xref: /linux/drivers/media/rc/nuvoton-cir.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
3  *
4  * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5  * Copyright (C) 2009 Nuvoton PS Team
6  *
7  * Special thanks to Nuvoton for providing hardware, spec sheets and
8  * sample code upon which portions of this driver are based. Indirect
9  * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10  * modeled after.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
25  * USA
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pnp.h>
33 #include <linux/io.h>
34 #include <linux/interrupt.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <media/rc-core.h>
38 #include <linux/pci_ids.h>
39 
40 #include "nuvoton-cir.h"
41 
42 /* write val to config reg */
43 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
44 {
45 	outb(reg, nvt->cr_efir);
46 	outb(val, nvt->cr_efdr);
47 }
48 
49 /* read val from config reg */
50 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
51 {
52 	outb(reg, nvt->cr_efir);
53 	return inb(nvt->cr_efdr);
54 }
55 
56 /* update config register bit without changing other bits */
57 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
58 {
59 	u8 tmp = nvt_cr_read(nvt, reg) | val;
60 	nvt_cr_write(nvt, tmp, reg);
61 }
62 
63 /* clear config register bit without changing other bits */
64 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
65 {
66 	u8 tmp = nvt_cr_read(nvt, reg) & ~val;
67 	nvt_cr_write(nvt, tmp, reg);
68 }
69 
70 /* enter extended function mode */
71 static inline void nvt_efm_enable(struct nvt_dev *nvt)
72 {
73 	/* Enabling Extended Function Mode explicitly requires writing 2x */
74 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
75 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
76 }
77 
78 /* exit extended function mode */
79 static inline void nvt_efm_disable(struct nvt_dev *nvt)
80 {
81 	outb(EFER_EFM_DISABLE, nvt->cr_efir);
82 }
83 
84 /*
85  * When you want to address a specific logical device, write its logical
86  * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
87  * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
88  */
89 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
90 {
91 	outb(CR_LOGICAL_DEV_SEL, nvt->cr_efir);
92 	outb(ldev, nvt->cr_efdr);
93 }
94 
95 /* write val to cir config register */
96 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
97 {
98 	outb(val, nvt->cir_addr + offset);
99 }
100 
101 /* read val from cir config register */
102 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
103 {
104 	u8 val;
105 
106 	val = inb(nvt->cir_addr + offset);
107 
108 	return val;
109 }
110 
111 /* write val to cir wake register */
112 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
113 					  u8 val, u8 offset)
114 {
115 	outb(val, nvt->cir_wake_addr + offset);
116 }
117 
118 /* read val from cir wake config register */
119 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
120 {
121 	u8 val;
122 
123 	val = inb(nvt->cir_wake_addr + offset);
124 
125 	return val;
126 }
127 
128 /* dump current cir register contents */
129 static void cir_dump_regs(struct nvt_dev *nvt)
130 {
131 	nvt_efm_enable(nvt);
132 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
133 
134 	pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
135 	pr_info(" * CR CIR ACTIVE :   0x%x\n",
136 		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
137 	pr_info(" * CR CIR BASE ADDR: 0x%x\n",
138 		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
139 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
140 	pr_info(" * CR CIR IRQ NUM:   0x%x\n",
141 		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
142 
143 	nvt_efm_disable(nvt);
144 
145 	pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
146 	pr_info(" * IRCON:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
147 	pr_info(" * IRSTS:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
148 	pr_info(" * IREN:      0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
149 	pr_info(" * RXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
150 	pr_info(" * CP:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
151 	pr_info(" * CC:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
152 	pr_info(" * SLCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
153 	pr_info(" * SLCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
154 	pr_info(" * FIFOCON:   0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
155 	pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
156 	pr_info(" * SRXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
157 	pr_info(" * TXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
158 	pr_info(" * STXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
159 	pr_info(" * FCCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
160 	pr_info(" * FCCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
161 	pr_info(" * IRFSM:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
162 }
163 
164 /* dump current cir wake register contents */
165 static void cir_wake_dump_regs(struct nvt_dev *nvt)
166 {
167 	u8 i, fifo_len;
168 
169 	nvt_efm_enable(nvt);
170 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
171 
172 	pr_info("%s: Dump CIR WAKE logical device registers:\n",
173 		NVT_DRIVER_NAME);
174 	pr_info(" * CR CIR WAKE ACTIVE :   0x%x\n",
175 		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
176 	pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
177 		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
178 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
179 	pr_info(" * CR CIR WAKE IRQ NUM:   0x%x\n",
180 		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
181 
182 	nvt_efm_disable(nvt);
183 
184 	pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
185 	pr_info(" * IRCON:          0x%x\n",
186 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
