1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Hantro VPU codec driver 4 * 5 * Copyright (C) 2018 Collabora, Ltd. 6 * Copyright 2018 Google LLC. 7 * Tomasz Figa <tfiga@chromium.org> 8 * 9 * Based on s5p-mfc driver by Samsung Electronics Co., Ltd. 10 * Copyright (C) 2011 Samsung Electronics Co., Ltd. 11 */ 12 13 #include <linux/clk.h> 14 #include <linux/module.h> 15 #include <linux/of.h> 16 #include <linux/platform_device.h> 17 #include <linux/pm.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/slab.h> 20 #include <linux/videodev2.h> 21 #include <linux/workqueue.h> 22 #include <media/v4l2-event.h> 23 #include <media/v4l2-mem2mem.h> 24 #include <media/videobuf2-core.h> 25 #include <media/videobuf2-vmalloc.h> 26 27 #include "hantro_v4l2.h" 28 #include "hantro.h" 29 #include "hantro_hw.h" 30 31 #define DRIVER_NAME "hantro-vpu" 32 33 int hantro_debug; 34 module_param_named(debug, hantro_debug, int, 0644); 35 MODULE_PARM_DESC(debug, 36 "Debug level - higher value produces more verbose messages"); 37 38 void *hantro_get_ctrl(struct hantro_ctx *ctx, u32 id) 39 { 40 struct v4l2_ctrl *ctrl; 41 42 ctrl = v4l2_ctrl_find(&ctx->ctrl_handler, id); 43 return ctrl ? ctrl->p_cur.p : NULL; 44 } 45 46 dma_addr_t hantro_get_ref(struct hantro_ctx *ctx, u64 ts) 47 { 48 struct vb2_queue *q = v4l2_m2m_get_dst_vq(ctx->fh.m2m_ctx); 49 struct vb2_buffer *buf; 50 51 buf = vb2_find_buffer(q, ts); 52 if (!buf) 53 return 0; 54 return hantro_get_dec_buf_addr(ctx, buf); 55 } 56 57 static const struct v4l2_event hantro_eos_event = { 58 .type = V4L2_EVENT_EOS 59 }; 60 61 static void hantro_job_finish_no_pm(struct hantro_dev *vpu, 62 struct hantro_ctx *ctx, 63 enum vb2_buffer_state result) 64 { 65 struct vb2_v4l2_buffer *src, *dst; 66 67 src = v4l2_m2m_next_src_buf(ctx->fh.m2m_ctx); 68 dst = v4l2_m2m_next_dst_buf(ctx->fh.m2m_ctx); 69 70 if (WARN_ON(!src)) 71 return; 72 if (WARN_ON(!dst)) 73 return; 74 75 src->sequence = ctx->sequence_out++; 76 dst->sequence = ctx->sequence_cap++; 77 78 if (v4l2_m2m_is_last_draining_src_buf(ctx->fh.m2m_ctx, src)) { 79 dst->flags |= V4L2_BUF_FLAG_LAST; 80 v4l2_event_queue_fh(&ctx->fh, &hantro_eos_event); 81 v4l2_m2m_mark_stopped(ctx->fh.m2m_ctx); 82 } 83 84 v4l2_m2m_buf_done_and_job_finish(ctx->dev->m2m_dev, ctx->fh.m2m_ctx, 85 result); 86 } 87 88 static void hantro_job_finish(struct hantro_dev *vpu, 89 struct hantro_ctx *ctx, 90 enum vb2_buffer_state result) 91 { 92 pm_runtime_mark_last_busy(vpu->dev); 93 pm_runtime_put_autosuspend(vpu->dev); 94 95 clk_bulk_disable(vpu->variant->num_clocks, vpu->clocks); 96 97 hantro_job_finish_no_pm(vpu, ctx, result); 98 } 99 100 void hantro_irq_done(struct hantro_dev *vpu, 101 enum vb2_buffer_state result) 102 { 103 struct hantro_ctx *ctx = 104 v4l2_m2m_get_curr_priv(vpu->m2m_dev); 105 106 /* 107 * If cancel_delayed_work returns false 108 * the timeout expired. The watchdog is running, 109 * and will take care of finishing the job. 110 */ 111 if (cancel_delayed_work(&vpu->watchdog_work)) { 112 if (result == VB2_BUF_STATE_DONE && ctx->codec_ops->done) 113 ctx->codec_ops->done(ctx); 114 hantro_job_finish(vpu, ctx, result); 115 } 116 } 117 118 void hantro_watchdog(struct work_struct *work) 119 { 120 struct hantro_dev *vpu; 121 struct hantro_ctx *ctx; 122 123 vpu = container_of(to_delayed_work(work), 124 struct hantro_dev, watchdog_work); 125 ctx = v4l2_m2m_get_curr_priv(vpu->m2m_dev); 126 if (ctx) { 127 vpu_err("frame processing timed out!\n"); 128 if (ctx->codec_ops->reset) 129 ctx->codec_ops->reset(ctx); 130 hantro_job_finish(vpu, ctx, VB2_BUF_STATE_ERROR); 131 } 132 } 133 134 void hantro_start_prepare_run(struct hantro_ctx *ctx) 135 { 136 struct vb2_v4l2_buffer *src_buf; 137 138 src_buf = hantro_get_src_buf(ctx); 139 v4l2_ctrl_request_setup(src_buf->vb2_buf.req_obj.req, 140 &ctx->ctrl_handler); 141 142 if (!ctx->is_encoder && !ctx->dev->variant->late_postproc) { 143 if (hantro_needs_postproc(ctx, ctx->vpu_dst_fmt)) 144 hantro_postproc_enable(ctx); 145 else 146 hantro_postproc_disable(ctx); 147 } 148 } 149 150 void hantro_end_prepare_run(struct hantro_ctx *ctx) 151 { 152 struct vb2_v4l2_buffer *src_buf; 153 154 if (!ctx->is_encoder && ctx->dev->variant->late_postproc) { 155 if (hantro_needs_postproc(ctx, ctx->vpu_dst_fmt)) 156 hantro_postproc_enable(ctx); 157 else 158 hantro_postproc_disable(ctx); 159 } 160 161 src_buf = hantro_get_src_buf(ctx); 162 v4l2_ctrl_request_complete(src_buf->vb2_buf.req_obj.req, 163 &ctx->ctrl_handler); 164 165 /* Kick the watchdog. */ 166 schedule_delayed_work(&ctx->dev->watchdog_work, 167 msecs_to_jiffies(2000)); 168 } 169 170 static void device_run(void *priv) 171 { 172 struct hantro_ctx *ctx = priv; 