xref: /linux/drivers/media/radio/wl128x/fmdrv_common.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  FM Driver for Connectivity chip of Texas Instruments.
4  *
5  *  This sub-module of FM driver is common for FM RX and TX
6  *  functionality. This module is responsible for:
7  *  1) Forming group of Channel-8 commands to perform particular
8  *     functionality (eg., frequency set require more than
9  *     one Channel-8 command to be sent to the chip).
10  *  2) Sending each Channel-8 command to the chip and reading
11  *     response back over Shared Transport.
12  *  3) Managing TX and RX Queues and BH bh Works.
13  *  4) Handling FM Interrupt packet and taking appropriate action.
14  *  5) Loading FM firmware to the chip (common, FM TX, and FM RX
15  *     firmware files based on mode selection)
16  *
17  *  Copyright (C) 2011 Texas Instruments
18  *  Author: Raja Mani <raja_mani@ti.com>
19  *  Author: Manjunatha Halli <manjunatha_halli@ti.com>
20  */
21 
22 #include <linux/delay.h>
23 #include <linux/firmware.h>
24 #include <linux/module.h>
25 #include <linux/nospec.h>
26 #include <linux/jiffies.h>
27 
28 #include "fmdrv.h"
29 #include "fmdrv_v4l2.h"
30 #include "fmdrv_common.h"
31 #include <linux/ti_wilink_st.h>
32 #include "fmdrv_rx.h"
33 #include "fmdrv_tx.h"
34 
35 /* Region info */
36 static struct region_info region_configs[] = {
37 	/* Europe/US */
38 	{
39 	 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
40 	 .bot_freq = 87500,	/* 87.5 MHz */
41 	 .top_freq = 108000,	/* 108 MHz */
42 	 .fm_band = 0,
43 	 },
44 	/* Japan */
45 	{
46 	 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
47 	 .bot_freq = 76000,	/* 76 MHz */
48 	 .top_freq = 90000,	/* 90 MHz */
49 	 .fm_band = 1,
50 	 },
51 };
52 
53 /* Band selection */
54 static u8 default_radio_region;	/* Europe/US */
55 module_param(default_radio_region, byte, 0);
56 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
57 
58 /* RDS buffer blocks */
59 static u32 default_rds_buf = 300;
60 module_param(default_rds_buf, uint, 0444);
61 MODULE_PARM_DESC(default_rds_buf, "RDS buffer entries");
62 
63 /* Radio Nr */
64 static u32 radio_nr = -1;
65 module_param(radio_nr, int, 0444);
66 MODULE_PARM_DESC(radio_nr, "Radio Nr");
67 
68 /* FM irq handlers forward declaration */
69 static void fm_irq_send_flag_getcmd(struct fmdev *);
70 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
71 static void fm_irq_handle_hw_malfunction(struct fmdev *);
72 static void fm_irq_handle_rds_start(struct fmdev *);
73 static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
74 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
75 static void fm_irq_handle_rds_finish(struct fmdev *);
76 static void fm_irq_handle_tune_op_ended(struct fmdev *);
77 static void fm_irq_handle_power_enb(struct fmdev *);
78 static void fm_irq_handle_low_rssi_start(struct fmdev *);
79 static void fm_irq_afjump_set_pi(struct fmdev *);
80 static void fm_irq_handle_set_pi_resp(struct fmdev *);
81 static void fm_irq_afjump_set_pimask(struct fmdev *);
82 static void fm_irq_handle_set_pimask_resp(struct fmdev *);
83 static void fm_irq_afjump_setfreq(struct fmdev *);
84 static void fm_irq_handle_setfreq_resp(struct fmdev *);
85 static void fm_irq_afjump_enableint(struct fmdev *);
86 static void fm_irq_afjump_enableint_resp(struct fmdev *);
87 static void fm_irq_start_afjump(struct fmdev *);
88 static void fm_irq_handle_start_afjump_resp(struct fmdev *);
89 static void fm_irq_afjump_rd_freq(struct fmdev *);
90 static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
91 static void fm_irq_handle_low_rssi_finish(struct fmdev *);
92 static void fm_irq_send_intmsk_cmd(struct fmdev *);
93 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
94 
95 /*
96  * When FM common module receives interrupt packet, following handlers
97  * will be executed one after another to service the interrupt(s)
98  */
99 enum fmc_irq_handler_index {
100 	FM_SEND_FLAG_GETCMD_IDX,
101 	FM_HANDLE_FLAG_GETCMD_RESP_IDX,
102 
103 	/* HW malfunction irq handler */
104 	FM_HW_MAL_FUNC_IDX,
105 
106 	/* RDS threshold reached irq handler */
107 	FM_RDS_START_IDX,
108 	FM_RDS_SEND_RDS_GETCMD_IDX,
109 	FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
110 	FM_RDS_FINISH_IDX,
111 
112 	/* Tune operation ended irq handler */
113 	FM_HW_TUNE_OP_ENDED_IDX,
114 
115 	/* TX power enable irq handler */
116 	FM_HW_POWER_ENB_IDX,
117 
118 	/* Low RSSI irq handler */
119 	FM_LOW_RSSI_START_IDX,
120 	FM_AF_JUMP_SETPI_IDX,
121 	FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
122 	FM_AF_JUMP_SETPI_MASK_IDX,
123 	FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
124 	FM_AF_JUMP_SET_AF_FREQ_IDX,
125 	FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
126 	FM_AF_JUMP_ENABLE_INT_IDX,
127 	FM_AF_JUMP_ENABLE_INT_RESP_IDX,
128 	FM_AF_JUMP_START_AFJUMP_IDX,
129 	FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
130 	FM_AF_JUMP_RD_FREQ_IDX,
131 	FM_AF_JUMP_RD_FREQ_RESP_IDX,
132 	FM_LOW_RSSI_FINISH_IDX,
133 
134 	/* Interrupt process post action */
135 	FM_SEND_INTMSK_CMD_IDX,
136 	FM_HANDLE_INTMSK_CMD_RESP_IDX,
137 };
138 
139 /* FM interrupt handler table */
140 static int_handler_prototype int_handler_table[] = {
141 	fm_irq_send_flag_getcmd,
142 	fm_irq_handle_flag_getcmd_resp,
143 	fm_irq_handle_hw_malfunction,
144 	fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
145 	fm_irq_send_rdsdata_getcmd,
146 	fm_irq_handle_rdsdata_getcmd_resp,
147 	fm_irq_handle_rds_finish,
148 	fm_irq_handle_tune_op_ended,
149 	fm_irq_handle_power_enb, /* TX power enable irq handler */
150 	fm_irq_handle_low_rssi_start,
151 	fm_irq_afjump_set_pi,
152 	fm_irq_handle_set_pi_resp,
153 	fm_irq_afjump_set_pimask,
154 	fm_irq_handle_set_pimask_resp,