187 	pr_info(" * IRSTS:          0x%x\n",
188 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
189 	pr_info(" * IREN:           0x%x\n",
190 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
191 	pr_info(" * FIFO CMP DEEP:  0x%x\n",
192 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
193 	pr_info(" * FIFO CMP TOL:   0x%x\n",
194 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
195 	pr_info(" * FIFO COUNT:     0x%x\n",
196 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
197 	pr_info(" * SLCH:           0x%x\n",
198 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
199 	pr_info(" * SLCL:           0x%x\n",
200 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
201 	pr_info(" * FIFOCON:        0x%x\n",
202 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
203 	pr_info(" * SRXFSTS:        0x%x\n",
204 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
205 	pr_info(" * SAMPLE RX FIFO: 0x%x\n",
206 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
207 	pr_info(" * WR FIFO DATA:   0x%x\n",
208 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
209 	pr_info(" * RD FIFO ONLY:   0x%x\n",
210 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
211 	pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
212 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
213 	pr_info(" * FIFO IGNORE:    0x%x\n",
214 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
215 	pr_info(" * IRFSM:          0x%x\n",
216 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
217 
218 	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
219 	pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
220 	pr_info("* Contents =");
221 	for (i = 0; i < fifo_len; i++)
222 		pr_cont(" %02x",
223 			nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
224 	pr_cont("\n");
225 }
226 
227 /* detect hardware features */
228 static int nvt_hw_detect(struct nvt_dev *nvt)
229 {
230 	unsigned long flags;
231 	u8 chip_major, chip_minor;
232 	char chip_id[12];
233 	bool chip_unknown = false;
234 
235 	nvt_efm_enable(nvt);
236 
237 	/* Check if we're wired for the alternate EFER setup */
238 	chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
239 	if (chip_major == 0xff) {
240 		nvt->cr_efir = CR_EFIR2;
241 		nvt->cr_efdr = CR_EFDR2;
242 		nvt_efm_enable(nvt);
243 		chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
244 	}
245 
246 	chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
247 
248 	/* these are the known working chip revisions... */
249 	switch (chip_major) {
250 	case CHIP_ID_HIGH_667:
251 		strcpy(chip_id, "w83667hg\0");
252 		if (chip_minor != CHIP_ID_LOW_667)
253 			chip_unknown = true;
254 		break;
255 	case CHIP_ID_HIGH_677B:
256 		strcpy(chip_id, "w83677hg\0");
257 		if (chip_minor != CHIP_ID_LOW_677B2 &&
258 		    chip_minor != CHIP_ID_LOW_677B3)
259 			chip_unknown = true;
260 		break;
261 	case CHIP_ID_HIGH_677C:
262 		strcpy(chip_id, "w83677hg-c\0");
263 		if (chip_minor != CHIP_ID_LOW_677C)
264 			chip_unknown = true;
265 		break;
266 	default:
267 		strcpy(chip_id, "w836x7hg\0");
268 		chip_unknown = true;
269 		break;
270 	}
271 
272 	/* warn, but still let the driver load, if we don't know this chip */
273 	if (chip_unknown)
274 		nvt_pr(KERN_WARNING, "%s: unknown chip, id: 0x%02x 0x%02x, "
275 		       "it may not work...", chip_id, chip_major, chip_minor);
276 	else
277 		nvt_dbg("%s: chip id: 0x%02x 0x%02x",
278 			chip_id, chip_major, chip_minor);
279 
280 	nvt_efm_disable(nvt);
281 
282 	spin_lock_irqsave(&nvt->nvt_lock, flags);
283 	nvt->chip_major = chip_major;
284 	nvt->chip_minor = chip_minor;
285 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
286 
287 	return 0;
288 }
289 
290 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
291 {
292 	u8 val, psreg, psmask, psval;
293 
294 	if (nvt->chip_major == CHIP_ID_HIGH_667) {
295 		psreg = CR_MULTIFUNC_PIN_SEL;
296 		psmask = MULTIFUNC_PIN_SEL_MASK;
297 		psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
298 	} else {
299 		psreg = CR_OUTPUT_PIN_SEL;
300 		psmask = OUTPUT_PIN_SEL_MASK;
301 		psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
302 	}
303 
304 	/* output pin selection: enable CIR, with WB sensor enabled */
305 	val = nvt_cr_read(nvt, psreg);
306 	val &= psmask;
307 	val |= psval;
308 	nvt_cr_write(nvt, val, psreg);
309 
310 	/* Select CIR logical device and enable */
311 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
312 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
313 
314 	nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI);
315 	nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO);
316 
317 	nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
318 
319 	nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
320 		nvt->cir_addr, nvt->cir_irq);
321 }
322 
323 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
324 {
325 	/* Select ACPI logical device, enable it and CIR Wake */
326 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
327 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
328 
329 	/* Enable CIR Wake via PSOUT# (Pin60) */
330 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
331 
332 	/* enable pme interrupt of cir wakeup event */
333 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
334 
335 	/* Select CIR Wake logical device and enable */
336 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
337 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
338 
339 	nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI);
340 	nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO);
341 
342 	nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC);
343 
344 	nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
345 		nvt->cir_wake_addr, nvt->cir_wake_irq);
346 }
347 
348 /* clear out the hardware's cir rx fifo */
349 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
350 {
351 	u8 val;
352 
