xref: /linux/drivers/media/platform/ti/omap3isp/ispresizer.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ispresizer.c
4  *
5  * TI OMAP3 ISP - Resizer module
6  *
7  * Copyright (C) 2010 Nokia Corporation
8  * Copyright (C) 2009 Texas Instruments, Inc
9  *
10  * Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
11  *	     Sakari Ailus <sakari.ailus@iki.fi>
12  */
13 
14 #include <linux/device.h>
15 #include <linux/mm.h>
16 #include <linux/module.h>
17 
18 #include "isp.h"
19 #include "ispreg.h"
20 #include "ispresizer.h"
21 
22 /*
23  * Resizer Constants
24  */
25 #define MIN_RESIZE_VALUE		64
26 #define MID_RESIZE_VALUE		512
27 #define MAX_RESIZE_VALUE		1024
28 
29 #define MIN_IN_WIDTH			32
30 #define MIN_IN_HEIGHT			32
31 #define MAX_IN_WIDTH_MEMORY_MODE	4095
32 #define MAX_IN_WIDTH_ONTHEFLY_MODE_ES1	1280
33 #define MAX_IN_WIDTH_ONTHEFLY_MODE_ES2	4095
34 #define MAX_IN_HEIGHT			4095
35 
36 #define MIN_OUT_WIDTH			16
37 #define MIN_OUT_HEIGHT			2
38 #define MAX_OUT_HEIGHT			4095
39 
40 /*
41  * Resizer Use Constraints
42  * "TRM ES3.1, table 12-46"
43  */
44 #define MAX_4TAP_OUT_WIDTH_ES1		1280
45 #define MAX_7TAP_OUT_WIDTH_ES1		640
46 #define MAX_4TAP_OUT_WIDTH_ES2		3312
47 #define MAX_7TAP_OUT_WIDTH_ES2		1650
48 #define MAX_4TAP_OUT_WIDTH_3630		4096
49 #define MAX_7TAP_OUT_WIDTH_3630		2048
50 
51 /*
52  * Constants for ratio calculation
53  */
54 #define RESIZE_DIVISOR			256
55 #define DEFAULT_PHASE			1
56 
57 /*
58  * Default (and only) configuration of filter coefficients.
59  * 7-tap mode is for scale factors 0.25x to 0.5x.
60  * 4-tap mode is for scale factors 0.5x to 4.0x.
61  * There shouldn't be any reason to recalculate these, EVER.
62  */
63 static const struct isprsz_coef filter_coefs = {
64 	/* For 8-phase 4-tap horizontal filter: */
65 	{
66 		0x0000, 0x0100, 0x0000, 0x0000,
67 		0x03FA, 0x00F6, 0x0010, 0x0000,
68 		0x03F9, 0x00DB, 0x002C, 0x0000,
69 		0x03FB, 0x00B3, 0x0053, 0x03FF,
70 		0x03FD, 0x0082, 0x0084, 0x03FD,
71 		0x03FF, 0x0053, 0x00B3, 0x03FB,
72 		0x0000, 0x002C, 0x00DB, 0x03F9,
73 		0x0000, 0x0010, 0x00F6, 0x03FA
74 	},
75 	/* For 8-phase 4-tap vertical filter: */
76 	{
77 		0x0000, 0x0100, 0x0000, 0x0000,
78 		0x03FA, 0x00F6, 0x0010, 0x0000,
79 		0x03F9, 0x00DB, 0x002C, 0x0000,
80 		0x03FB, 0x00B3, 0x0053, 0x03FF,
81 		0x03FD, 0x0082, 0x0084, 0x03FD,
82 		0x03FF, 0x0053, 0x00B3, 0x03FB,
83 		0x0000, 0x002C, 0x00DB, 0x03F9,
84 		0x0000, 0x0010, 0x00F6, 0x03FA
85 	},
86 	/* For 4-phase 7-tap horizontal filter: */
87 	#define DUMMY 0
88 	{
89 		0x0004, 0x0023, 0x005A, 0x0058, 0x0023, 0x0004, 0x0000, DUMMY,
90 		0x0002, 0x0018, 0x004d, 0x0060, 0x0031, 0x0008, 0x0000, DUMMY,
91 		0x0001, 0x000f, 0x003f, 0x0062, 0x003f, 0x000f, 0x0001, DUMMY,
92 		0x0000, 0x0008, 0x0031, 0x0060, 0x004d, 0x0018, 0x0002, DUMMY
93 	},
94 	/* For 4-phase 7-tap vertical filter: */
95 	{
96 		0x0004, 0x0023, 0x005A, 0x0058, 0x0023, 0x0004, 0x0000, DUMMY,
97 		0x0002, 0x0018, 0x004d, 0x0060, 0x0031, 0x0008, 0x0000, DUMMY,
98 		0x0001, 0x000f, 0x003f, 0x0062, 0x003f, 0x000f, 0x0001, DUMMY,
99 		0x0000, 0x0008, 0x0031, 0x0060, 0x004d, 0x0018, 0x0002, DUMMY
100 	}
101 	/*
102 	 * The dummy padding is required in 7-tap mode because of how the
103 	 * registers are arranged physically.