155 	fm_irq_afjump_setfreq,
156 	fm_irq_handle_setfreq_resp,
157 	fm_irq_afjump_enableint,
158 	fm_irq_afjump_enableint_resp,
159 	fm_irq_start_afjump,
160 	fm_irq_handle_start_afjump_resp,
161 	fm_irq_afjump_rd_freq,
162 	fm_irq_afjump_rd_freq_resp,
163 	fm_irq_handle_low_rssi_finish,
164 	fm_irq_send_intmsk_cmd, /* Interrupt process post action */
165 	fm_irq_handle_intmsk_cmd_resp
166 };
167 
168 static long (*g_st_write) (struct sk_buff *skb);
169 static struct completion wait_for_fmdrv_reg_comp;
170 
171 static inline void fm_irq_call(struct fmdev *fmdev)
172 {
173 	fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
174 }
175 
176 /* Continue next function in interrupt handler table */
177 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
178 {
179 	fmdev->irq_info.stage = stage;
180 	fm_irq_call(fmdev);
181 }
182 
183 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
184 {
185 	fmdev->irq_info.stage = stage;
186 	mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
187 }
188 
189 #ifdef FM_DUMP_TXRX_PKT
190  /* To dump outgoing FM Channel-8 packets */
191 inline void dump_tx_skb_data(struct sk_buff *skb)
192 {
193 	int len, len_org;
194 	u8 index;
195 	struct fm_cmd_msg_hdr *cmd_hdr;
196 
197 	cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
198 	printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
199 	       fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
200 	       cmd_hdr->len, cmd_hdr->op,
201 	       cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
202 
203 	len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
204 	if (len_org > 0) {
205 		printk(KERN_CONT "\n   data(%d): ", cmd_hdr->dlen);
206 		len = min(len_org, 14);
207 		for (index = 0; index < len; index++)
208 			printk(KERN_CONT "%x ",
209 			       skb->data[FM_CMD_MSG_HDR_SIZE + index]);
210 		printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
211 	}
212 	printk(KERN_CONT "\n");
213 }
214 
215  /* To dump incoming FM Channel-8 packets */
216 inline void dump_rx_skb_data(struct sk_buff *skb)
217 {
218 	int len, len_org;
219 	u8 index;
220 	struct fm_event_msg_hdr *evt_hdr;
221 
222 	evt_hdr = (struct fm_event_msg_hdr *)skb->data;
223 	printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x opcode:%02x type:%s dlen:%02x",
224 	       evt_hdr->hdr, evt_hdr->len,
225 	       evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
226 	       (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
227 
228 	len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
229 	if (len_org > 0) {
230 		printk(KERN_CONT "\n   data(%d): ", evt_hdr->dlen);
231 		len = min(len_org, 14);
232 		for (index = 0; index < len; index++)
233 			printk(KERN_CONT "%x ",
234 			       skb->data[FM_EVT_MSG_HDR_SIZE + index]);
235 		printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
236 	}
237 	printk(KERN_CONT "\n");
238 }
239 #endif
240 
241 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
242 {
243 	fmdev->rx.region = region_configs[region_to_set];
244 }
245 
246 /*
247  * FM common sub-module will queue this bh work whenever it receives
248  * FM packet from ST driver.
249  */
250 static void recv_bh_work(struct work_struct *t)
251 {
252 	struct fmdev *fmdev;
253 	struct fm_irq *irq_info;
254 	struct fm_event_msg_hdr *evt_hdr;
255 	struct sk_buff *skb;
256 	u8 num_fm_hci_cmds;
257 	unsigned long flags;
258 
259 	fmdev = from_work(fmdev, t, tx_bh_work);
260 	irq_info = &fmdev->irq_info;
261 	/* Process all packets in the RX queue */
262 	while ((skb = skb_dequeue(&fmdev->rx_q))) {
263 		if (skb->len < sizeof(struct fm_event_msg_hdr)) {
264 			fmerr("skb(%p) has only %d bytes, at least need %zu bytes to decode\n",
265 			      skb,
266 			      skb->len, sizeof(struct fm_event_msg_hdr));
267 			kfree_skb(skb);
268 			continue;
269 		}
270 
271 		evt_hdr = (void *)skb->data;
272 		num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
273 
274 		/* FM interrupt packet? */
275 		if (evt_hdr->op == FM_INTERRUPT) {
276 			/* FM interrupt handler started already? */
277 			if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
278 				set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
279 				if (irq_info->stage != 0) {
280 					fmerr("Inval stage resetting to zero\n");
281 					irq_info->stage = 0;
282 				}
283 
284 				/*
285 				 * Execute first function in interrupt handler
286 				 * table.
287 				 */
288 				irq_info->handlers[irq_info->stage](fmdev);
289 			} else {
290 				set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
291 			}
292 			kfree_skb(skb);
293 		}
294 		/* Anyone waiting for this with completion handler? */
295 		else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
296 
297 			spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
298 			fmdev->resp_skb = skb;
299 			spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
300 			complete(fmdev->resp_comp);
301 
302 			fmdev->resp_comp = NULL;
303 			atomic_set(&fmdev->tx_cnt, 1);
304 		}
305 		/* Is this for interrupt handler? */
306 		else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
307 			if (fmdev->resp_skb != NULL)
308 				fmerr("Response SKB ptr not NULL\n");
309 
310 			spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
311 			fmdev->resp_skb = skb;
312 			spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
313 
314 			/* Execute interrupt handler where state index points */
315 			irq_info->handlers[irq_info->stage](fmdev);
316 
317 			kfree_skb(skb);
318 			atomic_set(&fmdev->tx_cnt, 1);
319 		} else {
320 			fmerr("Nobody claimed SKB(%p),purging\n", skb);
321 		}
322 
323 		/*
324 		 * Check flow control field. If Num_FM_HCI_Commands field is
325 		 * not zero, queue FM TX bh work.
