xref: /linux/drivers/media/platform/verisilicon/hantro_vp9.c (revision c8bfe3fad4f86a029da7157bae9699c816f0c309)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Hantro VP9 codec driver
4  *
5  * Copyright (C) 2021 Collabora Ltd.
6  */
7 
8 #include <linux/types.h>
9 #include <media/v4l2-mem2mem.h>
10 
11 #include "hantro.h"
12 #include "hantro_hw.h"
13 #include "hantro_vp9.h"
14 
15 #define POW2(x) (1 << (x))
16 
17 #define MAX_LOG2_TILE_COLUMNS 6
18 #define MAX_NUM_TILE_COLS POW2(MAX_LOG2_TILE_COLUMNS)
19 #define MAX_TILE_COLS 20
20 #define MAX_TILE_ROWS 22
21 
22 static size_t hantro_vp9_tile_filter_size(unsigned int height)
23 {
24 	u32 h, height32, size;
25 
26 	h = roundup(height, 8);
27 
28 	height32 = roundup(h, 64);
29 	size = 24 * height32 * (MAX_NUM_TILE_COLS - 1); /* luma: 8, chroma: 8 + 8 */
30 
31 	return size;
32 }
33 
34 static size_t hantro_vp9_bsd_control_size(unsigned int height)
35 {
36 	u32 h, height32;
37 
38 	h = roundup(height, 8);
39 	height32 = roundup(h, 64);
40 
41 	return 16 * (height32 / 4) * (MAX_NUM_TILE_COLS - 1);
42 }
43 
44 static size_t hantro_vp9_segment_map_size(unsigned int width, unsigned int height)
45 {
46 	u32 w, h;
47 	int num_ctbs;
48 
49 	w = roundup(width, 8);
50 	h = roundup(height, 8);
51 	num_ctbs = ((w + 63) / 64) * ((h + 63) / 64);
52 
53 	return num_ctbs * 32;
54 }
55 
56 static inline size_t hantro_vp9_prob_tab_size(void)
57 {
58 	return roundup(sizeof(struct hantro_g2_all_probs), 16);
59 }
60 
61 static inline size_t hantro_vp9_count_tab_size(void)
62 {
63 	return roundup(sizeof(struct symbol_counts), 16);
64 }
65 
66 static inline size_t hantro_vp9_tile_info_size(void)
67 {
68 	return roundup((MAX_TILE_COLS * MAX_TILE_ROWS * 4 * sizeof(u16) + 15 + 16) & ~0xf, 16);
69 }
70 
71 static void *get_coeffs_arr(struct symbol_counts *cnts, int i, int j, int k, int l, int m)
72 {
73 	if (i == 0)
74 		return &cnts->count_coeffs[j][k][l][m];
75 
76 	if (i == 1)
77 		return &cnts->count_coeffs8x8[j][k][l][m];
78 
79 	if (i == 2)
80 		return &cnts->count_coeffs16x16[j][k][l][m];
81 
82 	if (i == 3)
83 		return &cnts->count_coeffs32x32[j][k][l][m];
84 
85 	return NULL;
86 }
87 
88 static void *get_eobs1(struct symbol_counts *cnts, int i, int j, int k, int l, int m)
89 {
90 	if (i == 0)
91 		return &cnts->count_coeffs[j][k][l][m][3];
92 
93 	if (i == 1)
94 		return &cnts->count_coeffs8x8[j][k][l][m][3];
95 
96 	if (i == 2)
97 		return &cnts->count_coeffs16x16[j][k][l][m][3];
98 
99 	if (i == 3)
100 		return &cnts->count_coeffs32x32[j][k][l][m][3];
101 
102 	return NULL;
103 }
104 
105 #define INNER_LOOP \
106 	do {										\
107 		for (m = 0; m < ARRAY_SIZE(vp9_ctx->cnts.coeff[i][0][0][0]); ++m) {	\
108 			vp9_ctx->cnts.coeff[i][j][k][l][m] =				\
109 				get_coeffs_arr(cnts, i, j, k, l, m);			\
110 			vp9_ctx->cnts.eob[i][j][k][l][m][0] =				\
111 				&cnts->count_eobs[i][j][k][l][m];			\
112 			vp9_ctx->cnts.eob[i][j][k][l][m][1] =				\
113 				get_eobs1(cnts, i, j, k, l, m);				\
114 		}									\
115 	} while (0)
116 
117 static void init_v4l2_vp9_count_tbl(struct hantro_ctx *ctx)
118 {
119 	struct hantro_vp9_dec_hw_ctx *vp9_ctx = &ctx->vp9_dec;
120 	struct symbol_counts *cnts = vp9_ctx->misc.cpu + vp9_ctx->ctx_counters_offset;
121 	int i, j, k, l, m;
122 
123 	vp9_ctx->cnts.partition = &cnts->partition_counts;
124 	vp9_ctx->cnts.skip = &cnts->mbskip_count;
125 	vp9_ctx->cnts.intra_inter = &cnts->intra_inter_count;
126 	vp9_ctx->cnts.tx32p = &cnts->tx32x32_count;
127 	/*
128 	 * g2 hardware uses tx16x16_count[2][3], while the api
129 	 * expects tx16p[2][4], so this must be explicitly copied
130 	 * into vp9_ctx->cnts.tx16p when passing the data to the
131 	 * vp9 library function
132 	 */
133 	vp9_ctx->cnts.tx8p = &cnts->tx8x8_count;
134 
135 	vp9_ctx->cnts.y_mode = &cnts->sb_ymode_counts;
136 	vp9_ctx->cnts.uv_mode = &cnts->uv_mode_counts;