104 	 */
105 	#undef DUMMY
106 };
107 
108 /*
109  * __resizer_get_format - helper function for getting resizer format
110  * @res   : pointer to resizer private structure
111  * @pad   : pad number
112  * @sd_state: V4L2 subdev state
113  * @which : wanted subdev format
114  * return zero
115  */
116 static struct v4l2_mbus_framefmt *
117 __resizer_get_format(struct isp_res_device *res,
118 		     struct v4l2_subdev_state *sd_state,
119 		     unsigned int pad, enum v4l2_subdev_format_whence which)
120 {
121 	if (which == V4L2_SUBDEV_FORMAT_TRY)
122 		return v4l2_subdev_state_get_format(sd_state, pad);
123 	else
124 		return &res->formats[pad];
125 }
126 
127 /*
128  * __resizer_get_crop - helper function for getting resizer crop rectangle
129  * @res   : pointer to resizer private structure
130  * @sd_state: V4L2 subdev state
131  * @which : wanted subdev crop rectangle
132  */
133 static struct v4l2_rect *
134 __resizer_get_crop(struct isp_res_device *res,
135 		   struct v4l2_subdev_state *sd_state,
136 		   enum v4l2_subdev_format_whence which)
137 {
138 	if (which == V4L2_SUBDEV_FORMAT_TRY)
139 		return v4l2_subdev_state_get_crop(sd_state, RESZ_PAD_SINK);
140 	else
141 		return &res->crop.request;
142 }
143 
144 /*
145  * resizer_set_filters - Set resizer filters
146  * @res: Device context.
147  * @h_coeff: horizontal coefficient
148  * @v_coeff: vertical coefficient
149  * Return none
150  */
151 static void resizer_set_filters(struct isp_res_device *res, const u16 *h_coeff,
152 				const u16 *v_coeff)
153 {
154 	struct isp_device *isp = to_isp_device(res);
155 	u32 startaddr_h, startaddr_v, tmp_h, tmp_v;
156 	int i;
157 
158 	startaddr_h = ISPRSZ_HFILT10;
159 	startaddr_v = ISPRSZ_VFILT10;
160 
161 	for (i = 0; i < COEFF_CNT; i += 2) {
162 		tmp_h = h_coeff[i] |
163 			(h_coeff[i + 1] << ISPRSZ_HFILT_COEF1_SHIFT);
164 		tmp_v = v_coeff[i] |
165 			(v_coeff[i + 1] << ISPRSZ_VFILT_COEF1_SHIFT);
166 		isp_reg_writel(isp, tmp_h, OMAP3_ISP_IOMEM_RESZ, startaddr_h);
167 		isp_reg_writel(isp, tmp_v, OMAP3_ISP_IOMEM_RESZ, startaddr_v);
168 		startaddr_h += 4;
169 		startaddr_v += 4;
170 	}
171 }
172 
173 /*
174  * resizer_set_bilinear - Chrominance horizontal algorithm select
175  * @res: Device context.
176  * @type: Filtering interpolation type.
177  *
178  * Filtering that is same as luminance processing is
179  * intended only for downsampling, and bilinear interpolation
180  * is intended only for upsampling.
181  */
182 static void resizer_set_bilinear(struct isp_res_device *res,
183 				 enum resizer_chroma_algo type)
184 {
185 	struct isp_device *isp = to_isp_device(res);
186 
187 	if (type == RSZ_BILINEAR)
188 		isp_reg_set(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT,
189 			    ISPRSZ_CNT_CBILIN);
190 	else
191 		isp_reg_clr(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT,
192 			    ISPRSZ_CNT_CBILIN);
193 }
194 
195 /*
196  * resizer_set_ycpos - Luminance and chrominance order
197  * @res: Device context.
198  * @pixelcode: pixel code.
199  */
200 static void resizer_set_ycpos(struct isp_res_device *res, u32 pixelcode)
201 {
202 	struct isp_device *isp = to_isp_device(res);
203 
204 	switch (pixelcode) {
205 	case MEDIA_BUS_FMT_YUYV8_1X16:
206 		isp_reg_set(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT,
207 			    ISPRSZ_CNT_YCPOS);
208 		break;
209 	case MEDIA_BUS_FMT_UYVY8_1X16:
210 		isp_reg_clr(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT,
211 			    ISPRSZ_CNT_YCPOS);
212 		break;
213 	default:
214 		return;
215 	}
216 }
217 
218 /*
219  * resizer_set_phase - Setup horizontal and vertical starting phase
220  * @res: Device context.
221  * @h_phase: horizontal phase parameters.
222  * @v_phase: vertical phase parameters.
223  *
224  * Horizontal and vertical phase range is 0 to 7
225  */
226 static void resizer_set_phase(struct isp_res_device *res, u32 h_phase,
227 			      u32 v_phase)
228 {
229 	struct isp_device *isp = to_isp_device(res);
230 	u32 rgval;
231 
232 	rgval = isp_reg_readl(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT) &
233 	      ~(ISPRSZ_CNT_HSTPH_MASK | ISPRSZ_CNT_VSTPH_MASK);
234 	rgval |= (h_phase << ISPRSZ_CNT_HSTPH_SHIFT) & ISPRSZ_CNT_HSTPH_MASK;
235 	rgval |= (v_phase << ISPRSZ_CNT_VSTPH_SHIFT) & ISPRSZ_CNT_VSTPH_MASK;
236 
237 	isp_reg_writel(isp, rgval, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT);
238 }
239 
240 /*
241  * resizer_set_luma - Setup luminance enhancer parameters
242  * @res: Device context.
243  * @luma: Structure for luminance enhancer parameters.
244  *
245  * Algorithm select:
246  *  0x0: Disable
247  *  0x1: [-1  2 -1]/2 high-pass filter
248  *  0x2: [-1 -2  6 -2 -1]/4 high-pass filter
249  *
250  * Maximum gain:
251  *  The data is coded in U4Q4 representation.
252  *
253  * Slope:
254  *  The data is coded in U4Q4 representation.
255  *
256  * Coring offset:
257  *  The data is coded in U8Q0 representation.
258  *
259  * The new luminance value is computed as:
260  *  Y += HPF(Y) x max(GAIN, (HPF(Y) - CORE) x SLOP + 8) >> 4.