326 		 */
327 		if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
328 			if (!skb_queue_empty(&fmdev->tx_q))
329 				queue_work(system_bh_wq, &fmdev->tx_bh_work);
330 	}
331 }
332 
333 /* FM send_bh_work: is scheduled when FM packet has to be sent to chip */
334 static void send_bh_work(struct work_struct *t)
335 {
336 	struct fmdev *fmdev;
337 	struct sk_buff *skb;
338 	int len;
339 
340 	fmdev = from_work(fmdev, t, tx_bh_work);
341 
342 	if (!atomic_read(&fmdev->tx_cnt))
343 		return;
344 
345 	/* Check, is there any timeout happened to last transmitted packet */
346 	if (time_is_before_jiffies(fmdev->last_tx_jiffies + FM_DRV_TX_TIMEOUT)) {
347 		fmerr("TX timeout occurred\n");
348 		atomic_set(&fmdev->tx_cnt, 1);
349 	}
350 
351 	/* Send queued FM TX packets */
352 	skb = skb_dequeue(&fmdev->tx_q);
353 	if (!skb)
354 		return;
355 
356 	atomic_dec(&fmdev->tx_cnt);
357 	fmdev->pre_op = fm_cb(skb)->fm_op;
358 
359 	if (fmdev->resp_comp != NULL)
360 		fmerr("Response completion handler is not NULL\n");
361 
362 	fmdev->resp_comp = fm_cb(skb)->completion;
363 
364 	/* Write FM packet to ST driver */
365 	len = g_st_write(skb);
366 	if (len < 0) {
367 		kfree_skb(skb);
368 		fmdev->resp_comp = NULL;
369 		fmerr("TX bh work failed to send skb(%p)\n", skb);
370 		atomic_set(&fmdev->tx_cnt, 1);
371 	} else {
372 		fmdev->last_tx_jiffies = jiffies;
373 	}
374 }
375 
376 /*
377  * Queues FM Channel-8 packet to FM TX queue and schedules FM TX bh work for
378  * transmission
379  */
380 static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type,	void *payload,
381 		int payload_len, struct completion *wait_completion)
382 {
383 	struct sk_buff *skb;
384 	struct fm_cmd_msg_hdr *hdr;
385 	int size;
386 
387 	if (fm_op >= FM_INTERRUPT) {
388 		fmerr("Invalid fm opcode - %d\n", fm_op);
389 		return -EINVAL;
390 	}
391 	if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
392 		fmerr("Payload data is NULL during fw download\n");
393 		return -EINVAL;
394 	}
395 	if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
396 		size =
397 		    FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
398 	else
399 		size = payload_len;
400 
401 	skb = alloc_skb(size, GFP_ATOMIC);
402 	if (!skb) {
403 		fmerr("No memory to create new SKB\n");
404 		return -ENOMEM;
405 	}
406 	/*
407 	 * Don't fill FM header info for the commands which come from
408 	 * FM firmware file.
409 	 */
410 	if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
411 			test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
412 		/* Fill command header info */
413 		hdr = skb_put(skb, FM_CMD_MSG_HDR_SIZE);
414 		hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER;	/* 0x08 */
415 
416 		/* 3 (fm_opcode,rd_wr,dlen) + payload len) */
417 		hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
418 
419 		/* FM opcode */
420 		hdr->op = fm_op;
421 
422 		/* read/write type */
423 		hdr->rd_wr = type;
424 		hdr->dlen = payload_len;
425 		fm_cb(skb)->fm_op = fm_op;
426 
427 		/*
428 		 * If firmware download has finished and the command is
429 		 * not a read command then payload is != NULL - a write
430 		 * command with u16 payload - convert to be16
431 		 */
432 		if (payload != NULL)
433 			*(__be16 *)payload = cpu_to_be16(*(u16 *)payload);
434 
435 	} else if (payload != NULL) {
436 		fm_cb(skb)->fm_op = *((u8 *)payload + 2);
437 	}
438 	if (payload != NULL)
439 		skb_put_data(skb, payload, payload_len);
440 
441 	fm_cb(skb)->completion = wait_completion;
442 	skb_queue_tail(&fmdev->tx_q, skb);
443 	queue_work(system_bh_wq, &fmdev->tx_bh_work);
444 
445 	return 0;
446 }
447 
448 /* Sends FM Channel-8 command to the chip and waits for the response */
449 int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
450 		unsigned int payload_len, void *response, int *response_len)
451 {
452 	struct sk_buff *skb;
453 	struct fm_event_msg_hdr *evt_hdr;
454 	unsigned long flags;
455 	int ret;
456 
457 	init_completion(&fmdev->maintask_comp);
458 	ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
459 			    &fmdev->maintask_comp);
460 	if (ret)
461 		return ret;
462 
463 	if (!wait_for_completion_timeout(&fmdev->maintask_comp,
464 					 FM_DRV_TX_TIMEOUT)) {
465 		fmerr("Timeout(%d sec),didn't get regcompletion signal from RX bh work\n",
466 			   jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
467 		return -ETIMEDOUT;
468 	}
469 	spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
470 	if (!fmdev->resp_skb) {
471 		spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
472 		fmerr("Response SKB is missing\n");
473 		return -EFAULT;
474 	}
475 	skb = fmdev->resp_skb;
476 	fmdev->resp_skb = NULL;
477 	spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
478 
479 	evt_hdr = (void *)skb->data;
480 	if (evt_hdr->status != 0) {
481 		fmerr("Received event pkt status(%d) is not zero\n",
482 			   evt_hdr->status);
483 		kfree_skb(skb);
484 		return -EIO;
485 	}
486 	/* Send response data to caller */
487 	if (response != NULL && response_len != NULL && evt_hdr->dlen &&
488 	    evt_hdr->dlen <= payload_len) {
489 		/* Skip header info and copy only response data */
490 		skb_pull(skb, sizeof(struct fm_event_msg_hdr));
491 		memcpy(response, skb->data, evt_hdr->dlen);
492 		*response_len = evt_hdr->dlen;
493 	} else if (response_len != NULL && evt_hdr->dlen == 0) {
494 		*response_len = 0;
495 	}
496 	kfree_skb(skb);
497 
498 	return 0;
499 }
500 
501 /* --- Helper functions used in FM interrupt handlers ---*/
502 static inline int check_cmdresp_status(struct fmdev *fmdev,
503 		struct sk_buff **skb)
504 {
505 	struct fm_event_msg_hdr *fm_evt_hdr;
506 	unsigned long flags;
507 
508 	del_timer(&fmdev->irq_info.timer);
509 
510 	spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
511 	*skb = fmdev->resp_skb;
512 	fmdev->resp_skb = NULL;
513 	spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
514 
515 	fm_evt_hdr = (void *)(*skb)->data;
516 	if (fm_evt_hdr->status != 0) {
517 		fmerr("irq: opcode %x response status is not zero Initiating irq recovery process\n",
518 				fm_evt_hdr->op);
519 
520 		mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
521 		return -1;
522 	}
523 
524 	return 0;
525 }
526 
527 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
528 {
529 	struct sk_buff *skb;
530 
531 	if (!check_cmdresp_status(fmdev, &skb))
532 		fm_irq_call_stage(fmdev, stage);
533 }
534 
535 /*
536  * Interrupt process timeout handler.
537  * One of the irq handler did not get proper response from the chip. So take
538  * recovery action here. FM interrupts are disabled in the beginning of
539  * interrupt process. Therefore reset stage index to re-enable default
540  * interrupts. So that next interrupt will be processed as usual.
