xref: /linux/drivers/media/rc/nuvoton-cir.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
3  *
4  * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5  * Copyright (C) 2009 Nuvoton PS Team
6  *
7  * Special thanks to Nuvoton for providing hardware, spec sheets and
8  * sample code upon which portions of this driver are based. Indirect
9  * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10  * modeled after.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
25  * USA
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pnp.h>
33 #include <linux/io.h>
34 #include <linux/interrupt.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <media/rc-core.h>
38 #include <linux/pci_ids.h>
39 
40 #include "nuvoton-cir.h"
41 
42 static const struct nvt_chip nvt_chips[] = {
43 	{ "w83667hg", NVT_W83667HG },
44 	{ "NCT6775F", NVT_6775F },
45 	{ "NCT6776F", NVT_6776F },
46 	{ "NCT6779D", NVT_6779D },
47 };
48 
49 static inline bool is_w83667hg(struct nvt_dev *nvt)
50 {
51 	return nvt->chip_ver == NVT_W83667HG;
52 }
53 
54 /* write val to config reg */
55 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
56 {
57 	outb(reg, nvt->cr_efir);
58 	outb(val, nvt->cr_efdr);
59 }
60 
61 /* read val from config reg */
62 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
63 {
64 	outb(reg, nvt->cr_efir);
65 	return inb(nvt->cr_efdr);
66 }
67 
68 /* update config register bit without changing other bits */
69 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
70 {
71 	u8 tmp = nvt_cr_read(nvt, reg) | val;
72 	nvt_cr_write(nvt, tmp, reg);
73 }
74 
75 /* clear config register bit without changing other bits */
76 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
77 {
78 	u8 tmp = nvt_cr_read(nvt, reg) & ~val;
79 	nvt_cr_write(nvt, tmp, reg);
80 }
81 
82 /* enter extended function mode */
83 static inline void nvt_efm_enable(struct nvt_dev *nvt)
84 {
85 	/* Enabling Extended Function Mode explicitly requires writing 2x */
86 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
87 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
88 }
89 
90 /* exit extended function mode */
91 static inline void nvt_efm_disable(struct nvt_dev *nvt)
92 {
93 	outb(EFER_EFM_DISABLE, nvt->cr_efir);
94 }
95 
96 /*
97  * When you want to address a specific logical device, write its logical
98  * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
99  * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
100  */
101 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
102 {
103 	outb(CR_LOGICAL_DEV_SEL, nvt->cr_efir);
104 	outb(ldev, nvt->cr_efdr);
105 }
106 
107 /* write val to cir config register */
108 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
109 {
110 	outb(val, nvt->cir_addr + offset);
111 }
112 
113 /* read val from cir config register */
114 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
115 {
116 	u8 val;
117 
118 	val = inb(nvt->cir_addr + offset);
119 
120 	return val;
121 }
122 
123 /* write val to cir wake register */
124 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
125 					  u8 val, u8 offset)
126 {
127 	outb(val, nvt->cir_wake_addr + offset);
128 }
129 
130 /* read val from cir wake config register */
131 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
132 {
133 	u8 val;
134 
135 	val = inb(nvt->cir_wake_addr + offset);
136 
137 	return val;
138 }
139 
140 /* dump current cir register contents */
141 static void cir_dump_regs(struct nvt_dev *nvt)
142 {
143 	nvt_efm_enable(nvt);
144 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
145 
146 	pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
147 	pr_info(" * CR CIR ACTIVE :   0x%x\n",
148 		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
149 	pr_info(" * CR CIR BASE ADDR: 0x%x\n",
150 		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
151 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
152 	pr_info(" * CR CIR IRQ NUM:   0x%x\n",
153 		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
154 
155 	nvt_efm_disable(nvt);
156 
157 	pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
158 	pr_info(" * IRCON:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
159 	pr_info(" * IRSTS:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
160 	pr_info(" * IREN:      0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
161 	pr_info(" * RXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
162 	pr_info(" * CP:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
163 	pr_info(" * CC:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
164 	pr_info(" * SLCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
165 	pr_info(" * SLCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
166 	pr_info(" * FIFOCON:   0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
167 	pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
168 	pr_info(" * SRXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
169 	pr_info(" * TXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
170 	pr_info(" * STXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
171 	pr_info(" * FCCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
172 	pr_info(" * FCCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
173 	pr_info(" * IRFSM:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
174 }
175 
176 /* dump current cir wake register contents */
177 static void cir_wake_dump_regs(struct nvt_dev *nvt)
178 {
179 	u8 i, fifo_len;
180 
181 	nvt_efm_enable(nvt);
182 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
183 
184 	pr_info("%s: Dump CIR WAKE logical device registers:\n",
185 		NVT_DRIVER_NAME);
186 	pr_info(" * CR CIR WAKE ACTIVE :   0x%x\n",
187 		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
188 	pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
189 		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
190 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
191 	pr_info(" * CR CIR WAKE IRQ NUM:   0x%x\n",
192 		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
