_NONE) 817 nvt_clear_cir_fifo(nvt); 818 } 819 820 if (status & CIR_IRSTS_TE) 821 nvt_clear_tx_fifo(nvt); 822 823 if (status & CIR_IRSTS_TTR) { 824 unsigned int pos, count; 825 u8 tmp; 826 827 spin_lock_irqsave(&nvt->tx.lock, flags); 828 829 pos = nvt->tx.cur_buf_num; 830 count = nvt->tx.buf_count; 831 832 /* Write data into the hardware tx fifo while pos < count */ 833 if (pos < count) { 834 nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO); 835 nvt->tx.cur_buf_num++; 836 /* Disable TX FIFO Trigger Level Reach (TTR) interrupt */ 837 } else { 838 tmp = nvt_cir_reg_read(nvt, CIR_IREN); 839 nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN); 840 } 841 842 spin_unlock_irqrestore(&nvt->tx.lock, flags); 843 844 } 845 846 if (status & CIR_IRSTS_TFU) { 847 spin_lock_irqsave(&nvt->tx.lock, flags); 848 if (nvt->tx.tx_state == ST_TX_REPLY) { 849 nvt->tx.tx_state = ST_TX_REQUEST; 850 wake_up(&nvt->tx.queue); 851 } 852 spin_unlock_irqrestore(&nvt->tx.lock, flags); 853 } 854 855 nvt_dbg_verbose("%s done", __func__); 856 return IRQ_RETVAL(IRQ_HANDLED); 857 } 858 859 /* Interrupt service routine for CIR Wake */ 860 static irqreturn_t nvt_cir_wake_isr(int irq, void *data) 861 { 862 u8 status, iren, val; 863 struct nvt_dev *nvt = data; 864 unsigned long flags; 865 866 nvt_dbg_wake("%s firing", __func__); 867 868 status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS); 869 if (!status) 870 return IRQ_RETVAL(IRQ_NONE); 871 872 if (status & CIR_WAKE_IRSTS_IR_PENDING) 873 nvt_clear_cir_wake_fifo(nvt); 874 875 nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS); 876 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS); 877 878 /* Interrupt may be shared with CIR, bail if Wake not enabled */ 879 iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN); 880 if (!iren) { 881 nvt_dbg_wake("%s exiting, wake not enabled", __func__); 882 return IRQ_RETVAL(IRQ_HANDLED); 883 } 884 885 if ((status & CIR_WAKE_IRSTS_PE) && 886 (nvt->wake_state == ST_WAKE_START)) { 887 while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) { 888 val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY); 889 nvt_dbg("setting wake up key: 0x%x", val); 890 } 891 892 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN); 893 spin_lock_irqsave(&nvt->nvt_lock, flags); 894 nvt->wake_state = ST_WAKE_FINISH; 895 spin_unlock_irqrestore(&nvt->nvt_lock, flags); 896 } 897 898 nvt_dbg_wake("%s done", __func__); 899 return IRQ_RETVAL(IRQ_HANDLED); 900 } 901 902 static void nvt_enable_cir(struct nvt_dev *nvt) 903 { 904 /* set function enable flags */ 905 nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN | 906 CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL, 907 CIR_IRCON); 908 909 nvt_efm_enable(nvt); 910 911 /* enable the CIR logical device */ 912 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); 913 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); 914 915 nvt_efm_disable(nvt); 916 917 /* clear all pending interrupts */ 918 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS); 919 920 /* enable interrupts */ 921 nvt_set_cir_iren(nvt); 922 } 923 924 static void nvt_disable_cir(struct nvt_dev *nvt) 925 { 926 /* disable CIR interrupts */ 927 nvt_cir_reg_write(nvt, 0, CIR_IREN); 928 929 /* clear any and all pending interrupts */ 930 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS); 931 932 /* clear all function enable flags */ 933 nvt_cir_reg_write(nvt, 0, CIR_IRCON); 934 935 /* clear hardware rx and tx fifos */ 936 nvt_clear_cir_fifo(nvt); 937 nvt_clear_tx_fifo(nvt); 938 939 nvt_efm_enable(nvt); 940 941 /* disable the CIR logical device */ 942 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); 943 nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN); 944 945 nvt_efm_disable(nvt); 946 } 947 948 static int nvt_open(struct rc_dev *dev) 949 { 950 struct nvt_dev *nvt = dev->priv; 951 unsigned long flags; 952 953 spin_lock_irqsave(&nvt->nvt_lock, flags); 954 nvt_enable_cir(nvt); 955 spin_unlock_irqrestore(&nvt->nvt_lock, flags); 956 