541  */
542 static void int_timeout_handler(struct timer_list *t)
543 {
544 	struct fmdev *fmdev;
545 	struct fm_irq *fmirq;
546 
547 	fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
548 	fmdev = from_timer(fmdev, t, irq_info.timer);
549 	fmirq = &fmdev->irq_info;
550 	fmirq->retry++;
551 
552 	if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
553 		/* Stop recovery action (interrupt reenable process) and
554 		 * reset stage index & retry count values */
555 		fmirq->stage = 0;
556 		fmirq->retry = 0;
557 		fmerr("Recovery action failed duringirq processing, max retry reached\n");
558 		return;
559 	}
560 	fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
561 }
562 
563 /* --------- FM interrupt handlers ------------*/
564 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
565 {
566 	u16 flag;
567 
568 	/* Send FLAG_GET command , to know the source of interrupt */
569 	if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
570 		fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
571 }
572 
573 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
574 {
575 	struct sk_buff *skb;
576 	struct fm_event_msg_hdr *fm_evt_hdr;
577 
578 	if (check_cmdresp_status(fmdev, &skb))
579 		return;
580 
581 	fm_evt_hdr = (void *)skb->data;
582 	if (fm_evt_hdr->dlen > sizeof(fmdev->irq_info.flag))
583 		return;
584 
585 	/* Skip header info and copy only response data */
586 	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
587 	memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
588 
589 	fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag);
590 	fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
591 
592 	/* Continue next function in interrupt handler table */
593 	fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
594 }
595 
596 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
597 {
598 	if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
599 		fmerr("irq: HW MAL int received - do nothing\n");
600 
601 	/* Continue next function in interrupt handler table */
602 	fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
603 }
604 
605 static void fm_irq_handle_rds_start(struct fmdev *fmdev)
606 {
607 	if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
608 		fmdbg("irq: rds threshold reached\n");
609 		fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
610 	} else {
611 		/* Continue next function in interrupt handler table */
612 		fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
613 	}
614 
615 	fm_irq_call(fmdev);
616 }
617 
618 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
619 {
620 	/* Send the command to read RDS data from the chip */
621 	if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
622 			    (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
623 		fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
624 }
625 
626 /* Keeps track of current RX channel AF (Alternate Frequency) */
627 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
628 {
629 	struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
630 	u8 reg_idx = fmdev->rx.region.fm_band;
631 	u8 index;
632 	u32 freq;
633 
634 	/* First AF indicates the number of AF follows. Reset the list */
635 	if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
636 		fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
637 		fmdev->rx.stat_info.afcache_size = 0;
638 		fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
639 		return;
640 	}
641 
642 	if (af < FM_RDS_MIN_AF)
643 		return;
644 	if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
645 		return;
646 	if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
647 		return;
648 
649 	freq = fmdev->rx.region.bot_freq + (af * 100);
650 	if (freq == fmdev->rx.freq) {
651 		fmdbg("Current freq(%d) is matching with received AF(%d)\n",
652 				fmdev->rx.freq, freq);
653 		return;
654 	}
655 	/* Do check in AF cache */
656 	for (index = 0; index < stat_info->afcache_size; index++) {
657 		if (stat_info->af_cache[index] == freq)
658 			break;
659 	}
660 	/* Reached the limit of the list - ignore the next AF */
661 	if (index == stat_info->af_list_max) {
662 		fmdbg("AF cache is full\n");
663 		return;
664 	}
665 	/*
666 	 * If we reached the end of the list then this AF is not
667 	 * in the list - add it.
668 	 */
669 	if (index == stat_info->afcache_size) {
670 		fmdbg("Storing AF %d to cache index %d\n", freq, index);
671 		stat_info->af_cache[index] = freq;
672 		stat_info->afcache_size++;
673 	}
674 }
675 
676 /*
677  * Converts RDS buffer data from big endian format
678  * to little endian format.
679  */
680 static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
681 		struct fm_rdsdata_format *rds_format)
682 {
683 	u8 index = 0;
684 	u8 *rds_buff;
685 
686 	/*
687 	 * Since in Orca the 2 RDS Data bytes are in little endian and
688 	 * in Dolphin they are in big endian, the parsing of the RDS data
689 	 * is chip dependent
690 	 */
691 	if (fmdev->asci_id != 0x6350) {
692 		rds_buff = &rds_format->data.groupdatabuff.buff[0];
693 		while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
694 			swap(rds_buff[index], rds_buff[index + 1]);
695 			index += 2;
696 		}
697 	}
698 }
699 
700 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
701 {
702 	struct sk_buff *skb;
703 	struct fm_rdsdata_format rds_fmt;
704 	struct fm_rds *rds = &fmdev->rx.rds;
705 	unsigned long group_idx, flags;
706 	u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE];
707 	u8 type, blk_idx, idx;
708 	u16 cur_picode;
709 	u32 rds_len;
710 
711 	if (check_cmdresp_status(fmdev, &skb))
712 		return;
713 
714 	/* Skip header info */
715 	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
716 	rds_data = skb->data;
717 	rds_len = skb->len;
718 
719 	/* Parse the RDS data */
720 	while (rds_len >= FM_RDS_BLK_SIZE) {
721 		meta_data = rds_data[2];
722 		/* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
723 		type = (meta_data & 0x07);
724 
725 		/* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
726 		blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
727 		fmdbg("Block index:%d(%s)\n", blk_idx,
728 			   (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
729 
730 		if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
731 			break;
732 
733 		if (blk_idx > FM_RDS_BLK_IDX_D) {
734 			fmdbg("Block sequence mismatch\n");
735 			rds->last_blk_idx = -1;
736 			break;
737 		}
738 
739 		/* Skip checkword (control) byte and copy only data byte */
740 		idx = array_index_nospec(blk_idx * (FM_RDS_BLK_SIZE - 1),
741 					 FM_RX_RDS_INFO_FIELD_MAX - (FM_RDS_BLK_SIZE - 1));
742 
743 		memcpy(&rds_fmt.data.groupdatabuff.buff[idx], rds_data,
744 		       FM_RDS_BLK_SIZE - 1);
745 
746 		rds->last_blk_idx = blk_idx;
747 
748 		/* If completed a whole group then handle it */
749 		if (blk_idx == FM_RDS_BLK_IDX_D) {
750 			fmdbg("Good block received\n");
751 			fm_rdsparse_swapbytes(fmdev, &rds_fmt);
752 
753 			/*
754 			 * Extract PI code and store in local cache.
755 			 * We need this during AF switch processing.
