1 /* 2 * driver for ENE KB3926 B/C/D/E/F CIR (pnp id: ENE0XXX) 3 * 4 * Copyright (C) 2010 Maxim Levitsky <maximlevitsky@gmail.com> 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation; either version 2 of the 9 * License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, but 12 * WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 19 * USA 20 * 21 * Special thanks to: 22 * Sami R. <maesesami@gmail.com> for lot of help in debugging and therefore 23 * bringing to life support for transmission & learning mode. 24 * 25 * Charlie Andrews <charliethepilot@googlemail.com> for lots of help in 26 * bringing up the support of new firmware buffer that is popular 27 * on latest notebooks 28 * 29 * ENE for partial device documentation 30 * 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #include <linux/kernel.h> 36 #include <linux/module.h> 37 #include <linux/pnp.h> 38 #include <linux/io.h> 39 #include <linux/interrupt.h> 40 #include <linux/sched.h> 41 #include <linux/slab.h> 42 #include <media/rc-core.h> 43 #include "ene_ir.h" 44 45 static int sample_period; 46 static bool learning_mode_force; 47 static int debug; 48 static bool txsim; 49 50 static void ene_set_reg_addr(struct ene_device *dev, u16 reg) 51 { 52 outb(reg >> 8, dev->hw_io + ENE_ADDR_HI); 53 outb(reg & 0xFF, dev->hw_io + ENE_ADDR_LO); 54 } 55 56 /* read a hardware register */ 57 static u8 ene_read_reg(struct ene_device *dev, u16 reg) 58 { 59 u8 retval; 60 ene_set_reg_addr(dev, reg); 61 retval = inb(dev->hw_io + ENE_IO); 62 dbg_regs("reg %04x == %02x", reg, retval); 63 return retval; 64 } 65 66 /* write a hardware register */ 67 static void ene_write_reg(struct ene_device *dev, u16 reg, u8 value) 68 { 69 dbg_regs("reg %04x <- %02x", reg, value); 70 ene_set_reg_addr(dev, reg); 71 outb(value, dev->hw_io + ENE_IO); 72 } 73 74 /* Set bits in hardware register */ 75 static void ene_set_reg_mask(struct ene_device *dev, u16 reg, u8 mask) 76 { 77 dbg_regs("reg %04x |= %02x", reg, mask); 78 ene_set_reg_addr(dev, reg); 79 outb(inb(dev->hw_io + ENE_IO) | mask, dev->hw_io + ENE_IO); 80 } 81 82 /* Clear bits in hardware register */ 83 static void ene_clear_reg_mask(struct ene_device *dev, u16 reg, u8 mask) 84 { 85 dbg_regs("reg %04x &= ~%02x ", reg, mask); 86 ene_set_reg_addr(dev, reg); 87 outb(inb(dev->hw_io + ENE_IO) & ~mask, dev->hw_io + ENE_IO); 88 } 89 90 /* A helper to set/clear a bit in register according to boolean variable */ 91 static void ene_set_clear_reg_mask(struct ene_device *dev, u16 reg, u8 mask, 92 bool set) 93 { 94 if (set) 95 ene_set_reg_mask(dev, reg, mask); 96 else 97 ene_clear_reg_mask(dev, reg, mask); 98 } 99 100 /* detect hardware features */ 101 static int ene_hw_detect(struct ene_device *dev) 102 { 103 u8 chip_major, chip_minor; 104 u8 hw_revision, old_ver; 105 u8 fw_reg2, fw_reg1; 106 107 ene_clear_reg_mask(dev, ENE_ECSTS, ENE_ECSTS_RSRVD); 108 chip_major = ene_read_reg(dev, ENE_ECVER_MAJOR); 109 chip_minor = ene_read_reg(dev, ENE_ECVER_MINOR); 110 ene_set_reg_mask(dev, ENE_ECSTS, ENE_ECSTS_RSRVD); 111 112 hw_revision = ene_read_reg(dev, ENE_ECHV); 113 old_ver = ene_read_reg(dev, ENE_HW_VER_OLD); 114 115 dev->pll_freq = (ene_read_reg(dev, ENE_PLLFRH) << 4) + 116 (ene_read_reg(dev, ENE_PLLFRL) >> 4); 117 118 if (sample_period != ENE_DEFAULT_SAMPLE_PERIOD) 119 dev->rx_period_adjust = 120 dev->pll_freq == ENE_DEFAULT_PLL_FREQ ? 2 : 4; 121 122 if (hw_revision == 0xFF) { 123 pr_warn("device seems to be disabled\n"); 124 pr_warn("send a mail to lirc-list@lists.sourceforge.net\n"); 125 pr_warn("please attach output of acpidump and dmidecode\n"); 126 return -ENODEV; 127 } 128 129 pr_notice("chip is 0x%02x%02x - kbver = 0x%02x, rev = 0x%02x\n", 130 chip_major, chip_minor, old_ver, hw_revision); 131 132 pr_notice("PLL freq = %d\n", dev->pll_freq); 133 134 if (chip_major == 0x33) { 135 pr_warn("chips 0x33xx aren't supported\n"); 136 return -ENODEV; 137 } 138 139 if (chip_major == 0x39 && chip_minor == 0x26 && hw_revision == 0xC0) { 140 dev->hw_revision = ENE_HW_C; 141 pr_notice("KB3926C detected\n"); 142 } else if (old_ver == 0x24 && hw_revision == 0xC0) { 143 dev->hw_revision = ENE_HW_B; 144 pr_notice("KB3926B detected\n"); 145 } else { 146 dev->hw_revision = ENE_HW_D; 147 pr_notice("KB3926D or higher detected\n"); 148 } 149 150 /* detect features hardware supports */ 151 if (dev->hw_revision < ENE_HW_C) 152 return 0; 153 154 fw_reg1 = ene_read_reg(dev, ENE_FW1); 155 fw_reg2 = ene_read_reg(dev, ENE_FW2); 156 157 pr_notice("Firmware regs: %02x %02x\n", fw_reg1, fw_reg2); 158 159 dev->hw_use_gpio_0a = !!