xref: /linux/drivers/media/rc/nuvoton-cir.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
3  *
4  * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5  * Copyright (C) 2009 Nuvoton PS Team
6  *
7  * Special thanks to Nuvoton for providing hardware, spec sheets and
8  * sample code upon which portions of this driver are based. Indirect
9  * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10  * modeled after.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
25  * USA
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pnp.h>
33 #include <linux/io.h>
34 #include <linux/interrupt.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <media/rc-core.h>
38 #include <linux/pci_ids.h>
39 
40 #include "nuvoton-cir.h"
41 
42 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt);
43 
44 static const struct nvt_chip nvt_chips[] = {
45 	{ "w83667hg", NVT_W83667HG },
46 	{ "NCT6775F", NVT_6775F },
47 	{ "NCT6776F", NVT_6776F },
48 	{ "NCT6779D", NVT_6779D },
49 };
50 
51 static inline bool is_w83667hg(struct nvt_dev *nvt)
52 {
53 	return nvt->chip_ver == NVT_W83667HG;
54 }
55 
56 /* write val to config reg */
57 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
58 {
59 	outb(reg, nvt->cr_efir);
60 	outb(val, nvt->cr_efdr);
61 }
62 
63 /* read val from config reg */
64 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
65 {
66 	outb(reg, nvt->cr_efir);
67 	return inb(nvt->cr_efdr);
68 }
69 
70 /* update config register bit without changing other bits */
71 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
72 {
73 	u8 tmp = nvt_cr_read(nvt, reg) | val;
74 	nvt_cr_write(nvt, tmp, reg);
75 }
76 
77 /* clear config register bit without changing other bits */
78 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
79 {
80 	u8 tmp = nvt_cr_read(nvt, reg) & ~val;
81 	nvt_cr_write(nvt, tmp, reg);
82 }
83 
84 /* enter extended function mode */
85 static inline int nvt_efm_enable(struct nvt_dev *nvt)
86 {
87 	if (!request_muxed_region(nvt->cr_efir, 2, NVT_DRIVER_NAME))
88 		return -EBUSY;
89 
90 	/* Enabling Extended Function Mode explicitly requires writing 2x */
91 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
92 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
93 
94 	return 0;
95 }
96 
97 /* exit extended function mode */
98 static inline void nvt_efm_disable(struct nvt_dev *nvt)
99 {
100 	outb(EFER_EFM_DISABLE, nvt->cr_efir);
101 
102 	release_region(nvt->cr_efir, 2);
103 }
104 
105 /*
106  * When you want to address a specific logical device, write its logical
107  * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
108  * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
109  */
110 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
111 {
112 	nvt_cr_write(nvt, ldev, CR_LOGICAL_DEV_SEL);
113 }
114 
115 /* select and enable logical device with setting EFM mode*/
116 static inline void nvt_enable_logical_dev(struct nvt_dev *nvt, u8 ldev)
117 {
118 	nvt_efm_enable(nvt);
119 	nvt_select_logical_dev(nvt, ldev);
120 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
121 	nvt_efm_disable(nvt);
122 }
123 
124 /* select and disable logical device with setting EFM mode*/
125 static inline void nvt_disable_logical_dev(struct nvt_dev *nvt, u8 ldev)
126 {
127 	nvt_efm_enable(nvt);
128 	nvt_select_logical_dev(nvt, ldev);
129 	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
130 	nvt_efm_disable(nvt);
131 }
132 
133 /* write val to cir config register */
134 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
135 {
136 	outb(val, nvt->cir_addr + offset);
137 }
138 
139 /* read val from cir config register */
140 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
141 {
142 	u8 val;
143 
144 	val = inb(nvt->cir_addr + offset);
145 
146 	return val;
147 }
148 
149 /* write val to cir wake register */
150 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
151 					  u8 val, u8 offset)
152 {
153 	outb(val, nvt->cir_wake_addr + offset);
154 }
155 
156 /* read val from cir wake config register */
157 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
158 {
159 	u8 val;
160 
161 	val = inb(nvt->cir_wake_addr + offset);
162 
163 	return val;
164 }
165 
166 /* don't override io address if one is set already */
167 static void nvt_set_ioaddr(struct nvt_dev *nvt, unsigned long *ioaddr)
168 {
169 	unsigned long old_addr;
170 
171 	old_addr = nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8;
172 	old_addr |= nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO);
173 
174 	if (old_addr)
175 		*ioaddr = old_addr;
176 	else {
177 		nvt_cr_write(nvt, *ioaddr >> 8, CR_CIR_BASE_ADDR_HI);
178 		nvt_cr_write(nvt, *ioaddr & 0xff, CR_CIR_BASE_ADDR_LO);
179 	}
180 }
181 
182 static ssize_t wakeup_data_show(struct device *dev,
183 				struct device_attribute *attr,
184 				char *buf)
185 {
186 	struct rc_dev *rc_dev = to_rc_dev(dev);
187 	struct nvt_dev *nvt = rc_dev->priv;
188 	int fifo_len, duration;
189 	unsigned long flags;
190 	ssize_t buf_len = 0;
191 	int i;
192 
193 	spin_lock_irqsave(&nvt->nvt_lock, flags);
194 
195 	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
196 	fifo_len = min(fifo_len, WAKEUP_MAX_SIZE);
197 
198 	/* go to first element to be read */
199 	while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX))
200 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
201 
202 	for (i = 0; i < fifo_len; i++) {
203 		duration = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
204 		duration = (duration & BUF_LEN_MASK) * SAMPLE_PERIOD;
205 		buf_len += snprintf(buf + buf_len, PAGE_SIZE - buf_len,
206 				    "%d ", duration);
207 	}
208 	buf_len += snprintf(buf + buf_len, PAGE_SIZE - buf_len, "\n");