756 			 */
757 			cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata);
758 			if (fmdev->rx.stat_info.picode != cur_picode)
759 				fmdev->rx.stat_info.picode = cur_picode;
760 
761 			fmdbg("picode:%d\n", cur_picode);
762 
763 			group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
764 			fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
765 					(group_idx % 2) ? "B" : "A");
766 
767 			group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
768 			if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
769 				fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
770 				fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
771 			}
772 		}
773 		rds_len -= FM_RDS_BLK_SIZE;
774 		rds_data += FM_RDS_BLK_SIZE;
775 	}
776 
777 	/* Copy raw rds data to internal rds buffer */
778 	rds_data = skb->data;
779 	rds_len = skb->len;
780 
781 	spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
782 	while (rds_len > 0) {
783 		/*
784 		 * Fill RDS buffer as per V4L2 specification.
785 		 * Store control byte
786 		 */
787 		type = (rds_data[2] & 0x07);
788 		blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
789 		tmpbuf[2] = blk_idx;	/* Offset name */
790 		tmpbuf[2] |= blk_idx << 3;	/* Received offset */
791 
792 		/* Store data byte */
793 		tmpbuf[0] = rds_data[0];
794 		tmpbuf[1] = rds_data[1];
795 
796 		memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
797 		rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
798 
799 		/* Check for overflow & start over */
800 		if (rds->wr_idx == rds->rd_idx) {
801 			fmdbg("RDS buffer overflow\n");
802 			rds->wr_idx = 0;
803 			rds->rd_idx = 0;
804 			break;
805 		}
806 		rds_len -= FM_RDS_BLK_SIZE;
807 		rds_data += FM_RDS_BLK_SIZE;
808 	}
809 	spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
810 
811 	/* Wakeup read queue */
812 	if (rds->wr_idx != rds->rd_idx)
813 		wake_up_interruptible(&rds->read_queue);
814 
815 	fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
816 }
817 
818 static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
819 {
820 	fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
821 }
822 
823 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
824 {
825 	if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
826 	    irq_info.mask) {
827 		fmdbg("irq: tune ended/bandlimit reached\n");
828 		if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
829 			fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
830 		} else {
831 			complete(&fmdev->maintask_comp);
832 			fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
833 		}
834 	} else
835 		fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
836 
837 	fm_irq_call(fmdev);
838 }
839 
840 static void fm_irq_handle_power_enb(struct fmdev *fmdev)
841 {
842 	if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
843 		fmdbg("irq: Power Enabled/Disabled\n");
844 		complete(&fmdev->maintask_comp);
845 	}
846 
847 	fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
848 }
849 
850 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
851 {
852 	if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
853 	    (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
854 	    (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
855 	    (fmdev->rx.stat_info.afcache_size != 0)) {
856 		fmdbg("irq: rssi level has fallen below threshold level\n");
857 
858 		/* Disable further low RSSI interrupts */
859 		fmdev->irq_info.mask &= ~FM_LEV_EVENT;
860 
861 		fmdev->rx.afjump_idx = 0;
862 		fmdev->rx.freq_before_jump = fmdev->rx.freq;
863 		fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
864 	} else {
865 		/* Continue next function in interrupt handler table */
866 		fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
867 	}
868 
869 	fm_irq_call(fmdev);
870 }
871 
872 static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
873 {
874 	u16 payload;
875 
876 	/* Set PI code - must be updated if the AF list is not empty */
877 	payload = fmdev->rx.stat_info.picode;
878 	if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
879 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
880 }
881 
882 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
883 {
884 	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
885 }
886 
887 /*
888  * Set PI mask.
889  * 0xFFFF = Enable PI code matching
890  * 0x0000 = Disable PI code matching
891  */
892 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
893 {
894 	u16 payload;
895 
896 	payload = 0x0000;
897 	if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
898 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
899 }
900 
901 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
902 {
903 	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
904 }
905 
906 static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
907 {
908 	u16 frq_index;
909 	u16 payload;
910 
911 	fmdbg("Switch to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
912 	frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
913 	     fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
914 
915 	payload = frq_index;
916 	if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
917 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
918 }
919 
920 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
921 {
922 	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
923 }
924 
925 static void fm_irq_afjump_enableint(struct fmdev *fmdev)
926 {
927 	u16 payload;
928 
929 	/* Enable FR (tuning operation ended) interrupt */
930 	payload = FM_FR_EVENT;
931 	if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
932 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
933 }
934 
935 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
936 {
937 	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
938 }
939 
940 static void fm_irq_start_afjump(struct fmdev *fmdev)
941 {
942 	u16 payload;
943 
944 	payload = FM_TUNER_AF_JUMP_MODE;
945 	if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
946 			sizeof(payload), NULL))
947 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
948 }
949 
950 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
951 {
952 	struct sk_buff *skb;
953 
954 	if (check_cmdresp_status(fmdev, &skb))
955 		return;
956 
957 	fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
958 	set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
959 	clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
960 }
961 
962 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
963 {
964 	u16 payload;
965 
966 	if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
967 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
968 }
969 
970 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
971 {
972 	struct sk_buff *skb;
973 	u16 read_freq;
974 	u32 curr_freq, jumped_freq;
975 
976 	if (check_cmdresp_status(fmdev, &skb))
977 		return;
978 
979 	/* Skip header info and copy only response data */
980 	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
981 	memcpy(&read_freq, skb->data, sizeof(read_freq));
982 	read_freq = be16_to_cpu((__force __be16)read_freq);
983 	curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
984 
985 	jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
986 
987 	/* If the frequency was changed the jump succeeded */
988 	if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
989 		fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
990 		fmdev->rx.freq = curr_freq;
991 		fm_rx_reset_rds_cache(fmdev);
992 
993 		/* AF feature is on, enable low level RSSI interrupt */
994 		if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
995 			fmdev->irq_info.mask |= FM_LEV_EVENT;
996 
997 		fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
998 	} else {		/* jump to the next freq in the AF list */
999 		fmdev->rx.afjump_idx++;
1000 
1001 		/* If we reached the end of the list - stop searching */
1002 		if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
1003 			fmdbg("AF switch processing failed\n");
1004 			fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1005 		} else {	/* AF List is not over - try next one */
1006 
1007 			fmdbg("Trying next freq in AF cache\n");
1008 			fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1009 		}
1010 	}
1011 	fm_irq_call(fmdev);
1012 }
1013 
1014 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1015 {
1016 	fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1017 }
1018 
1019 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1020 {
1021 	u16 payload;
1022 
1023 	/* Re-enable FM interrupts */
1024 	payload = fmdev->irq_info.mask;
1025 
1026 	if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1027 			sizeof(payload), NULL))
1028 		fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1029 }
1030 
1031 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1032 {
1033 	struct sk_buff *skb;
1034 
1035 	if (check_cmdresp_status(fmdev, &skb))
1036 		return;
1037 	/*
1038 	 * This is last function in interrupt table to be executed.
1039 	 * So, reset stage index to 0.