(fw_reg2 & ENE_FW2_GP0A); 160 dev->hw_learning_and_tx_capable = !!(fw_reg2 & ENE_FW2_LEARNING); 161 dev->hw_extra_buffer = !!(fw_reg1 & ENE_FW1_HAS_EXTRA_BUF); 162 163 if (dev->hw_learning_and_tx_capable) 164 dev->hw_fan_input = !!(fw_reg2 & ENE_FW2_FAN_INPUT); 165 166 pr_notice("Hardware features:\n"); 167 168 if (dev->hw_learning_and_tx_capable) { 169 pr_notice("* Supports transmitting & learning mode\n"); 170 pr_notice(" This feature is rare and therefore,\n"); 171 pr_notice(" you are welcome to test it,\n"); 172 pr_notice(" and/or contact the author via:\n"); 173 pr_notice(" lirc-list@lists.sourceforge.net\n"); 174 pr_notice(" or maximlevitsky@gmail.com\n"); 175 176 pr_notice("* Uses GPIO %s for IR raw input\n", 177 dev->hw_use_gpio_0a ? "40" : "0A"); 178 179 if (dev->hw_fan_input) 180 pr_notice("* Uses unused fan feedback input as source of demodulated IR data\n"); 181 } 182 183 if (!dev->hw_fan_input) 184 pr_notice("* Uses GPIO %s for IR demodulated input\n", 185 dev->hw_use_gpio_0a ? "0A" : "40"); 186 187 if (dev->hw_extra_buffer) 188 pr_notice("* Uses new style input buffer\n"); 189 return 0; 190 } 191 192 /* Read properities of hw sample buffer */ 193 static void ene_rx_setup_hw_buffer(struct ene_device *dev) 194 { 195 u16 tmp; 196 197 ene_rx_read_hw_pointer(dev); 198 dev->r_pointer = dev->w_pointer; 199 200 if (!dev->hw_extra_buffer) { 201 dev->buffer_len = ENE_FW_PACKET_SIZE * 2; 202 return; 203 } 204 205 tmp = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER); 206 tmp |= ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER+1) << 8; 207 dev->extra_buf1_address = tmp; 208 209 dev->extra_buf1_len = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 2); 210 211 tmp = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 3); 212 tmp |= ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 4) << 8; 213 dev->extra_buf2_address = tmp; 214 215 dev->extra_buf2_len = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 5); 216 217 dev->buffer_len = dev->extra_buf1_len + dev->extra_buf2_len + 8; 218 219 pr_notice("Hardware uses 2 extended buffers:\n"); 220 pr_notice(" 0x%04x - len : %d\n", 221 dev->extra_buf1_address, dev->extra_buf1_len); 222 pr_notice(" 0x%04x - len : %d\n", 223 dev->extra_buf2_address, dev->extra_buf2_len); 224 225 pr_notice("Total buffer len = %d\n", dev->buffer_len); 226 227 if (dev->buffer_len > 64 || dev->buffer_len < 16) 228 goto error; 229 230 if (dev->extra_buf1_address > 0xFBFC || 231 dev->extra_buf1_address < 0xEC00) 232 goto error; 233 234 if (dev->extra_buf2_address > 0xFBFC || 235 dev->extra_buf2_address < 0xEC00) 236 goto error; 237 238 if (dev->r_pointer > dev->buffer_len) 239 goto error; 240 241 ene_set_reg_mask(dev, ENE_FW1, ENE_FW1_EXTRA_BUF_HND); 242 return; 243 error: 244 pr_warn("Error validating extra buffers, device probably won't work\n"); 245 dev->hw_extra_buffer = false; 246 ene_clear_reg_mask(dev, ENE_FW1, ENE_FW1_EXTRA_BUF_HND); 247 } 248 249 250 /* Restore the pointers to extra buffers - to make module reload work*/ 251 static void ene_rx_restore_hw_buffer(struct ene_device *dev) 252 { 253 if (!dev->hw_extra_buffer) 254 return; 255 256 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 0, 257 dev->extra_buf1_address & 0xFF); 258 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 1, 259 dev->extra_buf1_address >> 8); 260 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 2, dev->extra_buf1_len); 261 262 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 3, 263 dev->extra_buf2_address & 0xFF); 264 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 4, 265 dev->extra_buf2_address >> 8); 266 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 5, 267 dev->extra_buf2_len); 268 ene_clear_reg_mask(dev, ENE_FW1, ENE_FW1_EXTRA_BUF_HND); 269 } 270 271 /* Read hardware write pointer */ 272 static void ene_rx_read_hw_pointer(struct ene_device *dev) 273 { 274 if (dev->hw_extra_buffer) 275 dev->w_pointer = ene_read_reg(dev, ENE_FW_RX_POINTER); 276 else 277 dev->w_pointer = ene_read_reg(dev, ENE_FW2) 278 & ENE_FW2_BUF_WPTR ? 