137 	vp9_ctx->cnts.comp = &cnts->comp_inter_count;
138 	vp9_ctx->cnts.comp_ref = &cnts->comp_ref_count;
139 	vp9_ctx->cnts.single_ref = &cnts->single_ref_count;
140 	vp9_ctx->cnts.filter = &cnts->switchable_interp_counts;
141 	vp9_ctx->cnts.mv_joint = &cnts->mv_counts.joints;
142 	vp9_ctx->cnts.sign = &cnts->mv_counts.sign;
143 	vp9_ctx->cnts.classes = &cnts->mv_counts.classes;
144 	vp9_ctx->cnts.class0 = &cnts->mv_counts.class0;
145 	vp9_ctx->cnts.bits = &cnts->mv_counts.bits;
146 	vp9_ctx->cnts.class0_fp = &cnts->mv_counts.class0_fp;
147 	vp9_ctx->cnts.fp = &cnts->mv_counts.fp;
148 	vp9_ctx->cnts.class0_hp = &cnts->mv_counts.class0_hp;
149 	vp9_ctx->cnts.hp = &cnts->mv_counts.hp;
150 
151 	for (i = 0; i < ARRAY_SIZE(vp9_ctx->cnts.coeff); ++i)
152 		for (j = 0; j < ARRAY_SIZE(vp9_ctx->cnts.coeff[i]); ++j)
153 			for (k = 0; k < ARRAY_SIZE(vp9_ctx->cnts.coeff[i][0]); ++k)
154 				for (l = 0; l < ARRAY_SIZE(vp9_ctx->cnts.coeff[i][0][0]); ++l)
155 					INNER_LOOP;
156 }
157 
158 int hantro_vp9_dec_init(struct hantro_ctx *ctx)
159 {
160 	struct hantro_dev *vpu = ctx->dev;
161 	const struct hantro_variant *variant = vpu->variant;
162 	struct hantro_vp9_dec_hw_ctx *vp9_dec = &ctx->vp9_dec;
163 	struct hantro_aux_buf *tile_edge = &vp9_dec->tile_edge;
164 	struct hantro_aux_buf *segment_map = &vp9_dec->segment_map;
165 	struct hantro_aux_buf *misc = &vp9_dec->misc;
166 	u32 i, max_width, max_height, size;
167 
168 	if (variant->num_dec_fmts < 1)
169 		return -EINVAL;
170 
171 	for (i = 0; i < variant->num_dec_fmts; ++i)
172 		if (variant->dec_fmts[i].fourcc == V4L2_PIX_FMT_VP9_FRAME)
173 			break;
174 
175 	if (i == variant->num_dec_fmts)
176 		return -EINVAL;
177 
178 	max_width = vpu->variant->dec_fmts[i].frmsize.max_width;
179 	max_height = vpu->variant->dec_fmts[i].frmsize.max_height;
180 
181 	size = hantro_vp9_tile_filter_size(max_height);
182 	vp9_dec->bsd_ctrl_offset = size;
183 	size += hantro_vp9_bsd_control_size(max_height);
184 
185 	tile_edge->cpu = dma_alloc_coherent(vpu->dev, size, &tile_edge->dma, GFP_KERNEL);
186 	if (!tile_edge->cpu)
187 		return -ENOMEM;
188 
189 	tile_edge->size = size;
190 	memset(tile_edge->cpu, 0, size);
191 
192 	size = hantro_vp9_segment_map_size(max_width, max_height);
193 	vp9_dec->segment_map_size = size;
194 	size *= 2; /* we need two areas of this size, used alternately */
195 
196 	segment_map->cpu = dma_alloc_coherent(vpu->dev, size, &segment_map->dma, GFP_KERNEL);
197 	if (!segment_map->cpu)
198 		goto err_segment_map;
199 
200 	segment_map->size = size;
201 	memset(segment_map->cpu, 0, size);
202 
203 	size = hantro_vp9_prob_tab_size();
204 	vp9_dec->ctx_counters_offset = size;
205 	size += hantro_vp9_count_tab_size();
206 	vp9_dec->tile_info_offset = size;
207 	size += hantro_vp9_tile_info_size();
208 
209 	misc->cpu = dma_alloc_coherent(vpu->dev, size, &misc->dma, GFP_KERNEL);
210 	if (!misc->cpu)
211 		goto err_misc;
212 
213 	misc->size = size;
214 	memset(misc->cpu, 0, size);
215 
216 	init_v4l2_vp9_count_tbl(ctx);
217 
218 	return 0;
219 
220 err_misc:
221 	dma_free_coherent(vpu->dev, segment_map->size, segment_map->cpu, segment_map->dma);
222 
223 err_segment_map:
224 	dma_free_coherent(vpu->dev, tile_edge->size, tile_edge->cpu, tile_edge->dma);
225 
226 	return -ENOMEM;
227 }
228 
229 void hantro_vp9_dec_exit(struct hantro_ctx *ctx)
230 {
231 	struct hantro_dev *vpu = ctx->dev;
232 	struct hantro_vp9_dec_hw_ctx *vp9_dec = &ctx->vp9_dec;
233 	struct hantro_aux_buf *tile_edge = &vp9_dec->tile_edge;
234 	struct hantro_aux_buf *segment_map = &vp9_dec->segment_map;
235 	struct hantro_aux_buf *misc = &vp9_dec->misc;
236 
237 	dma_free_coherent(vpu->dev, misc->size, misc->cpu, misc->dma);
238 	dma_free_coherent(vpu->dev, segment_map->size, segment_map->cpu, segment_map->dma);
239 	dma_free_coherent(vpu->dev, tile_edge->size, tile_edge->cpu, tile_edge->dma);
240 }
241