1040 	 */
1041 	fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1042 
1043 	/* Start processing any pending interrupt */
1044 	if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
1045 		fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1046 	else
1047 		clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1048 }
1049 
1050 /* Returns availability of RDS data in internal buffer */
1051 int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1052 				struct poll_table_struct *pts)
1053 {
1054 	poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1055 	if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1056 		return 0;
1057 
1058 	return -EAGAIN;
1059 }
1060 
1061 /* Copies RDS data from internal buffer to user buffer */
1062 int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1063 		u8 __user *buf, size_t count)
1064 {
1065 	u32 block_count;
1066 	u8 tmpbuf[FM_RDS_BLK_SIZE];
1067 	unsigned long flags;
1068 	int ret;
1069 
1070 	if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1071 		if (file->f_flags & O_NONBLOCK)
1072 			return -EWOULDBLOCK;
1073 
1074 		ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1075 				(fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1076 		if (ret)
1077 			return -EINTR;
1078 	}
1079 
1080 	/* Calculate block count from byte count */
1081 	count /= FM_RDS_BLK_SIZE;
1082 	block_count = 0;
1083 	ret = 0;
1084 
1085 	while (block_count < count) {
1086 		spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1087 
1088 		if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1089 			spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1090 			break;
1091 		}
1092 		memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1093 					FM_RDS_BLK_SIZE);
1094 		fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1095 		if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1096 			fmdev->rx.rds.rd_idx = 0;
1097 
1098 		spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1099 
1100 		if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE))
1101 			break;
1102 
1103 		block_count++;
1104 		buf += FM_RDS_BLK_SIZE;
1105 		ret += FM_RDS_BLK_SIZE;
1106 	}
1107 	return ret;
1108 }
1109 
1110 int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1111 {
1112 	switch (fmdev->curr_fmmode) {
1113 	case FM_MODE_RX:
1114 		return fm_rx_set_freq(fmdev, freq_to_set);
1115 
1116 	case FM_MODE_TX:
1117 		return fm_tx_set_freq(fmdev, freq_to_set);
1118 
1119 	default:
1120 		return -EINVAL;
1121 	}
1122 }
1123 
1124 int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1125 {
1126 	if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1127 		fmerr("RX frequency is not set\n");
1128 		return -EPERM;
1129 	}
1130 	if (cur_tuned_frq == NULL) {
1131 		fmerr("Invalid memory\n");
1132 		return -ENOMEM;
1133 	}
1134 
1135 	switch (fmdev->curr_fmmode) {
1136 	case FM_MODE_RX:
1137 		*cur_tuned_frq = fmdev->rx.freq;
1138 		return 0;
1139 
1140 	case FM_MODE_TX:
1141 		*cur_tuned_frq = 0;	/* TODO : Change this later */
1142 		return 0;
1143 
1144 	default:
1145 		return -EINVAL;
1146 	}
1147 
1148 }
1149 
1150 int fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1151 {
1152 	switch (fmdev->curr_fmmode) {
1153 	case FM_MODE_RX:
1154 		return fm_rx_set_region(fmdev, region_to_set);
1155 
1156 	case FM_MODE_TX:
1157 		return fm_tx_set_region(fmdev, region_to_set);
1158 
1159 	default:
1160 		return -EINVAL;
1161 	}
1162 }
1163 
1164 int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1165 {
1166 	switch (fmdev->curr_fmmode) {
1167 	case FM_MODE_RX:
1168 		return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1169 
1170 	case FM_MODE_TX:
1171 		return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1172 
1173 	default:
1174 		return -EINVAL;
1175 	}
1176 }
1177 
1178 int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1179 {
1180 	switch (fmdev->curr_fmmode) {
1181 	case FM_MODE_RX:
1182 		return fm_rx_set_stereo_mono(fmdev, mode);
1183 
1184 	case FM_MODE_TX:
1185 		return fm_tx_set_stereo_mono(fmdev, mode);
1186 
1187 	default:
1188 		return -EINVAL;
1189 	}
1190 }
1191 
1192 int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1193 {
1194 	switch (fmdev->curr_fmmode) {
1195 	case FM_MODE_RX:
1196 		return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1197 
1198 	case FM_MODE_TX:
1199 		return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1200 
1201 	default:
1202 		return -EINVAL;
1203 	}
1204 }
1205 
1206 /* Sends power off command to the chip */
1207 static int fm_power_down(struct fmdev *fmdev)
1208 {
1209 	u16 payload;
1210 	int ret;
1211 
1212 	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1213 		fmerr("FM core is not ready\n");
1214 		return -EPERM;
1215 	}
1216 	if (fmdev->curr_fmmode == FM_MODE_OFF) {
1217 		fmdbg("FM chip is already in OFF state\n");
1218 		return 0;
1219 	}
1220 
1221 	payload = 0x0;
1222 	ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1223 		sizeof(payload), NULL, NULL);
1224 	if (ret < 0)
1225 		return ret;
1226 
1227 	return fmc_release(fmdev);
1228 }
1229 
1230 /* Reads init command from FM firmware file and loads to the chip */
1231 static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1232 {
1233 	const struct firmware *fw_entry;
1234 	struct bts_header *fw_header;
1235 	struct bts_action *action;
1236 	struct bts_action_delay *delay;
1237 	u8 *fw_data;
1238 	int ret, fw_len;
1239 
1240 	set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1241 
1242 	ret = request_firmware(&fw_entry, fw_name,
1243 				&fmdev->radio_dev->dev);
1244 	if (ret < 0) {
1245 		fmerr("Unable to read firmware(%s) content\n", fw_name);
1246 		return ret;
1247 	}
1248 	fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size);
1249 
1250 	fw_data = (void *)fw_entry->data;
1251 	fw_len = fw_entry->size;
1252 
1253 	fw_header = (struct bts_header *)fw_data;
1254 	if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1255 		fmerr("%s not a legal TI firmware file\n", fw_name);
1256 		ret = -EINVAL;
1257 		goto rel_fw;
1258 	}
1259 	fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1260 
1261 	/* Skip file header info , we already verified it */
1262 	fw_data += sizeof(struct bts_header);
1263 	fw_len -= sizeof(struct bts_header);
1264 
1265 	while (fw_data && fw_len > 0) {
1266 		action = (struct bts_action *)fw_data;
1267 
1268 		switch (action->type) {
1269 		case ACTION_SEND_COMMAND:	/* Send */
1270 			ret = fmc_send_cmd(fmdev, 0, 0, action->data,
1271 					   action->size, NULL, NULL);
1272 			if (ret)
1273 				goto rel_fw;
1274 
1275 			break;
1276 
1277 		case ACTION_DELAY:	/* Delay */
1278 			delay = (struct bts_action_delay *)action->data;
1279 			mdelay(delay->msec);
1280 			break;
1281 		}
1282 
1283 		fw_data += (sizeof(struct bts_action) + (action->size));
1284 		fw_len -= (sizeof(struct bts_action) + (action->size));
1285 	}
1286 	fmdbg("Transferred only %d of %d bytes of the firmware to chip\n",
1287 	      fw_entry->size - fw_len, fw_entry->size);
1288 rel_fw:
1289 	release_firmware(fw_entry);
1290 	clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1291 
1292 	return ret;
1293 }
1294 
1295 /* Loads default RX configuration to the chip */
1296 static int load_default_rx_configuration(struct fmdev *fmdev)
1297 {
1298 	int ret;
1299 
1300 	ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1301 	if (ret < 0)
1302 		return ret;
1303 
1304 	return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
1305 }
1306 
1307 /* Does FM power on sequence */
1308 static int fm_power_up(struct fmdev *fmdev, u8 mode)
1309 {
1310 	u16 payload;
1311 	__be16 asic_id = 0, asic_ver = 0;
1312 	int resp_len, ret;
1313 	u8 fw_name[50];
1314 
1315 	if (mode >= FM_MODE_ENTRY_MAX) {
1316 		fmerr("Invalid firmware download option\n");
1317 		return -EINVAL;
1318 	}
1319 
1320 	/*
1321 	 * Initialize FM common module. FM GPIO toggling is
1322 	 * taken care in Shared Transport driver.