261  */
262 static void resizer_set_luma(struct isp_res_device *res,
263 			     struct resizer_luma_yenh *luma)
264 {
265 	struct isp_device *isp = to_isp_device(res);
266 	u32 rgval;
267 
268 	rgval  = (luma->algo << ISPRSZ_YENH_ALGO_SHIFT)
269 		  & ISPRSZ_YENH_ALGO_MASK;
270 	rgval |= (luma->gain << ISPRSZ_YENH_GAIN_SHIFT)
271 		  & ISPRSZ_YENH_GAIN_MASK;
272 	rgval |= (luma->slope << ISPRSZ_YENH_SLOP_SHIFT)
273 		  & ISPRSZ_YENH_SLOP_MASK;
274 	rgval |= (luma->core << ISPRSZ_YENH_CORE_SHIFT)
275 		  & ISPRSZ_YENH_CORE_MASK;
276 
277 	isp_reg_writel(isp, rgval, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_YENH);
278 }
279 
280 /*
281  * resizer_set_source - Input source select
282  * @res: Device context.
283  * @source: Input source type
284  *
285  * If this field is set to RESIZER_INPUT_VP, the resizer input is fed from
286  * Preview/CCDC engine, otherwise from memory.
287  */
288 static void resizer_set_source(struct isp_res_device *res,
289 			       enum resizer_input_entity source)
290 {
291 	struct isp_device *isp = to_isp_device(res);
292 
293 	if (source == RESIZER_INPUT_MEMORY)
294 		isp_reg_set(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT,
295 			    ISPRSZ_CNT_INPSRC);
296 	else
297 		isp_reg_clr(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT,
298 			    ISPRSZ_CNT_INPSRC);
299 }
300 
301 /*
302  * resizer_set_ratio - Setup horizontal and vertical resizing value
303  * @res: Device context.
304  * @ratio: Structure for ratio parameters.
305  *
306  * Resizing range from 64 to 1024
307  */
308 static void resizer_set_ratio(struct isp_res_device *res,
309 			      const struct resizer_ratio *ratio)
310 {
311 	struct isp_device *isp = to_isp_device(res);
312 	const u16 *h_filter, *v_filter;
313 	u32 rgval;
314 
315 	rgval = isp_reg_readl(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT) &
316 			      ~(ISPRSZ_CNT_HRSZ_MASK | ISPRSZ_CNT_VRSZ_MASK);
317 	rgval |= ((ratio->horz - 1) << ISPRSZ_CNT_HRSZ_SHIFT)
318 		  & ISPRSZ_CNT_HRSZ_MASK;
319 	rgval |= ((ratio->vert - 1) << ISPRSZ_CNT_VRSZ_SHIFT)
320 		  & ISPRSZ_CNT_VRSZ_MASK;
321 	isp_reg_writel(isp, rgval, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT);
322 
323 	/* prepare horizontal filter coefficients */
324 	if (ratio->horz > MID_RESIZE_VALUE)
325 		h_filter = &filter_coefs.h_filter_coef_7tap[0];
326 	else
327 		h_filter = &filter_coefs.h_filter_coef_4tap[0];
328 
329 	/* prepare vertical filter coefficients */
330 	if (ratio->vert > MID_RESIZE_VALUE)
331 		v_filter = &filter_coefs.v_filter_coef_7tap[0];
332 	else
333 		v_filter = &filter_coefs.v_filter_coef_4tap[0];
334 
335 	resizer_set_filters(res, h_filter, v_filter);
336 }
337 
338 /*
339  * resizer_set_dst_size - Setup the output height and width
340  * @res: Device context.
341  * @width: Output width.
342  * @height: Output height.
343  *
344  * Width :
345  *  The value must be EVEN.
346  *
347  * Height:
348  *  The number of bytes written to SDRAM must be
349  *  a multiple of 16-bytes if the vertical resizing factor
350  *  is greater than 1x (upsizing)
351  */
352 static void resizer_set_output_size(struct isp_res_device *res,
353 				    u32 width, u32 height)
354 {
355 	struct isp_device *isp = to_isp_device(res);
356 	u32 rgval;
357 
358 	rgval  = (width << ISPRSZ_OUT_SIZE_HORZ_SHIFT)
359 		 & ISPRSZ_OUT_SIZE_HORZ_MASK;
360 	rgval |= (height << ISPRSZ_OUT_SIZE_VERT_SHIFT)
361 		 & ISPRSZ_OUT_SIZE_VERT_MASK;
362 	isp_reg_writel(isp, rgval, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_OUT_SIZE);
363 }
364 
365 /*
366  * resizer_set_output_offset - Setup memory offset for the output lines.
367  * @res: Device context.
368  * @offset: Memory offset.
369  *
370  * The 5 LSBs are forced to be zeros by the hardware to align on a 32-byte
371  * boundary; the 5 LSBs are read-only. For optimal use of SDRAM bandwidth,
372  * the SDRAM line offset must be set on a 256-byte boundary
373  */
374 static void resizer_set_output_offset(struct isp_res_device *res, u32 offset)
375 {
376 	struct isp_device *isp = to_isp_device(res);
377 
378 	isp_reg_writel(isp, offset, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_SDR_OUTOFF);
379 }
380 
381 /*
382  * resizer_set_start - Setup vertical and horizontal start position
383  * @res: Device context.
384  * @left: Horizontal start position.
385  * @top: Vertical start position.
386  *
387  * Vertical start line:
388  *  This field makes sense only when the resizer obtains its input
389  *  from the preview engine/CCDC
390  *
391  * Horizontal start pixel:
392  *  Pixels are coded on 16 bits for YUV and 8 bits for color separate data.