0 : ENE_FW_PACKET_SIZE; 279 280 dbg_verbose("RB: HW write pointer: %02x, driver read pointer: %02x", 281 dev->w_pointer, dev->r_pointer); 282 } 283 284 /* Gets address of next sample from HW ring buffer */ 285 static int ene_rx_get_sample_reg(struct ene_device *dev) 286 { 287 int r_pointer; 288 289 if (dev->r_pointer == dev->w_pointer) { 290 dbg_verbose("RB: hit end, try update w_pointer"); 291 ene_rx_read_hw_pointer(dev); 292 } 293 294 if (dev->r_pointer == dev->w_pointer) { 295 dbg_verbose("RB: end of data at %d", dev->r_pointer); 296 return 0; 297 } 298 299 dbg_verbose("RB: reading at offset %d", dev->r_pointer); 300 r_pointer = dev->r_pointer; 301 302 dev->r_pointer++; 303 if (dev->r_pointer == dev->buffer_len) 304 dev->r_pointer = 0; 305 306 dbg_verbose("RB: next read will be from offset %d", dev->r_pointer); 307 308 if (r_pointer < 8) { 309 dbg_verbose("RB: read at main buffer at %d", r_pointer); 310 return ENE_FW_SAMPLE_BUFFER + r_pointer; 311 } 312 313 r_pointer -= 8; 314 315 if (r_pointer < dev->extra_buf1_len) { 316 dbg_verbose("RB: read at 1st extra buffer at %d", r_pointer); 317 return dev->extra_buf1_address + r_pointer; 318 } 319 320 r_pointer -= dev->extra_buf1_len; 321 322 if (r_pointer < dev->extra_buf2_len) { 323 dbg_verbose("RB: read at 2nd extra buffer at %d", r_pointer); 324 return dev->extra_buf2_address + r_pointer; 325 } 326 327 dbg("attempt to read beyong ring bufer end"); 328 return 0; 329 } 330 331 /* Sense current received carrier */ 332 void ene_rx_sense_carrier(struct ene_device *dev) 333 { 334 DEFINE_IR_RAW_EVENT(ev); 335 336 int carrier, duty_cycle; 337 int period = ene_read_reg(dev, ENE_CIRCAR_PRD); 338 int hperiod = ene_read_reg(dev, ENE_CIRCAR_HPRD); 339 340 if (!(period & ENE_CIRCAR_PRD_VALID)) 341 return; 342 343 period &= ~ENE_CIRCAR_PRD_VALID; 344 345 if (!period) 346 return; 347 348 dbg("RX: hardware carrier period = %02x", period); 349 dbg("RX: hardware carrier pulse period = %02x", hperiod); 350 351 carrier = 2000000 / period; 352 duty_cycle = (hperiod * 100) / period; 353 dbg("RX: sensed carrier = %d Hz, duty cycle %d%%", 354 carrier, duty_cycle); 355 if (dev->carrier_detect_enabled) { 356 ev.carrier_report = true; 357 ev.carrier = carrier; 358 ev.duty_cycle = duty_cycle; 359 ir_raw_event_store(dev->rdev, &ev); 360 } 361 } 362 363 /* this enables/disables the CIR RX engine */ 364 static void ene_rx_enable_cir_engine(struct ene_device *dev, bool enable) 365 { 366 ene_set_clear_reg_mask(dev, ENE_CIRCFG, 367 ENE_CIRCFG_RX_EN | ENE_CIRCFG_RX_IRQ, enable); 368 } 369 370 /* this selects input for CIR engine. Ether GPIO 0A or GPIO40*/ 371 static void ene_rx_select_input(struct ene_device *dev, bool gpio_0a) 372 { 373 ene_set_clear_reg_mask(dev, ENE_CIRCFG2, ENE_CIRCFG2_GPIO0A, gpio_0a); 374 } 375 376 /* 377 * this enables alternative input via fan tachometer sensor and bypasses 378 * the hw CIR engine 379 */ 380 static void ene_rx_enable_fan_input(struct ene_device *dev, bool enable) 381 { 382 if (!dev->hw_fan_input) 383 return; 384 385 if (!enable) 386 ene_write_reg(dev, ENE_FAN_AS_IN1, 0); 387 else { 388 ene_write_reg(dev, ENE_FAN_AS_IN1, ENE_FAN_AS_IN1_EN); 389 ene_write_reg(dev, ENE_FAN_AS_IN2, ENE_FAN_AS_IN2_EN); 390 } 391 } 392 393 /* setup the receiver for RX*/ 394 static void ene_rx_setup(struct ene_device *dev) 395 { 396 bool learning_mode = dev->learning_mode_enabled || 397 dev->carrier_detect_enabled; 398 int sample_period_adjust = 0; 399 400 dbg("RX: setup receiver, learning mode = %d", learning_mode); 401 402 403 /* This selects RLC input and clears CFG2 settings */ 404 ene_write_reg(dev, ENE_CIRCFG2, 0x00); 405 406 /* set sample period*/ 407 if (sample_period == ENE_DEFAULT_SAMPLE_PERIOD) 408 sample_period_adjust = 409 dev->pll_freq == ENE_DEFAULT_PLL_FREQ ? 1 : 2; 410 411 ene_write_reg(dev, ENE_CIRRLC_CFG, 412 (sample_period + sample_period_adjust) | 413 ENE_CIRRLC_CFG_OVERFLOW); 414 /* revB doesn't support inputs */ 415 if (dev->hw_revision < ENE_HW_C) 416 goto select_timeout; 417 418 if (learning_mode) { 419 420 WARN_ON(!dev->hw_learning_and_tx_capable); 421 422 /* Enable the opposite of the normal input 423 That means that if GPIO40 is normally used, use GPIO0A 424 and vice versa. 