193 
194 	nvt_efm_disable(nvt);
195 
196 	pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
197 	pr_info(" * IRCON:          0x%x\n",
198 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
199 	pr_info(" * IRSTS:          0x%x\n",
200 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
201 	pr_info(" * IREN:           0x%x\n",
202 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
203 	pr_info(" * FIFO CMP DEEP:  0x%x\n",
204 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
205 	pr_info(" * FIFO CMP TOL:   0x%x\n",
206 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
207 	pr_info(" * FIFO COUNT:     0x%x\n",
208 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
209 	pr_info(" * SLCH:           0x%x\n",
210 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
211 	pr_info(" * SLCL:           0x%x\n",
212 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
213 	pr_info(" * FIFOCON:        0x%x\n",
214 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
215 	pr_info(" * SRXFSTS:        0x%x\n",
216 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
217 	pr_info(" * SAMPLE RX FIFO: 0x%x\n",
218 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
219 	pr_info(" * WR FIFO DATA:   0x%x\n",
220 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
221 	pr_info(" * RD FIFO ONLY:   0x%x\n",
222 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
223 	pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
224 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
225 	pr_info(" * FIFO IGNORE:    0x%x\n",
226 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
227 	pr_info(" * IRFSM:          0x%x\n",
228 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
229 
230 	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
231 	pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
232 	pr_info("* Contents =");
233 	for (i = 0; i < fifo_len; i++)
234 		pr_cont(" %02x",
235 			nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
236 	pr_cont("\n");
237 }
238 
239 static inline const char *nvt_find_chip(struct nvt_dev *nvt, int id)
240 {
241 	int i;
242 
243 	for (i = 0; i < ARRAY_SIZE(nvt_chips); i++)
244 		if ((id & SIO_ID_MASK) == nvt_chips[i].chip_ver) {
245 			nvt->chip_ver = nvt_chips[i].chip_ver;
246 			return nvt_chips[i].name;
247 		}
248 
249 	return NULL;
250 }
251 
252 
253 /* detect hardware features */
254 static void nvt_hw_detect(struct nvt_dev *nvt)
255 {
256 	const char *chip_name;
257 	int chip_id;
258 
259 	nvt_efm_enable(nvt);
260 
261 	/* Check if we're wired for the alternate EFER setup */
262 	nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
263 	if (nvt->chip_major == 0xff) {
264 		nvt->cr_efir = CR_EFIR2;
265 		nvt->cr_efdr = CR_EFDR2;
266 		nvt_efm_enable(nvt);
267 		nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
268 	}
269 
270 	nvt->chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
271 
272 	chip_id = nvt->chip_major << 8 | nvt->chip_minor;
273 	chip_name = nvt_find_chip(nvt, chip_id);
274 
275 	/* warn, but still let the driver load, if we don't know this chip */
276 	if (!chip_name)
277 		dev_warn(&nvt->pdev->dev,
278 			 "unknown chip, id: 0x%02x 0x%02x, it may not work...",
279 			 nvt->chip_major, nvt->chip_minor);
280 	else
281 		dev_info(&nvt->pdev->dev,
282 			 "found %s or compatible: chip id: 0x%02x 0x%02x",
283 			 chip_name, nvt->chip_major, nvt->chip_minor);
284 
285 	nvt_efm_disable(nvt);
286 }
287 
288 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
289 {
290 	u8 val, psreg, psmask, psval;
291 
292 	if (is_w83667hg(nvt)) {
293 		psreg = CR_MULTIFUNC_PIN_SEL;
294 		psmask = MULTIFUNC_PIN_SEL_MASK;
295 		psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
296 	} else {
297 		psreg = CR_OUTPUT_PIN_SEL;
298 		psmask = OUTPUT_PIN_SEL_MASK;
299 		psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
300 	}
301 
302 	/* output pin selection: enable CIR, with WB sensor enabled */
303 	val = nvt_cr_read(nvt, psreg);
304 	val &= psmask;
305 	val |= psval;
306 	nvt_cr_write(nvt, val, psreg);
307 
308 	/* Select CIR logical device and enable */
309 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
310 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
311 
312 	nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI);
313 	nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO);
314 
315 	nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
316 
317 	nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
318 		nvt->cir_addr, nvt->cir_irq);
319 }
320 
321 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
322 {
323 	/* Select ACPI logical device, enable it and CIR Wake */
324 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
325 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
326 
327 	/* Enable CIR Wake via PSOUT# (Pin60) */
328 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
329 
330 	/* enable pme interrupt of cir wakeup event */
331 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
332 
333 	/* Select CIR Wake logical device and enable */
334 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
335 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
336 
337 	nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI);
338 	nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO);
339 
340 	nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC);
341 
342 	nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
343 		nvt->cir_wake_addr, nvt->cir_wake_irq);
344 }
345 
346 /* clear out the hardware's cir rx fifo */
347 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
348 {
349 	u8 val;
350 
351 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
352 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
353 }
354 
355 /* clear out the hardware's cir wake rx fifo */
356 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
357 {
358 	u8 val;
359 
360 	val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