173 struct vb2_v4l2_buffer *src, *dst; 174 int ret; 175 176 src = hantro_get_src_buf(ctx); 177 dst = hantro_get_dst_buf(ctx); 178 179 ret = pm_runtime_resume_and_get(ctx->dev->dev); 180 if (ret < 0) 181 goto err_cancel_job; 182 183 ret = clk_bulk_enable(ctx->dev->variant->num_clocks, ctx->dev->clocks); 184 if (ret) 185 goto err_cancel_job; 186 187 v4l2_m2m_buf_copy_metadata(src, dst, true); 188 189 if (ctx->codec_ops->run(ctx)) 190 goto err_cancel_job; 191 192 return; 193 194 err_cancel_job: 195 hantro_job_finish_no_pm(ctx->dev, ctx, VB2_BUF_STATE_ERROR); 196 } 197 198 static const struct v4l2_m2m_ops vpu_m2m_ops = { 199 .device_run = device_run, 200 }; 201 202 static int 203 queue_init(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq) 204 { 205 struct hantro_ctx *ctx = priv; 206 int ret; 207 208 src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE; 209 src_vq->io_modes = VB2_MMAP | VB2_DMABUF; 210 src_vq->drv_priv = ctx; 211 src_vq->ops = &hantro_queue_ops; 212 src_vq->mem_ops = &vb2_dma_contig_memops; 213 214 /* 215 * Driver does mostly sequential access, so sacrifice TLB efficiency 216 * for faster allocation. Also, no CPU access on the source queue, 217 * so no kernel mapping needed. 218 */ 219 src_vq->dma_attrs = DMA_ATTR_ALLOC_SINGLE_PAGES | 220 DMA_ATTR_NO_KERNEL_MAPPING; 221 src_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer); 222 src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY; 223 src_vq->lock = &ctx->dev->vpu_mutex; 224 src_vq->dev = ctx->dev->v4l2_dev.dev; 225 src_vq->supports_requests = true; 226 227 ret = vb2_queue_init(src_vq); 228 if (ret) 229 return ret; 230 231 dst_vq->bidirectional = true; 232 dst_vq->mem_ops = &vb2_dma_contig_memops; 233 dst_vq->dma_attrs = DMA_ATTR_ALLOC_SINGLE_PAGES; 234 /* 235 * The Kernel needs access to the JPEG destination buffer for the 236 * JPEG encoder to fill in the JPEG headers. 237 */ 238 if (!ctx->is_encoder) { 239 dst_vq->dma_attrs |= DMA_ATTR_NO_KERNEL_MAPPING; 240 dst_vq->max_num_buffers = MAX_POSTPROC_BUFFERS; 241 } 242 243 dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE; 244 dst_vq->io_modes = VB2_MMAP | VB2_DMABUF; 245 dst_vq->drv_priv = ctx; 246 dst_vq->ops = &hantro_queue_ops; 247 dst_vq->buf_struct_size = sizeof(struct hantro_decoded_buffer); 248 dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY; 249 dst_vq->lock = &ctx->dev->vpu_mutex; 250 dst_vq->dev = ctx->dev->v4l2_dev.dev; 251 252 return vb2_queue_init(dst_vq); 253 } 254 255 static int hantro_try_ctrl(struct v4l2_ctrl *ctrl) 256 { 257 if (ctrl->id == V4L2_CID_STATELESS_H264_SPS) { 258 const struct v4l2_ctrl_h264_sps *sps = ctrl->p_new.p_h264_sps; 259 260 if (sps->chroma_format_idc > 1) 261 /* Only 4:0:0 and 4:2:0 are supported */ 262 return -EINVAL; 263 if (sps->bit_depth_luma_minus8 != sps->bit_depth_chroma_minus8) 264 /* Luma and chroma bit depth mismatch */ 265 return -EINVAL; 266 if (sps->bit_depth_luma_minus8 != 0) 267 /* Only 8-bit is supported */ 268 return -EINVAL; 269 } else if (ctrl->id == V4L2_CID_STATELESS_HEVC_SPS) { 270 const struct v4l2_ctrl_hevc_sps *sps = ctrl->p_new.p_hevc_sps; 271 272 if (sps->bit_depth_luma_minus8 != 0 && sps->bit_depth_luma_minus8 != 2) 273 /* Only 8-bit and 10-bit are supported */ 274 return -EINVAL; 275 } else if (ctrl->id == V4L2_CID_STATELESS_VP9_FRAME) { 276 const struct v4l2_ctrl_vp9_frame *dec_params = ctrl->p_new.p_vp9_frame; 277 278 /* We only support profile 0 */ 279 if (dec_params->profile != 0) 280 return -EINVAL; 281 } else if (ctrl->id == V4L2_CID_STATELESS_AV1_SEQUENCE) { 282 const struct v4l2_ctrl_av1_sequence *sequence = ctrl->p_new.p_av1_sequence; 283 284 if (sequence->bit_depth != 8 && sequence->bit_depth != 10) 285 return -EINVAL; 286 } 287 288 return 0; 289 } 290 291 static int hantro_jpeg_s_ctrl(struct v4l2_ctrl *ctrl) 292 { 293 struct hantro_ctx *ctx; 294 295 ctx = container_of(ctrl->handler, 296 struct hantro_ctx, ctrl_handler); 297 298 vpu_debug(1, "s_ctrl: id = %d, val = %d\n", ctrl->id, ctrl->val); 299 300 switch (ctrl->id) { 301 case V4L2_CID_JPEG_COMPRESSION_QUALITY: 302 ctx->jpeg_quality = ctrl->val; 303 break; 304 default: 305 return -EINVAL; 306 } 307 308 return 0; 309 } 310 311 static int hantro_vp9_s_ctrl(struct v4l2_ctrl *ctrl) 312 { 313 struct hantro_ctx *ctx; 314 315 ctx = container_of(ctrl->handler, 316 struct hantro_ctx, ctrl_handler); 317 318 switch (ctrl->id) { 319 case V4L2_CID_STATELESS_VP9_FRAME: { 320 int bit_depth = ctrl->p_new.p_vp9_frame->bit_depth; 321 322 if (ctx->bit_depth == bit_depth) 323 return 0; 324 325 return hantro_reset_raw_fmt(ctx, bit_depth, HANTRO_AUTO_POSTPROC); 326 } 327 default: 328 return -EINVAL; 329 } 330 331 