209 
210 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
211 
212 	return buf_len;
213 }
214 
215 static ssize_t wakeup_data_store(struct device *dev,
216 				 struct device_attribute *attr,
217 				 const char *buf, size_t len)
218 {
219 	struct rc_dev *rc_dev = to_rc_dev(dev);
220 	struct nvt_dev *nvt = rc_dev->priv;
221 	unsigned long flags;
222 	u8 tolerance, config, wake_buf[WAKEUP_MAX_SIZE];
223 	char **argv;
224 	int i, count;
225 	unsigned int val;
226 	ssize_t ret;
227 
228 	argv = argv_split(GFP_KERNEL, buf, &count);
229 	if (!argv)
230 		return -ENOMEM;
231 	if (!count || count > WAKEUP_MAX_SIZE) {
232 		ret = -EINVAL;
233 		goto out;
234 	}
235 
236 	for (i = 0; i < count; i++) {
237 		ret = kstrtouint(argv[i], 10, &val);
238 		if (ret)
239 			goto out;
240 		val = DIV_ROUND_CLOSEST(val, SAMPLE_PERIOD);
241 		if (!val || val > 0x7f) {
242 			ret = -EINVAL;
243 			goto out;
244 		}
245 		wake_buf[i] = val;
246 		/* sequence must start with a pulse */
247 		if (i % 2 == 0)
248 			wake_buf[i] |= BUF_PULSE_BIT;
249 	}
250 
251 	/* hardcode the tolerance to 10% */
252 	tolerance = DIV_ROUND_UP(count, 10);
253 
254 	spin_lock_irqsave(&nvt->nvt_lock, flags);
255 
256 	nvt_clear_cir_wake_fifo(nvt);
257 	nvt_cir_wake_reg_write(nvt, count, CIR_WAKE_FIFO_CMP_DEEP);
258 	nvt_cir_wake_reg_write(nvt, tolerance, CIR_WAKE_FIFO_CMP_TOL);
259 
260 	config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
261 
262 	/* enable writes to wake fifo */
263 	nvt_cir_wake_reg_write(nvt, config | CIR_WAKE_IRCON_MODE1,
264 			       CIR_WAKE_IRCON);
265 
266 	for (i = 0; i < count; i++)
267 		nvt_cir_wake_reg_write(nvt, wake_buf[i], CIR_WAKE_WR_FIFO_DATA);
268 
269 	nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
270 
271 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
272 
273 	ret = len;
274 out:
275 	argv_free(argv);
276 	return ret;
277 }
278 static DEVICE_ATTR_RW(wakeup_data);
279 
280 /* dump current cir register contents */
281 static void cir_dump_regs(struct nvt_dev *nvt)
282 {
283 	nvt_efm_enable(nvt);
284 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
285 
286 	pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
287 	pr_info(" * CR CIR ACTIVE :   0x%x\n",
288 		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
289 	pr_info(" * CR CIR BASE ADDR: 0x%x\n",
290 		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
291 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
292 	pr_info(" * CR CIR IRQ NUM:   0x%x\n",
293 		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
294 
295 	nvt_efm_disable(nvt);
296 
297 	pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
298 	pr_info(" * IRCON:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
299 	pr_info(" * IRSTS:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
300 	pr_info(" * IREN:      0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
301 	pr_info(" * RXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
302 	pr_info(" * CP:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
303 	pr_info(" * CC:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
304 	pr_info(" * SLCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
305 	pr_info(" * SLCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
306 	pr_info(" * FIFOCON:   0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
307 	pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
308 	pr_info(" * SRXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
309 	pr_info(" * TXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
310 	pr_info(" * STXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
311 	pr_info(" * FCCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
312 	pr_info(" * FCCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
313 	pr_info(" * IRFSM:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
314 }
315 
316 /* dump current cir wake register contents */
317 static void cir_wake_dump_regs(struct nvt_dev *nvt)
318 {
319 	u8 i, fifo_len;
320 
321 	nvt_efm_enable(nvt);
322 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
323 
324 	pr_info("%s: Dump CIR WAKE logical device registers:\n",
325 		NVT_DRIVER_NAME);
326 	pr_info(" * CR CIR WAKE ACTIVE :   0x%x\n",
327 		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
328 	pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
329 		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
330 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
331 	pr_info(" * CR CIR WAKE IRQ NUM:   0x%x\n",
332 		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
333 
334 	nvt_efm_disable(nvt);
335 
336 	pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
337 	pr_info(" * IRCON:          0x%x\n",
338 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
339 	pr_info(" * IRSTS:          0x%x\n",
340 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
341 	pr_info(" * IREN:           0x%x\n",
342 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
343 	pr_info(" * FIFO CMP DEEP:  0x%x\n",
344 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
345 	pr_info(" * FIFO CMP TOL:   0x%x\n",
346 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
347 	pr_info(" * FIFO COUNT:     0x%x\n",
348 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
349 	pr_info(" * SLCH:           0x%x\n",
350 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
351 	pr_info(" * SLCL:           0x%x\n",
352 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
353 	pr_info(" * FIFOCON:        0x%x\n",
354 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
355 	pr_info(" * SRXFSTS:        0x%x\n",
356 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