361 	nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
362 			       CIR_WAKE_FIFOCON);
363 }
364 
365 /* clear out the hardware's cir tx fifo */
366 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
367 {
368 	u8 val;
369 
370 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
371 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
372 }
373 
374 /* enable RX Trigger Level Reach and Packet End interrupts */
375 static void nvt_set_cir_iren(struct nvt_dev *nvt)
376 {
377 	u8 iren;
378 
379 	iren = CIR_IREN_RTR | CIR_IREN_PE;
380 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
381 }
382 
383 static void nvt_cir_regs_init(struct nvt_dev *nvt)
384 {
385 	/* set sample limit count (PE interrupt raised when reached) */
386 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
387 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
388 
389 	/* set fifo irq trigger levels */
390 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
391 			  CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
392 
393 	/*
394 	 * Enable TX and RX, specify carrier on = low, off = high, and set
395 	 * sample period (currently 50us)
396 	 */
397 	nvt_cir_reg_write(nvt,
398 			  CIR_IRCON_TXEN | CIR_IRCON_RXEN |
399 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
400 			  CIR_IRCON);
401 
402 	/* clear hardware rx and tx fifos */
403 	nvt_clear_cir_fifo(nvt);
404 	nvt_clear_tx_fifo(nvt);
405 
406 	/* clear any and all stray interrupts */
407 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
408 
409 	/* and finally, enable interrupts */
410 	nvt_set_cir_iren(nvt);
411 }
412 
413 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
414 {
415 	/* set number of bytes needed for wake from s3 (default 65) */
416 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES,
417 			       CIR_WAKE_FIFO_CMP_DEEP);
418 
419 	/* set tolerance/variance allowed per byte during wake compare */
420 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE,
421 			       CIR_WAKE_FIFO_CMP_TOL);
422 
423 	/* set sample limit count (PE interrupt raised when reached) */
424 	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH);
425 	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL);
426 
427 	/* set cir wake fifo rx trigger level (currently 67) */
428 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV,
429 			       CIR_WAKE_FIFOCON);
430 
431 	/*
432 	 * Enable TX and RX, specific carrier on = low, off = high, and set
433 	 * sample period (currently 50us)
434 	 */
435 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
436 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
437 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
438 			       CIR_WAKE_IRCON);
439 
440 	/* clear cir wake rx fifo */
441 	nvt_clear_cir_wake_fifo(nvt);
442 
443 	/* clear any and all stray interrupts */
444 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
445 }
446 
447 static void nvt_enable_wake(struct nvt_dev *nvt)
448 {
449 	nvt_efm_enable(nvt);
450 
451 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
452 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
453 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
454 
455 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
456 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
457 
458 	nvt_efm_disable(nvt);
459 
460 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
461 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
462 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
463 			       CIR_WAKE_IRCON);
464 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
465 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
466 }
467 
468 #if 0 /* Currently unused */
469 /* rx carrier detect only works in learning mode, must be called w/nvt_lock */
470 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
471 {
472 	u32 count, carrier, duration = 0;
473 	int i;
474 
475 	count = nvt_cir_reg_read(nvt, CIR_FCCL) |
476 		nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
477 
478 	for (i = 0; i < nvt->pkts; i++) {
479 		if (nvt->buf[i] & BUF_PULSE_BIT)
480 			duration += nvt->buf[i] & BUF_LEN_MASK;
481 	}
482 
483 	duration *= SAMPLE_PERIOD;
484 
485 	if (!count || !duration) {
486 		dev_notice(&nvt->pdev->dev,
487 			   "Unable to determine carrier! (c:%u, d:%u)",
488 			   count, duration);
489 		return 0;
490 	}
491 
492 	carrier = MS_TO_NS(count) / duration;
493 
494 	if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
495 		nvt_dbg("WTF? Carrier frequency out of range!");
496 
497 	nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
498 		carrier, count, duration);
499 
500 	return carrier;
501 }
502 #endif
503 /*
504  * set carrier frequency
505  *
506  * set carrier on 2 registers: CP & CC
507  * always set CP as 0x81
508  * set CC by SPEC, CC = 3MHz/carrier - 1
509  */
510 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
511 {
512 	struct nvt_dev *nvt = dev->priv;
513 	u16 val;
514 
515 	if (carrier == 0)
516 		return -EINVAL;
517 
518 	nvt_cir_reg_write(nvt, 1, CIR_CP);
519 	val = 3000000 / (carrier) - 1;
520 	nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
521 
522 	nvt_dbg("cp: 0x%x cc: 0x%x\n",
523 		nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
524 
525 	return 0;
526 }
527 
528 /*
529  * nvt_tx_ir
530  *
531  * 1) clean TX fifo first (handled by AP)
532  * 2) copy data from user space
533  * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
534  * 4) send 9 packets to TX FIFO to open TTR
535  * in interrupt_handler:
536  * 5) send all data out
537  * go back to write():
538  * 6) disable TX interrupts, re-enable RX interupts
539  *
540  * The key problem of this function is user space data may larger than
541  * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
542  * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
543  * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
544  * set TXFCONT as 0xff, until buf_count less than 0xff.