393  *  When the resizer gets its input from SDRAM, this field must be set
394  *  to <= 15 for YUV 16-bit data and <= 31 for 8-bit color separate data
395  */
396 static void resizer_set_start(struct isp_res_device *res, u32 left, u32 top)
397 {
398 	struct isp_device *isp = to_isp_device(res);
399 	u32 rgval;
400 
401 	rgval = (left << ISPRSZ_IN_START_HORZ_ST_SHIFT)
402 		& ISPRSZ_IN_START_HORZ_ST_MASK;
403 	rgval |= (top << ISPRSZ_IN_START_VERT_ST_SHIFT)
404 		 & ISPRSZ_IN_START_VERT_ST_MASK;
405 
406 	isp_reg_writel(isp, rgval, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_IN_START);
407 }
408 
409 /*
410  * resizer_set_input_size - Setup the input size
411  * @res: Device context.
412  * @width: The range is 0 to 4095 pixels
413  * @height: The range is 0 to 4095 lines
414  */
415 static void resizer_set_input_size(struct isp_res_device *res,
416 				   u32 width, u32 height)
417 {
418 	struct isp_device *isp = to_isp_device(res);
419 	u32 rgval;
420 
421 	rgval = (width << ISPRSZ_IN_SIZE_HORZ_SHIFT)
422 		& ISPRSZ_IN_SIZE_HORZ_MASK;
423 	rgval |= (height << ISPRSZ_IN_SIZE_VERT_SHIFT)
424 		 & ISPRSZ_IN_SIZE_VERT_MASK;
425 
426 	isp_reg_writel(isp, rgval, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_IN_SIZE);
427 }
428 
429 /*
430  * resizer_set_src_offs - Setup the memory offset for the input lines
431  * @res: Device context.
432  * @offset: Memory offset.
433  *
434  * The 5 LSBs are forced to be zeros by the hardware to align on a 32-byte
435  * boundary; the 5 LSBs are read-only. This field must be programmed to be
436  * 0x0 if the resizer input is from preview engine/CCDC.
437  */
438 static void resizer_set_input_offset(struct isp_res_device *res, u32 offset)
439 {
440 	struct isp_device *isp = to_isp_device(res);
441 
442 	isp_reg_writel(isp, offset, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_SDR_INOFF);
443 }
444 
445 /*
446  * resizer_set_intype - Input type select
447  * @res: Device context.
448  * @type: Pixel format type.
449  */
450 static void resizer_set_intype(struct isp_res_device *res,
451 			       enum resizer_colors_type type)
452 {
453 	struct isp_device *isp = to_isp_device(res);
454 
455 	if (type == RSZ_COLOR8)
456 		isp_reg_set(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT,
457 			    ISPRSZ_CNT_INPTYP);
458 	else
459 		isp_reg_clr(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT,
460 			    ISPRSZ_CNT_INPTYP);
461 }
462 
463 /*
464  * __resizer_set_inaddr - Helper function for set input address
465  * @res : pointer to resizer private data structure
466  * @addr: input address
467  * return none
468  */
469 static void __resizer_set_inaddr(struct isp_res_device *res, u32 addr)
470 {
471 	struct isp_device *isp = to_isp_device(res);
472 
473 	isp_reg_writel(isp, addr, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_SDR_INADD);
474 }
475 
476 /*
477  * The data rate at the horizontal resizer output must not exceed half the
478  * functional clock or 100 MP/s, whichever is lower. According to the TRM
479  * there's no similar requirement for the vertical resizer output. However
480  * experience showed that vertical upscaling by 4 leads to SBL overflows (with
481  * data rates at the resizer output exceeding 300 MP/s). Limiting the resizer
482  * output data rate to the functional clock or 200 MP/s, whichever is lower,
483  * seems to get rid of SBL overflows.
484  *
485  * The maximum data rate at the output of the horizontal resizer can thus be
486  * computed with
487  *
488  * max intermediate rate <= L3 clock * input height / output height
489  * max intermediate rate <= L3 clock / 2
490  *
491  * The maximum data rate at the resizer input is then
492  *
493  * max input rate <= max intermediate rate * input width / output width
494  *
495  * where the input width and height are the resizer input crop rectangle size.
496  * The TRM doesn't clearly explain if that's a maximum instant data rate or a
497  * maximum average data rate.
498  */
499 void omap3isp_resizer_max_rate(struct isp_res_device *res,
500 			       unsigned int *max_rate)
501 {
502 	struct isp_pipeline *pipe = to_isp_pipeline(&res->subdev.entity);
503 	const struct v4l2_mbus_framefmt *ofmt = &res->formats[RESZ_PAD_SOURCE];
504 	unsigned long limit = min(pipe->l3_ick, 200000000UL);
505 	unsigned long clock;
506 
507 	clock = div_u64((u64)limit * res->crop.active.height, ofmt->height);
508 	clock = min(clock, limit / 2);
509 	*max_rate = div_u64((u64)clock * res->crop.active.width, ofmt->width);
510 }
511 
512 /*
513  * When the resizer processes images from memory, the driver must slow down read
514  * requests on the input to at least comply with the internal data rate
515  * requirements. If the application real-time requirements can cope with slower
516  * processing, the resizer can be slowed down even more to put less pressure on
517  * the overall system.
518  *
519  * When the resizer processes images on the fly (either from the CCDC or the
520  * preview module), the same data rate requirements apply but they can't be
521  * enforced at the resizer level. The image input module (sensor, CCP2 or
522  * preview module) must not provide image data faster than the resizer can
523  * process.
524  *
525  * For live image pipelines, the data rate is set by the frame format, size and
526  * rate. The sensor output frame rate must not exceed the maximum resizer data
527  * rate.