357 	pr_info(" * SAMPLE RX FIFO: 0x%x\n",
358 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
359 	pr_info(" * WR FIFO DATA:   0x%x\n",
360 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
361 	pr_info(" * RD FIFO ONLY:   0x%x\n",
362 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
363 	pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
364 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
365 	pr_info(" * FIFO IGNORE:    0x%x\n",
366 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
367 	pr_info(" * IRFSM:          0x%x\n",
368 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
369 
370 	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
371 	pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
372 	pr_info("* Contents =");
373 	for (i = 0; i < fifo_len; i++)
374 		pr_cont(" %02x",
375 			nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
376 	pr_cont("\n");
377 }
378 
379 static inline const char *nvt_find_chip(struct nvt_dev *nvt, int id)
380 {
381 	int i;
382 
383 	for (i = 0; i < ARRAY_SIZE(nvt_chips); i++)
384 		if ((id & SIO_ID_MASK) == nvt_chips[i].chip_ver) {
385 			nvt->chip_ver = nvt_chips[i].chip_ver;
386 			return nvt_chips[i].name;
387 		}
388 
389 	return NULL;
390 }
391 
392 
393 /* detect hardware features */
394 static int nvt_hw_detect(struct nvt_dev *nvt)
395 {
396 	const char *chip_name;
397 	int chip_id;
398 
399 	nvt_efm_enable(nvt);
400 
401 	/* Check if we're wired for the alternate EFER setup */
402 	nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
403 	if (nvt->chip_major == 0xff) {
404 		nvt->cr_efir = CR_EFIR2;
405 		nvt->cr_efdr = CR_EFDR2;
406 		nvt_efm_enable(nvt);
407 		nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
408 	}
409 	nvt->chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
410 
411 	nvt_efm_disable(nvt);
412 
413 	chip_id = nvt->chip_major << 8 | nvt->chip_minor;
414 	if (chip_id == NVT_INVALID) {
415 		dev_err(&nvt->pdev->dev,
416 			"No device found on either EFM port\n");
417 		return -ENODEV;
418 	}
419 
420 	chip_name = nvt_find_chip(nvt, chip_id);
421 
422 	/* warn, but still let the driver load, if we don't know this chip */
423 	if (!chip_name)
424 		dev_warn(&nvt->pdev->dev,
425 			 "unknown chip, id: 0x%02x 0x%02x, it may not work...",
426 			 nvt->chip_major, nvt->chip_minor);
427 	else
428 		dev_info(&nvt->pdev->dev,
429 			 "found %s or compatible: chip id: 0x%02x 0x%02x",
430 			 chip_name, nvt->chip_major, nvt->chip_minor);
431 
432 	return 0;
433 }
434 
435 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
436 {
437 	u8 val, psreg, psmask, psval;
438 
439 	if (is_w83667hg(nvt)) {
440 		psreg = CR_MULTIFUNC_PIN_SEL;
441 		psmask = MULTIFUNC_PIN_SEL_MASK;
442 		psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
443 	} else {
444 		psreg = CR_OUTPUT_PIN_SEL;
445 		psmask = OUTPUT_PIN_SEL_MASK;
446 		psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
447 	}
448 
449 	/* output pin selection: enable CIR, with WB sensor enabled */
450 	val = nvt_cr_read(nvt, psreg);
451 	val &= psmask;
452 	val |= psval;
453 	nvt_cr_write(nvt, val, psreg);
454 
455 	/* Select CIR logical device */
456 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
457 
458 	nvt_set_ioaddr(nvt, &nvt->cir_addr);
459 
460 	nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
461 
462 	nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
463 		nvt->cir_addr, nvt->cir_irq);
464 }
465 
466 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
467 {
468 	/* Select ACPI logical device and anable it */
469 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
470 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
471 
472 	/* Enable CIR Wake via PSOUT# (Pin60) */
473 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
474 
475 	/* enable pme interrupt of cir wakeup event */
476 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
477 
478 	/* Select CIR Wake logical device */
479 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
480 
481 	nvt_set_ioaddr(nvt, &nvt->cir_wake_addr);
482 
483 	nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC);
484 
485 	nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
486 		nvt->cir_wake_addr, nvt->cir_wake_irq);
487 }
488 
489 /* clear out the hardware's cir rx fifo */
490 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
491 {
492 	u8 val;
493 
494 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
495 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
496 }
497 
498 /* clear out the hardware's cir wake rx fifo */
499 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
500 {
501 	u8 val, config;
502 
503 	config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
504 
505 	/* clearing wake fifo works in learning mode only */
506 	nvt_cir_wake_reg_write(nvt, config & ~CIR_WAKE_IRCON_MODE0,
507 			       CIR_WAKE_IRCON);
508 
509 	val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
510 	nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
511 			       CIR_WAKE_FIFOCON);
512 
513 	nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
514 }
515 
516 /* clear out the hardware's cir tx fifo */
517 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
518 {
519 	u8 val;
520 
521 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
522 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
523 }
524 
525 /* enable RX Trigger Level Reach and Packet End interrupts */
526 static void nvt_set_cir_iren(struct nvt_dev *nvt)
527 {
528 	u8 iren;
529 
530 	iren = CIR_IREN_RTR | CIR_IREN_PE;
531 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
532 }
533 
534 static void nvt_cir_regs_init(struct nvt_dev *nvt)