545  */
546 static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n)
547 {
548 	struct nvt_dev *nvt = dev->priv;
549 	unsigned long flags;
550 	unsigned int i;
551 	u8 iren;
552 	int ret;
553 
554 	spin_lock_irqsave(&nvt->tx.lock, flags);
555 
556 	ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n);
557 	nvt->tx.buf_count = (ret * sizeof(unsigned));
558 
559 	memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
560 
561 	nvt->tx.cur_buf_num = 0;
562 
563 	/* save currently enabled interrupts */
564 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
565 
566 	/* now disable all interrupts, save TFU & TTR */
567 	nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
568 
569 	nvt->tx.tx_state = ST_TX_REPLY;
570 
571 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
572 			  CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
573 
574 	/* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
575 	for (i = 0; i < 9; i++)
576 		nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
577 
578 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
579 
580 	wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
581 
582 	spin_lock_irqsave(&nvt->tx.lock, flags);
583 	nvt->tx.tx_state = ST_TX_NONE;
584 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
585 
586 	/* restore enabled interrupts to prior state */
587 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
588 
589 	return ret;
590 }
591 
592 /* dump contents of the last rx buffer we got from the hw rx fifo */
593 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
594 {
595 	int i;
596 
597 	printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
598 	for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
599 		printk(KERN_CONT "0x%02x ", nvt->buf[i]);
600 	printk(KERN_CONT "\n");
601 }
602 
603 /*
604  * Process raw data in rx driver buffer, store it in raw IR event kfifo,
605  * trigger decode when appropriate.
606  *
607  * We get IR data samples one byte at a time. If the msb is set, its a pulse,
608  * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
609  * (default 50us) intervals for that pulse/space. A discrete signal is
610  * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
611  * to signal more IR coming (repeats) or end of IR, respectively. We store
612  * sample data in the raw event kfifo until we see 0x7<something> (except f)
613  * or 0x80, at which time, we trigger a decode operation.
614  */
615 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
616 {
617 	DEFINE_IR_RAW_EVENT(rawir);
618 	u8 sample;
619 	int i;
620 
621 	nvt_dbg_verbose("%s firing", __func__);
622 
623 	if (debug)
624 		nvt_dump_rx_buf(nvt);
625 
626 	nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
627 
628 	init_ir_raw_event(&rawir);
629 
630 	for (i = 0; i < nvt->pkts; i++) {
631 		sample = nvt->buf[i];
632 
633 		rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
634 		rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
635 					  * SAMPLE_PERIOD);
636 
637 		nvt_dbg("Storing %s with duration %d",
638 			rawir.pulse ? "pulse" : "space", rawir.duration);
639 
640 		ir_raw_event_store_with_filter(nvt->rdev, &rawir);
641 
642 		/*
643 		 * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
644 		 * indicates end of IR signal, but new data incoming. In both
645 		 * cases, it means we're ready to call ir_raw_event_handle
646 		 */
647 		if ((sample == BUF_PULSE_BIT) && (i + 1 < nvt->pkts)) {
648 			nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
649 			ir_raw_event_handle(nvt->rdev);
650 		}
651 	}
652 
653 	nvt->pkts = 0;
654 
655 	nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
656 	ir_raw_event_handle(nvt->rdev);
657 
658 	nvt_dbg_verbose("%s done", __func__);
659 }
660 
661 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
662 {
663 	dev_warn(&nvt->pdev->dev, "RX FIFO overrun detected, flushing data!");
664 
665 	nvt->pkts = 0;
666 	nvt_clear_cir_fifo(nvt);
667 	ir_raw_event_reset(nvt->rdev);
668 }
669 
670 /* copy data from hardware rx fifo into driver buffer */
671 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