528  *
529  * The resizer slows down read requests by inserting wait cycles in the SBL
530  * requests. The maximum number of 256-byte requests per second can be computed
531  * as (the data rate is multiplied by 2 to convert from pixels per second to
532  * bytes per second)
533  *
534  * request per second = data rate * 2 / 256
535  * cycles per request = cycles per second / requests per second
536  *
537  * The number of cycles per second is controlled by the L3 clock, leading to
538  *
539  * cycles per request = L3 frequency / 2 * 256 / data rate
540  */
541 static void resizer_adjust_bandwidth(struct isp_res_device *res)
542 {
543 	struct isp_pipeline *pipe = to_isp_pipeline(&res->subdev.entity);
544 	struct isp_device *isp = to_isp_device(res);
545 	unsigned long l3_ick = pipe->l3_ick;
546 	struct v4l2_fract *timeperframe;
547 	unsigned int cycles_per_frame;
548 	unsigned int requests_per_frame;
549 	unsigned int cycles_per_request;
550 	unsigned int granularity;
551 	unsigned int minimum;
552 	unsigned int maximum;
553 	unsigned int value;
554 
555 	if (res->input != RESIZER_INPUT_MEMORY) {
556 		isp_reg_clr(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_SDR_REQ_EXP,
557 			    ISPSBL_SDR_REQ_RSZ_EXP_MASK);
558 		return;
559 	}
560 
561 	switch (isp->revision) {
562 	case ISP_REVISION_1_0:
563 	case ISP_REVISION_2_0:
564 	default:
565 		granularity = 1024;
566 		break;
567 
568 	case ISP_REVISION_15_0:
569 		granularity = 32;
570 		break;
571 	}
572 
573 	/* Compute the minimum number of cycles per request, based on the
574 	 * pipeline maximum data rate. This is an absolute lower bound if we
575 	 * don't want SBL overflows, so round the value up.
576 	 */
577 	cycles_per_request = div_u64((u64)l3_ick / 2 * 256 + pipe->max_rate - 1,
578 				     pipe->max_rate);
579 	minimum = DIV_ROUND_UP(cycles_per_request, granularity);
580 
581 	/* Compute the maximum number of cycles per request, based on the
582 	 * requested frame rate. This is a soft upper bound to achieve a frame
583 	 * rate equal or higher than the requested value, so round the value
584 	 * down.
585 	 */
586 	timeperframe = &pipe->max_timeperframe;
587 
588 	requests_per_frame = DIV_ROUND_UP(res->crop.active.width * 2, 256)
589 			   * res->crop.active.height;
590 	cycles_per_frame = div_u64((u64)l3_ick * timeperframe->numerator,
591 				   timeperframe->denominator);
592 	cycles_per_request = cycles_per_frame / requests_per_frame;
593 
594 	maximum = cycles_per_request / granularity;
595 
596 	value = max(minimum, maximum);
597 
598 	dev_dbg(isp->dev, "%s: cycles per request = %u\n", __func__, value);
599 	isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_SDR_REQ_EXP,
600 			ISPSBL_SDR_REQ_RSZ_EXP_MASK,
601 			value << ISPSBL_SDR_REQ_RSZ_EXP_SHIFT);
602 }
603 
604 /*
605  * omap3isp_resizer_busy - Checks if ISP resizer is busy.
606  *
607  * Returns busy field from ISPRSZ_PCR register.
608  */
609 int omap3isp_resizer_busy(struct isp_res_device *res)
610 {
611 	struct isp_device *isp = to_isp_device(res);
612 
613 	return isp_reg_readl(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_PCR) &
614 			     ISPRSZ_PCR_BUSY;
615 }
616 
617 /*
618  * resizer_set_inaddr - Sets the memory address of the input frame.
619  * @addr: 32bit memory address aligned on 32byte boundary.
620  */
621 static void resizer_set_inaddr(struct isp_res_device *res, u32 addr)
622 {
623 	res->addr_base = addr;
624 
625 	/* This will handle crop settings in stream off state */
626 	if (res->crop_offset)
627 		addr += res->crop_offset & ~0x1f;
628 
629 	__resizer_set_inaddr(res, addr);
630 }
631 
632 /*
633  * Configures the memory address to which the output frame is written.
634  * @addr: 32bit memory address aligned on 32byte boundary.
635  * Note: For SBL efficiency reasons the address should be on a 256-byte
636  * boundary.
637  */
638 static void resizer_set_outaddr(struct isp_res_device *res, u32 addr)
639 {
640 	struct isp_device *isp = to_isp_device(res);
641 
642 	/*
643 	 * Set output address. This needs to be in its own function
644 	 * because it changes often.
645 	 */
646 	isp_reg_writel(isp, addr << ISPRSZ_SDR_OUTADD_ADDR_SHIFT,
647 		       OMAP3_ISP_IOMEM_RESZ, ISPRSZ_SDR_OUTADD);
648 }
649 
650 /*
651  * resizer_print_status - Prints the values of the resizer module registers.