535 {
536 	/* set sample limit count (PE interrupt raised when reached) */
537 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
538 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
539 
540 	/* set fifo irq trigger levels */
541 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
542 			  CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
543 
544 	/*
545 	 * Enable TX and RX, specify carrier on = low, off = high, and set
546 	 * sample period (currently 50us)
547 	 */
548 	nvt_cir_reg_write(nvt,
549 			  CIR_IRCON_TXEN | CIR_IRCON_RXEN |
550 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
551 			  CIR_IRCON);
552 
553 	/* clear hardware rx and tx fifos */
554 	nvt_clear_cir_fifo(nvt);
555 	nvt_clear_tx_fifo(nvt);
556 
557 	/* clear any and all stray interrupts */
558 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
559 
560 	/* and finally, enable interrupts */
561 	nvt_set_cir_iren(nvt);
562 
563 	/* enable the CIR logical device */
564 	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
565 }
566 
567 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
568 {
569 	/* set number of bytes needed for wake from s3 (default 65) */
570 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES,
571 			       CIR_WAKE_FIFO_CMP_DEEP);
572 
573 	/* set tolerance/variance allowed per byte during wake compare */
574 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE,
575 			       CIR_WAKE_FIFO_CMP_TOL);
576 
577 	/* set sample limit count (PE interrupt raised when reached) */
578 	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH);
579 	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL);
580 
581 	/* set cir wake fifo rx trigger level (currently 67) */
582 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV,
583 			       CIR_WAKE_FIFOCON);
584 
585 	/*
586 	 * Enable TX and RX, specific carrier on = low, off = high, and set
587 	 * sample period (currently 50us)
588 	 */
589 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
590 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
591 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
592 			       CIR_WAKE_IRCON);
593 
594 	/* clear cir wake rx fifo */
595 	nvt_clear_cir_wake_fifo(nvt);
596 
597 	/* clear any and all stray interrupts */
598 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
599 
600 	/* enable the CIR WAKE logical device */
601 	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
602 }
603 
604 static void nvt_enable_wake(struct nvt_dev *nvt)
605 {
606 	unsigned long flags;
607 
608 	nvt_efm_enable(nvt);
609 
610 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
611 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
612 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
613 
614 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
615 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
616 
617 	nvt_efm_disable(nvt);
618 
619 	spin_lock_irqsave(&nvt->nvt_lock, flags);
620 
621 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
622 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
623 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
624 			       CIR_WAKE_IRCON);
625 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
626 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
627 
628 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
629 }
630 
631 #if 0 /* Currently unused */
632 /* rx carrier detect only works in learning mode, must be called w/nvt_lock */
633 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
634 {
635 	u32 count, carrier, duration = 0;
636 	int i;
637 
638 	count = nvt_cir_reg_read(nvt, CIR_FCCL) |
639 		nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
640 
641 	for (i = 0; i < nvt->pkts; i++) {
642 		if (nvt->buf[i] & BUF_PULSE_BIT)
643 			duration += nvt->buf[i] & BUF_LEN_MASK;
644 	}
645 
646 	duration *= SAMPLE_PERIOD;
647 
648 	if (!count || !duration) {
649 		dev_notice(&nvt->pdev->dev,
650 			   "Unable to determine carrier! (c:%u, d:%u)",
651 			   count, duration);
652 		return 0;
653 	}
654 
655 	carrier = MS_TO_NS(count) / duration;
656 
657 	if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
658 		nvt_dbg("WTF? Carrier frequency out of range!");
659 
660 	nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
661 		carrier, count, duration);
662 
663 	return carrier;
664 }
665 #endif
666 /*
667  * set carrier frequency
668  *
669  * set carrier on 2 registers: CP & CC
670  * always set CP as 0x81
671  * set CC by SPEC, CC = 3MHz/carrier - 1
672  */
673 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
674 {
675 	struct nvt_dev *nvt = dev->priv;
676 	u16 val;
677 
678 	if (carrier == 0)
679 		return -EINVAL;
680 
681 	nvt_cir_reg_write(nvt, 1, CIR_CP);
682 	val = 3000000 / (carrier) - 1;
683 	nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
684 
685 	nvt_dbg("cp: 0x%x cc: 0x%x\n",
686 		nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
687 
688 	return 0;
689 }
690 
691 /*
692  * nvt_tx_ir
693  *
694  * 1) clean TX fifo first (handled by AP)
695  * 2) copy data from user space
696  * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
697  * 4) send 9 packets to TX FIFO to open TTR
698  * in interrupt_handler:
699  * 5) send all data out
700  * go back to write():
701  * 6) disable TX interrupts, re-enable RX interupts
702  *
703  * The key problem of this function is user space data may larger than
704  * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
705  * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
706  * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
707  * set TXFCONT as 0xff, until buf_count less than 0xff.