353 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
354 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
355 }
356 
357 /* clear out the hardware's cir wake rx fifo */
358 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
359 {
360 	u8 val;
361 
362 	val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
363 	nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
364 			       CIR_WAKE_FIFOCON);
365 }
366 
367 /* clear out the hardware's cir tx fifo */
368 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
369 {
370 	u8 val;
371 
372 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
373 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
374 }
375 
376 /* enable RX Trigger Level Reach and Packet End interrupts */
377 static void nvt_set_cir_iren(struct nvt_dev *nvt)
378 {
379 	u8 iren;
380 
381 	iren = CIR_IREN_RTR | CIR_IREN_PE;
382 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
383 }
384 
385 static void nvt_cir_regs_init(struct nvt_dev *nvt)
386 {
387 	/* set sample limit count (PE interrupt raised when reached) */
388 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
389 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
390 
391 	/* set fifo irq trigger levels */
392 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
393 			  CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
394 
395 	/*
396 	 * Enable TX and RX, specify carrier on = low, off = high, and set
397 	 * sample period (currently 50us)
398 	 */
399 	nvt_cir_reg_write(nvt,
400 			  CIR_IRCON_TXEN | CIR_IRCON_RXEN |
401 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
402 			  CIR_IRCON);
403 
404 	/* clear hardware rx and tx fifos */
405 	nvt_clear_cir_fifo(nvt);
406 	nvt_clear_tx_fifo(nvt);
407 
408 	/* clear any and all stray interrupts */
409 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
410 
411 	/* and finally, enable interrupts */
412 	nvt_set_cir_iren(nvt);
413 }
414 
415 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
416 {
417 	/* set number of bytes needed for wake from s3 (default 65) */
418 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES,
419 			       CIR_WAKE_FIFO_CMP_DEEP);
420 
421 	/* set tolerance/variance allowed per byte during wake compare */
422 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE,
423 			       CIR_WAKE_FIFO_CMP_TOL);
424 
425 	/* set sample limit count (PE interrupt raised when reached) */
426 	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH);
427 	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL);
428 
429 	/* set cir wake fifo rx trigger level (currently 67) */
430 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV,
431 			       CIR_WAKE_FIFOCON);
432 
433 	/*
434 	 * Enable TX and RX, specific carrier on = low, off = high, and set
435 	 * sample period (currently 50us)
436 	 */
437 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
438 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
439 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
440 			       CIR_WAKE_IRCON);
441 
442 	/* clear cir wake rx fifo */
443 	nvt_clear_cir_wake_fifo(nvt);
444 
445 	/* clear any and all stray interrupts */
446 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
447 }
448 
449 static void nvt_enable_wake(struct nvt_dev *nvt)
450 {
451 	nvt_efm_enable(nvt);
452 
453 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
454 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
455 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
456 
457 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
458 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
459 
460 	nvt_efm_disable(nvt);
461 
462 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
463 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
464 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
465 			       CIR_WAKE_IRCON);
466 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
467 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
468 }
469 
470 #if 0 /* Currently unused */
471 /* rx carrier detect only works in learning mode, must be called w/nvt_lock */
472 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
473 {
474 	u32 count, carrier, duration = 0;
475 	int i;
476 
477 	count = nvt_cir_reg_read(nvt, CIR_FCCL) |
478 		nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
479 
480 	for (i = 0; i < nvt->pkts; i++) {
481 		if (nvt->buf[i] & BUF_PULSE_BIT)
482 			duration += nvt->buf[i] & BUF_LEN_MASK;
483 	}
484 
485 	duration *= SAMPLE_PERIOD;
486 
487 	if (!count || !duration) {
488 		nvt_pr(KERN_NOTICE, "Unable to determine carrier! (c:%u, d:%u)",
489 		       count, duration);
490 		return 0;
491 	}
492 
493 	carrier = MS_TO_NS(count) / duration;
494 
495 	if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
496 		nvt_dbg("WTF? Carrier frequency out of range!");
497 
498 	nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
499 		carrier, count, duration);
500 
501 	return carrier;
502 }
503 #endif
504 /*
505  * set carrier frequency
506  *
507  * set carrier on 2 registers: CP & CC
508  * always set CP as 0x81
509  * set CC by SPEC, CC = 3MHz/carrier - 1
510  */
511 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
512 {
513 	struct nvt_dev *nvt = dev->priv;
514 	u16 val;
515 
516 	if (carrier == 0)
517 		return -EINVAL;
518 
519 	nvt_cir_reg_write(nvt, 1, CIR_CP);
520 	val = 3000000 / (carrier) - 1;
521 	nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
522 
523 	nvt_dbg("cp: 0x%x cc: 0x%x\n",
524 		nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
525 
526 	return 0;
527 }
528 
529 static int nvt_write_wakeup_codes(struct rc_dev *dev,
530 				  const u8 *wakeup_sample_buf, int count)
531 {
532 	int i = 0;
533 	u8 reg, reg_learn_mode;
534 	unsigned long flags;
535 	struct nvt_dev *nvt = dev->priv;
536 
537 	nvt_dbg_wake("writing wakeup samples");
538 