957 return 0; 958 } 959 960 static void nvt_close(struct rc_dev *dev) 961 { 962 struct nvt_dev *nvt = dev->priv; 963 unsigned long flags; 964 965 spin_lock_irqsave(&nvt->nvt_lock, flags); 966 nvt_disable_cir(nvt); 967 spin_unlock_irqrestore(&nvt->nvt_lock, flags); 968 } 969 970 /* Allocate memory, probe hardware, and initialize everything */ 971 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id) 972 { 973 struct nvt_dev *nvt; 974 struct rc_dev *rdev; 975 int ret = -ENOMEM; 976 977 nvt = kzalloc(sizeof(struct nvt_dev), GFP_KERNEL); 978 if (!nvt) 979 return ret; 980 981 /* input device for IR remote (and tx) */ 982 rdev = rc_allocate_device(); 983 if (!rdev) 984 goto exit_free_dev_rdev; 985 986 ret = -ENODEV; 987 /* activate pnp device */ 988 if (pnp_activate_dev(pdev) < 0) { 989 dev_err(&pdev->dev, "Could not activate PNP device!\n"); 990 goto exit_free_dev_rdev; 991 } 992 993 /* validate pnp resources */ 994 if (!pnp_port_valid(pdev, 0) || 995 pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) { 996 dev_err(&pdev->dev, "IR PNP Port not valid!\n"); 997 goto exit_free_dev_rdev; 998 } 999 1000 if (!pnp_irq_valid(pdev, 0)) { 1001 dev_err(&pdev->dev, "PNP IRQ not valid!\n"); 1002 goto exit_free_dev_rdev; 1003 } 1004 1005 if (!pnp_port_valid(pdev, 1) || 1006 pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) { 1007 dev_err(&pdev->dev, "Wake PNP Port not valid!\n"); 1008 goto exit_free_dev_rdev; 1009 } 1010 1011 nvt->cir_addr = pnp_port_start(pdev, 0); 1012 nvt->cir_irq = pnp_irq(pdev, 0); 1013 1014 nvt->cir_wake_addr = pnp_port_start(pdev, 1); 1015 /* irq is always shared between cir and cir wake */ 1016 nvt->cir_wake_irq = nvt->cir_irq; 1017 1018 nvt->cr_efir = CR_EFIR; 1019 nvt->cr_efdr = CR_EFDR; 1020 1021 spin_lock_init(&nvt->nvt_lock); 1022 spin_lock_init(&nvt->tx.lock); 1023 1024 pnp_set_drvdata(pdev, nvt); 1025 nvt->pdev = pdev; 1026 1027 init_waitqueue_head(&nvt->tx.queue); 1028 1029 ret = nvt_hw_detect(nvt); 1030 if (ret) 1031 goto exit_free_dev_rdev; 1032 1033 /* Initialize CIR & CIR Wake Logical Devices */ 1034 nvt_efm_enable(nvt); 1035 nvt_cir_ldev_init(nvt); 1036 nvt_cir_wake_ldev_init(nvt); 1037 nvt_efm_disable(nvt); 1038 1039 /* Initialize CIR & CIR Wake Config Registers */ 1040 nvt_cir_regs_init(nvt); 1041 nvt_cir_wake_regs_init(nvt); 1042 1043 /* Set up the rc device */ 1044 rdev->priv = nvt; 1045 rdev->driver_type = RC_DRIVER_IR_RAW; 1046 rdev->allowed_protocols = RC_BIT_ALL; 1047 rdev->open = nvt_open; 1048 rdev->close = nvt_close; 1049 rdev->tx_ir = nvt_tx_ir; 1050 rdev->s_tx_carrier = nvt_set_tx_carrier; 1051 rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver"; 1052 rdev->input_phys = "nuvoton/cir0"; 1053 rdev->input_id.bustype = BUS_HOST; 1054 rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2; 1055 rdev->input_id.product = nvt->chip_major; 1056 rdev->input_id.version = nvt->chip_minor; 1057 rdev->dev.parent = &pdev->dev; 1058 rdev->driver_name = NVT_DRIVER_NAME; 1059 rdev->map_name = RC_MAP_RC6_MCE; 1060 rdev->timeout = MS_TO_NS(100); 1061 /* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */ 1062 rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD); 1063 #if 0 1064 rdev->min_timeout = XYZ; 1065 rdev->max_timeout = XYZ; 1066 /* tx bits */ 1067 rdev->tx_resolution = XYZ; 1068 #endif 1069 nvt->rdev = rdev; 1070 1071 ret = rc_register_device(rdev); 1072 if (ret) 1073 goto exit_free_dev_rdev; 1074 1075 ret = -EBUSY; 1076 /* now claim resources */ 1077 if (!request_region(nvt->cir_addr, 1078 CIR_IOREG_LENGTH, NVT_DRIVER_NAME)) 1079 goto exit_unregister_device; 1080 1081 if (request_irq(nvt->cir_irq, nvt_cir_isr, IRQF_SHARED, 1082 NVT_DRIVER_NAME, (void *)nvt)) 1083 goto exit_release_cir_addr; 1084 1085 if (!request_region(nvt->cir_wake_addr, 1086 CIR_IOREG_LENGTH, NVT_DRIVER_NAME)) 1087 goto exit_free_irq; 1088 1089 if (request_irq(nvt->cir_wake_irq, nvt_cir_wake_isr, IRQF_SHARED, 1090 NVT_DRIVER_NAME, (void *)nvt)) 1091 goto exit_release_cir_wake_addr; 1092 1093 device_init_wakeup(&pdev->dev, true); 