708  */
709 static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n)
710 {
711 	struct nvt_dev *nvt = dev->priv;
712 	unsigned long flags;
713 	unsigned int i;
714 	u8 iren;
715 	int ret;
716 
717 	spin_lock_irqsave(&nvt->tx.lock, flags);
718 
719 	ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n);
720 	nvt->tx.buf_count = (ret * sizeof(unsigned));
721 
722 	memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
723 
724 	nvt->tx.cur_buf_num = 0;
725 
726 	/* save currently enabled interrupts */
727 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
728 
729 	/* now disable all interrupts, save TFU & TTR */
730 	nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
731 
732 	nvt->tx.tx_state = ST_TX_REPLY;
733 
734 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
735 			  CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
736 
737 	/* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
738 	for (i = 0; i < 9; i++)
739 		nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
740 
741 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
742 
743 	wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
744 
745 	spin_lock_irqsave(&nvt->tx.lock, flags);
746 	nvt->tx.tx_state = ST_TX_NONE;
747 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
748 
749 	/* restore enabled interrupts to prior state */
750 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
751 
752 	return ret;
753 }
754 
755 /* dump contents of the last rx buffer we got from the hw rx fifo */
756 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
757 {
758 	int i;
759 
760 	printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
761 	for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
762 		printk(KERN_CONT "0x%02x ", nvt->buf[i]);
763 	printk(KERN_CONT "\n");
764 }
765 
766 /*
767  * Process raw data in rx driver buffer, store it in raw IR event kfifo,
768  * trigger decode when appropriate.
769  *
770  * We get IR data samples one byte at a time. If the msb is set, its a pulse,
771  * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
772  * (default 50us) intervals for that pulse/space. A discrete signal is
773  * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
774  * to signal more IR coming (repeats) or end of IR, respectively. We store
775  * sample data in the raw event kfifo until we see 0x7<something> (except f)
776  * or 0x80, at which time, we trigger a decode operation.
777  */
778 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
779 {
780 	DEFINE_IR_RAW_EVENT(rawir);
781 	u8 sample;
782 	int i;
783 
784 	nvt_dbg_verbose("%s firing", __func__);
785 
786 	if (debug)
787 		nvt_dump_rx_buf(nvt);
788 
789 	nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
790 
791 	init_ir_raw_event(&rawir);
792 
793 	for (i = 0; i < nvt->pkts; i++) {
794 		sample = nvt->buf[i];
795 
796 		rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
797 		rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
798 					  * SAMPLE_PERIOD);
799 
800 		nvt_dbg("Storing %s with duration %d",
801 			rawir.pulse ? "pulse" : "space", rawir.duration);
802 
803 		ir_raw_event_store_with_filter(nvt->rdev, &rawir);
804 
805 		/*
806 		 * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
807 		 * indicates end of IR signal, but new data incoming. In both
808 		 * cases, it means we're ready to call ir_raw_event_handle
809 		 */
810 		if ((sample == BUF_PULSE_BIT) && (i + 1 < nvt->pkts)) {
811 			nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
812 			ir_raw_event_handle(nvt->rdev);
813 		}
814 	}
815 
816 	nvt->pkts = 0;
817 
818 	nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
819 	ir_raw_event_handle(nvt->rdev);
820 
821 	nvt_dbg_verbose("%s done", __func__);
822 }
823 
824 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
825 {
826 	dev_warn(&nvt->pdev->dev, "RX FIFO overrun detected, flushing data!");
827 
828 	nvt->pkts = 0;
829 	nvt_clear_cir_fifo(nvt);
830 	ir_raw_event_reset(nvt->rdev);
831 }
832 
833 /* copy data from hardware rx fifo into driver buffer */
834 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
835 {
836 	u8 fifocount, val;
837 	unsigned int b_idx;
838 	bool overrun = false;
839 	int i;
840 
841 	/* Get count of how many bytes to read from RX FIFO */
842 	fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
843 	/* if we get 0xff, probably means the logical dev is disabled */
844 	if (fifocount == 0xff)
845 		return;
846 	/* watch out for a fifo overrun condition */
847 	else if (fifocount > RX_BUF_LEN) {
848 		overrun = true;
849 		fifocount = RX_BUF_LEN;
850 	}
851 
852 	nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
853 
854 	b_idx = nvt->pkts;
855 
856 	/* This should never happen, but lets check anyway... */
857 	if (b_idx + fifocount > RX_BUF_LEN) {
858 		nvt_process_rx_ir_data(nvt);
859 		b_idx = 0;
860 	}
861 
862 	/* Read fifocount bytes from CIR Sample RX FIFO register */
