xref: /linux/drivers/media/rc/mtk-cir.c (revision f14aa5ea415b8add245e976bfab96a12986c6843)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for Mediatek IR Receiver Controller
4  *
5  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/io.h>
12 #include <linux/of.h>
13 #include <linux/platform_device.h>
14 #include <linux/reset.h>
15 #include <media/rc-core.h>
16 
17 #define MTK_IR_DEV KBUILD_MODNAME
18 
19 /* Register to enable PWM and IR */
20 #define MTK_CONFIG_HIGH_REG       0x0c
21 
22 /* Bit to enable IR pulse width detection */
23 #define MTK_PWM_EN		  BIT(13)
24 
25 /*
26  * Register to setting ok count whose unit based on hardware sampling period
27  * indicating IR receiving completion and then making IRQ fires
28  */
29 #define MTK_OK_COUNT_MASK	  (GENMASK(22, 16))
30 #define MTK_OK_COUNT(x)		  ((x) << 16)
31 
32 /* Bit to enable IR hardware function */
33 #define MTK_IR_EN		  BIT(0)
34 
35 /* Bit to restart IR receiving */
36 #define MTK_IRCLR		  BIT(0)
37 
38 /* Fields containing pulse width data */
39 #define MTK_WIDTH_MASK		  (GENMASK(7, 0))
40 
41 /* IR threshold */
42 #define MTK_IRTHD		 0x14
43 #define MTK_DG_CNT_MASK		 (GENMASK(12, 8))
44 #define MTK_DG_CNT(x)		 ((x) << 8)
45 
46 /* Bit to enable interrupt */
47 #define MTK_IRINT_EN		  BIT(0)
48 
49 /* Bit to clear interrupt status */
50 #define MTK_IRINT_CLR		  BIT(0)
51 
52 /* Maximum count of samples */
53 #define MTK_MAX_SAMPLES		  0xff
54 /* Indicate the end of IR message */
55 #define MTK_IR_END(v, p)	  ((v) == MTK_MAX_SAMPLES && (p) == 0)
56 /* Number of registers to record the pulse width */
57 #define MTK_CHKDATA_SZ		  17
58 /* Sample period in us */
59 #define MTK_IR_SAMPLE		  46
60 
61 enum mtk_fields {
62 	/* Register to setting software sampling period */
63 	MTK_CHK_PERIOD,
64 	/* Register to setting hardware sampling period */
65 	MTK_HW_PERIOD,
66 };
67 
68 enum mtk_regs {
69 	/* Register to clear state of state machine */
70 	MTK_IRCLR_REG,
71 	/* Register containing pulse width data */
72 	MTK_CHKDATA_REG,
73 	/* Register to enable IR interrupt */
74 	MTK_IRINT_EN_REG,
75 	/* Register to ack IR interrupt */
76 	MTK_IRINT_CLR_REG
77 };
78 
79 static const u32 mt7623_regs[] = {
80 	[MTK_IRCLR_REG] =	0x20,
81 	[MTK_CHKDATA_REG] =	0x88,
82 	[MTK_IRINT_EN_REG] =	0xcc,
83 	[MTK_IRINT_CLR_REG] =	0xd0,
84 };
85 
86 static const u32 mt7622_regs[] = {
87 	[MTK_IRCLR_REG] =	0x18,
88 	[MTK_CHKDATA_REG] =	0x30,
89 	[MTK_IRINT_EN_REG] =	0x1c,
90 	[MTK_IRINT_CLR_REG] =	0x20,
91 };
92 
93 struct mtk_field_type {
94 	u32 reg;
95 	u8 offset;
96 	u32 mask;
97 };
98 
99 /*
100  * struct mtk_ir_data -	This is the structure holding all differences among
101 			various hardwares
102  * @regs:		The pointer to the array holding registers offset
103  * @fields:		The pointer to the array holding fields location
104  * @div:		The internal divisor for the based reference clock
105  * @ok_count:		The count indicating the completion of IR data
106  *			receiving when count is reached
107  * @hw_period:		The value indicating the hardware sampling period
108  */
109 struct mtk_ir_data {
110 	const u32 *regs;
111 	const struct mtk_field_type *fields;
112 	u8 div;
113 	u8 ok_count;
114 	u32 hw_period;
115 };
116 
117 static const struct mtk_field_type mt7623_fields[] = {
118 	[MTK_CHK_PERIOD] = {0x10, 8, GENMASK(20, 8)},
119 	[MTK_HW_PERIOD] = {0x10, 0, GENMASK(7, 0)},
120 };
121 
122 static const struct mtk_field_type mt7622_fields[] = {
123 	[MTK_CHK_PERIOD] = {0x24, 0, GENMASK(24, 0)},
124 	[MTK_HW_PERIOD] = {0x10, 0, GENMASK(24, 0)},
125 };
126 
127 /*
128  * struct mtk_ir -	This is the main datasructure for holding the state
129  *			of the driver
130  * @dev:		The device pointer