1094 1095 nvt_pr(KERN_NOTICE, "driver has been successfully loaded\n"); 1096 if (debug) { 1097 cir_dump_regs(nvt); 1098 cir_wake_dump_regs(nvt); 1099 } 1100 1101 return 0; 1102 1103 exit_release_cir_wake_addr: 1104 release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH); 1105 exit_free_irq: 1106 free_irq(nvt->cir_irq, nvt); 1107 exit_release_cir_addr: 1108 release_region(nvt->cir_addr, CIR_IOREG_LENGTH); 1109 exit_unregister_device: 1110 rc_unregister_device(rdev); 1111 rdev = NULL; 1112 exit_free_dev_rdev: 1113 rc_free_device(rdev); 1114 kfree(nvt); 1115 1116 return ret; 1117 } 1118 1119 static void nvt_remove(struct pnp_dev *pdev) 1120 { 1121 struct nvt_dev *nvt = pnp_get_drvdata(pdev); 1122 unsigned long flags; 1123 1124 spin_lock_irqsave(&nvt->nvt_lock, flags); 1125 /* disable CIR */ 1126 nvt_cir_reg_write(nvt, 0, CIR_IREN); 1127 nvt_disable_cir(nvt); 1128 /* enable CIR Wake (for IR power-on) */ 1129 nvt_enable_wake(nvt); 1130 spin_unlock_irqrestore(&nvt->nvt_lock, flags); 1131 1132 /* free resources */ 1133 free_irq(nvt->cir_irq, nvt); 1134 free_irq(nvt->cir_wake_irq, nvt); 1135 release_region(nvt->cir_addr, CIR_IOREG_LENGTH); 1136 release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH); 1137 1138 rc_unregister_device(nvt->rdev); 1139 1140 kfree(nvt); 1141 } 1142 1143 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state) 1144 { 1145 struct nvt_dev *nvt = pnp_get_drvdata(pdev); 1146 unsigned long flags; 1147 1148 nvt_dbg("%s called", __func__); 1149 1150 /* zero out misc state tracking */ 1151 spin_lock_irqsave(&nvt->nvt_lock, flags); 1152 nvt->study_state = ST_STUDY_NONE; 1153 nvt->wake_state = ST_WAKE_NONE; 1154 spin_unlock_irqrestore(&nvt->nvt_lock, flags); 1155 1156 spin_lock_irqsave(&nvt->tx.lock, flags); 1157 nvt->tx.tx_state = ST_TX_NONE; 1158 spin_unlock_irqrestore(&nvt->tx.lock, flags); 1159 1160 /* disable all CIR interrupts */ 1161 nvt_cir_reg_write(nvt, 0, CIR_IREN); 1162 1163 nvt_efm_enable(nvt); 1164 1165 /* disable cir logical dev */ 1166 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); 1167 nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN); 1168 1169 nvt_efm_disable(nvt); 1170 1171 /* make sure wake is enabled */ 1172 nvt_enable_wake(nvt); 1173 1174 return 0; 1175 } 1176 1177 static int nvt_resume(struct pnp_dev *pdev) 1178 { 1179 struct nvt_dev *nvt = pnp_get_drvdata(pdev); 1180 1181 nvt_dbg("%s called", __func__); 1182 1183 /* open interrupt */ 1184 nvt_set_cir_iren(nvt); 1185 1186 /* Enable CIR logical device */ 1187 nvt_efm_enable(nvt); 1188 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); 1189 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); 1190 1191 nvt_efm_disable(nvt); 1192 1193 nvt_cir_regs_init(nvt); 1194 nvt_cir_wake_regs_init(nvt); 1195 1196 return 0; 1197 } 1198 1199 static void nvt_shutdown(struct pnp_dev *pdev) 1200 { 1201 struct nvt_dev *nvt = pnp_get_drvdata(pdev); 1202 nvt_enable_wake(nvt); 1203 } 1204 1205 static const struct pnp_device_id nvt_ids[] = { 1206 { "WEC0530", 0 }, /* CIR */ 1207 { "NTN0530", 0 }, /* CIR for new chip's pnp id*/ 1208 { "", 0 }, 1209 }; 1210 1211 static struct pnp_driver nvt_driver = { 1212 .name = NVT_DRIVER_NAME, 1213 .id_table = nvt_ids, 1214 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 1215 .probe = nvt_probe, 1216 .remove = nvt_remove, 1217 .suspend = nvt_suspend, 1218 .resume = nvt_resume, 1219 .shutdown = nvt_shutdown, 1220 }; 1221 1222 static int __init nvt_init(void) 1223 { 1224 return pnp_register_driver(&nvt_driver); 1225 } 1226 1227 static void __exit nvt_exit(void) 1228 { 1229 pnp_unregister_driver(&nvt_driver); 1230 } 1231 1232 module_param(debug, int, S_IRUGO | S_IWUSR); 1233 MODULE_PARM_DESC(debug, "Enable debugging output"); 1234 1235 MODULE_DEVICE_TABLE(pnp, nvt_ids); 1236 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver"); 1237 1238 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>"); 1239 MODULE_LICENSE("GPL"); 1240 1241 module_init(nvt_init); 1242 module_exit(nvt_exit); 1243