1323 	 */
1324 	ret = fmc_prepare(fmdev);
1325 	if (ret < 0) {
1326 		fmerr("Unable to prepare FM Common\n");
1327 		return ret;
1328 	}
1329 
1330 	payload = FM_ENABLE;
1331 	if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1332 			sizeof(payload), NULL, NULL))
1333 		goto rel;
1334 
1335 	/* Allow the chip to settle down in Channel-8 mode */
1336 	msleep(20);
1337 
1338 	if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1339 			sizeof(asic_id), &asic_id, &resp_len))
1340 		goto rel;
1341 
1342 	if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1343 			sizeof(asic_ver), &asic_ver, &resp_len))
1344 		goto rel;
1345 
1346 	fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1347 		be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1348 
1349 	sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
1350 		be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1351 
1352 	ret = fm_download_firmware(fmdev, fw_name);
1353 	if (ret < 0) {
1354 		fmdbg("Failed to download firmware file %s\n", fw_name);
1355 		goto rel;
1356 	}
1357 	sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
1358 			FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
1359 			be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1360 
1361 	ret = fm_download_firmware(fmdev, fw_name);
1362 	if (ret < 0) {
1363 		fmdbg("Failed to download firmware file %s\n", fw_name);
1364 		goto rel;
1365 	} else
1366 		return ret;
1367 rel:
1368 	return fmc_release(fmdev);
1369 }
1370 
1371 /* Set FM Modes(TX, RX, OFF) */
1372 int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1373 {
1374 	int ret = 0;
1375 
1376 	if (fm_mode >= FM_MODE_ENTRY_MAX) {
1377 		fmerr("Invalid FM mode\n");
1378 		return -EINVAL;
1379 	}
1380 	if (fmdev->curr_fmmode == fm_mode) {
1381 		fmdbg("Already fm is in mode(%d)\n", fm_mode);
1382 		return ret;
1383 	}
1384 
1385 	switch (fm_mode) {
1386 	case FM_MODE_OFF:	/* OFF Mode */
1387 		ret = fm_power_down(fmdev);
1388 		if (ret < 0) {
1389 			fmerr("Failed to set OFF mode\n");
1390 			return ret;
1391 		}
1392 		break;
1393 
1394 	case FM_MODE_TX:	/* TX Mode */
1395 	case FM_MODE_RX:	/* RX Mode */
1396 		/* Power down before switching to TX or RX mode */
1397 		if (fmdev->curr_fmmode != FM_MODE_OFF) {
1398 			ret = fm_power_down(fmdev);
1399 			if (ret < 0) {
1400 				fmerr("Failed to set OFF mode\n");
1401 				return ret;
1402 			}
1403 			msleep(30);
1404 		}
1405 		ret = fm_power_up(fmdev, fm_mode);
1406 		if (ret < 0) {
1407 			fmerr("Failed to load firmware\n");
1408 			return ret;
1409 		}
1410 	}
1411 	fmdev->curr_fmmode = fm_mode;
1412 
1413 	/* Set default configuration */
1414 	if (fmdev->curr_fmmode == FM_MODE_RX) {
1415 		fmdbg("Loading default rx configuration..\n");
1416 		ret = load_default_rx_configuration(fmdev);
1417 		if (ret < 0)
1418 			fmerr("Failed to load default values\n");
1419 	}
1420 
1421 	return ret;
1422 }
1423 
1424 /* Returns current FM mode (TX, RX, OFF) */
1425 int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1426 {
1427 	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1428 		fmerr("FM core is not ready\n");
1429 		return -EPERM;
1430 	}
1431 	if (fmmode == NULL) {
1432 		fmerr("Invalid memory\n");
1433 		return -ENOMEM;
1434 	}
1435 
1436 	*fmmode = fmdev->curr_fmmode;
1437 	return 0;
1438 }
1439 
1440 /* Called by ST layer when FM packet is available */
1441 static long fm_st_receive(void *arg, struct sk_buff *skb)
1442 {
1443 	struct fmdev *fmdev;
1444 
1445 	fmdev = arg;
1446 
1447 	if (skb == NULL) {
1448 		fmerr("Invalid SKB received from ST\n");
1449 		return -EFAULT;
1450 	}
1451 
1452 	if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1453 		fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1454 		return -EINVAL;
1455 	}
1456 
1457 	memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1458 	skb_queue_tail(&fmdev->rx_q, skb);
1459 	queue_work(system_bh_wq, &fmdev->rx_bh_work);
1460 
1461 	return 0;
1462 }
1463 
1464 /*
1465  * Called by ST layer to indicate protocol registration completion
1466  * status.
1467  */
1468 static void fm_st_reg_comp_cb(void *arg, int data)
1469 {
1470 	struct fmdev *fmdev;
1471 
1472 	fmdev = (struct fmdev *)arg;
1473 	fmdev->streg_cbdata = data;
1474 	complete(&wait_for_fmdrv_reg_comp);
1475 }
1476 
1477 /*
1478  * This function will be called from FM V4L2 open function.
1479  * Register with ST driver and initialize driver data.