425 This input will carry non demodulated 426 signal, and we will tell the hw to demodulate it itself */ 427 ene_rx_select_input(dev, !dev->hw_use_gpio_0a); 428 dev->rx_fan_input_inuse = false; 429 430 /* Enable carrier demodulation */ 431 ene_set_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_CARR_DEMOD); 432 433 /* Enable carrier detection */ 434 ene_write_reg(dev, ENE_CIRCAR_PULS, 0x63); 435 ene_set_clear_reg_mask(dev, ENE_CIRCFG2, ENE_CIRCFG2_CARR_DETECT, 436 dev->carrier_detect_enabled || debug); 437 } else { 438 if (dev->hw_fan_input) 439 dev->rx_fan_input_inuse = true; 440 else 441 ene_rx_select_input(dev, dev->hw_use_gpio_0a); 442 443 /* Disable carrier detection & demodulation */ 444 ene_clear_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_CARR_DEMOD); 445 ene_clear_reg_mask(dev, ENE_CIRCFG2, ENE_CIRCFG2_CARR_DETECT); 446 } 447 448 select_timeout: 449 if (dev->rx_fan_input_inuse) { 450 dev->rdev->rx_resolution = US_TO_NS(ENE_FW_SAMPLE_PERIOD_FAN); 451 452 /* Fan input doesn't support timeouts, it just ends the 453 input with a maximum sample */ 454 dev->rdev->min_timeout = dev->rdev->max_timeout = 455 US_TO_NS(ENE_FW_SMPL_BUF_FAN_MSK * 456 ENE_FW_SAMPLE_PERIOD_FAN); 457 } else { 458 dev->rdev->rx_resolution = US_TO_NS(sample_period); 459 460 /* Theoreticly timeout is unlimited, but we cap it 461 * because it was seen that on one device, it 462 * would stop sending spaces after around 250 msec. 463 * Besides, this is close to 2^32 anyway and timeout is u32. 464 */ 465 dev->rdev->min_timeout = US_TO_NS(127 * sample_period); 466 dev->rdev->max_timeout = US_TO_NS(200000); 467 } 468 469 if (dev->hw_learning_and_tx_capable) 470 dev->rdev->tx_resolution = US_TO_NS(sample_period); 471 472 if (dev->rdev->timeout > dev->rdev->max_timeout) 473 dev->rdev->timeout = dev->rdev->max_timeout; 474 if (dev->rdev->timeout < dev->rdev->min_timeout) 475 dev->rdev->timeout = dev->rdev->min_timeout; 476 } 477 478 /* Enable the device for receive */ 479 static void ene_rx_enable(struct ene_device *dev) 480 { 481 u8 reg_value; 482 483 /* Enable system interrupt */ 484 if (dev->hw_revision < ENE_HW_C) { 485 ene_write_reg(dev, ENEB_IRQ, dev->irq << 1); 486 ene_write_reg(dev, ENEB_IRQ_UNK1, 0x01); 487 } else { 488 reg_value = ene_read_reg(dev, ENE_IRQ) & 0xF0; 489 reg_value |= ENE_IRQ_UNK_EN; 490 reg_value &= ~ENE_IRQ_STATUS; 491 reg_value |= (dev->irq & ENE_IRQ_MASK); 492 ene_write_reg(dev, ENE_IRQ, reg_value); 493 } 494 495 /* Enable inputs */ 496 ene_rx_enable_fan_input(dev, dev->rx_fan_input_inuse); 497 ene_rx_enable_cir_engine(dev, !dev->rx_fan_input_inuse); 498 499 /* ack any pending irqs - just in case */ 500 ene_irq_status(dev); 501 502 /* enable firmware bits */ 503 ene_set_reg_mask(dev, ENE_FW1, ENE_FW1_ENABLE | ENE_FW1_IRQ); 504 505 /* enter idle mode */ 506 ir_raw_event_set_idle(dev->rdev, true); 507 dev->rx_enabled = true; 508 } 509 510 /* Disable the device receiver */ 511 static void ene_rx_disable(struct ene_device *dev) 512 { 513 /* disable inputs */ 514 ene_rx_enable_cir_engine(dev, false); 515 ene_rx_enable_fan_input(dev, false); 516 517 /* disable hardware IRQ and firmware flag */ 518 ene_clear_reg_mask(dev, ENE_FW1, ENE_FW1_ENABLE | ENE_FW1_IRQ); 519 520 ir_raw_event_set_idle(dev->rdev, true); 521 dev->rx_enabled = false; 522 } 523 524 /* This resets the receiver. Useful to stop stream of spaces at end of 525 * transmission 526 */ 527 static void ene_rx_reset(struct ene_device *dev) 528 { 529 ene_clear_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_RX_EN); 530 ene_set_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_RX_EN); 531 } 532 533 /* Set up the TX carrier frequency and duty cycle */ 534 static void ene_tx_set_carrier(struct ene_device *dev) 535 { 536 u8 tx_puls_width; 537 unsigned long flags; 538 539 spin_lock_irqsave(&dev->hw_lock, flags); 540 541 ene_set_clear_reg_mask(dev, ENE_CIRCFG, 542 ENE_CIRCFG_TX_CARR, dev->tx_period > 0); 543 544 if (!dev->tx_period) 545 goto unlock; 546 547 BUG_ON(dev->tx_duty_cycle >= 100 || dev->tx_duty_cycle <= 0); 548 549 tx_puls_width = dev->tx_period / (100 / dev->tx_duty_cycle); 550 551 if (!tx_puls_width) 552 tx_puls_width = 1; 553 554 dbg("TX: pulse distance = %d * 500 ns", dev->tx_period); 555 dbg("TX: pulse width = %d * 500 ns", tx_puls_width); 556 557 ene_write_reg(dev, ENE_CIRMOD_PRD, dev->tx_period | ENE_CIRMOD_PRD_POL); 558 ene_write_reg(dev, ENE_CIRMOD_HPRD, tx_puls_width); 559 unlock: 560 spin_unlock_irqrestore(&dev->hw_lock, flags); 561 } 562 563 /* Enable/disable transmitters */ 564 static void ene_tx_set_transmitters(struct ene_device *dev) 565 { 566 unsigned long flags; 567 568 spin_lock_irqsave(&dev->hw_lock, flags); 569 ene_set_clear_reg_mask(dev, ENE_GPIOFS8, ENE_GPIOFS8_GPIO41, 570 !!