return 0; 332 } 333 334 static int hantro_hevc_s_ctrl(struct v4l2_ctrl *ctrl) 335 { 336 struct hantro_ctx *ctx; 337 338 ctx = container_of(ctrl->handler, 339 struct hantro_ctx, ctrl_handler); 340 341 switch (ctrl->id) { 342 case V4L2_CID_STATELESS_HEVC_SPS: { 343 const struct v4l2_ctrl_hevc_sps *sps = ctrl->p_new.p_hevc_sps; 344 int bit_depth = sps->bit_depth_luma_minus8 + 8; 345 346 if (ctx->bit_depth == bit_depth) 347 return 0; 348 349 return hantro_reset_raw_fmt(ctx, bit_depth, HANTRO_AUTO_POSTPROC); 350 } 351 default: 352 return -EINVAL; 353 } 354 355 return 0; 356 } 357 358 static int hantro_av1_s_ctrl(struct v4l2_ctrl *ctrl) 359 { 360 struct hantro_ctx *ctx; 361 362 ctx = container_of(ctrl->handler, 363 struct hantro_ctx, ctrl_handler); 364 365 switch (ctrl->id) { 366 case V4L2_CID_STATELESS_AV1_SEQUENCE: 367 { 368 int bit_depth = ctrl->p_new.p_av1_sequence->bit_depth; 369 bool need_postproc = HANTRO_AUTO_POSTPROC; 370 371 if (ctrl->p_new.p_av1_sequence->flags 372 & V4L2_AV1_SEQUENCE_FLAG_FILM_GRAIN_PARAMS_PRESENT) 373 need_postproc = HANTRO_FORCE_POSTPROC; 374 375 if (ctx->bit_depth == bit_depth && 376 ctx->need_postproc == need_postproc) 377 return 0; 378 379 return hantro_reset_raw_fmt(ctx, bit_depth, need_postproc); 380 } 381 default: 382 return -EINVAL; 383 } 384 385 return 0; 386 } 387 388 static const struct v4l2_ctrl_ops hantro_ctrl_ops = { 389 .try_ctrl = hantro_try_ctrl, 390 }; 391 392 static const struct v4l2_ctrl_ops hantro_jpeg_ctrl_ops = { 393 .s_ctrl = hantro_jpeg_s_ctrl, 394 }; 395 396 static const struct v4l2_ctrl_ops hantro_vp9_ctrl_ops = { 397 .s_ctrl = hantro_vp9_s_ctrl, 398 }; 399 400 static const struct v4l2_ctrl_ops hantro_hevc_ctrl_ops = { 401 .try_ctrl = hantro_try_ctrl, 402 .s_ctrl = hantro_hevc_s_ctrl, 403 }; 404 405 static const struct v4l2_ctrl_ops hantro_av1_ctrl_ops = { 406 .try_ctrl = hantro_try_ctrl, 407 .s_ctrl = hantro_av1_s_ctrl, 408 }; 409 410 #define HANTRO_JPEG_ACTIVE_MARKERS (V4L2_JPEG_ACTIVE_MARKER_APP0 | \ 411 V4L2_JPEG_ACTIVE_MARKER_COM | \ 412 V4L2_JPEG_ACTIVE_MARKER_DQT | \ 413 V4L2_JPEG_ACTIVE_MARKER_DHT) 414 415 static const struct hantro_ctrl controls[] = { 416 { 417 .codec = HANTRO_JPEG_ENCODER, 418 .cfg = { 419 .id = V4L2_CID_JPEG_COMPRESSION_QUALITY, 420 .min = 5, 421 .max = 100, 422 .step = 1, 423 .def = 50, 424 .ops = &hantro_jpeg_ctrl_ops, 425 }, 426 }, { 427 .codec = HANTRO_JPEG_ENCODER, 428 .cfg = { 429 .id = V4L2_CID_JPEG_ACTIVE_MARKER, 430 .max = HANTRO_JPEG_ACTIVE_MARKERS, 431 .def = HANTRO_JPEG_ACTIVE_MARKERS, 432 /* 433 * Changing the set of active markers/segments also 434 * messes up the alignment of the JPEG header, which 435 * is needed to allow the hardware to write directly 436 * to the output buffer. Implementing this introduces 437 * a lot of complexity for little gain, as the markers 438 * enabled is already the minimum required set. 439 */ 440 .flags = V4L2_CTRL_FLAG_READ_ONLY, 441 }, 442 }, { 443 .codec = HANTRO_MPEG2_DECODER, 444 .cfg = { 445 .id = V4L2_CID_STATELESS_MPEG2_SEQUENCE, 446 }, 447 }, { 448 .codec = HANTRO_MPEG2_DECODER, 449 .cfg = { 450 .id = V4L2_CID_STATELESS_MPEG2_PICTURE, 451 }, 452 }, { 453 .codec = HANTRO_MPEG2_DECODER, 454 .cfg = { 455 .id = V4L2_CID_STATELESS_MPEG2_QUANTISATION, 456 }, 457 }, { 458 .codec = HANTRO_VP8_DECODER, 459 .cfg = { 460 .id = V4L2_CID_STATELESS_VP8_FRAME, 461 }, 462 }, { 463 .codec = HANTRO_H264_DECODER, 464 .cfg = { 465 .id = V4L2_CID_STATELESS_H264_DECODE_PARAMS, 466 }, 467 }, { 468 .codec = HANTRO_H264_DECODER, 469 .cfg = { 470 .id = V4L2_CID_STATELESS_H264_SPS, 471 .ops = &hantro_ctrl_ops, 472 }, 473 }, { 474 .codec = HANTRO_H264_DECODER, 475 .cfg = { 476 .id = V4L2_CID_STATELESS_H264_PPS, 477 }, 478 }, { 479 .codec = HANTRO_H264_DECODER, 480 .cfg = { 481 .id = V4L2_CID_STATELESS_H264_SCALING_MATRIX, 482 }, 483 }, { 484 .codec = HANTRO_H264_DECODER, 485 .cfg = { 486 .id = V4L2_CID_STATELESS_H264_DECODE_MODE, 487 .min = V4L2_STATELESS_H264_DECODE_MODE_FRAME_BASED, 488 .def = V4L2_STATELESS_H264_DECODE_MODE_FRAME_BASED, 489 .max = V4L2_STATELESS_H264_DECODE_MODE_FRAME_BASED, 490 }, 491 }, { 492 .codec = HANTRO_H264_DECODER, 493 .cfg = { 494 .id = V4L2_CID_STATELESS_H264_START_CODE, 495 .min = V4L2_STATELESS_H264_START_CODE_ANNEX_B, 496 .def = V4L2_STATELESS_H264_START_CODE_ANNEX_B, 497 .max = V4L2_STATELESS_H264_START_CODE_ANNEX_B, 498 }, 499 }, { 500 .codec = HANTRO_H264_DECODER, 501 .cfg = { 502 .id = V4L2_CID_MPEG_VIDEO_H264_PROFILE, 503 .min = V4L2_MPEG_VIDEO_H264_PROFILE_BASELINE, 504 .max = V4L2_MPEG_VIDEO_H264_PROFILE_HIGH, 505 .menu_skip_mask = 506 BIT(V4L2_MPEG_VIDEO_H264_PROFILE_EXTENDED), 507 .def = V4L2_MPEG_VIDEO_H264_PROFILE_MAIN, 508 } 509 }, { 510 .codec = HANTRO_HEVC_DECODER, 511 .cfg = { 512 .id = V4L2_CID_STATELESS_HEVC_DECODE_MODE, 513 .min = V4L2_STATELESS_HEVC_DECODE_MODE_FRAME_BASED, 514 .max = V4L2_STATELESS_HEVC_DECODE_MODE_FRAME_BASED, 515 .def = V4L2_STATELESS_HEVC_DECODE_MODE_FRAME_BASED, 516 }, 517 }, { 518 .codec = HANTRO_HEVC_DECODER, 519 .cfg = { 520 .id = V4L2_CID_STATELESS_HEVC_START_CODE, 521 .min = V4L2_STATELESS_HEVC_START_CODE_ANNEX_B, 522 .max = V4L2_STATELESS_HEVC_START_CODE_ANNEX_B, 523 .def = V4L2_STATELESS_HEVC_START_CODE_ANNEX_B, 524 }, 525 }, { 526 .codec = HANTRO_HEVC_DECODER, 527 .cfg = { 528 .id = V4L2_CID_MPEG_VIDEO_HEVC_PROFILE, 529 .min = V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN, 530 .max = V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN_10, 531 .def = V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN, 532 }, 533 }, { 534 .codec = HANTRO_HEVC_DECODER, 535 .cfg = { 536 .id = V4L2_CID_MPEG_VIDEO_HEVC_LEVEL, 537 .min = V4L2_MPEG_VIDEO_HEVC_LEVEL_1, 538 .max = V4L2_MPEG_VIDEO_HEVC_LEVEL_5_1, 539 }, 540 }, { 541 .codec = HANTRO_HEVC_DECODER, 542 .cfg = { 543 .id = V4L2_CID_STATELESS_HEVC_SPS, 544 .ops = &hantro_hevc_ctrl_ops, 545 }, 546 }, { 547 .codec = HANTRO_HEVC_DECODER, 548 .cfg = { 549 .id = V4L2_CID_STATELESS_HEVC_PPS, 550 }, 551 }, { 552 .codec = HANTRO_HEVC_DECODER, 553 .cfg = { 554 .id = V4L2_CID_STATELESS_HEVC_DECODE_PARAMS, 555 }, 556 }, { 557 .codec = HANTRO_HEVC_DECODER, 558 .cfg = { 559 .id = V4L2_CID_STATELESS_HEVC_SCALING_MATRIX, 560 }, 561 }, { 562 .codec = HANTRO_VP9_DECODER, 563 .cfg = { 564 .id = V4L2_CID_STATELESS_VP9_FRAME, 565 .ops = &hantro_vp9_ctrl_ops, 566 }, 567 }, { 568 .codec = HANTRO_VP9_DECODER, 569 .cfg = { 570 .id = V4L2_CID_STATELESS_VP9_COMPRESSED_HDR, 571 }, 572 }, { 573 .codec = HANTRO_AV1_DECODER, 574 .cfg = { 575 .id = V4L2_CID_STATELESS_AV1_FRAME, 576 }, 577 }, { 578 .codec = HANTRO_AV1_DECODER, 579 .cfg = { 580 .id = V4L2_CID_STATELESS_AV1_TILE_GROUP_ENTRY, 581 .dims = { V4L2_AV1_MAX_TILE_COUNT }, 582 }, 583 }, { 584 .codec = HANTRO_AV1_DECODER, 585 .cfg = { 586 .id = V4L2_CID_STATELESS_AV1_SEQUENCE, 587 .ops = &hantro_av1_ctrl_ops, 588 }, 589 }, { 590 .codec = HANTRO_AV1_DECODER, 591 .cfg = { 592 .id = V4L2_CID_STATELESS_AV1_FILM_GRAIN, 593 }, 594 }, 595 }; 596 597 static int hantro_ctrls_setup(struct hantro_dev *vpu, 598 struct hantro_ctx *ctx, 599 int allowed_codecs) 600 { 601 int i, num_ctrls = ARRAY_SIZE(controls); 602 603 v4l2_ctrl_handler_init(&ctx->ctrl_handler, num_ctrls); 604 605 for (i = 0; i < num_ctrls; i++) { 606 if (!(allowed_codecs & controls[i].codec)) 607 continue; 608 609 v4l2_ctrl_new_custom(&ctx->ctrl_handler, 610 &controls[i].cfg, NULL); 611 if (ctx->ctrl_handler.error) { 612 vpu_err("Adding control (%d) failed %d\n", 613 controls[i].cfg.id, 614 ctx->ctrl_handler.error); 615 v4l2_ctrl_handler_free(&ctx->ctrl_handler); 616 return ctx->ctrl_handler.error; 617 } 618 } 619 return v4l2_ctrl_handler_setup(&ctx->ctrl_handler); 620 } 621 622 /* 623 * V4L2 file operations. 624 */ 625 626 static int hantro_open(struct file *filp) 627 { 628 struct hantro_dev *vpu = video_drvdata(filp); 629 struct video_device *vdev = video_devdata(filp); 630 struct hantro_func *func = hantro_vdev_to_func(vdev); 631 struct hantro_ctx *ctx; 632 int allowed_codecs, ret; 633 634 /* 635 * We do not need any extra locking here, because we operate only 636 * on local data here, except reading few fields from dev, which 637 * do not change through device's lifetime (which is guaranteed by 638 * reference on module from open()) and V4L2 internal objects (such 639 * as vdev and ctx->fh), which have proper locking done in respective 640 * helper functions used here. 641 */ 642 643 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 644 if (!ctx) 645 return -ENOMEM; 646 647 ctx->dev = vpu; 648 if (func->id == MEDIA_ENT_F_PROC_VIDEO_ENCODER) { 649 allowed_codecs = vpu->variant->codec & HANTRO_ENCODERS; 650 ctx->is_encoder = true; 651 } else if (func->id == MEDIA_ENT_F_PROC_VIDEO_DECODER) { 652 allowed_codecs = vpu->variant->codec & HANTRO_DECODERS; 653 ctx->is_encoder = false; 654 } else { 655 ret = -ENODEV; 656 goto err_ctx_free; 657 } 658 659 ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(vpu->m2m_dev, ctx, queue_init); 660 if (IS_ERR(ctx->fh.m2m_ctx)) { 661 ret = PTR_ERR(ctx->fh.m2m_ctx); 662 goto err_ctx_free; 663 } 664 665 v4l2_fh_init(&ctx->fh, vdev); 666 filp->private_data = &ctx->fh; 667 v4l2_fh_add(&ctx->fh); 668 669 hantro_reset_fmts(ctx); 670 671 ret = hantro_ctrls_setup(vpu, ctx, allowed_codecs); 672 if (ret) { 673 vpu_err("Failed to set up controls\n"); 674 goto err_fh_free; 675 } 676 ctx->fh.ctrl_handler = &ctx->ctrl_handler; 677 678 return 0; 679 680 err_fh_free: 681 v4l2_fh_del(&ctx->fh); 682 v4l2_fh_exit(&ctx->fh); 683 err_ctx_free: 684 kfree(ctx); 685 return ret; 686 } 687 688 static int hantro_release(struct file *filp) 689 { 690 struct hantro_ctx *ctx = 691 container_of(filp->private_data, struct hantro_ctx, fh); 692 693 /* 694 * No need for extra locking because this was the last reference 695 * to this file. 696 */ 697 v4l2_m2m_ctx_release(ctx->fh.m2m_ctx); 698 v4l2_fh_del(&ctx->fh); 699 v4l2_fh_exit(&ctx->fh); 700 v4l2_ctrl_handler_free(&ctx->ctrl_handler); 701 kfree(ctx); 702 703 return 0; 704 } 705 706 static const struct v4l2_file_operations hantro_fops = { 707 .owner = THIS_MODULE, 708 .open = hantro_open, 709 .release = hantro_release, 710 .poll = v4l2_m2m_fop_poll, 711 .unlocked_ioctl = video_ioctl2, 712 .mmap = v4l2_m2m_fop_mmap, 713 }; 714 715 static const struct of_device_id of_hantro_match[] = { 716 #ifdef CONFIG_VIDEO_HANTRO_ROCKCHIP 717 { .compatible = "rockchip,px30-vpu", .data = &px30_vpu_variant, }, 718 { .compatible = "rockchip,rk3036-vpu", .data = &rk3036_vpu_variant, }, 719 { .compatible = "rockchip,rk3066-vpu", .data = &rk3066_vpu_variant, }, 720 { .compatible = "rockchip,rk3288-vpu", .data = &rk3288_vpu_variant, }, 721 { .compatible = "rockchip,rk3328-vpu", .data = &rk3328_vpu_variant, }, 722 { .compatible = "rockchip,rk3399-vpu", .data = &rk3399_vpu_variant, }, 723 { .compatible = "rockchip,rk3568-vepu", .data = &rk3568_vepu_variant, }, 724 { .compatible = "rockchip,rk3568-vpu", .data = &rk3568_vpu_variant, }, 725 { .compatible = "rockchip,rk3588-vepu121", .data = &rk3568_vepu_variant, }, 726 { .compatible = "rockchip,rk3588-av1-vpu", .data = &rk3588_vpu981_variant, }, 727 #endif 728 #ifdef CONFIG_VIDEO_HANTRO_IMX8M 729 { .compatible = "nxp,imx8mm-vpu-g1", .data = &imx8mm_vpu_g1_variant, }, 730 { .compatible = "nxp,imx8mq-vpu", .data = &imx8mq_vpu_variant, }, 731 { .compatible = "nxp,imx8mq-vpu-g1", .data = &imx8mq_vpu_g1_variant }, 732 { .compatible = "nxp,imx8mq-vpu-g2", .data = &imx8mq_vpu_g2_variant }, 733 #endif 734 #ifdef CONFIG_VIDEO_HANTRO_SAMA5D4 735 { .compatible = "microchip,sama5d4-vdec", .data = &sama5d4_vdec_variant, }, 736 #endif 737 #ifdef CONFIG_VIDEO_HANTRO_SUNXI 738 { .compatible = "allwinner,sun50i-h6-vpu-g2", .data = &sunxi_vpu_variant, }, 739 #endif 740 #ifdef CONFIG_VIDEO_HANTRO_STM32MP25 741 { .compatible = "st,stm32mp25-vdec", .data = &stm32mp25_vdec_variant, }, 742 { .compatible = "st,stm32mp25-venc", .data = &stm32mp25_venc_variant, }, 743 #endif 744 { /* sentinel */ } 745 }; 746 MODULE_DEVICE_TABLE(of, of_hantro_match); 747 748 static int hantro_register_entity(struct media_device *mdev, 749 struct media_entity *entity, 750 const char *entity_name, 751 struct media_pad *pads, int num_pads, 752 int function, struct video_device *vdev) 753 { 754 char *name; 755 int ret; 756 757 entity->obj_type = MEDIA_ENTITY_TYPE_BASE; 758 if (function == MEDIA_ENT_F_IO_V4L) { 759 entity->info.dev.major = VIDEO_MAJOR; 760 entity->info.dev.minor = vdev->minor; 761 } 762 763 name = devm_kasprintf(mdev->dev, GFP_KERNEL, "%s-%s", vdev->name, 764 entity_name); 765 if (!name) 766 return -ENOMEM; 767 768 entity->name = name; 769 entity->function = function; 770 771 ret = media_entity_pads_init(entity, num_pads, pads); 772 if (ret) 773 return ret; 774 775 ret = media_device_register_entity(mdev, entity); 776 if (ret) 777 return ret; 778 779 return 0; 780 } 781 782 static int hantro_attach_func(struct hantro_dev *vpu, 783 struct hantro_func *func) 784 { 785 struct media_device *mdev = &vpu->mdev; 786 struct media_link *link; 787 int ret; 788 789 /* Create the three encoder entities with their pads */ 790 func->source_pad.flags = MEDIA_PAD_FL_SOURCE; 791 ret = hantro_register_entity(mdev, &func->vdev.entity, "source", 792 &func->source_pad, 1, MEDIA_ENT_F_IO_V4L, 793 &func->vdev); 794 if (ret) 795 return ret; 796 797 func->proc_pads[0].flags = MEDIA_PAD_FL_SINK; 798 func->proc_pads[1].flags = MEDIA_PAD_FL_SOURCE; 799 ret = hantro_register_entity(mdev, &func->proc, "proc", 800 func->proc_pads, 2, func->id, 801 &func->vdev); 802 if (ret) 803 goto err_rel_entity0; 804 805 func->sink_pad.flags = MEDIA_PAD_FL_SINK; 806 ret = hantro_register_entity(mdev, &func->sink, "sink", 807 &func->sink_pad, 1, MEDIA_ENT_F_IO_V4L, 808 &func->vdev); 809 if (ret) 810 goto err_rel_entity1; 811 812 /* Connect the three entities */ 813 ret = media_create_pad_link(&func->vdev.entity, 0, &func->proc, 0, 814 MEDIA_LNK_FL_IMMUTABLE | 815 MEDIA_LNK_FL_ENABLED); 816 if (ret) 817 goto err_rel_entity2; 818 819 ret = media_create_pad_link(&func->proc, 1, &func->sink, 0, 820 