539 	reg = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
540 	reg_learn_mode = reg & ~CIR_WAKE_IRCON_MODE0;
541 	reg_learn_mode |= CIR_WAKE_IRCON_MODE1;
542 
543 	/* Lock the learn area to prevent racing with wake-isr */
544 	spin_lock_irqsave(&nvt->nvt_lock, flags);
545 
546 	/* Enable fifo writes */
547 	nvt_cir_wake_reg_write(nvt, reg_learn_mode, CIR_WAKE_IRCON);
548 
549 	/* Clear cir wake rx fifo */
550 	nvt_clear_cir_wake_fifo(nvt);
551 
552 	if (count > WAKE_FIFO_LEN) {
553 		nvt_dbg_wake("HW FIFO too small for all wake samples");
554 		count = WAKE_FIFO_LEN;
555 	}
556 
557 	if (count)
558 		pr_info("Wake samples (%d) =", count);
559 	else
560 		pr_info("Wake sample fifo cleared");
561 
562 	/* Write wake samples to fifo */
563 	for (i = 0; i < count; i++) {
564 		pr_cont(" %02x", wakeup_sample_buf[i]);
565 		nvt_cir_wake_reg_write(nvt, wakeup_sample_buf[i],
566 				       CIR_WAKE_WR_FIFO_DATA);
567 	}
568 	pr_cont("\n");
569 
570 	/* Switch cir to wakeup mode and disable fifo writing */
571 	nvt_cir_wake_reg_write(nvt, reg, CIR_WAKE_IRCON);
572 
573 	/* Set number of bytes needed for wake */
574 	nvt_cir_wake_reg_write(nvt, count ? count :
575 			       CIR_WAKE_FIFO_CMP_BYTES,
576 			       CIR_WAKE_FIFO_CMP_DEEP);
577 
578 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
579 
580 	return 0;
581 }
582 
583 static int nvt_ir_raw_set_wakeup_filter(struct rc_dev *dev,
584 					struct rc_scancode_filter *sc_filter)
585 {
586 	u8 *reg_buf;
587 	u8 buf_val;
588 	int i, ret, count;
589 	unsigned int val;
590 	struct ir_raw_event *raw;
591 	bool complete;
592 
593 	/* Require both mask and data to be set before actually committing */
594 	if (!sc_filter->mask || !sc_filter->data)
595 		return 0;
596 
597 	raw = kmalloc_array(WAKE_FIFO_LEN, sizeof(*raw), GFP_KERNEL);
598 	if (!raw)
599 		return -ENOMEM;
600 
601 	ret = ir_raw_encode_scancode(dev->enabled_wakeup_protocols, sc_filter,
602 				     raw, WAKE_FIFO_LEN);
603 	complete = (ret != -ENOBUFS);
604 	if (!complete)
605 		ret = WAKE_FIFO_LEN;
606 	else if (ret < 0)
607 		goto out_raw;
608 
609 	reg_buf = kmalloc_array(WAKE_FIFO_LEN, sizeof(*reg_buf), GFP_KERNEL);
610 	if (!reg_buf) {
611 		ret = -ENOMEM;
612 		goto out_raw;
613 	}
614 
615 	/* Inspect the ir samples */
616 	for (i = 0, count = 0; i < ret && count < WAKE_FIFO_LEN; ++i) {
617 		val = NS_TO_US((raw[i]).duration) / SAMPLE_PERIOD;
618 
619 		/* Split too large values into several smaller ones */
620 		while (val > 0 && count < WAKE_FIFO_LEN) {
621 
622 			/* Skip last value for better comparison tolerance */
623 			if (complete && i == ret - 1 && val < BUF_LEN_MASK)
624 				break;
625 
626 			/* Clamp values to BUF_LEN_MASK at most */
627 			buf_val = (val > BUF_LEN_MASK) ? BUF_LEN_MASK : val;
628 
629 			reg_buf[count] = buf_val;
630 			val -= buf_val;
631 			if ((raw[i]).pulse)
632 				reg_buf[count] |= BUF_PULSE_BIT;
633 			count++;
634 		}
635 	}
636 
637 	ret = nvt_write_wakeup_codes(dev, reg_buf, count);
638 
639 	kfree(reg_buf);
640 out_raw:
641 	kfree(raw);
642 
643 	return ret;
644 }
645 
646 /* Dummy implementation. nuvoton is agnostic to the protocol used */
647 static int nvt_ir_raw_change_wakeup_protocol(struct rc_dev *dev,
648 					     u64 *rc_type)
649 {
650 	return 0;
651 }
652 
653 /*
654  * nvt_tx_ir
655  *
656  * 1) clean TX fifo first (handled by AP)
657  * 2) copy data from user space
658  * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
659  * 4) send 9 packets to TX FIFO to open TTR
660  * in interrupt_handler:
661  * 5) send all data out
662  * go back to write():
663  * 6) disable TX interrupts, re-enable RX interupts
664  *
665  * The key problem of this function is user space data may larger than
666  * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
667  * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
668  * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
669  * set TXFCONT as 0xff, until buf_count less than 0xff.
670  */
671 static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n)
672 {
673 	struct nvt_dev *nvt = dev->priv;
674 	unsigned long flags;
675 	unsigned int i;
676 	u8 iren;
677 	int ret;
678 
679 	spin_lock_irqsave(&nvt->tx.lock, flags);
680 
681 	ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n);
682 	nvt->tx.buf_count = (ret * sizeof(unsigned));
683 
684 	memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
685 
686 	nvt->tx.cur_buf_num = 0;
687 
688 	/* save currently enabled interrupts */
689 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
690 
691 	/* now disable all interrupts, save TFU & TTR */
692 	nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
693 
694 	nvt->tx.tx_state = ST_TX_REPLY;
695 
696 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
697 			  CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
698 
699 	/* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
700 	for (i = 0; i < 9; i++)
701 		nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
702 
703 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
704 
705 	wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
706 
707 	spin_lock_irqsave(&nvt->tx.lock, flags);
708 	nvt->tx.tx_state = ST_TX_NONE;
709 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
710 
711 	/* restore enabled interrupts to prior state */
712 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
713 
714 	return ret;
715 }
716 
717 /* dump contents of the last rx buffer we got from the hw rx fifo */
718 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
719 {
720 	int i;
721 
722 	printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
723 	for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
724 		printk(KERN_CONT "0x%02x ", nvt->buf[i]);
725 	printk(KERN_CONT "\n");
726 }
727 
728 /*
729  * Process raw data in rx driver buffer, store it in raw IR event kfifo,
730  * trigger decode when appropriate.