(dev->transmitter_mask & 0x01)); 571 ene_set_clear_reg_mask(dev, ENE_GPIOFS1, ENE_GPIOFS1_GPIO0D, 572 !!(dev->transmitter_mask & 0x02)); 573 spin_unlock_irqrestore(&dev->hw_lock, flags); 574 } 575 576 /* prepare transmission */ 577 static void ene_tx_enable(struct ene_device *dev) 578 { 579 u8 conf1 = ene_read_reg(dev, ENE_CIRCFG); 580 u8 fwreg2 = ene_read_reg(dev, ENE_FW2); 581 582 dev->saved_conf1 = conf1; 583 584 /* Show information about currently connected transmitter jacks */ 585 if (fwreg2 & ENE_FW2_EMMITER1_CONN) 586 dbg("TX: Transmitter #1 is connected"); 587 588 if (fwreg2 & ENE_FW2_EMMITER2_CONN) 589 dbg("TX: Transmitter #2 is connected"); 590 591 if (!(fwreg2 & (ENE_FW2_EMMITER1_CONN | ENE_FW2_EMMITER2_CONN))) 592 pr_warn("TX: transmitter cable isn't connected!\n"); 593 594 /* disable receive on revc */ 595 if (dev->hw_revision == ENE_HW_C) 596 conf1 &= ~ENE_CIRCFG_RX_EN; 597 598 /* Enable TX engine */ 599 conf1 |= ENE_CIRCFG_TX_EN | ENE_CIRCFG_TX_IRQ; 600 ene_write_reg(dev, ENE_CIRCFG, conf1); 601 } 602 603 /* end transmission */ 604 static void ene_tx_disable(struct ene_device *dev) 605 { 606 ene_write_reg(dev, ENE_CIRCFG, dev->saved_conf1); 607 dev->tx_buffer = NULL; 608 } 609 610 611 /* TX one sample - must be called with dev->hw_lock*/ 612 static void ene_tx_sample(struct ene_device *dev) 613 { 614 u8 raw_tx; 615 u32 sample; 616 bool pulse = dev->tx_sample_pulse; 617 618 if (!dev->tx_buffer) { 619 pr_warn("TX: BUG: attempt to transmit NULL buffer\n"); 620 return; 621 } 622 623 /* Grab next TX sample */ 624 if (!dev->tx_sample) { 625 626 if (dev->tx_pos == dev->tx_len) { 627 if (!dev->tx_done) { 628 dbg("TX: no more data to send"); 629 dev->tx_done = true; 630 goto exit; 631 } else { 632 dbg("TX: last sample sent by hardware"); 633 ene_tx_disable(dev); 634 complete(&dev->tx_complete); 635 return; 636 } 637 } 638 639 sample = dev->tx_buffer[dev->tx_pos++]; 640 dev->tx_sample_pulse = !dev->tx_sample_pulse; 641 642 dev->tx_sample = DIV_ROUND_CLOSEST(sample, sample_period); 643 644 if (!dev->tx_sample) 645 dev->tx_sample = 1; 646 } 647 648 raw_tx = min(dev->tx_sample , (unsigned int)ENE_CIRRLC_OUT_MASK); 649 dev->tx_sample -= raw_tx; 650 651 dbg("TX: sample %8d (%s)", raw_tx * sample_period, 652 pulse ? "pulse" : "space"); 653 if (pulse) 654 raw_tx |= ENE_CIRRLC_OUT_PULSE; 655 656 ene_write_reg(dev, 657 dev->tx_reg ? ENE_CIRRLC_OUT1 : ENE_CIRRLC_OUT0, raw_tx); 658 659 dev->tx_reg = !dev->tx_reg; 660 exit: 661 /* simulate TX done interrupt */ 662 if (txsim) 663 mod_timer(&dev->tx_sim_timer, jiffies + HZ / 500); 664 } 665 666 /* timer to simulate tx done interrupt */ 667 static void ene_tx_irqsim(unsigned long data) 668 { 669 struct ene_device *dev = (struct ene_device *)data; 670 unsigned long flags; 671 672 spin_lock_irqsave(&dev->hw_lock, flags); 673 ene_tx_sample(dev); 674 spin_unlock_irqrestore(&dev->hw_lock, flags); 675 } 676 677 678 /* read irq status and ack it */ 679 static int ene_irq_status(struct ene_device *dev) 680 { 681 u8 irq_status; 682 u8 fw_flags1, fw_flags2; 683 int retval = 0; 684 685 fw_flags2 = ene_read_reg(dev, ENE_FW2); 686 687 if (dev->hw_revision < ENE_HW_C) { 688 irq_status = ene_read_reg(dev, ENEB_IRQ_STATUS); 689 690 if (!(irq_status & ENEB_IRQ_STATUS_IR)) 691 return 0; 692 693 ene_clear_reg_mask(dev, ENEB_IRQ_STATUS, ENEB_IRQ_STATUS_IR); 694 return ENE_IRQ_RX; 695 } 696 697 irq_status = ene_read_reg(dev, ENE_IRQ); 698 if (!(irq_status & ENE_IRQ_STATUS)) 699 return 0; 700 701 /* original driver does that twice - a workaround ? */ 702 ene_write_reg(dev, ENE_IRQ, irq_status & ~ENE_IRQ_STATUS); 703 ene_write_reg(dev, ENE_IRQ, irq_status & ~ENE_IRQ_STATUS); 704 705 /* check RX interrupt */ 706 if (fw_flags2 & ENE_FW2_RXIRQ) { 707 retval |= ENE_IRQ_RX; 708 ene_write_reg(dev, ENE_FW2, fw_flags2 & ~ENE_FW2_RXIRQ); 709 } 710 711 /* check TX interrupt */ 712 fw_flags1 = ene_read_reg(dev, ENE_FW1); 713 if (fw_flags1 & ENE_FW1_TXIRQ) { 714 ene_write_reg(dev, ENE_FW1, fw_flags1 & ~ENE_FW1_TXIRQ); 715 retval |= ENE_IRQ_TX; 716 } 717 718 return retval; 719 } 720 721 /* interrupt handler */ 722 static irqreturn_t ene_isr(int irq, void *data) 723 { 724 u16 hw_value, reg; 725 int hw_sample, irq_status; 726 bool pulse; 727 unsigned long flags; 728 irqreturn_t retval = IRQ_NONE; 729 struct ene_device *dev = (struct ene_device *)data; 730 DEFINE_IR_RAW_EVENT(ev); 731 732 spin_lock_irqsave(&dev->hw_lock, flags); 733 734 dbg_verbose("ISR called"); 735 ene_rx_read_hw_pointer(dev); 736 irq_status = ene_irq_status(dev); 737 738 if (!irq_status) 739 goto unlock; 740 741 retval = IRQ_HANDLED; 742 743 if (irq_status & ENE_IRQ_TX) { 744 dbg_verbose("TX interrupt"); 745 if (!dev->hw_learning_and_tx_capable) { 746 dbg("TX interrupt on unsupported device!"); 747 goto unlock; 748 } 749 ene_tx_sample(dev); 750 } 751 752 if (!