672 {
673 	unsigned long flags;
674 	u8 fifocount, val;
675 	unsigned int b_idx;
676 	bool overrun = false;
677 	int i;
678 
679 	/* Get count of how many bytes to read from RX FIFO */
680 	fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
681 	/* if we get 0xff, probably means the logical dev is disabled */
682 	if (fifocount == 0xff)
683 		return;
684 	/* watch out for a fifo overrun condition */
685 	else if (fifocount > RX_BUF_LEN) {
686 		overrun = true;
687 		fifocount = RX_BUF_LEN;
688 	}
689 
690 	nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
691 
692 	spin_lock_irqsave(&nvt->nvt_lock, flags);
693 
694 	b_idx = nvt->pkts;
695 
696 	/* This should never happen, but lets check anyway... */
697 	if (b_idx + fifocount > RX_BUF_LEN) {
698 		nvt_process_rx_ir_data(nvt);
699 		b_idx = 0;
700 	}
701 
702 	/* Read fifocount bytes from CIR Sample RX FIFO register */
703 	for (i = 0; i < fifocount; i++) {
704 		val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
705 		nvt->buf[b_idx + i] = val;
706 	}
707 
708 	nvt->pkts += fifocount;
709 	nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
710 
711 	nvt_process_rx_ir_data(nvt);
712 
713 	if (overrun)
714 		nvt_handle_rx_fifo_overrun(nvt);
715 
716 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
717 }
718 
719 static void nvt_cir_log_irqs(u8 status, u8 iren)
720 {
721 	nvt_dbg("IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
722 		status, iren,
723 		status & CIR_IRSTS_RDR	? " RDR"	: "",
724 		status & CIR_IRSTS_RTR	? " RTR"	: "",
725 		status & CIR_IRSTS_PE	? " PE"		: "",
726 		status & CIR_IRSTS_RFO	? " RFO"	: "",
727 		status & CIR_IRSTS_TE	? " TE"		: "",
728 		status & CIR_IRSTS_TTR	? " TTR"	: "",
729 		status & CIR_IRSTS_TFU	? " TFU"	: "",
730 		status & CIR_IRSTS_GH	? " GH"		: "",
731 		status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
732 			   CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
733 			   CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
734 }
735 
736 static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
737 {
738 	unsigned long flags;
739 	bool tx_inactive;
740 	u8 tx_state;
741 
742 	spin_lock_irqsave(&nvt->tx.lock, flags);
743 	tx_state = nvt->tx.tx_state;
744 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
745 
746 	tx_inactive = (tx_state == ST_TX_NONE);
747 
748 	return tx_inactive;
749 }
750 
751 /* interrupt service routine for incoming and outgoing CIR data */
752 static irqreturn_t nvt_cir_isr(int irq, void *data)
753 {
754 	struct nvt_dev *nvt = data;
755 	u8 status, iren, cur_state;
756 	unsigned long flags;
757 
758 	nvt_dbg_verbose("%s firing", __func__);
759 
760 	nvt_efm_enable(nvt);
761 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
762 	nvt_efm_disable(nvt);
763 
764 	/*
765 	 * Get IR Status register contents. Write 1 to ack/clear
766 	 *
767 	 * bit: reg name      - description
768 	 *   7: CIR_IRSTS_RDR - RX Data Ready
769 	 *   6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
770 	 *   5: CIR_IRSTS_PE  - Packet End
771 	 *   4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
772 	 *   3: CIR_IRSTS_TE  - TX FIFO Empty
773 	 *   2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
774 	 *   1: CIR_IRSTS_TFU - TX FIFO Underrun
775 	 *   0: CIR_IRSTS_GH  - Min Length Detected
776 	 */
777 	status = nvt_cir_reg_read(nvt, CIR_IRSTS);
778 	if (!status) {
779 		nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
780 		nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
781 		return IRQ_NONE;
782 	}
783 
784 	/* ack/clear all irq flags we've got */
785 	nvt_cir_reg_write(nvt, status, CIR_IRSTS);
786 	nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
787 
788 	/* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
789 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
790 	if (!iren) {
791 		nvt_dbg_verbose("%s exiting, CIR not enabled", __func__);
792 		return IRQ_NONE;
793 	}
794 
795 	nvt_cir_log_irqs(status, iren);
796 
797 	if (status & CIR_IRSTS_RTR) {
798 		/* FIXME: add code for study/learn mode */