MEDIA_LNK_FL_IMMUTABLE | 821 MEDIA_LNK_FL_ENABLED); 822 if (ret) 823 goto err_rm_links0; 824 825 /* Create video interface */ 826 func->intf_devnode = media_devnode_create(mdev, MEDIA_INTF_T_V4L_VIDEO, 827 0, VIDEO_MAJOR, 828 func->vdev.minor); 829 if (!func->intf_devnode) { 830 ret = -ENOMEM; 831 goto err_rm_links1; 832 } 833 834 /* Connect the two DMA engines to the interface */ 835 link = media_create_intf_link(&func->vdev.entity, 836 &func->intf_devnode->intf, 837 MEDIA_LNK_FL_IMMUTABLE | 838 MEDIA_LNK_FL_ENABLED); 839 if (!link) { 840 ret = -ENOMEM; 841 goto err_rm_devnode; 842 } 843 844 link = media_create_intf_link(&func->sink, &func->intf_devnode->intf, 845 MEDIA_LNK_FL_IMMUTABLE | 846 MEDIA_LNK_FL_ENABLED); 847 if (!link) { 848 ret = -ENOMEM; 849 goto err_rm_devnode; 850 } 851 return 0; 852 853 err_rm_devnode: 854 media_devnode_remove(func->intf_devnode); 855 856 err_rm_links1: 857 media_entity_remove_links(&func->sink); 858 859 err_rm_links0: 860 media_entity_remove_links(&func->proc); 861 media_entity_remove_links(&func->vdev.entity); 862 863 err_rel_entity2: 864 media_device_unregister_entity(&func->sink); 865 866 err_rel_entity1: 867 media_device_unregister_entity(&func->proc); 868 869 err_rel_entity0: 870 media_device_unregister_entity(&func->vdev.entity); 871 return ret; 872 } 873 874 static void hantro_detach_func(struct hantro_func *func) 875 { 876 media_devnode_remove(func->intf_devnode); 877 media_entity_remove_links(&func->sink); 878 media_entity_remove_links(&func->proc); 879 media_entity_remove_links(&func->vdev.entity); 880 media_device_unregister_entity(&func->sink); 881 media_device_unregister_entity(&func->proc); 882 media_device_unregister_entity(&func->vdev.entity); 883 } 884 885 static int hantro_add_func(struct hantro_dev *vpu, unsigned int funcid) 886 { 887 const struct of_device_id *match; 888 struct hantro_func *func; 889 struct video_device *vfd; 890 int ret; 891 892 match = of_match_node(of_hantro_match, vpu->dev->of_node); 893 func = devm_kzalloc(vpu->dev, sizeof(*func), GFP_KERNEL); 894 if (!func) { 895 v4l2_err(&vpu->v4l2_dev, "Failed to allocate video device\n"); 896 return -ENOMEM; 897 } 898 899 func->id = funcid; 900 901 vfd = &func->vdev; 902 vfd->fops = &hantro_fops; 903 vfd->release = video_device_release_empty; 904 vfd->lock = &vpu->vpu_mutex; 905 vfd->v4l2_dev = &vpu->v4l2_dev; 906 vfd->vfl_dir = VFL_DIR_M2M; 907 vfd->device_caps = V4L2_CAP_STREAMING | V4L2_CAP_VIDEO_M2M_MPLANE; 908 vfd->ioctl_ops = &hantro_ioctl_ops; 909 strscpy(vfd->name, match->compatible, sizeof(vfd->name)); 910 strlcat(vfd->name, funcid == MEDIA_ENT_F_PROC_VIDEO_ENCODER ? 911 "-enc" : "-dec", sizeof(vfd->name)); 912 913 if (funcid == MEDIA_ENT_F_PROC_VIDEO_ENCODER) { 914 vpu->encoder = func; 915 v4l2_disable_ioctl(vfd, VIDIOC_TRY_DECODER_CMD); 916 v4l2_disable_ioctl(vfd, VIDIOC_DECODER_CMD); 917 } else { 918 vpu->decoder = func; 919 v4l2_disable_ioctl(vfd, VIDIOC_TRY_ENCODER_CMD); 920 v4l2_disable_ioctl(vfd, VIDIOC_ENCODER_CMD); 921 } 922 923 video_set_drvdata(vfd, vpu); 924 925 ret = video_register_device(vfd, VFL_TYPE_VIDEO, -1); 926 if (ret) { 927 v4l2_err(&vpu->v4l2_dev, "Failed to register video device\n"); 928 return ret; 929 } 930 931 ret = hantro_attach_func(vpu, func); 932 if (ret) { 933 v4l2_err(&vpu->v4l2_dev, 934 "Failed to attach functionality to the media device\n"); 935 goto err_unreg_dev; 936 } 937 938 v4l2_info(&vpu->v4l2_dev, "registered %s as /dev/video%d\n", vfd->name, 939 vfd->num); 940 941 return 0; 942 943 err_unreg_dev: 944 video_unregister_device(vfd); 945 return ret; 946 } 947 948 static int hantro_add_enc_func(struct hantro_dev *vpu) 949 { 950 if (!vpu->variant->enc_fmts) 951 return 0; 952 953 return hantro_add_func(vpu, MEDIA_ENT_F_PROC_VIDEO_ENCODER); 954 } 955 956 static int hantro_add_dec_func(struct hantro_dev *vpu) 957 { 958 if (!vpu->variant->dec_fmts) 959 return 0; 960 961 return hantro_add_func(vpu, MEDIA_ENT_F_PROC_VIDEO_DECODER); 962 } 963 964 static void hantro_remove_func(struct hantro_dev *vpu, 965 unsigned int funcid) 966 { 967 struct hantro_func *func; 968 969 if (funcid == MEDIA_ENT_F_PROC_VIDEO_ENCODER) 970 func = vpu->encoder; 971 else 972 func = vpu->decoder; 973 974 if (!func) 975 return; 976 977 hantro_detach_func(func); 978 video_unregister_device(&func->vdev); 979 } 980 981 static void hantro_remove_enc_func(struct hantro_dev *vpu) 982 { 983 hantro_remove_func(vpu, MEDIA_ENT_F_PROC_VIDEO_ENCODER); 984 } 985 986 static void hantro_remove_dec_func(struct hantro_dev *vpu) 987 { 988 hantro_remove_func(vpu, MEDIA_ENT_F_PROC_VIDEO_DECODER); 989 } 990 991 static const struct media_device_ops hantro_m2m_media_ops = { 992 .req_validate = vb2_request_validate, 993 .req_queue = v4l2_m2m_request_queue, 994 }; 995 996 /* 997 * Some SoCs, like RK3588 have multiple identical Hantro cores, but the 998 * kernel is currently missing support for multi-core handling. Exposing 999 * separate devices for each core to userspace is bad, since that does 1000 * not allow scheduling tasks properly (and creates ABI). With this workaround 1001 * the driver will only probe for the first core and early exit for the other 1002 * cores. Once the driver gains multi-core support, the same technique 1003 * for detecting the main core can be used to cluster all cores together. 