652  */
653 #define RSZ_PRINT_REGISTER(isp, name)\
654 	dev_dbg(isp->dev, "###RSZ " #name "=0x%08x\n", \
655 		isp_reg_readl(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_##name))
656 
657 static void resizer_print_status(struct isp_res_device *res)
658 {
659 	struct isp_device *isp = to_isp_device(res);
660 
661 	dev_dbg(isp->dev, "-------------Resizer Register dump----------\n");
662 
663 	RSZ_PRINT_REGISTER(isp, PCR);
664 	RSZ_PRINT_REGISTER(isp, CNT);
665 	RSZ_PRINT_REGISTER(isp, OUT_SIZE);
666 	RSZ_PRINT_REGISTER(isp, IN_START);
667 	RSZ_PRINT_REGISTER(isp, IN_SIZE);
668 	RSZ_PRINT_REGISTER(isp, SDR_INADD);
669 	RSZ_PRINT_REGISTER(isp, SDR_INOFF);
670 	RSZ_PRINT_REGISTER(isp, SDR_OUTADD);
671 	RSZ_PRINT_REGISTER(isp, SDR_OUTOFF);
672 	RSZ_PRINT_REGISTER(isp, YENH);
673 
674 	dev_dbg(isp->dev, "--------------------------------------------\n");
675 }
676 
677 /*
678  * resizer_calc_ratios - Helper function for calculating resizer ratios
679  * @res: pointer to resizer private data structure
680  * @input: input frame size
681  * @output: output frame size
682  * @ratio : return calculated ratios
683  * return none
684  *
685  * The resizer uses a polyphase sample rate converter. The upsampling filter
686  * has a fixed number of phases that depend on the resizing ratio. As the ratio
687  * computation depends on the number of phases, we need to compute a first
688  * approximation and then refine it.
689  *
690  * The input/output/ratio relationship is given by the OMAP34xx TRM:
691  *
692  * - 8-phase, 4-tap mode (RSZ = 64 ~ 512)
693  *	iw = (32 * sph + (ow - 1) * hrsz + 16) >> 8 + 7
694  *	ih = (32 * spv + (oh - 1) * vrsz + 16) >> 8 + 4
695  * - 4-phase, 7-tap mode (RSZ = 513 ~ 1024)
696  *	iw = (64 * sph + (ow - 1) * hrsz + 32) >> 8 + 7
697  *	ih = (64 * spv + (oh - 1) * vrsz + 32) >> 8 + 7
698  *
699  * iw and ih are the input width and height after cropping. Those equations need
700  * to be satisfied exactly for the resizer to work correctly.
701  *
702  * The equations can't be easily reverted, as the >> 8 operation is not linear.
703  * In addition, not all input sizes can be achieved for a given output size. To
704  * get the highest input size lower than or equal to the requested input size,
705  * we need to compute the highest resizing ratio that satisfies the following
706  * inequality (taking the 4-tap mode width equation as an example)
707  *
708  *	iw >= (32 * sph + (ow - 1) * hrsz + 16) >> 8 - 7
709  *
710  * (where iw is the requested input width) which can be rewritten as
711  *
712  *	  iw - 7            >= (32 * sph + (ow - 1) * hrsz + 16) >> 8
713  *	 (iw - 7) << 8      >=  32 * sph + (ow - 1) * hrsz + 16 - b
714  *	((iw - 7) << 8) + b >=  32 * sph + (ow - 1) * hrsz + 16
715  *
716  * where b is the value of the 8 least significant bits of the right hand side
717  * expression of the last inequality. The highest resizing ratio value will be
718  * achieved when b is equal to its maximum value of 255. That resizing ratio
719  * value will still satisfy the original inequality, as b will disappear when
720  * the expression will be shifted right by 8.
721  *
722  * The reverted equations thus become
723  *
724  * - 8-phase, 4-tap mode
725  *	hrsz = ((iw - 7) * 256 + 255 - 16 - 32 * sph) / (ow - 1)
726  *	vrsz = ((ih - 4) * 256 + 255 - 16 - 32 * spv) / (oh - 1)
727  * - 4-phase, 7-tap mode
728  *	hrsz = ((iw - 7) * 256 + 255 - 32 - 64 * sph) / (ow - 1)
729  *	vrsz = ((ih - 7) * 256 + 255 - 32 - 64 * spv) / (oh - 1)
730  *
731  * The ratios are integer values, and are rounded down to ensure that the
732  * cropped input size is not bigger than the uncropped input size.
733  *
734  * As the number of phases/taps, used to select the correct equations to compute
735  * the ratio, depends on the ratio, we start with the 4-tap mode equations to
736  * compute an approximation of the ratio, and switch to the 7-tap mode equations
737  * if the approximation is higher than the ratio threshold.
738  *
739  * As the 7-tap mode equations will return a ratio smaller than or equal to the
740  * 4-tap mode equations, the resulting ratio could become lower than or equal to
741  * the ratio threshold. This 'equations loop' isn't an issue as long as the
742  * correct equations are used to compute the final input size. Starting with the
743  * 4-tap mode equations ensure that, in case of values resulting in a 'ratio
744  * loop', the smallest of the ratio values will be used, never exceeding the
745  * requested input size.
746  *
747  * We first clamp the output size according to the hardware capability to avoid
748  * auto-cropping the input more than required to satisfy the TRM equations. The
749  * minimum output size is achieved with a scaling factor of 1024. It is thus
750  * computed using the 7-tap equations.
751  *
752  *	min ow = ((iw - 7) * 256 - 32 - 64 * sph) / 1024 + 1
753  *	min oh = ((ih - 7) * 256 - 32 - 64 * spv) / 1024 + 1
754  *
755  * Similarly, the maximum output size is achieved with a scaling factor of 64
756  * and computed using the 4-tap equations.
757  *
758  *	max ow = ((iw - 7) * 256 + 255 - 16 - 32 * sph) / 64 + 1
759  *	max oh = ((ih - 4) * 256 + 255 - 16 - 32 * spv) / 64 + 1
760  *
761  * The additional +255 term compensates for the round down operation performed
762  * by the TRM equations when shifting the value right by 8 bits.
763  *
764  * We then compute and clamp the ratios (x1/4 ~ x4). Clamping the output size to
765  * the maximum value guarantees that the ratio value will never be smaller than
766  * the minimum, but it could still slightly exceed the maximum. Clamping the
767  * ratio will thus result in a resizing factor slightly larger than the
768  * requested value.