799 		/* We only do rx if not tx'ing */
800 		if (nvt_cir_tx_inactive(nvt))
801 			nvt_get_rx_ir_data(nvt);
802 	}
803 
804 	if (status & CIR_IRSTS_PE) {
805 		if (nvt_cir_tx_inactive(nvt))
806 			nvt_get_rx_ir_data(nvt);
807 
808 		spin_lock_irqsave(&nvt->nvt_lock, flags);
809 
810 		cur_state = nvt->study_state;
811 
812 		spin_unlock_irqrestore(&nvt->nvt_lock, flags);
813 
814 		if (cur_state == ST_STUDY_NONE)
815 			nvt_clear_cir_fifo(nvt);
816 	}
817 
818 	if (status & CIR_IRSTS_TE)
819 		nvt_clear_tx_fifo(nvt);
820 
821 	if (status & CIR_IRSTS_TTR) {
822 		unsigned int pos, count;
823 		u8 tmp;
824 
825 		spin_lock_irqsave(&nvt->tx.lock, flags);
826 
827 		pos = nvt->tx.cur_buf_num;
828 		count = nvt->tx.buf_count;
829 
830 		/* Write data into the hardware tx fifo while pos < count */
831 		if (pos < count) {
832 			nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
833 			nvt->tx.cur_buf_num++;
834 		/* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
835 		} else {
836 			tmp = nvt_cir_reg_read(nvt, CIR_IREN);
837 			nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
838 		}
839 
840 		spin_unlock_irqrestore(&nvt->tx.lock, flags);
841 
842 	}
843 
844 	if (status & CIR_IRSTS_TFU) {
845 		spin_lock_irqsave(&nvt->tx.lock, flags);
846 		if (nvt->tx.tx_state == ST_TX_REPLY) {
847 			nvt->tx.tx_state = ST_TX_REQUEST;
848 			wake_up(&nvt->tx.queue);
849 		}
850 		spin_unlock_irqrestore(&nvt->tx.lock, flags);
851 	}
852 
853 	nvt_dbg_verbose("%s done", __func__);
854 	return IRQ_HANDLED;
855 }
856 
857 /* Interrupt service routine for CIR Wake */
858 static irqreturn_t nvt_cir_wake_isr(int irq, void *data)
859 {
860 	u8 status, iren, val;
861 	struct nvt_dev *nvt = data;
862 	unsigned long flags;
863 
864 	nvt_dbg_wake("%s firing", __func__);
865 
866 	status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS);
867 	if (!status)
868 		return IRQ_NONE;
869 
870 	if (status & CIR_WAKE_IRSTS_IR_PENDING)
871 		nvt_clear_cir_wake_fifo(nvt);
872 
873 	nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS);
874 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS);
875 
876 	/* Interrupt may be shared with CIR, bail if Wake not enabled */
877 	iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN);
878 	if (!iren) {
879 		nvt_dbg_wake("%s exiting, wake not enabled", __func__);
880 		return IRQ_HANDLED;
881 	}
882 
883 	if ((status & CIR_WAKE_IRSTS_PE) &&
884 	    (nvt->wake_state == ST_WAKE_START)) {
885 		while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) {
886 			val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
887 			nvt_dbg("setting wake up key: 0x%x", val);
888 		}
889 
890 		nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
891 		spin_lock_irqsave(&nvt->nvt_lock, flags);
892 		nvt->wake_state = ST_WAKE_FINISH;
893 		spin_unlock_irqrestore(&nvt->nvt_lock, flags);
894 	}
895 
896 	nvt_dbg_wake("%s done", __func__);
897 	return IRQ_HANDLED;
898 }
899 
900 static void nvt_enable_cir(struct nvt_dev *nvt)
901 {
902 	/* set function enable flags */
903 	nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
904 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
905 			  CIR_IRCON);
906 
907 	nvt_efm_enable(nvt);
908 
909 	/* enable the CIR logical device */
910 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
911 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
912 
913 	nvt_efm_disable(nvt);
914 
915 	/* clear all pending interrupts */
916 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
917 
918 	/* enable interrupts */
919 	nvt_set_cir_iren(nvt);
920 }
921 
922 static void nvt_disable_cir(struct nvt_dev *nvt)
923 {
924 	/* disable CIR interrupts */
925 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
926 
927 	/* clear any and all pending interrupts */
928 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
929 
930 	/* clear all function enable flags */
931 	nvt_cir_reg_write(nvt, 0, CIR_IRCON);
932 
933 	/* clear hardware rx and tx fifos */
934 	nvt_clear_cir_fifo(nvt);
935 	nvt_clear_tx_fifo(nvt);
936 
937 	nvt_efm_enable(nvt);
938 