1004 */ 1005 static int hantro_disable_multicore(struct hantro_dev *vpu) 1006 { 1007 struct device_node *node = NULL; 1008 const char *compatible; 1009 bool is_main_core; 1010 int ret; 1011 1012 /* Intentionally ignores the fallback strings */ 1013 ret = of_property_read_string(vpu->dev->of_node, "compatible", &compatible); 1014 if (ret) 1015 return ret; 1016 1017 /* The first compatible and available node found is considered the main core */ 1018 do { 1019 node = of_find_compatible_node(node, NULL, compatible); 1020 if (of_device_is_available(node)) 1021 break; 1022 } while (node); 1023 1024 if (!node) 1025 return -EINVAL; 1026 1027 is_main_core = (vpu->dev->of_node == node); 1028 1029 of_node_put(node); 1030 1031 if (!is_main_core) { 1032 dev_info(vpu->dev, "missing multi-core support, ignoring this instance\n"); 1033 return -ENODEV; 1034 } 1035 1036 return 0; 1037 } 1038 1039 static int hantro_probe(struct platform_device *pdev) 1040 { 1041 const struct of_device_id *match; 1042 struct hantro_dev *vpu; 1043 int num_bases; 1044 int i, ret; 1045 1046 vpu = devm_kzalloc(&pdev->dev, sizeof(*vpu), GFP_KERNEL); 1047 if (!vpu) 1048 return -ENOMEM; 1049 1050 vpu->dev = &pdev->dev; 1051 vpu->pdev = pdev; 1052 mutex_init(&vpu->vpu_mutex); 1053 spin_lock_init(&vpu->irqlock); 1054 1055 match = of_match_node(of_hantro_match, pdev->dev.of_node); 1056 vpu->variant = match->data; 1057 1058 ret = hantro_disable_multicore(vpu); 1059 if (ret) 1060 return ret; 1061 1062 /* 1063 * Support for nxp,imx8mq-vpu is kept for backwards compatibility 1064 * but it's deprecated. Please update your DTS file to use 1065 * nxp,imx8mq-vpu-g1 or nxp,imx8mq-vpu-g2 instead. 1066 */ 1067 if (of_device_is_compatible(pdev->dev.of_node, "nxp,imx8mq-vpu")) 1068 dev_warn(&pdev->dev, "%s compatible is deprecated\n", 1069 match->compatible); 1070 1071 INIT_DELAYED_WORK(&vpu->watchdog_work, hantro_watchdog); 1072 1073 vpu->clocks = devm_kcalloc(&pdev->dev, vpu->variant->num_clocks, 1074 sizeof(*vpu->clocks), GFP_KERNEL); 1075 if (!vpu->clocks) 1076 return -ENOMEM; 1077 1078 if (vpu->variant->num_clocks > 1) { 1079 for (i = 0; i < vpu->variant->num_clocks; i++) 1080 vpu->clocks[i].id = vpu->variant->clk_names[i]; 1081 1082 ret = devm_clk_bulk_get(&pdev->dev, vpu->variant->num_clocks, 1083 vpu->clocks); 1084 if (ret) 1085 return ret; 1086 } else { 1087 /* 1088 * If the driver has a single clk, chances are there will be no 1089 * actual name in the DT bindings. 1090 */ 1091 vpu->clocks[0].clk = devm_clk_get(&pdev->dev, NULL); 1092 if (IS_ERR(vpu->clocks[0].clk)) 1093 return PTR_ERR(vpu->clocks[0].clk); 1094 } 1095 1096 vpu->resets = devm_reset_control_array_get_optional_exclusive(&pdev->dev); 1097 if (IS_ERR(vpu->resets)) 1098 return PTR_ERR(vpu->resets); 1099 1100 num_bases = vpu->variant->num_regs ?: 1; 1101 vpu->reg_bases = devm_kcalloc(&pdev->dev, num_bases, 1102 sizeof(*vpu->reg_bases), GFP_KERNEL); 1103 if (!vpu->reg_bases) 1104 return -ENOMEM; 1105 1106 for (i = 0; i < num_bases; i++) { 1107 vpu->reg_bases[i] = vpu->variant->reg_names ? 1108 devm_platform_ioremap_resource_byname(pdev, vpu->variant->reg_names[i]) : 1109 devm_platform_ioremap_resource(pdev, 0); 1110 if (IS_ERR(vpu->reg_bases[i])) 1111 return PTR_ERR(vpu->reg_bases[i]); 1112 } 1113 vpu->enc_base = vpu->reg_bases[0] + vpu->variant->enc_offset; 1114 vpu->dec_base = vpu->reg_bases[0] + vpu->variant->dec_offset; 1115 1116 /** 1117 * TODO: Eventually allow taking advantage of full 64-bit address space. 1118 * Until then we assume the MSB portion of buffers' base addresses is 1119 * always 0 due to this masking operation. 1120 */ 1121 ret = dma_set_coherent_mask(vpu->dev, DMA_BIT_MASK(32)); 1122 if (ret) { 1123 dev_err(vpu->dev, "Could not set DMA coherent mask.