863 	for (i = 0; i < fifocount; i++) {
864 		val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
865 		nvt->buf[b_idx + i] = val;
866 	}
867 
868 	nvt->pkts += fifocount;
869 	nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
870 
871 	nvt_process_rx_ir_data(nvt);
872 
873 	if (overrun)
874 		nvt_handle_rx_fifo_overrun(nvt);
875 }
876 
877 static void nvt_cir_log_irqs(u8 status, u8 iren)
878 {
879 	nvt_dbg("IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
880 		status, iren,
881 		status & CIR_IRSTS_RDR	? " RDR"	: "",
882 		status & CIR_IRSTS_RTR	? " RTR"	: "",
883 		status & CIR_IRSTS_PE	? " PE"		: "",
884 		status & CIR_IRSTS_RFO	? " RFO"	: "",
885 		status & CIR_IRSTS_TE	? " TE"		: "",
886 		status & CIR_IRSTS_TTR	? " TTR"	: "",
887 		status & CIR_IRSTS_TFU	? " TFU"	: "",
888 		status & CIR_IRSTS_GH	? " GH"		: "",
889 		status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
890 			   CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
891 			   CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
892 }
893 
894 static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
895 {
896 	unsigned long flags;
897 	u8 tx_state;
898 
899 	spin_lock_irqsave(&nvt->tx.lock, flags);
900 	tx_state = nvt->tx.tx_state;
901 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
902 
903 	return tx_state == ST_TX_NONE;
904 }
905 
906 /* interrupt service routine for incoming and outgoing CIR data */
907 static irqreturn_t nvt_cir_isr(int irq, void *data)
908 {
909 	struct nvt_dev *nvt = data;
910 	u8 status, iren, cur_state;
911 	unsigned long flags;
912 
913 	nvt_dbg_verbose("%s firing", __func__);
914 
915 	spin_lock_irqsave(&nvt->nvt_lock, flags);
916 
917 	/*
918 	 * Get IR Status register contents. Write 1 to ack/clear
919 	 *
920 	 * bit: reg name      - description
921 	 *   7: CIR_IRSTS_RDR - RX Data Ready
922 	 *   6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
923 	 *   5: CIR_IRSTS_PE  - Packet End
924 	 *   4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
925 	 *   3: CIR_IRSTS_TE  - TX FIFO Empty
926 	 *   2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
927 	 *   1: CIR_IRSTS_TFU - TX FIFO Underrun
928 	 *   0: CIR_IRSTS_GH  - Min Length Detected
929 	 */
930 	status = nvt_cir_reg_read(nvt, CIR_IRSTS);
931 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
932 
933 	/* IRQ may be shared with CIR WAKE, therefore check for each
934 	 * status bit whether the related interrupt source is enabled
935 	 */
936 	if (!(status & iren)) {
937 		spin_unlock_irqrestore(&nvt->nvt_lock, flags);
938 		nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
939 		return IRQ_NONE;
940 	}
941 
942 	/* ack/clear all irq flags we've got */
943 	nvt_cir_reg_write(nvt, status, CIR_IRSTS);
944 	nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
945 
946 	nvt_cir_log_irqs(status, iren);
947 
948 	if (status & CIR_IRSTS_RTR) {
949 		/* FIXME: add code for study/learn mode */
950 		/* We only do rx if not tx'ing */
951 		if (nvt_cir_tx_inactive(nvt))
952 			nvt_get_rx_ir_data(nvt);
953 	}
954 
955 	if (status & CIR_IRSTS_PE) {
956 		if (nvt_cir_tx_inactive(nvt))
957 			nvt_get_rx_ir_data(nvt);
958 
959 		cur_state = nvt->study_state;
960 
961 		if (cur_state == ST_STUDY_NONE)
962 			nvt_clear_cir_fifo(nvt);
963 	}
964 
965 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
966 
967 	if (status & CIR_IRSTS_TE)
968 		nvt_clear_tx_fifo(nvt);
969 
970 	if (status & CIR_IRSTS_TTR) {
971 		unsigned int pos, count;
972 		u8 tmp;
973 
974 		spin_lock_irqsave(&nvt->tx.lock, flags);
975 
976 		pos = nvt->tx.cur_buf_num;
977 		count = nvt->tx.buf_count;
978 
979 		/* Write data into the hardware tx fifo while pos < count */
980 		if (pos < count) {
981 			nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
982 			nvt->tx.cur_buf_num++;
983 		/* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
984 		} else {
985 			tmp = nvt_cir_reg_read(nvt, CIR_IREN);
986 			nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
987 		}
988 
989 		spin_unlock_irqrestore(&nvt->tx.lock, flags);
990 
991 	}
992 
993 	if (status & CIR_IRSTS_TFU) {
994 		spin_lock_irqsave(&nvt->tx.lock, flags);
995 		if (nvt->tx.tx_state == ST_TX_REPLY) {
996 			nvt->tx.tx_state = ST_TX_REQUEST;
997 			wake_up(&nvt->tx.queue);
998 		}
999 		spin_unlock_irqrestore(&nvt->tx.lock, flags);
1000 	}
1001 
1002 	nvt_dbg_verbose("%s done", __func__);
1003 	return IRQ_HANDLED;
1004 }
1005 
1006 /* Interrupt service routine for CIR Wake */
1007 static irqreturn_t nvt_cir_wake_isr(int irq, void *data)
1008 {
1009 	u8 status, iren, val;
1010 	struct nvt_dev *nvt = data;
1011 	unsigned long flags;
1012 
1013 	nvt_dbg_wake("%s firing", __func__);
1014 
1015 	spin_lock_irqsave(&nvt->nvt_lock, flags);
1016 
1017 	status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS);
1018 	iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN);
1019 