131  * @rc:			The rc instrance
132  * @base:		The mapped register i/o base
133  * @irq:		The IRQ that we are using
134  * @clk:		The clock that IR internal is using
135  * @bus:		The clock that software decoder is using
136  * @data:		Holding specific data for vaious platform
137  */
138 struct mtk_ir {
139 	struct device	*dev;
140 	struct rc_dev	*rc;
141 	void __iomem	*base;
142 	int		irq;
143 	struct clk	*clk;
144 	struct clk	*bus;
145 	const struct mtk_ir_data *data;
146 };
147 
148 static inline u32 mtk_chkdata_reg(struct mtk_ir *ir, u32 i)
149 {
150 	return ir->data->regs[MTK_CHKDATA_REG] + 4 * i;
151 }
152 
153 static inline u32 mtk_chk_period(struct mtk_ir *ir)
154 {
155 	u32 val;
156 
157 	/*
158 	 * Period for software decoder used in the
159 	 * unit of raw software sampling
160 	 */
161 	val = DIV_ROUND_CLOSEST(clk_get_rate(ir->bus),
162 				USEC_PER_SEC * ir->data->div / MTK_IR_SAMPLE);
163 
164 	dev_dbg(ir->dev, "@pwm clk  = \t%lu\n",
165 		clk_get_rate(ir->bus) / ir->data->div);
166 	dev_dbg(ir->dev, "@chkperiod = %08x\n", val);
167 
168 	return val;
169 }
170 
171 static void mtk_w32_mask(struct mtk_ir *ir, u32 val, u32 mask, unsigned int reg)
172 {
173 	u32 tmp;
174 
175 	tmp = __raw_readl(ir->base + reg);
176 	tmp = (tmp & ~mask) | val;
177 	__raw_writel(tmp, ir->base + reg);
178 }
179 
180 static void mtk_w32(struct mtk_ir *ir, u32 val, unsigned int reg)
181 {
182 	__raw_writel(val, ir->base + reg);
183 }
184 
185 static u32 mtk_r32(struct mtk_ir *ir, unsigned int reg)
186 {
187 	return __raw_readl(ir->base + reg);
188 }
189 
190 static inline void mtk_irq_disable(struct mtk_ir *ir, u32 mask)
191 {
192 	u32 val;
193 
194 	val = mtk_r32(ir, ir->data->regs[MTK_IRINT_EN_REG]);
195 	mtk_w32(ir, val & ~mask, ir->data->regs[MTK_IRINT_EN_REG]);
196 }
197 
198 static inline void mtk_irq_enable(struct mtk_ir *ir, u32 mask)
199 {
200 	u32 val;
201 
202 	val = mtk_r32(ir, ir->data->regs[MTK_IRINT_EN_REG]);
203 	mtk_w32(ir, val | mask, ir->data->regs[MTK_IRINT_EN_REG]);
204 }
205 
206 static irqreturn_t mtk_ir_irq(int irqno, void *dev_id)
207 {
208 	struct ir_raw_event rawir = {};
209 	struct mtk_ir *ir = dev_id;
210 	u32 i, j, val;
211 	u8 wid;
212 
213 	/*
214 	 * Each pulse and space is encoded as a single byte, each byte
215 	 * alternating between pulse and space. If a pulse or space is longer
216 	 * than can be encoded in a single byte, it is encoded as the maximum
217 	 * value 0xff.
218 	 *
219 	 * If a space is longer than ok_count (about 23ms), the value is
220 	 * encoded as zero, and all following bytes are zero. Any IR that
221 	 * follows will be presented in the next interrupt.
222 	 *
223 	 * If there are more than 68 (=MTK_CHKDATA_SZ * 4) pulses and spaces,
224 	 * then the only the first 68 will be presented; the rest is lost.
225 	 */
226 
227 	/* Handle all pulse and space IR controller captures */
228 	for (i = 0 ; i < MTK_CHKDATA_SZ ; i++) {
229 		val = mtk_r32(ir, mtk_chkdata_reg(ir, i));
230 		dev_dbg(ir->dev, "@reg%d=0x%08x\n", i, val);
231 
232 		for (j = 0 ; j < 4 ; j++) {
233 			wid = val & MTK_WIDTH_MASK;
234 			val >>= 8;
235 			rawir.pulse = !rawir.pulse;
236 			rawir.duration = wid * (MTK_IR_SAMPLE + 1);
237 			ir_raw_event_store_with_filter(ir->rc, &rawir);
238 		}
239 	}
240 
241 	/*
242 	 * The maximum number of edges the IR controller can
243 	 * hold is MTK_CHKDATA_SZ * 4. So if received IR messages
244 	 * is over the limit, the last incomplete IR message would
245 	 * be appended trailing space and still would be sent into
246 	 * ir-rc-raw to decode. That helps it is possible that it
247 	 * has enough information to decode a scancode even if the
248 	 * trailing end of the message is missing.