769  *
770  * To accommodate that, and make sure the TRM equations are satisfied exactly, we
771  * compute the input crop rectangle as the last step.
772  *
773  * As if the situation wasn't complex enough, the maximum output width depends
774  * on the vertical resizing ratio.  Fortunately, the output height doesn't
775  * depend on the horizontal resizing ratio. We can then start by computing the
776  * output height and the vertical ratio, and then move to computing the output
777  * width and the horizontal ratio.
778  */
779 static void resizer_calc_ratios(struct isp_res_device *res,
780 				struct v4l2_rect *input,
781 				struct v4l2_mbus_framefmt *output,
782 				struct resizer_ratio *ratio)
783 {
784 	struct isp_device *isp = to_isp_device(res);
785 	const unsigned int spv = DEFAULT_PHASE;
786 	const unsigned int sph = DEFAULT_PHASE;
787 	unsigned int upscaled_width;
788 	unsigned int upscaled_height;
789 	unsigned int min_width;
790 	unsigned int min_height;
791 	unsigned int max_width;
792 	unsigned int max_height;
793 	unsigned int width_alignment;
794 	unsigned int width;
795 	unsigned int height;
796 
797 	/*
798 	 * Clamp the output height based on the hardware capabilities and
799 	 * compute the vertical resizing ratio.
800 	 */
801 	min_height = ((input->height - 7) * 256 - 32 - 64 * spv) / 1024 + 1;
802 	min_height = max_t(unsigned int, min_height, MIN_OUT_HEIGHT);
803 	max_height = ((input->height - 4) * 256 + 255 - 16 - 32 * spv) / 64 + 1;
804 	max_height = min_t(unsigned int, max_height, MAX_OUT_HEIGHT);
805 	output->height = clamp(output->height, min_height, max_height);
806 
807 	ratio->vert = ((input->height - 4) * 256 + 255 - 16 - 32 * spv)
808 		    / (output->height - 1);
809 	if (ratio->vert > MID_RESIZE_VALUE)
810 		ratio->vert = ((input->height - 7) * 256 + 255 - 32 - 64 * spv)
811 			    / (output->height - 1);
812 	ratio->vert = clamp_t(unsigned int, ratio->vert,
813 			      MIN_RESIZE_VALUE, MAX_RESIZE_VALUE);
814 
815 	if (ratio->vert <= MID_RESIZE_VALUE) {
816 		upscaled_height = (output->height - 1) * ratio->vert
817 				+ 32 * spv + 16;
818 		height = (upscaled_height >> 8) + 4;
819 	} else {
820 		upscaled_height = (output->height - 1) * ratio->vert
821 				+ 64 * spv + 32;
822 		height = (upscaled_height >> 8) + 7;
823 	}
824 
825 	/*
826 	 * Compute the minimum and maximum output widths based on the hardware
827 	 * capabilities. The maximum depends on the vertical resizing ratio.
828 	 */
829 	min_width = ((input->width - 7) * 256 - 32 - 64 * sph) / 1024 + 1;
830 	min_width = max_t(unsigned int, min_width, MIN_OUT_WIDTH);
831 
832 	if (ratio->vert <= MID_RESIZE_VALUE) {
833 		switch (isp->revision) {
834 		case ISP_REVISION_1_0:
835 			max_width = MAX_4TAP_OUT_WIDTH_ES1;
836 			break;
837 
838 		case ISP_REVISION_2_0:
839 		default:
840 			max_width = MAX_4TAP_OUT_WIDTH_ES2;
841 			break;
842 
843 		case ISP_REVISION_15_0:
844 			max_width = MAX_4TAP_OUT_WIDTH_3630;
845 			break;
846 		}
847 	} else {
848 		switch (isp->revision) {
849 		case ISP_REVISION_1_0:
850 			max_width = MAX_7TAP_OUT_WIDTH_ES1;
851 			break;
852 
853 		case ISP_REVISION_2_0:
854 		default:
855 			max_width = MAX_7TAP_OUT_WIDTH_ES2;
856 			break;
857 
858 		case ISP_REVISION_15_0:
859 			max_width = MAX_7TAP_OUT_WIDTH_3630;
860 			break;
861 		}
862 	}
863 	max_width = min(((input->width - 7) * 256 + 255 - 16 - 32 * sph) / 64
864 			+ 1, max_width);
865 
866 	/*
867 	 * The output width must be even, and must be a multiple of 16 bytes
868 	 * when upscaling vertically. Clamp the output width to the valid range.
869 	 * Take the alignment into account (the maximum width in 7-tap mode on
870 	 * ES2 isn't a multiple of 8) and align the result up to make sure it
871 	 * won't be smaller than the minimum.