1020 	/* IRQ may be shared with CIR, therefore check for each
1021 	 * status bit whether the related interrupt source is enabled
1022 	 */
1023 	if (!(status & iren)) {
1024 		spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1025 		return IRQ_NONE;
1026 	}
1027 
1028 	if (status & CIR_WAKE_IRSTS_IR_PENDING)
1029 		nvt_clear_cir_wake_fifo(nvt);
1030 
1031 	nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS);
1032 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS);
1033 
1034 	if ((status & CIR_WAKE_IRSTS_PE) &&
1035 	    (nvt->wake_state == ST_WAKE_START)) {
1036 		while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) {
1037 			val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
1038 			nvt_dbg("setting wake up key: 0x%x", val);
1039 		}
1040 
1041 		nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
1042 		nvt->wake_state = ST_WAKE_FINISH;
1043 	}
1044 
1045 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1046 
1047 	nvt_dbg_wake("%s done", __func__);
1048 	return IRQ_HANDLED;
1049 }
1050 
1051 static void nvt_disable_cir(struct nvt_dev *nvt)
1052 {
1053 	unsigned long flags;
1054 
1055 	spin_lock_irqsave(&nvt->nvt_lock, flags);
1056 
1057 	/* disable CIR interrupts */
1058 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1059 
1060 	/* clear any and all pending interrupts */
1061 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
1062 
1063 	/* clear all function enable flags */
1064 	nvt_cir_reg_write(nvt, 0, CIR_IRCON);
1065 
1066 	/* clear hardware rx and tx fifos */
1067 	nvt_clear_cir_fifo(nvt);
1068 	nvt_clear_tx_fifo(nvt);
1069 
1070 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1071 
1072 	/* disable the CIR logical device */
1073 	nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
1074 }
1075 
1076 static int nvt_open(struct rc_dev *dev)
1077 {
1078 	struct nvt_dev *nvt = dev->priv;
1079 	unsigned long flags;
1080 
1081 	spin_lock_irqsave(&nvt->nvt_lock, flags);
1082 
1083 	/* set function enable flags */
1084 	nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
1085 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
1086 			  CIR_IRCON);
1087 
1088 	/* clear all pending interrupts */
1089 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
1090 
1091 	/* enable interrupts */
1092 	nvt_set_cir_iren(nvt);
1093 
1094 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1095 
1096 	/* enable the CIR logical device */
1097 	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
1098 
1099 	return 0;
1100 }
1101 
1102 static void nvt_close(struct rc_dev *dev)
1103 {
1104 	struct nvt_dev *nvt = dev->priv;
1105 
1106 	nvt_disable_cir(nvt);
1107 }
1108 
1109 /* Allocate memory, probe hardware, and initialize everything */
1110 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
1111 {
1112 	struct nvt_dev *nvt;
1113 	struct rc_dev *rdev;
1114 	int ret = -ENOMEM;
1115 
1116 	nvt = devm_kzalloc(&pdev->dev, sizeof(struct nvt_dev), GFP_KERNEL);
1117 	if (!nvt)
1118 		return ret;
1119 
1120 	/* input device for IR remote (and tx) */
1121 	rdev = rc_allocate_device();
1122 	if (!rdev)
1123 		goto exit_free_dev_rdev;
1124 
1125 	ret = -ENODEV;
1126 	/* activate pnp device */
1127 	if (pnp_activate_dev(pdev) < 0) {
1128 		dev_err(&pdev->dev, "Could not activate PNP device!\n");
1129 		goto exit_free_dev_rdev;
1130 	}
1131 
1132 	/* validate pnp resources */
1133 	if (!pnp_port_valid(pdev, 0) ||
1134 	    pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
1135 		dev_err(&pdev->dev, "IR PNP Port not valid!\n");
1136 		goto exit_free_dev_rdev;
1137 	}
1138 
1139 	if (!pnp_irq_valid(pdev, 0)) {
1140 		dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1141 		goto exit_free_dev_rdev;
1142 	}
1143 
1144 	if (!pnp_port_valid(pdev, 1) ||
1145 	    pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
1146 		dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1147 		goto exit_free_dev_rdev;
1148 	}
1149 
1150 	nvt->cir_addr = pnp_port_start(pdev, 0);
1151 	nvt->cir_irq  = pnp_irq(pdev, 0);
1152 
1153 	nvt->cir_wake_addr = pnp_port_start(pdev, 1);
1154 	/* irq is always shared between cir and cir wake */
1155 	nvt->cir_wake_irq  = nvt->cir_irq;
1156 
1157 	nvt->cr_efir = CR_EFIR;
1158 	nvt->cr_efdr = CR_EFDR;
1159 
1160 	spin_lock_init(&nvt->nvt_lock);
1161 	spin_lock_init(&nvt->tx.lock);
1162 
1163 	pnp_set_drvdata(pdev, nvt);
1164 	nvt->pdev = pdev;
1165 
1166 	init_waitqueue_head(&nvt->tx.queue);
1167 
1168 	ret = nvt_hw_detect(nvt);
1169 	if (ret)
1170 		goto exit_free_dev_rdev;
1171 
1172 	/* Initialize CIR & CIR Wake Logical Devices */
1173 	nvt_efm_enable(nvt);
1174 	nvt_cir_ldev_init(nvt);
1175 	nvt_cir_wake_ldev_init(nvt);
1176 	nvt_efm_disable(nvt);
1177 
1178 	/*
1179 	 * Initialize CIR & CIR Wake Config Registers
1180 	 * and enable logical devices
1181 	 */
1182 	nvt_cir_regs_init(nvt);
1183 	nvt_cir_wake_regs_init(nvt);
1184 
1185 	/* Set up the rc device */