731  *
732  * We get IR data samples one byte at a time. If the msb is set, its a pulse,
733  * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
734  * (default 50us) intervals for that pulse/space. A discrete signal is
735  * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
736  * to signal more IR coming (repeats) or end of IR, respectively. We store
737  * sample data in the raw event kfifo until we see 0x7<something> (except f)
738  * or 0x80, at which time, we trigger a decode operation.
739  */
740 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
741 {
742 	DEFINE_IR_RAW_EVENT(rawir);
743 	u8 sample;
744 	int i;
745 
746 	nvt_dbg_verbose("%s firing", __func__);
747 
748 	if (debug)
749 		nvt_dump_rx_buf(nvt);
750 
751 	nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
752 
753 	init_ir_raw_event(&rawir);
754 
755 	for (i = 0; i < nvt->pkts; i++) {
756 		sample = nvt->buf[i];
757 
758 		rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
759 		rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
760 					  * SAMPLE_PERIOD);
761 
762 		nvt_dbg("Storing %s with duration %d",
763 			rawir.pulse ? "pulse" : "space", rawir.duration);
764 
765 		ir_raw_event_store_with_filter(nvt->rdev, &rawir);
766 
767 		/*
768 		 * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
769 		 * indicates end of IR signal, but new data incoming. In both
770 		 * cases, it means we're ready to call ir_raw_event_handle
771 		 */
772 		if ((sample == BUF_PULSE_BIT) && (i + 1 < nvt->pkts)) {
773 			nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
774 			ir_raw_event_handle(nvt->rdev);
775 		}
776 	}
777 
778 	nvt->pkts = 0;
779 
780 	nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
781 	ir_raw_event_handle(nvt->rdev);
782 
783 	nvt_dbg_verbose("%s done", __func__);
784 }
785 
786 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
787 {
788 	nvt_pr(KERN_WARNING, "RX FIFO overrun detected, flushing data!");
789 
790 	nvt->pkts = 0;
791 	nvt_clear_cir_fifo(nvt);
792 	ir_raw_event_reset(nvt->rdev);
793 }
794 
795 /* copy data from hardware rx fifo into driver buffer */
796 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
797 {
798 	unsigned long flags;
799 	u8 fifocount, val;
800 	unsigned int b_idx;
801 	bool overrun = false;
802 	int i;
803 
804 	/* Get count of how many bytes to read from RX FIFO */
805 	fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
806 	/* if we get 0xff, probably means the logical dev is disabled */
807 	if (fifocount == 0xff)
808 		return;
809 	/* watch out for a fifo overrun condition */
810 	else if (fifocount > RX_BUF_LEN) {
811 		overrun = true;
812 		fifocount = RX_BUF_LEN;
813 	}
814 
815 	nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
816 
817 	spin_lock_irqsave(&nvt->nvt_lock, flags);
818 
819 	b_idx = nvt->pkts;
820 
821 	/* This should never happen, but lets check anyway... */
822 	if (b_idx + fifocount > RX_BUF_LEN) {
823 		nvt_process_rx_ir_data(nvt);
824 		b_idx = 0;
825 	}
826 
827 	/* Read fifocount bytes from CIR Sample RX FIFO register */
828 	for (i = 0; i < fifocount; i++) {
829 		val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
830 		nvt->buf[b_idx + i] = val;
831 	}
832 
833 	nvt->pkts += fifocount;
834 	nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
835 
836 	nvt_process_rx_ir_data(nvt);
837 
838 	if (overrun)
839 		nvt_handle_rx_fifo_overrun(nvt);
840 
841 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
842 }
843 
844 static void nvt_cir_log_irqs(u8 status, u8 iren)
845 {
846 	nvt_pr(KERN_INFO, "IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
847 		status, iren,
848 		status & CIR_IRSTS_RDR	? " RDR"	: "",
849 		status & CIR_IRSTS_RTR	? " RTR"	: "",
850 		status & CIR_IRSTS_PE	? " PE"		: "",
851 		status & CIR_IRSTS_RFO	? " RFO"	: "",
852 		status & CIR_IRSTS_TE	? " TE"		: "",
853 		status & CIR_IRSTS_TTR	? " TTR"	: "",
854 		status & CIR_IRSTS_TFU	? " TFU"	: "",
855 		status & CIR_IRSTS_GH	? " GH"		: "",
856 		status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
857 			   CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
858 			   CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
859 }
860 
861 static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
862 {
863 	unsigned long flags;
864 	bool tx_inactive;
865 	u8 tx_state;
866 
867 	spin_lock_irqsave(&nvt->tx.lock, flags);
868 	tx_state = nvt->tx.tx_state;
869 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
870 
871 	tx_inactive = (tx_state == ST_TX_NONE);
872 
873 	return tx_inactive;
874 }
875 
876 /* interrupt service routine for incoming and outgoing CIR data */
877 static irqreturn_t nvt_cir_isr(int irq, void *data)
878 {
879 	struct nvt_dev *nvt = data;
880 	u8 status, iren, cur_state;
881 	unsigned long flags;
882 
883 	nvt_dbg_verbose("%s firing", __func__);