249 	 */
250 	if (!MTK_IR_END(wid, rawir.pulse)) {
251 		rawir.pulse = false;
252 		rawir.duration = MTK_MAX_SAMPLES * (MTK_IR_SAMPLE + 1);
253 		ir_raw_event_store_with_filter(ir->rc, &rawir);
254 	}
255 
256 	ir_raw_event_handle(ir->rc);
257 
258 	/*
259 	 * Restart controller for the next receive that would
260 	 * clear up all CHKDATA registers
261 	 */
262 	mtk_w32_mask(ir, 0x1, MTK_IRCLR, ir->data->regs[MTK_IRCLR_REG]);
263 
264 	/* Clear interrupt status */
265 	mtk_w32_mask(ir, 0x1, MTK_IRINT_CLR,
266 		     ir->data->regs[MTK_IRINT_CLR_REG]);
267 
268 	return IRQ_HANDLED;
269 }
270 
271 static const struct mtk_ir_data mt7623_data = {
272 	.regs = mt7623_regs,
273 	.fields = mt7623_fields,
274 	.ok_count = 3,
275 	.hw_period = 0xff,
276 	.div	= 4,
277 };
278 
279 static const struct mtk_ir_data mt7622_data = {
280 	.regs = mt7622_regs,
281 	.fields = mt7622_fields,
282 	.ok_count = 3,
283 	.hw_period = 0xffff,
284 	.div	= 32,
285 };
286 
287 static const struct of_device_id mtk_ir_match[] = {
288 	{ .compatible = "mediatek,mt7623-cir", .data = &mt7623_data},
289 	{ .compatible = "mediatek,mt7622-cir", .data = &mt7622_data},
290 	{},
291 };
292 MODULE_DEVICE_TABLE(of, mtk_ir_match);
293 
294 static int mtk_ir_probe(struct platform_device *pdev)
295 {
296 	struct device *dev = &pdev->dev;
297 	struct device_node *dn = dev->of_node;
298 	struct mtk_ir *ir;
299 	u32 val;
300 	int ret = 0;
301 	const char *map_name;
302 
303 	ir = devm_kzalloc(dev, sizeof(struct mtk_ir), GFP_KERNEL);
304 	if (!ir)
305 		return -ENOMEM;
306 
307 	ir->dev = dev;
308 	ir->data = of_device_get_match_data(dev);
309 
310 	ir->clk = devm_clk_get(dev, "clk");
311 	if (IS_ERR(ir->clk)) {
312 		dev_err(dev, "failed to get a ir clock.\n");
313 		return PTR_ERR(ir->clk);
314 	}
315 
316 	ir->bus = devm_clk_get(dev, "bus");
317 	if (IS_ERR(ir->bus)) {
318 		/*
319 		 * For compatibility with older device trees try unnamed
320 		 * ir->bus uses the same clock as ir->clock.