939 	/* disable the CIR logical device */
940 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
941 	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
942 
943 	nvt_efm_disable(nvt);
944 }
945 
946 static int nvt_open(struct rc_dev *dev)
947 {
948 	struct nvt_dev *nvt = dev->priv;
949 	unsigned long flags;
950 
951 	spin_lock_irqsave(&nvt->nvt_lock, flags);
952 	nvt_enable_cir(nvt);
953 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
954 
955 	return 0;
956 }
957 
958 static void nvt_close(struct rc_dev *dev)
959 {
960 	struct nvt_dev *nvt = dev->priv;
961 	unsigned long flags;
962 
963 	spin_lock_irqsave(&nvt->nvt_lock, flags);
964 	nvt_disable_cir(nvt);
965 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
966 }
967 
968 /* Allocate memory, probe hardware, and initialize everything */
969 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
970 {
971 	struct nvt_dev *nvt;
972 	struct rc_dev *rdev;
973 	int ret = -ENOMEM;
974 
975 	nvt = devm_kzalloc(&pdev->dev, sizeof(struct nvt_dev), GFP_KERNEL);
976 	if (!nvt)
977 		return ret;
978 
979 	/* input device for IR remote (and tx) */
980 	rdev = rc_allocate_device();
981 	if (!rdev)
982 		goto exit_free_dev_rdev;
983 
984 	ret = -ENODEV;
985 	/* activate pnp device */
986 	if (pnp_activate_dev(pdev) < 0) {
987 		dev_err(&pdev->dev, "Could not activate PNP device!\n");
988 		goto exit_free_dev_rdev;
989 	}
990 
991 	/* validate pnp resources */
992 	if (!pnp_port_valid(pdev, 0) ||
993 	    pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
994 		dev_err(&pdev->dev, "IR PNP Port not valid!\n");
995 		goto exit_free_dev_rdev;
996 	}
997 
998 	if (!pnp_irq_valid(pdev, 0)) {
999 		dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1000 		goto exit_free_dev_rdev;
1001 	}
1002 
1003 	if (!pnp_port_valid(pdev, 1) ||
1004 	    pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
1005 		dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1006 		goto exit_free_dev_rdev;
1007 	}
1008 
1009 	nvt->cir_addr = pnp_port_start(pdev, 0);
1010 	nvt->cir_irq  = pnp_irq(pdev, 0);
1011 
1012 	nvt->cir_wake_addr = pnp_port_start(pdev, 1);
1013 	/* irq is always shared between cir and cir wake */
1014 	nvt->cir_wake_irq  = nvt->cir_irq;
1015 
1016 	nvt->cr_efir = CR_EFIR;
1017 	nvt->cr_efdr = CR_EFDR;
1018 
1019 	spin_lock_init(&nvt->nvt_lock);
1020 	spin_lock_init(&nvt->tx.lock);
1021 
1022 	pnp_set_drvdata(pdev, nvt);
1023 	nvt->pdev = pdev;
1024 
1025 	init_waitqueue_head(&nvt->tx.queue);
1026 
1027 	nvt_hw_detect(nvt);
1028 
1029 	/* Initialize CIR & CIR Wake Logical Devices */
1030 	nvt_efm_enable(nvt);
1031 	nvt_cir_ldev_init(nvt);
1032 	nvt_cir_wake_ldev_init(nvt);
1033 	nvt_efm_disable(nvt);
1034 
1035 	/* Initialize CIR & CIR Wake Config Registers */
1036 	nvt_cir_regs_init(nvt);
1037 	nvt_cir_wake_regs_init(nvt);
1038 
1039 	/* Set up the rc device */
1040 	rdev->priv = nvt;
1041 	rdev->driver_type = RC_DRIVER_IR_RAW;
1042 	rdev->allowed_protocols = RC_BIT_ALL;
1043 	rdev->open = nvt_open;
1044 	rdev->close = nvt_close;
1045 	rdev->tx_ir = nvt_tx_ir;
1046 	rdev->s_tx_carrier = nvt_set_tx_carrier;
1047 	rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1048 	rdev->input_phys = "nuvoton/cir0";
1049 	rdev->input_id.bustype = BUS_HOST;
1050 	rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1051 	rdev->input_id.product = nvt->chip_major;
1052 	rdev->input_id.version = nvt->chip_minor;
1053 	rdev->dev.parent = &pdev->dev;
1054 	rdev->driver_name = NVT_DRIVER_NAME;
1055 	rdev->map_name = RC_MAP_RC6_MCE;
1056 	rdev->timeout = MS_TO_NS(100);
1057 	/* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1058 	rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1059 #if 0
1060 	rdev->min_timeout = XYZ;
1061 	rdev->max_timeout = XYZ;
1062 	/* tx bits */
1063 	rdev->tx_resolution = XYZ;
1064 #endif
1065 	nvt->rdev = rdev;
1066 
1067 	ret = rc_register_device(rdev);
1068 	if (ret)
1069 		goto exit_free_dev_rdev;
1070 
1071 	ret = -EBUSY;
1072 	/* now claim resources */
1073 	if (!devm_request_region(&pdev->dev, nvt->cir_addr,