884 
885 	nvt_efm_enable(nvt);
886 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
887 	nvt_efm_disable(nvt);
888 
889 	/*
890 	 * Get IR Status register contents. Write 1 to ack/clear
891 	 *
892 	 * bit: reg name      - description
893 	 *   7: CIR_IRSTS_RDR - RX Data Ready
894 	 *   6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
895 	 *   5: CIR_IRSTS_PE  - Packet End
896 	 *   4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
897 	 *   3: CIR_IRSTS_TE  - TX FIFO Empty
898 	 *   2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
899 	 *   1: CIR_IRSTS_TFU - TX FIFO Underrun
900 	 *   0: CIR_IRSTS_GH  - Min Length Detected
901 	 */
902 	status = nvt_cir_reg_read(nvt, CIR_IRSTS);
903 	if (!status) {
904 		nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
905 		nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
906 		return IRQ_RETVAL(IRQ_NONE);
907 	}
908 
909 	/* ack/clear all irq flags we've got */
910 	nvt_cir_reg_write(nvt, status, CIR_IRSTS);
911 	nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
912 
913 	/* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
914 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
915 	if (!iren) {
916 		nvt_dbg_verbose("%s exiting, CIR not enabled", __func__);
917 		return IRQ_RETVAL(IRQ_NONE);
918 	}
919 
920 	if (debug)
921 		nvt_cir_log_irqs(status, iren);
922 
923 	if (status & CIR_IRSTS_RTR) {
924 		/* FIXME: add code for study/learn mode */
925 		/* We only do rx if not tx'ing */
926 		if (nvt_cir_tx_inactive(nvt))
927 			nvt_get_rx_ir_data(nvt);
928 	}
929 
930 	if (status & CIR_IRSTS_PE) {
931 		if (nvt_cir_tx_inactive(nvt))
932 			nvt_get_rx_ir_data(nvt);
933 
934 		spin_lock_irqsave(&nvt->nvt_lock, flags);
935 
936 		cur_state = nvt->study_state;
937 
938 		spin_unlock_irqrestore(&nvt->nvt_lock, flags);
939 
940 		if (cur_state == ST_STUDY_NONE)
941 			nvt_clear_cir_fifo(nvt);
942 	}
943 
944 	if (status & CIR_IRSTS_TE)
945 		nvt_clear_tx_fifo(nvt);
946 
947 	if (status & CIR_IRSTS_TTR) {
948 		unsigned int pos, count;
949 		u8 tmp;
950 
951 		spin_lock_irqsave(&nvt->tx.lock, flags);
952 
953 		pos = nvt->tx.cur_buf_num;
954 		count = nvt->tx.buf_count;
955 
956 		/* Write data into the hardware tx fifo while pos < count */
957 		if (pos < count) {
958 			nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
959 			nvt->tx.cur_buf_num++;
960 		/* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
961 		} else {
962 			tmp = nvt_cir_reg_read(nvt, CIR_IREN);
963 			nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
964 		}
965 
966 		spin_unlock_irqrestore(&nvt->tx.lock, flags);
967 
968 	}
969 
970 	if (status & CIR_IRSTS_TFU) {
971 		spin_lock_irqsave(&nvt->tx.lock, flags);
972 		if (nvt->tx.tx_state == ST_TX_REPLY) {
973 			nvt->tx.tx_state = ST_TX_REQUEST;
974 			wake_up(&nvt->tx.queue);
975 		}
976 		spin_unlock_irqrestore(&nvt->tx.lock, flags);
977 	}
978 
979 	nvt_dbg_verbose("%s done", __func__);
980 	return IRQ_RETVAL(IRQ_HANDLED);
981 }
982 
983 /* Interrupt service routine for CIR Wake */
984 static irqreturn_t nvt_cir_wake_isr(int irq, void *data)
985 {
986 	u8 status, iren, val;
987 	struct nvt_dev *nvt = data;
988 	unsigned long flags;
989 
990 	nvt_dbg_wake("%s firing", __func__);
991 
992 	status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS);
993 	if (!status)
994 		return IRQ_RETVAL(IRQ_NONE);
995 
996 	if (status & CIR_WAKE_IRSTS_IR_PENDING)
997 		nvt_clear_cir_wake_fifo(nvt);
998 
999 	nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS);
1000 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS);
1001 
1002 	/* Interrupt may be shared with CIR, bail if Wake not enabled */
1003 	iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN);
1004 	if (!iren) {
1005 		nvt_dbg_wake("%s exiting, wake not enabled", __func__);
1006 		return IRQ_RETVAL(IRQ_HANDLED);
1007 	}
1008 
1009 	if ((status & CIR_WAKE_IRSTS_PE) &&
1010 	    (nvt->wake_state == ST_WAKE_START)) {
1011 		while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) {
1012 			val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
1013 			nvt_dbg("setting wake up key: 0x%x", val);
1014 		}
1015 
1016 		nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
1017 		spin_lock_irqsave(&nvt->nvt_lock, flags);
1018 		nvt->wake_state = ST_WAKE_FINISH;
1019 		spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1020 	}
1021 
1022 	nvt_dbg_wake("%s done", __func__);
1023 	return IRQ_RETVAL(IRQ_HANDLED);
1024 }
1025 
1026 static void nvt_enable_cir(struct nvt_dev *nvt)
1027 {
1028 	/* set function enable flags */
1029 	nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
1030 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
1031 			  CIR_IRCON);
1032 
1033 	nvt_efm_enable(nvt);
1034 
1035 	/* enable the CIR logical device */