\n"); 1124 return ret; 1125 } 1126 vb2_dma_contig_set_max_seg_size(&pdev->dev, DMA_BIT_MASK(32)); 1127 1128 for (i = 0; i < vpu->variant->num_irqs; i++) { 1129 const char *irq_name; 1130 int irq; 1131 1132 if (!vpu->variant->irqs[i].handler) 1133 continue; 1134 1135 if (vpu->variant->num_irqs > 1) { 1136 irq_name = vpu->variant->irqs[i].name; 1137 irq = platform_get_irq_byname(vpu->pdev, irq_name); 1138 } else { 1139 /* 1140 * If the driver has a single IRQ, chances are there 1141 * will be no actual name in the DT bindings. 1142 */ 1143 irq_name = "default"; 1144 irq = platform_get_irq(vpu->pdev, 0); 1145 } 1146 if (irq < 0) 1147 return irq; 1148 1149 ret = devm_request_irq(vpu->dev, irq, 1150 vpu->variant->irqs[i].handler, 0, 1151 dev_name(vpu->dev), vpu); 1152 if (ret) { 1153 dev_err(vpu->dev, "Could not request %s IRQ.\n", 1154 irq_name); 1155 return ret; 1156 } 1157 } 1158 1159 if (vpu->variant->init) { 1160 ret = vpu->variant->init(vpu); 1161 if (ret) { 1162 dev_err(&pdev->dev, "Failed to init VPU hardware\n"); 1163 return ret; 1164 } 1165 } 1166 1167 pm_runtime_set_autosuspend_delay(vpu->dev, 100); 1168 pm_runtime_use_autosuspend(vpu->dev); 1169 pm_runtime_enable(vpu->dev); 1170 1171 ret = reset_control_deassert(vpu->resets); 1172 if (ret) { 1173 dev_err(&pdev->dev, "Failed to deassert resets\n"); 1174 goto err_pm_disable; 1175 } 1176 1177 ret = clk_bulk_prepare(vpu->variant->num_clocks, vpu->clocks); 1178 if (ret) { 1179 dev_err(&pdev->dev, "Failed to prepare clocks\n"); 1180 goto err_rst_assert; 1181 } 1182 1183 ret = v4l2_device_register(&pdev->dev, &vpu->v4l2_dev); 1184 if (ret) { 1185 dev_err(&pdev->dev, "Failed to register v4l2 device\n"); 1186 goto err_clk_unprepare; 1187 } 1188 platform_set_drvdata(pdev, vpu); 1189 1190 vpu->m2m_dev = v4l2_m2m_init(&vpu_m2m_ops); 1191 if (IS_ERR(vpu->m2m_dev)) { 1192 v4l2_err(&vpu->v4l2_dev, "Failed to init mem2mem device\n"); 1193 ret = PTR_ERR(vpu->m2m_dev); 1194 goto err_v4l2_unreg; 1195 } 1196 1197 vpu->mdev.dev = vpu->dev; 1198 strscpy(vpu->mdev.model, DRIVER_NAME, sizeof(vpu->mdev.model)); 1199 media_device_init(&vpu->mdev); 1200 vpu->mdev.ops = &hantro_m2m_media_ops; 1201 vpu->v4l2_dev.mdev = &vpu->mdev; 1202 1203 ret = hantro_add_enc_func(vpu); 1204 if (ret) { 1205 dev_err(&pdev->dev, "Failed to register encoder\n"); 1206 goto err_m2m_rel; 1207 } 1208 1209 ret = hantro_add_dec_func(vpu); 1210 if (ret) { 1211 dev_err(&pdev->dev, "Failed to register decoder\n"); 1212 goto err_rm_enc_func; 1213 } 1214 1215 ret = media_device_register(&vpu->mdev); 1216 if (ret) { 1217 v4l2_err(&vpu->v4l2_dev, "Failed to register mem2mem media device\n"); 1218 goto err_rm_dec_func; 1219 } 1220 1221 return 0; 1222 1223 err_rm_dec_func: 1224 hantro_remove_dec_func(vpu); 1225 err_rm_enc_func: 1226 hantro_remove_enc_func(vpu); 1227 err_m2m_rel: 1228 media_device_cleanup(&vpu->mdev); 1229 v4l2_m2m_release(vpu->m2m_dev); 1230 err_v4l2_unreg: 1231 v4l2_device_unregister(&vpu->v4l2_dev); 1232 err_clk_unprepare: 1233 clk_bulk_unprepare(vpu->variant->num_clocks, vpu->clocks); 1234 err_rst_assert: 1235 reset_control_assert(vpu->resets); 1236 err_pm_disable: 1237 pm_runtime_dont_use_autosuspend(vpu->dev); 1238 pm_runtime_disable(vpu->dev); 1239 return ret; 1240 } 1241 1242 static void hantro_remove(struct platform_device *pdev) 1243 { 1244 struct hantro_dev *vpu = platform_get_drvdata(pdev); 1245 1246 v4l2_info(&vpu->v4l2_dev, "Removing %s\n", pdev->name); 1247 1248 media_device_unregister(&vpu->mdev); 1249 hantro_remove_dec_func(vpu); 1250 hantro_remove_enc_func(vpu); 1251 media_device_cleanup(&vpu->mdev); 1252 v4l2_m2m_release(vpu->m2m_dev); 1253 v4l2_device_unregister(&vpu->v4l2_dev); 1254 clk_bulk_unprepare(vpu->variant->num_clocks, vpu->clocks); 1255 reset_control_assert(vpu->resets); 1256 pm_runtime_dont_use_autosuspend(vpu->dev); 1257 pm_runtime_disable(vpu->dev); 1258 } 1259 1260 #ifdef CONFIG_PM 1261 static int hantro_runtime_resume(struct device *dev) 1262 { 1263 struct hantro_dev *vpu = dev_get_drvdata(dev); 1264 1265 if (vpu->variant->runtime_resume) 1266 return vpu->variant->runtime_resume(vpu); 1267 1268 return 0; 1269 } 1270 #endif 1271 1272 static const struct dev_pm_ops hantro_pm_ops = { 1273 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1274 pm_runtime_force_resume) 1275 SET_RUNTIME_PM_OPS(NULL, hantro_runtime_resume, NULL) 1276 }; 1277 1278 static struct platform_driver hantro_driver = { 1279 .probe = hantro_probe, 1280 .remove_new = hantro_remove, 1281 .driver = { 1282 .name = DRIVER_NAME, 1283 .of_match_table = of_hantro_match, 1284 .pm = &hantro_pm_ops, 1285 }, 1286 }; 1287 module_platform_driver(hantro_driver); 1288 1289 MODULE_LICENSE("GPL v2"); 1290 MODULE_AUTHOR("Alpha Lin <Alpha.Lin@Rock-Chips.com>"); 1291 MODULE_AUTHOR("Tomasz Figa <tfiga@chromium.org>"); 1292 MODULE_AUTHOR("Ezequiel Garcia <ezequiel@collabora.com>"); 1293 MODULE_DESCRIPTION("Hantro VPU codec driver"); 1294