1074 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1075 		goto exit_unregister_device;
1076 
1077 	if (devm_request_irq(&pdev->dev, nvt->cir_irq, nvt_cir_isr,
1078 			     IRQF_SHARED, NVT_DRIVER_NAME, (void *)nvt))
1079 		goto exit_unregister_device;
1080 
1081 	if (!devm_request_region(&pdev->dev, nvt->cir_wake_addr,
1082 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1083 		goto exit_unregister_device;
1084 
1085 	if (devm_request_irq(&pdev->dev, nvt->cir_wake_irq,
1086 			     nvt_cir_wake_isr, IRQF_SHARED,
1087 			     NVT_DRIVER_NAME, (void *)nvt))
1088 		goto exit_unregister_device;
1089 
1090 	device_init_wakeup(&pdev->dev, true);
1091 
1092 	dev_notice(&pdev->dev, "driver has been successfully loaded\n");
1093 	if (debug) {
1094 		cir_dump_regs(nvt);
1095 		cir_wake_dump_regs(nvt);
1096 	}
1097 
1098 	return 0;
1099 
1100 exit_unregister_device:
1101 	rc_unregister_device(rdev);
1102 	rdev = NULL;
1103 exit_free_dev_rdev:
1104 	rc_free_device(rdev);
1105 
1106 	return ret;
1107 }
1108 
1109 static void nvt_remove(struct pnp_dev *pdev)
1110 {
1111 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1112 	unsigned long flags;
1113 
1114 	spin_lock_irqsave(&nvt->nvt_lock, flags);
1115 	/* disable CIR */
1116 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1117 	nvt_disable_cir(nvt);
1118 	/* enable CIR Wake (for IR power-on) */
1119 	nvt_enable_wake(nvt);
1120 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1121 
1122 	rc_unregister_device(nvt->rdev);
1123 }
1124 
1125 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1126 {
1127 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1128 	unsigned long flags;
1129 
1130 	nvt_dbg("%s called", __func__);
1131 
1132 	/* zero out misc state tracking */
1133 	spin_lock_irqsave(&nvt->nvt_lock, flags);
1134 	nvt->study_state = ST_STUDY_NONE;
1135 	nvt->wake_state = ST_WAKE_NONE;
1136 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1137 
1138 	spin_lock_irqsave(&nvt->tx.lock, flags);
1139 	nvt->tx.tx_state = ST_TX_NONE;
1140 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
1141 
1142 	/* disable all CIR interrupts */
1143 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1144 
1145 	nvt_efm_enable(nvt);
1146 
1147 	/* disable cir logical dev */
1148 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1149 	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
1150 
1151 	nvt_efm_disable(nvt);
1152 
1153 	/* make sure wake is enabled */
1154 	nvt_enable_wake(nvt);
1155 
1156 	return 0;
1157 }
1158 
1159 static int nvt_resume(struct pnp_dev *pdev)
1160 {
1161 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1162 
1163 	nvt_dbg("%s called", __func__);
1164 
1165 	/* open interrupt */
1166 	nvt_set_cir_iren(nvt);
1167 
1168 	/* Enable CIR logical device */
1169 	nvt_efm_enable(nvt);
1170 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1171 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
1172 
1173 	nvt_efm_disable(nvt);
1174 
1175 	nvt_cir_regs_init(nvt);
1176 	nvt_cir_wake_regs_init(nvt);
1177 
1178 	return 0;
1179 }
1180 
1181 static void nvt_shutdown(struct pnp_dev *pdev)
1182 {
1183 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1184 	nvt_enable_wake(nvt);
1185 }
1186 
1187 static const struct pnp_device_id nvt_ids[] = {
1188 	{ "WEC0530", 0 },   /* CIR */
1189 	{ "NTN0530", 0 },   /* CIR for new chip's pnp id*/
1190 	{ "", 0 },
1191 };
1192 
1193 static struct pnp_driver nvt_driver = {
1194 	.name		= NVT_DRIVER_NAME,
1195 	.id_table	= nvt_ids,
1196 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1197 	.probe		= nvt_probe,
1198 	.remove		= nvt_remove,
1199 	.suspend	= nvt_suspend,
1200 	.resume		= nvt_resume,
1201 	.shutdown	= nvt_shutdown,
1202 };
1203 
1204 module_param(debug, int, S_IRUGO | S_IWUSR);
1205 MODULE_PARM_DESC(debug, "Enable debugging output");
1206 
1207 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1208 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1209 
1210 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1211 MODULE_LICENSE("GPL");
1212 
1213 module_pnp_driver(nvt_driver);
1214