1036 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1037 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
1038 
1039 	nvt_efm_disable(nvt);
1040 
1041 	/* clear all pending interrupts */
1042 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
1043 
1044 	/* enable interrupts */
1045 	nvt_set_cir_iren(nvt);
1046 }
1047 
1048 static void nvt_disable_cir(struct nvt_dev *nvt)
1049 {
1050 	/* disable CIR interrupts */
1051 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1052 
1053 	/* clear any and all pending interrupts */
1054 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
1055 
1056 	/* clear all function enable flags */
1057 	nvt_cir_reg_write(nvt, 0, CIR_IRCON);
1058 
1059 	/* clear hardware rx and tx fifos */
1060 	nvt_clear_cir_fifo(nvt);
1061 	nvt_clear_tx_fifo(nvt);
1062 
1063 	nvt_efm_enable(nvt);
1064 
1065 	/* disable the CIR logical device */
1066 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1067 	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
1068 
1069 	nvt_efm_disable(nvt);
1070 }
1071 
1072 static int nvt_open(struct rc_dev *dev)
1073 {
1074 	struct nvt_dev *nvt = dev->priv;
1075 	unsigned long flags;
1076 
1077 	spin_lock_irqsave(&nvt->nvt_lock, flags);
1078 	nvt_enable_cir(nvt);
1079 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1080 
1081 	return 0;
1082 }
1083 
1084 static void nvt_close(struct rc_dev *dev)
1085 {
1086 	struct nvt_dev *nvt = dev->priv;
1087 	unsigned long flags;
1088 
1089 	spin_lock_irqsave(&nvt->nvt_lock, flags);
1090 	nvt_disable_cir(nvt);
1091 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1092 }
1093 
1094 /* Allocate memory, probe hardware, and initialize everything */
1095 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
1096 {
1097 	struct nvt_dev *nvt;
1098 	struct rc_dev *rdev;
1099 	int ret = -ENOMEM;
1100 
1101 	nvt = kzalloc(sizeof(struct nvt_dev), GFP_KERNEL);
1102 	if (!nvt)
1103 		return ret;
1104 
1105 	/* input device for IR remote (and tx) */
1106 	rdev = rc_allocate_device();
1107 	if (!rdev)
1108 		goto exit_free_dev_rdev;
1109 
1110 	ret = -ENODEV;
1111 	/* activate pnp device */
1112 	if (pnp_activate_dev(pdev) < 0) {
1113 		dev_err(&pdev->dev, "Could not activate PNP device!\n");
1114 		goto exit_free_dev_rdev;
1115 	}
1116 
1117 	/* validate pnp resources */
1118 	if (!pnp_port_valid(pdev, 0) ||
1119 	    pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
1120 		dev_err(&pdev->dev, "IR PNP Port not valid!\n");
1121 		goto exit_free_dev_rdev;
1122 	}
1123 
1124 	if (!pnp_irq_valid(pdev, 0)) {
1125 		dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1126 		goto exit_free_dev_rdev;
1127 	}
1128 
1129 	if (!pnp_port_valid(pdev, 1) ||
1130 	    pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
1131 		dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1132 		goto exit_free_dev_rdev;
1133 	}
1134 
1135 	nvt->cir_addr = pnp_port_start(pdev, 0);
1136 	nvt->cir_irq  = pnp_irq(pdev, 0);
1137 
1138 	nvt->cir_wake_addr = pnp_port_start(pdev, 1);
1139 	/* irq is always shared between cir and cir wake */
1140 	nvt->cir_wake_irq  = nvt->cir_irq;
1141 
1142 	nvt->cr_efir = CR_EFIR;
1143 	nvt->cr_efdr = CR_EFDR;
1144 
1145 	spin_lock_init(&nvt->nvt_lock);
1146 	spin_lock_init(&nvt->tx.lock);
1147 
1148 	pnp_set_drvdata(pdev, nvt);
1149 	nvt->pdev = pdev;
1150 
1151 	init_waitqueue_head(&nvt->tx.queue);
1152 
1153 	ret = nvt_hw_detect(nvt);
1154 	if (ret)
1155 		goto exit_free_dev_rdev;
1156 
1157 	/* Initialize CIR & CIR Wake Logical Devices */
1158 	nvt_efm_enable(nvt);
1159 	nvt_cir_ldev_init(nvt);
1160 	nvt_cir_wake_ldev_init(nvt);
1161 	nvt_efm_disable(nvt);
1162 
1163 	/* Initialize CIR & CIR Wake Config Registers */
1164 	nvt_cir_regs_init(nvt);
1165 	nvt_cir_wake_regs_init(nvt);
1166 
1167 	/* Set up the rc device */
1168 	rdev->priv = nvt;
1169 	rdev->driver_type = RC_DRIVER_IR_RAW;
1170 	rdev->encode_wakeup = true;
1171 	rdev->allowed_protocols = RC_BIT_ALL;
1172 	rdev->open = nvt_open;
1173 	rdev->close = nvt_close;
1174 	rdev->tx_ir = nvt_tx_ir;
1175 	rdev->s_tx_carrier = nvt_set_tx_carrier;
1176 	rdev->s_wakeup_filter = nvt_ir_raw_set_wakeup_filter;
1177 	rdev->change_wakeup_protocol = nvt_ir_raw_change_wakeup_protocol;
1178 	rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1179 	rdev->input_phys = "nuvoton/cir0";
1180 	rdev->input_id.bustype = BUS_HOST;
1181 	rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1182 	rdev->input_id.product = nvt->chip_major;
1183 	rdev->input_id.version = nvt->chip_minor;
1184 	rdev->dev.parent = &pdev->dev;
1185 	rdev->driver_name = NVT_DRIVER_NAME;
1186 	rdev->map_name = RC_MAP_RC6_MCE;
1187 	rdev->timeout = MS_TO_NS(100);
1188 	/* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1189 	rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1190 #if 0
1191 	rdev->min_timeout = XYZ;
1192 	rdev->max_timeout = XYZ;