321 		 */
322 		ir->bus = ir->clk;
323 	}
324 
325 	ir->base = devm_platform_ioremap_resource(pdev, 0);
326 	if (IS_ERR(ir->base))
327 		return PTR_ERR(ir->base);
328 
329 	ir->rc = devm_rc_allocate_device(dev, RC_DRIVER_IR_RAW);
330 	if (!ir->rc) {
331 		dev_err(dev, "failed to allocate device\n");
332 		return -ENOMEM;
333 	}
334 
335 	ir->rc->priv = ir;
336 	ir->rc->device_name = MTK_IR_DEV;
337 	ir->rc->input_phys = MTK_IR_DEV "/input0";
338 	ir->rc->input_id.bustype = BUS_HOST;
339 	ir->rc->input_id.vendor = 0x0001;
340 	ir->rc->input_id.product = 0x0001;
341 	ir->rc->input_id.version = 0x0001;
342 	map_name = of_get_property(dn, "linux,rc-map-name", NULL);
343 	ir->rc->map_name = map_name ?: RC_MAP_EMPTY;
344 	ir->rc->dev.parent = dev;
345 	ir->rc->driver_name = MTK_IR_DEV;
346 	ir->rc->allowed_protocols = RC_PROTO_BIT_ALL_IR_DECODER;
347 	ir->rc->rx_resolution = MTK_IR_SAMPLE;
348 	ir->rc->timeout = MTK_MAX_SAMPLES * (MTK_IR_SAMPLE + 1);
349 
350 	ret = devm_rc_register_device(dev, ir->rc);
351 	if (ret) {
352 		dev_err(dev, "failed to register rc device\n");
353 		return ret;
354 	}
355 
356 	platform_set_drvdata(pdev, ir);
357 
358 	ir->irq = platform_get_irq(pdev, 0);
359 	if (ir->irq < 0)
360 		return -ENODEV;
361 
362 	if (clk_prepare_enable(ir->clk)) {
363 		dev_err(dev, "try to enable ir_clk failed\n");
364 		return -EINVAL;
365 	}
366 
367 	if (clk_prepare_enable(ir->bus)) {
368 		dev_err(dev, "try to enable ir_clk failed\n");
369 		ret = -EINVAL;
370 		goto exit_clkdisable_clk;
371 	}
372 
373 	/*
374 	 * Enable interrupt after proper hardware
375 	 * setup and IRQ handler registration
376 	 */
377 	mtk_irq_disable(ir, MTK_IRINT_EN);
378 
379 	ret = devm_request_irq(dev, ir->irq, mtk_ir_irq, 0, MTK_IR_DEV, ir);
380 	if (ret) {
381 		dev_err(dev, "failed request irq\n");
382 		goto exit_clkdisable_bus;
383 	}
384 
385 	/*
386 	 * Setup software sample period as the reference of software decoder
387 	 */
388 	val = (mtk_chk_period(ir) << ir->data->fields[MTK_CHK_PERIOD].offset) &
389 	       ir->data->fields[MTK_CHK_PERIOD].mask;
390 	mtk_w32_mask(ir, val, ir->data->fields[MTK_CHK_PERIOD].mask,
391 		     ir->data->fields[MTK_CHK_PERIOD].reg);
392 
393 	/*
394 	 * Setup hardware sampling period used to setup the proper timeout for
395 	 * indicating end of IR receiving completion
396 	 */
397 	val = (ir->data->hw_period << ir->data->fields[MTK_HW_PERIOD].offset) &
398 	       ir->data->fields[MTK_HW_PERIOD].mask;
399 	mtk_w32_mask(ir, val, ir->data->fields[MTK_HW_PERIOD].mask,
400 		     ir->data->fields[MTK_HW_PERIOD].reg);
401 
402 	/* Set de-glitch counter */
403 	mtk_w32_mask(ir, MTK_DG_CNT(1), MTK_DG_CNT_MASK, MTK_IRTHD);
404 
405 	/* Enable IR and PWM */
406 	val = mtk_r32(ir, MTK_CONFIG_HIGH_REG) & ~MTK_OK_COUNT_MASK;
407 	val |= MTK_OK_COUNT(ir->data->ok_count) |  MTK_PWM_EN | MTK_IR_EN;
408 	mtk_w32(ir, val, MTK_CONFIG_HIGH_REG);
409 
410 	mtk_irq_enable(ir, MTK_IRINT_EN);
411 
412 	dev_info(dev, "Initialized MT7623 IR driver, sample period = %dus\n",
413 		 MTK_IR_SAMPLE);
414 
415 	return 0;
416 
417 exit_clkdisable_bus:
418 	clk_disable_unprepare(ir->bus);
419 exit_clkdisable_clk:
420 	clk_disable_unprepare(ir->clk);
421 
422 	return ret;
423 }
424 
425 static void mtk_ir_remove(struct platform_device *pdev)
426 {
427 	struct mtk_ir *ir = platform_get_drvdata(pdev);
428 
429 	/*
430 	 * Avoid contention between remove handler and
431 	 * IRQ handler so that disabling IR interrupt and
432 	 * waiting for pending IRQ handler to complete
433 	 */
434 	mtk_irq_disable(ir, MTK_IRINT_EN);
435 	synchronize_irq(ir->irq);
436 
437 	clk_disable_unprepare(ir->bus);
438 	clk_disable_unprepare(ir->clk);
439 }
440 
441 static struct platform_driver mtk_ir_driver = {
442 	.probe          = mtk_ir_probe,
443 	.remove_new     = mtk_ir_remove,
444 	.driver = {
445 		.name = MTK_IR_DEV,
446 		.of_match_table = mtk_ir_match,
447 	},
448 };
449 
450 module_platform_driver(mtk_ir_driver);
451 
452 MODULE_DESCRIPTION("Mediatek IR Receiver Controller Driver");
453 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
454 MODULE_LICENSE("GPL");
455