1480  */
1481 int fmc_prepare(struct fmdev *fmdev)
1482 {
1483 	static struct st_proto_s fm_st_proto;
1484 	int ret;
1485 
1486 	if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1487 		fmdbg("FM Core is already up\n");
1488 		return 0;
1489 	}
1490 
1491 	memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1492 	fm_st_proto.recv = fm_st_receive;
1493 	fm_st_proto.match_packet = NULL;
1494 	fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1495 	fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1496 	fm_st_proto.priv_data = fmdev;
1497 	fm_st_proto.chnl_id = 0x08;
1498 	fm_st_proto.max_frame_size = 0xff;
1499 	fm_st_proto.hdr_len = 1;
1500 	fm_st_proto.offset_len_in_hdr = 0;
1501 	fm_st_proto.len_size = 1;
1502 	fm_st_proto.reserve = 1;
1503 
1504 	ret = st_register(&fm_st_proto);
1505 	if (ret == -EINPROGRESS) {
1506 		init_completion(&wait_for_fmdrv_reg_comp);
1507 		fmdev->streg_cbdata = -EINPROGRESS;
1508 		fmdbg("%s waiting for ST reg completion signal\n", __func__);
1509 
1510 		if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1511 						 FM_ST_REG_TIMEOUT)) {
1512 			fmerr("Timeout(%d sec), didn't get reg completion signal from ST\n",
1513 					jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
1514 			return -ETIMEDOUT;
1515 		}
1516 		if (fmdev->streg_cbdata != 0) {
1517 			fmerr("ST reg comp CB called with error status %d\n",
1518 			      fmdev->streg_cbdata);
1519 			return -EAGAIN;
1520 		}
1521 
1522 		ret = 0;
1523 	} else if (ret < 0) {
1524 		fmerr("st_register failed %d\n", ret);
1525 		return -EAGAIN;
1526 	}
1527 
1528 	if (fm_st_proto.write != NULL) {
1529 		g_st_write = fm_st_proto.write;
1530 	} else {
1531 		fmerr("Failed to get ST write func pointer\n");
1532 		ret = st_unregister(&fm_st_proto);
1533 		if (ret < 0)
1534 			fmerr("st_unregister failed %d\n", ret);
1535 		return -EAGAIN;
1536 	}
1537 
1538 	spin_lock_init(&fmdev->rds_buff_lock);
1539 	spin_lock_init(&fmdev->resp_skb_lock);
1540 
1541 	/* Initialize TX queue and TX bh work */
1542 	skb_queue_head_init(&fmdev->tx_q);
1543 	INIT_WORK(&fmdev->tx_bh_work, send_bh_work);
1544 
1545 	/* Initialize RX Queue and RX bh work */
1546 	skb_queue_head_init(&fmdev->rx_q);
1547 	INIT_WORK(&fmdev->rx_bh_work, recv_bh_work);
1548 
1549 	fmdev->irq_info.stage = 0;
1550 	atomic_set(&fmdev->tx_cnt, 1);
1551 	fmdev->resp_comp = NULL;
1552 
1553 	timer_setup(&fmdev->irq_info.timer, int_timeout_handler, 0);
1554 	/*TODO: add FM_STIC_EVENT later */
1555 	fmdev->irq_info.mask = FM_MAL_EVENT;
1556 
1557 	/* Region info */
1558 	fmdev->rx.region = region_configs[default_radio_region];
1559 
1560 	fmdev->rx.mute_mode = FM_MUTE_OFF;
1561 	fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1562 	fmdev->rx.rds.flag = FM_RDS_DISABLE;
1563 	fmdev->rx.freq = FM_UNDEFINED_FREQ;
1564 	fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1565 	fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1566 	fmdev->irq_info.retry = 0;
1567 
1568 	fm_rx_reset_rds_cache(fmdev);
1569 	init_waitqueue_head(&fmdev->rx.rds.read_queue);
1570 
1571 	fm_rx_reset_station_info(fmdev);
1572 	set_bit(FM_CORE_READY, &fmdev->flag);
1573 
1574 	return ret;
1575 }
1576 
1577 /*
1578  * This function will be called from FM V4L2 release function.
1579  * Unregister from ST driver.
1580  */
1581 int fmc_release(struct fmdev *fmdev)
1582 {
1583 	static struct st_proto_s fm_st_proto;
1584 	int ret;
1585 
1586 	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1587 		fmdbg("FM Core is already down\n");
1588 		return 0;
1589 	}
1590 	/* Service pending read */
1591 	wake_up_interruptible(&fmdev->rx.rds.read_queue);
1592 
1593 	cancel_work_sync(&fmdev->tx_bh_work);
1594 	cancel_work_sync(&fmdev->rx_bh_work);
1595 
1596 	skb_queue_purge(&fmdev->tx_q);
1597 	skb_queue_purge(&fmdev->rx_q);
1598 
1599 	fmdev->resp_comp = NULL;
1600 	fmdev->rx.freq = 0;
1601 
1602 	memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1603 	fm_st_proto.chnl_id = 0x08;
1604 
1605 	ret = st_unregister(&fm_st_proto);
1606 
1607 	if (ret < 0)
1608 		fmerr("Failed to de-register FM from ST %d\n", ret);
1609 	else
1610 		fmdbg("Successfully unregistered from ST\n");
1611 
1612 	clear_bit(FM_CORE_READY, &fmdev->flag);
1613 	return ret;
1614 }
1615 
1616 /*
1617  * Module init function. Ask FM V4L module to register video device.
1618  * Allocate memory for FM driver context and RX RDS buffer.
1619  */
1620 static int __init fm_drv_init(void)
1621 {
1622 	struct fmdev *fmdev = NULL;
1623 	int ret = -ENOMEM;
1624 
1625 	fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1626 
1627 	fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1628 	if (NULL == fmdev) {
1629 		fmerr("Can't allocate operation structure memory\n");
1630 		return ret;
1631 	}
1632 	fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1633 	fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1634 	if (NULL == fmdev->rx.rds.buff) {
1635 		fmerr("Can't allocate rds ring buffer\n");
1636 		goto rel_dev;
1637 	}
1638 
1639 	ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1640 	if (ret < 0)
1641 		goto rel_rdsbuf;
1642 
1643 	fmdev->irq_info.handlers = int_handler_table;
1644 	fmdev->curr_fmmode = FM_MODE_OFF;
1645 	fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1646 	fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1647 	return ret;
1648 
1649 rel_rdsbuf:
1650 	kfree(fmdev->rx.rds.buff);
1651 rel_dev:
1652 	kfree(fmdev);
1653 
1654 	return ret;
1655 }
1656 
1657 /* Module exit function. Ask FM V4L module to unregister video device */
1658 static void __exit fm_drv_exit(void)
1659 {
1660 	struct fmdev *fmdev = NULL;
1661 
1662 	fmdev = fm_v4l2_deinit_video_device();
1663 	if (fmdev != NULL) {
1664 		kfree(fmdev->rx.rds.buff);
1665 		kfree(fmdev);
1666 	}
1667 }
1668 
1669 module_init(fm_drv_init);
1670 module_exit(fm_drv_exit);
1671 
1672 /* ------------- Module Info ------------- */
1673 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
1674 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1675 MODULE_VERSION(FM_DRV_VERSION);
1676 MODULE_LICENSE("GPL");
1677