1186 	rdev->priv = nvt;
1187 	rdev->driver_type = RC_DRIVER_IR_RAW;
1188 	rdev->allowed_protocols = RC_BIT_ALL;
1189 	rdev->open = nvt_open;
1190 	rdev->close = nvt_close;
1191 	rdev->tx_ir = nvt_tx_ir;
1192 	rdev->s_tx_carrier = nvt_set_tx_carrier;
1193 	rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1194 	rdev->input_phys = "nuvoton/cir0";
1195 	rdev->input_id.bustype = BUS_HOST;
1196 	rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1197 	rdev->input_id.product = nvt->chip_major;
1198 	rdev->input_id.version = nvt->chip_minor;
1199 	rdev->dev.parent = &pdev->dev;
1200 	rdev->driver_name = NVT_DRIVER_NAME;
1201 	rdev->map_name = RC_MAP_RC6_MCE;
1202 	rdev->timeout = MS_TO_NS(100);
1203 	/* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1204 	rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1205 #if 0
1206 	rdev->min_timeout = XYZ;
1207 	rdev->max_timeout = XYZ;
1208 	/* tx bits */
1209 	rdev->tx_resolution = XYZ;
1210 #endif
1211 	nvt->rdev = rdev;
1212 
1213 	ret = rc_register_device(rdev);
1214 	if (ret)
1215 		goto exit_free_dev_rdev;
1216 
1217 	ret = -EBUSY;
1218 	/* now claim resources */
1219 	if (!devm_request_region(&pdev->dev, nvt->cir_addr,
1220 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1221 		goto exit_unregister_device;
1222 
1223 	if (devm_request_irq(&pdev->dev, nvt->cir_irq, nvt_cir_isr,
1224 			     IRQF_SHARED, NVT_DRIVER_NAME, (void *)nvt))
1225 		goto exit_unregister_device;
1226 
1227 	if (!devm_request_region(&pdev->dev, nvt->cir_wake_addr,
1228 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME "-wake"))
1229 		goto exit_unregister_device;
1230 
1231 	if (devm_request_irq(&pdev->dev, nvt->cir_wake_irq,
1232 			     nvt_cir_wake_isr, IRQF_SHARED,
1233 			     NVT_DRIVER_NAME "-wake", (void *)nvt))
1234 		goto exit_unregister_device;
1235 
1236 	ret = device_create_file(&rdev->dev, &dev_attr_wakeup_data);
1237 	if (ret)
1238 		goto exit_unregister_device;
1239 
1240 	device_init_wakeup(&pdev->dev, true);
1241 
1242 	dev_notice(&pdev->dev, "driver has been successfully loaded\n");
1243 	if (debug) {
1244 		cir_dump_regs(nvt);
1245 		cir_wake_dump_regs(nvt);
1246 	}
1247 
1248 	return 0;
1249 
1250 exit_unregister_device:
1251 	rc_unregister_device(rdev);
1252 	rdev = NULL;
1253 exit_free_dev_rdev:
1254 	rc_free_device(rdev);
1255 
1256 	return ret;
1257 }
1258 
1259 static void nvt_remove(struct pnp_dev *pdev)
1260 {
1261 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1262 
1263 	device_remove_file(&nvt->rdev->dev, &dev_attr_wakeup_data);
1264 
1265 	nvt_disable_cir(nvt);
1266 
1267 	/* enable CIR Wake (for IR power-on) */
1268 	nvt_enable_wake(nvt);
1269 
1270 	rc_unregister_device(nvt->rdev);
1271 }
1272 
1273 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1274 {
1275 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1276 	unsigned long flags;
1277 
1278 	nvt_dbg("%s called", __func__);
1279 
1280 	spin_lock_irqsave(&nvt->tx.lock, flags);
1281 	nvt->tx.tx_state = ST_TX_NONE;
1282 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
1283 
1284 	spin_lock_irqsave(&nvt->nvt_lock, flags);
1285 
1286 	/* zero out misc state tracking */
1287 	nvt->study_state = ST_STUDY_NONE;
1288 	nvt->wake_state = ST_WAKE_NONE;
1289 
1290 	/* disable all CIR interrupts */
1291 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1292 
1293 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1294 
1295 	/* disable cir logical dev */
1296 	nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
1297 
1298 	/* make sure wake is enabled */
1299 	nvt_enable_wake(nvt);
1300 
1301 	return 0;
1302 }
1303 
1304 static int nvt_resume(struct pnp_dev *pdev)
1305 {
1306 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1307 
1308 	nvt_dbg("%s called", __func__);
1309 
1310 	nvt_cir_regs_init(nvt);
1311 	nvt_cir_wake_regs_init(nvt);
1312 
1313 	return 0;
1314 }
1315 
1316 static void nvt_shutdown(struct pnp_dev *pdev)
1317 {
1318 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1319 
1320 	nvt_enable_wake(nvt);
1321 }
1322 
1323 static const struct pnp_device_id nvt_ids[] = {
1324 	{ "WEC0530", 0 },   /* CIR */
1325 	{ "NTN0530", 0 },   /* CIR for new chip's pnp id*/
1326 	{ "", 0 },
1327 };
1328 
1329 static struct pnp_driver nvt_driver = {
1330 	.name		= NVT_DRIVER_NAME,
1331 	.id_table	= nvt_ids,
1332 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1333 	.probe		= nvt_probe,
1334 	.remove		= nvt_remove,
1335 	.suspend	= nvt_suspend,
1336 	.resume		= nvt_resume,
1337 	.shutdown	= nvt_shutdown,
1338 };
1339 
1340 module_param(debug, int, S_IRUGO | S_IWUSR);
1341 MODULE_PARM_DESC(debug, "Enable debugging output");
1342 
1343 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1344 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1345 
1346 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1347 MODULE_LICENSE("GPL");
1348 
1349 module_pnp_driver(nvt_driver);
1350