1193 	/* tx bits */
1194 	rdev->tx_resolution = XYZ;
1195 #endif
1196 	nvt->rdev = rdev;
1197 
1198 	ret = rc_register_device(rdev);
1199 	if (ret)
1200 		goto exit_free_dev_rdev;
1201 
1202 	ret = -EBUSY;
1203 	/* now claim resources */
1204 	if (!request_region(nvt->cir_addr,
1205 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1206 		goto exit_unregister_device;
1207 
1208 	if (request_irq(nvt->cir_irq, nvt_cir_isr, IRQF_SHARED,
1209 			NVT_DRIVER_NAME, (void *)nvt))
1210 		goto exit_release_cir_addr;
1211 
1212 	if (!request_region(nvt->cir_wake_addr,
1213 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1214 		goto exit_free_irq;
1215 
1216 	if (request_irq(nvt->cir_wake_irq, nvt_cir_wake_isr, IRQF_SHARED,
1217 			NVT_DRIVER_NAME, (void *)nvt))
1218 		goto exit_release_cir_wake_addr;
1219 
1220 	device_init_wakeup(&pdev->dev, true);
1221 
1222 	nvt_pr(KERN_NOTICE, "driver has been successfully loaded\n");
1223 	if (debug) {
1224 		cir_dump_regs(nvt);
1225 		cir_wake_dump_regs(nvt);
1226 	}
1227 
1228 	return 0;
1229 
1230 exit_release_cir_wake_addr:
1231 	release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1232 exit_free_irq:
1233 	free_irq(nvt->cir_irq, nvt);
1234 exit_release_cir_addr:
1235 	release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1236 exit_unregister_device:
1237 	rc_unregister_device(rdev);
1238 	rdev = NULL;
1239 exit_free_dev_rdev:
1240 	rc_free_device(rdev);
1241 	kfree(nvt);
1242 
1243 	return ret;
1244 }
1245 
1246 static void nvt_remove(struct pnp_dev *pdev)
1247 {
1248 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1249 	unsigned long flags;
1250 
1251 	spin_lock_irqsave(&nvt->nvt_lock, flags);
1252 	/* disable CIR */
1253 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1254 	nvt_disable_cir(nvt);
1255 	/* enable CIR Wake (for IR power-on) */
1256 	nvt_enable_wake(nvt);
1257 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1258 
1259 	/* free resources */
1260 	free_irq(nvt->cir_irq, nvt);
1261 	free_irq(nvt->cir_wake_irq, nvt);
1262 	release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1263 	release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1264 
1265 	rc_unregister_device(nvt->rdev);
1266 
1267 	kfree(nvt);
1268 }
1269 
1270 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1271 {
1272 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1273 	unsigned long flags;
1274 
1275 	nvt_dbg("%s called", __func__);
1276 
1277 	/* zero out misc state tracking */
1278 	spin_lock_irqsave(&nvt->nvt_lock, flags);
1279 	nvt->study_state = ST_STUDY_NONE;
1280 	nvt->wake_state = ST_WAKE_NONE;
1281 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1282 
1283 	spin_lock_irqsave(&nvt->tx.lock, flags);
1284 	nvt->tx.tx_state = ST_TX_NONE;
1285 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
1286 
1287 	/* disable all CIR interrupts */
1288 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1289 
1290 	nvt_efm_enable(nvt);
1291 
1292 	/* disable cir logical dev */
1293 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1294 	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
1295 
1296 	nvt_efm_disable(nvt);
1297 
1298 	/* make sure wake is enabled */
1299 	nvt_enable_wake(nvt);
1300 
1301 	return 0;
1302 }
1303 
1304 static int nvt_resume(struct pnp_dev *pdev)
1305 {
1306 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1307 
1308 	nvt_dbg("%s called", __func__);
1309 
1310 	/* open interrupt */
1311 	nvt_set_cir_iren(nvt);
1312 
1313 	/* Enable CIR logical device */
1314 	nvt_efm_enable(nvt);
1315 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1316 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
1317 
1318 	nvt_efm_disable(nvt);
1319 
1320 	nvt_cir_regs_init(nvt);
1321 	nvt_cir_wake_regs_init(nvt);
1322 
1323 	return 0;
1324 }
1325 
1326 static void nvt_shutdown(struct pnp_dev *pdev)
1327 {
1328 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1329 	nvt_enable_wake(nvt);
1330 }
1331 
1332 static const struct pnp_device_id nvt_ids[] = {
1333 	{ "WEC0530", 0 },   /* CIR */
1334 	{ "NTN0530", 0 },   /* CIR for new chip's pnp id*/
1335 	{ "", 0 },
1336 };
1337 
1338 static struct pnp_driver nvt_driver = {
1339 	.name		= NVT_DRIVER_NAME,
1340 	.id_table	= nvt_ids,
1341 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1342 	.probe		= nvt_probe,
1343 	.remove		= nvt_remove,
1344 	.suspend	= nvt_suspend,
1345 	.resume		= nvt_resume,
1346 	.shutdown	= nvt_shutdown,
1347 };
1348 
1349 module_param(debug, int, S_IRUGO | S_IWUSR);
1350 MODULE_PARM_DESC(debug, "Enable debugging output");
1351 
1352 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1353 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1354 
1355 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1356 MODULE_LICENSE("GPL");
1357 
1358 module_pnp_driver(nvt_driver);
1359