(irq_status & ENE_IRQ_RX)) 753 goto unlock; 754 755 dbg_verbose("RX interrupt"); 756 757 if (dev->hw_learning_and_tx_capable) 758 ene_rx_sense_carrier(dev); 759 760 /* On hardware that don't support extra buffer we need to trust 761 the interrupt and not track the read pointer */ 762 if (!dev->hw_extra_buffer) 763 dev->r_pointer = dev->w_pointer == 0 ? ENE_FW_PACKET_SIZE : 0; 764 765 while (1) { 766 767 reg = ene_rx_get_sample_reg(dev); 768 769 dbg_verbose("next sample to read at: %04x", reg); 770 if (!reg) 771 break; 772 773 hw_value = ene_read_reg(dev, reg); 774 775 if (dev->rx_fan_input_inuse) { 776 777 int offset = ENE_FW_SMPL_BUF_FAN - ENE_FW_SAMPLE_BUFFER; 778 779 /* read high part of the sample */ 780 hw_value |= ene_read_reg(dev, reg + offset) << 8; 781 pulse = hw_value & ENE_FW_SMPL_BUF_FAN_PLS; 782 783 /* clear space bit, and other unused bits */ 784 hw_value &= ENE_FW_SMPL_BUF_FAN_MSK; 785 hw_sample = hw_value * ENE_FW_SAMPLE_PERIOD_FAN; 786 787 } else { 788 pulse = !(hw_value & ENE_FW_SAMPLE_SPACE); 789 hw_value &= ~ENE_FW_SAMPLE_SPACE; 790 hw_sample = hw_value * sample_period; 791 792 if (dev->rx_period_adjust) { 793 hw_sample *= 100; 794 hw_sample /= (100 + dev->rx_period_adjust); 795 } 796 } 797 798 if (!dev->hw_extra_buffer && !hw_sample) { 799 dev->r_pointer = dev->w_pointer; 800 continue; 801 } 802 803 dbg("RX: %d (%s)", hw_sample, pulse ? "pulse" : "space"); 804 805 ev.duration = US_TO_NS(hw_sample); 806 ev.pulse = pulse; 807 ir_raw_event_store_with_filter(dev->rdev, &ev); 808 } 809 810 ir_raw_event_handle(dev->rdev); 811 unlock: 812 spin_unlock_irqrestore(&dev->hw_lock, flags); 813 return retval; 814 } 815 816 /* Initialize default settings */ 817 static void ene_setup_default_settings(struct ene_device *dev) 818 { 819 dev->tx_period = 32; 820 dev->tx_duty_cycle = 50; /*%*/ 821 dev->transmitter_mask = 0x03; 822 dev->learning_mode_enabled = learning_mode_force; 823 824 /* Set reasonable default timeout */ 825 dev->rdev->timeout = US_TO_NS(150000); 826 } 827 828 /* Upload all hardware settings at once. Used at load and resume time */ 829 static void ene_setup_hw_settings(struct ene_device *dev) 830 { 831 if (dev->hw_learning_and_tx_capable) { 832 ene_tx_set_carrier(dev); 833 ene_tx_set_transmitters(dev); 834 } 835 836 ene_rx_setup(dev); 837 } 838 839 /* outside interface: called on first open*/ 840 static int ene_open(struct rc_dev *rdev) 841 { 842 struct ene_device *dev = rdev->priv; 843 unsigned long flags; 844 845 spin_lock_irqsave(&dev->hw_lock, flags); 846 ene_rx_enable(dev); 847 spin_unlock_irqrestore(&dev->hw_lock, flags); 848 return 0; 849 } 850 851 /* outside interface: called on device close*/ 852 static void ene_close(struct rc_dev *rdev) 853 { 854 struct ene_device *dev = rdev->priv; 855 unsigned long flags; 856 spin_lock_irqsave(&dev->hw_lock, flags); 857 858 ene_rx_disable(dev); 859 spin_unlock_irqrestore(&dev->hw_lock, flags); 860 } 861 862 /* outside interface: set transmitter mask */ 863 static int ene_set_tx_mask(struct rc_dev *rdev, u32 tx_mask) 864 { 865 struct ene_device *dev = rdev->priv; 866 dbg("TX: attempt to set transmitter mask %02x", tx_mask); 867 868 /* invalid txmask */ 869 if (!tx_mask || tx_mask & ~0x03) { 870 dbg("TX: invalid mask"); 871 /* return count of transmitters */ 872 return 2; 873 } 874 875 dev->transmitter_mask = tx_mask; 876 ene_tx_set_transmitters(dev); 877 return 0; 878 } 879 880 /* outside interface : set tx carrier */ 881 static int ene_set_tx_carrier(struct rc_dev *rdev, u32 carrier) 882 { 883 struct ene_device *dev = rdev->priv; 884 u32 period = 2000000 / carrier; 885 886 dbg("TX: attempt to set tx carrier to %d kHz", carrier); 887 888 if (period && (period > ENE_CIRMOD_PRD_MAX || 889 period < ENE_CIRMOD_PRD_MIN)) { 890 891 dbg("TX: out of range %d-%d kHz carrier", 892 2000 / ENE_CIRMOD_PRD_MIN, 2000 / ENE_CIRMOD_PRD_MAX); 893 return -1; 894 } 895 896 dev->tx_period = period; 897 ene_tx_set_carrier(dev); 898 return 0; 899 } 900 901 /*outside interface : set tx duty cycle */ 902 static int ene_set_tx_duty_cycle(struct rc_dev *rdev, u32 duty_cycle) 903 { 904 struct ene_device *dev = rdev->priv; 905 dbg("TX: setting duty cycle to %d%%", duty_cycle); 906 dev->tx_duty_cycle = duty_cycle; 907 ene_tx_set_carrier(dev); 908 return 0; 909 } 910 911 /* outside interface: enable learning mode */ 912 static int ene_set_learning_mode(struct rc_dev *rdev, int enable) 913 { 914 struct ene_device *dev = rdev->priv; 915 unsigned long flags; 916 if (enable == dev->learning_mode_enabled) 917 return 0; 918 919 spin_lock_irqsave(&dev->hw_lock, flags); 920 dev->learning_mode_enabled = enable; 921 ene_rx_disable(dev); 922 ene_rx_setup(dev); 923 ene_rx_enable(dev); 924 spin_unlock_irqrestore(&dev->hw_lock, flags); 925 return 0; 926 } 927 928 static int ene_set_carrier_report(struct rc_dev *rdev, int enable) 929 { 930 struct ene_device *dev = rdev->priv; 931 unsigned long flags; 932 933 if (enable == dev->carrier_detect_enabled) 934 return 0; 935 936 spin_lock_irqsave(&dev->hw_lock, flags); 937 dev->carrier_detect_enabled = enable; 938 ene_rx_disable(dev); 939 ene_rx_setup(dev); 940 ene_rx_enable(dev); 941 spin_unlock_irqrestore(&dev->hw_lock, flags); 942 return 0; 943 } 944 945 /* outside interface: enable or disable idle mode */ 946 static void ene_set_idle(struct rc_dev *rdev, bool idle) 947 { 948 struct ene_device *dev = rdev->priv; 949 950 if (idle) { 951 ene_rx_reset(dev); 952 dbg("RX: end of data"); 953 } 954 } 955 956 /* outside interface: transmit */ 957 static int ene_transmit(struct rc_dev *rdev, unsigned *buf, unsigned n) 958 { 959 struct ene_device *dev = rdev->priv; 960 unsigned long flags; 961 962 dev->tx_buffer = buf; 963 dev->tx_len = n; 964 dev->tx_pos = 0; 965 dev->tx_reg = 0; 966 dev->tx_done = 0; 967 dev->tx_sample = 0; 968 dev->tx_sample_pulse = 0; 969 970 dbg("TX: %d samples", dev->tx_len); 971 972 spin_lock_irqsave(&dev->hw_lock, flags); 973 974 ene_tx_enable(dev); 975 976 /* Transmit first two samples */ 977 ene_tx_sample(dev); 978 ene_tx_sample(dev); 979 980 spin_unlock_irqrestore(&dev->hw_lock, flags); 981 982 if (wait_for_completion_timeout(&dev->tx_complete, 2 * HZ) == 0) { 983 dbg("TX: timeout"); 984 spin_lock_irqsave(&dev->hw_lock, flags); 985 ene_tx_disable(dev); 986 spin_unlock_irqrestore(&dev->hw_lock, flags); 987 } else 988 dbg("TX: done"); 989 return n; 990 } 991 992 /* probe entry */ 993 static int ene_probe(struct pnp_dev *pnp_dev, const struct pnp_device_id *id) 994 { 995 int error = -ENOMEM; 996 struct rc_dev *rdev; 997 struct ene_device *dev; 998 999 /* allocate memory */ 1000 dev = kzalloc(sizeof(struct ene_device), GFP_KERNEL); 1001 rdev = rc_allocate_device(); 1002 if (!dev || !rdev) 1003 goto error1; 1004 1005 /* validate resources */ 1006 error = -ENODEV; 1007 1008 /* init these to -1, as 0 is valid for both */ 1009 dev->hw_io = -1; 1010 dev->irq = -1; 1011 1012 if (!pnp_port_valid(pnp_dev, 0) || 1013 pnp_port_len(pnp_dev, 0) < ENE_IO_SIZE) 1014 goto error; 1015 1016 if (!pnp_irq_valid(pnp_dev, 0)) 1017 goto error; 1018 1019 spin_lock_init(&dev->hw_lock); 1020 1021 /* claim the resources */ 1022 error = -EBUSY; 1023 dev->hw_io = pnp_port_start(pnp_dev, 0); 1024 if (!request_region(dev->hw_io, ENE_IO_SIZE, ENE_DRIVER_NAME)) { 1025 dev->hw_io = -1; 1026 dev->irq = -1; 1027 goto error; 1028 } 1029 1030 dev->irq = pnp_irq(pnp_dev, 0); 1031 if (request_irq(dev->irq, ene_isr, 1032 IRQF_SHARED, ENE_DRIVER_NAME, (void *)dev)) { 1033 dev->irq = -1; 1034 goto error; 1035 } 1036 1037 pnp_set_drvdata(pnp_dev, dev); 1038 dev->pnp_dev = pnp_dev; 1039 1040 /* don't allow too short/long sample periods */ 1041 if (sample_period < 5 || sample_period > 0x7F) 1042 sample_period = ENE_DEFAULT_SAMPLE_PERIOD; 1043 1044 /* detect hardware version and features */ 1045 error = ene_hw_detect(dev); 1046 if (error) 1047 goto error; 1048 1049 if (!dev->hw_learning_and_tx_capable && txsim) { 1050 dev->hw_learning_and_tx_capable = true; 1051 setup_timer(&dev->tx_sim_timer, ene_tx_irqsim, 1052 (long unsigned int)dev); 1053 pr_warn("Simulation of TX activated\n"); 1054 } 1055 1056 if (!dev->hw_learning_and_tx_capable) 1057 learning_mode_force = false; 1058 1059 rdev->driver_type = RC_DRIVER_IR_RAW; 1060 rdev->allowed_protos = RC_TYPE_ALL; 1061 rdev->priv = dev; 1062 rdev->open = ene_open; 1063 rdev->close = ene_close; 1064 rdev->s_idle = ene_set_idle; 1065 rdev->driver_name = ENE_DRIVER_NAME; 1066 rdev->map_name = RC_MAP_RC6_MCE; 1067 rdev->input_name = "ENE eHome Infrared Remote Receiver"; 1068 1069 if (dev->hw_learning_and_tx_capable) { 1070 rdev->s_learning_mode = ene_set_learning_mode; 1071 init_completion(&dev->tx_complete); 1072 rdev->tx_ir = ene_transmit; 1073 rdev->s_tx_mask = ene_set_tx_mask; 1074 rdev->s_tx_carrier = ene_set_tx_carrier; 1075 rdev->s_tx_duty_cycle = ene_set_tx_duty_cycle; 1076 rdev->s_carrier_report = ene_set_carrier_report; 1077 rdev->input_name = "ENE eHome Infrared Remote Transceiver"; 1078 } 1079 1080 dev->rdev = rdev; 1081 1082 ene_rx_setup_hw_buffer(dev); 1083 ene_setup_default_settings(dev); 1084 ene_setup_hw_settings(dev); 1085 1086 device_set_wakeup_capable(&pnp_dev->dev, true); 1087 device_set_wakeup_enable(&pnp_dev->dev, true); 1088 1089 error = rc_register_device(rdev); 1090 if (error < 0) 1091 goto error; 1092 1093 pr_notice("driver has been successfully loaded\n"); 1094 return 0; 1095 error: 1096 if (dev && dev->irq >= 0) 1097 free_irq(dev->irq, dev); 1098 if (dev && dev->hw_io >= 0) 1099 release_region(dev->hw_io, ENE_IO_SIZE); 1100 error1: 1101 rc_free_device(rdev); 1102 kfree(dev); 1103 return error; 1104 } 1105 1106 /* main unload function */ 1107 static void ene_remove(struct pnp_dev *pnp_dev) 1108 { 1109 struct ene_device *dev = pnp_get_drvdata(pnp_dev); 1110 unsigned long flags; 1111 1112 spin_lock_irqsave(&dev->hw_lock, flags); 1113 ene_rx_disable(dev); 1114 ene_rx_restore_hw_buffer(dev); 1115 spin_unlock_irqrestore(&dev->hw_lock, flags); 1116 1117 free_irq(dev->irq, dev); 1118 release_region(dev->hw_io, ENE_IO_SIZE); 1119 rc_unregister_device(dev->rdev); 1120 kfree(dev); 1121 } 1122 1123 /* enable wake on IR (wakes on specific button on original remote) */ 1124 static void ene_enable_wake(struct ene_device *dev, int enable) 1125 { 1126 enable = enable && device_may_wakeup(&dev->pnp_dev->dev); 1127 dbg("wake on IR %s", enable ? "enabled" : "disabled"); 1128 ene_set_clear_reg_mask(dev, ENE_FW1, ENE_FW1_WAKE, enable); 1129 } 1130 1131 #ifdef CONFIG_PM 1132 static int ene_suspend(struct pnp_dev *pnp_dev, pm_message_t state) 1133 { 1134 struct ene_device *dev = pnp_get_drvdata(pnp_dev); 1135 ene_enable_wake(dev, true); 1136 1137 /* TODO: add support for wake pattern */ 1138 return 0; 1139 } 1140 1141 static int ene_resume(struct pnp_dev *pnp_dev) 1142 { 1143 struct ene_device *dev = pnp_get_drvdata(pnp_dev); 1144 ene_setup_hw_settings(dev); 1145 1146 if (dev->rx_enabled) 1147 ene_rx_enable(dev); 1148 1149 ene_enable_wake(dev, false); 1150 return 0; 1151 } 1152 #endif 1153 1154 static void ene_shutdown(struct pnp_dev *pnp_dev) 1155 { 1156 struct ene_device *dev = pnp_get_drvdata(pnp_dev); 1157 ene_enable_wake(dev, true); 1158 } 1159 1160 static const struct pnp_device_id ene_ids[] = { 1161 {.id = "ENE0100",}, 1162 {.id = "ENE0200",}, 1163 {.id = "ENE0201",}, 1164 {.id = "ENE0202",}, 1165 {}, 1166 }; 1167 1168 static struct pnp_driver ene_driver = { 1169 .name = ENE_DRIVER_NAME, 1170 .id_table = ene_ids, 1171 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 1172 1173 .probe = ene_probe, 1174 .remove = __devexit_p(ene_remove), 1175 #ifdef CONFIG_PM 1176 .suspend = ene_suspend, 1177 .resume = ene_resume, 1178 #endif 1179 .shutdown = ene_shutdown, 1180 }; 1181 1182 static int __init ene_init(void) 1183 { 1184 return pnp_register_driver(&ene_driver); 1185 } 1186 1187 static void ene_exit(void) 1188 { 1189 pnp_unregister_driver(&ene_driver); 1190 } 1191 1192 module_param(sample_period, int, S_IRUGO); 1193 MODULE_PARM_DESC(sample_period, "Hardware sample period (50 us default)"); 1194 1195 module_param(learning_mode_force, bool, S_IRUGO); 1196 MODULE_PARM_DESC(learning_mode_force, "Enable learning mode by default"); 1197 1198 module_param(debug, int, S_IRUGO | S_IWUSR); 1199 MODULE_PARM_DESC(debug, "Debug level"); 1200 1201 module_param(txsim, bool, S_IRUGO); 1202 MODULE_PARM_DESC(txsim, 1203 "Simulate TX features on unsupported hardware (dangerous)"); 1204 1205 MODULE_DEVICE_TABLE(pnp, ene_ids); 1206 MODULE_DESCRIPTION 1207 ("Infrared input driver for KB3926B/C/D/E/F " 1208 "(aka ENE0100/ENE0200/ENE0201/ENE0202) CIR port"); 1209 1210 MODULE_AUTHOR("Maxim Levitsky"); 1211 MODULE_LICENSE("GPL"); 1212 1213 module_init(ene_init); 1214 module_exit(ene_exit); 1215