872 	 */
873 	width_alignment = ratio->vert < 256 ? 8 : 2;
874 	output->width = clamp(output->width, min_width,
875 			      max_width & ~(width_alignment - 1));
876 	output->width = ALIGN(output->width, width_alignment);
877 
878 	ratio->horz = ((input->width - 7) * 256 + 255 - 16 - 32 * sph)
879 		    / (output->width - 1);
880 	if (ratio->horz > MID_RESIZE_VALUE)
881 		ratio->horz = ((input->width - 7) * 256 + 255 - 32 - 64 * sph)
882 			    / (output->width - 1);
883 	ratio->horz = clamp_t(unsigned int, ratio->horz,
884 			      MIN_RESIZE_VALUE, MAX_RESIZE_VALUE);
885 
886 	if (ratio->horz <= MID_RESIZE_VALUE) {
887 		upscaled_width = (output->width - 1) * ratio->horz
888 			       + 32 * sph + 16;
889 		width = (upscaled_width >> 8) + 7;
890 	} else {
891 		upscaled_width = (output->width - 1) * ratio->horz
892 			       + 64 * sph + 32;
893 		width = (upscaled_width >> 8) + 7;
894 	}
895 
896 	/* Center the new crop rectangle. */
897 	input->left += (input->width - width) / 2;
898 	input->top += (input->height - height) / 2;
899 	input->width = width;
900 	input->height = height;
901 }
902 
903 /*
904  * resizer_set_crop_params - Setup hardware with cropping parameters
905  * @res : resizer private structure
906  * @input : format on sink pad
907  * @output : format on source pad
908  * return none
909  */
910 static void resizer_set_crop_params(struct isp_res_device *res,
911 				    const struct v4l2_mbus_framefmt *input,
912 				    const struct v4l2_mbus_framefmt *output)
913 {
914 	resizer_set_ratio(res, &res->ratio);
915 
916 	/* Set chrominance horizontal algorithm */
917 	if (res->ratio.horz >= RESIZE_DIVISOR)
918 		resizer_set_bilinear(res, RSZ_THE_SAME);
919 	else
920 		resizer_set_bilinear(res, RSZ_BILINEAR);
921 
922 	resizer_adjust_bandwidth(res);
923 
924 	if (res->input == RESIZER_INPUT_MEMORY) {
925 		/* Calculate additional offset for crop */
926 		res->crop_offset = (res->crop.active.top * input->width +
927 				    res->crop.active.left) * 2;
928 		/*
929 		 * Write lowest 4 bits of horizontal pixel offset (in pixels),
930 		 * vertical start must be 0.
931 		 */
932 		resizer_set_start(res, (res->crop_offset / 2) & 0xf, 0);
933 
934 		/*
935 		 * Set start (read) address for cropping, in bytes.
936 		 * Lowest 5 bits must be zero.
937 		 */
938 		__resizer_set_inaddr(res,
939 				res->addr_base + (res->crop_offset & ~0x1f));
940 	} else {
941 		/*
942 		 * Set vertical start line and horizontal starting pixel.
943 		 * If the input is from CCDC/PREV, horizontal start field is
944 		 * in bytes (twice number of pixels).
945 		 */
946 		resizer_set_start(res, res->crop.active.left * 2,
947 				  res->crop.active.top);
948 		/* Input address and offset must be 0 for preview/ccdc input */
949 		__resizer_set_inaddr(res, 0);
950 		resizer_set_input_offset(res, 0);
951 	}
952 
953 	/* Set the input size */
954 	resizer_set_input_size(res, res->crop.active.width,
955 			       res->crop.active.height);
956 }
957 
958 static void resizer_configure(struct isp_res_device *res)
959 {
960 	struct v4l2_mbus_framefmt *informat, *outformat;
961 	struct resizer_luma_yenh luma = {0, 0, 0, 0};
962 
963 	resizer_set_source(res, res->input);
964 
965 	informat = &res->formats[RESZ_PAD_SINK];
966 	outformat = &res->formats[RESZ_PAD_SOURCE];
967 
968 	/* RESZ_PAD_SINK */
969 	if (res->input == RESIZER_INPUT_VP)
970 		resizer_set_input_offset(res, 0);
971 	else
972 		resizer_set_input_offset(res, ALIGN(informat->width, 0x10) * 2);
973 
974 	/* YUV422 interleaved, default phase, no luma enhancement */
975 	resizer_set_intype(res, RSZ_YUV422);
976 	resizer_set_ycpos(res, informat->code);
977 	resizer_set_phase(res, DEFAULT_PHASE, DEFAULT_PHASE);
978 	resizer_set_luma(res, &luma);
979 
980 	/* RESZ_PAD_SOURCE */
981 	resizer_set_output_offset(res, ALIGN(outformat->width * 2, 32));
982 	resizer_set_output_size(res, outformat->width, outformat->height);
983 
984 	resizer_set_crop_params(res, informat, outformat);
985 }
986 
987 /* -----------------------------------------------------------------------------
988  * Interrupt handling
989  */
990 
991 static void resizer_enable_oneshot(struct isp_res_device *res)
992 {
993 	struct isp_device *isp = to_isp_device(res);
994 
995 	isp_reg_set(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_PCR,
996 		    ISPRSZ_PCR_ENABLE | ISPRSZ_PCR_ONESHOT);
997 }
998 
999 void omap3isp_resizer_isr_frame_sync(struct isp_res_device *res)
1000 {
1001 	/*
1002 	 * If ISP_VIDEO_DMAQUEUE_QUEUED is set, DMA queue had an underrun
1003 	 * condition, the module was paused and now we have a buffer queued
1004 	 * on the output again. Restart the pipeline if running in continuous
1005 	 * mode.
1006 	 */
1007 	if (res->state == ISP_PIPELINE_STREAM_CONTINUOUS &&
1008 	    res->video_out.dmaqueue_flags & ISP_VIDEO_DMAQUEUE_QUEUED) {
1009 		resizer_enable_oneshot(res);
1010 		isp_video_dmaqueue_flags_clr(&res->video_out);
1011 	}
1012 }
1013 
1014 static void resizer_isr_buffer(struct isp_res_device *res)
1015 {
1016 	struct isp_pipeline *pipe = to_isp_pipeline(&res->subdev.entity);
1017 	struct isp_buffer *buffer;
1018 	int restart = 0;
1019 
1020 	if (res->state == ISP_PIPELINE_STREAM_STOPPED)
1021 		return;
1022 
1023 	/* Complete the output buffer and, if reading from memory, the input
1024 	 * buffer.
1025 	 */
1026 	buffer = omap3isp_video_buffer_next(&res->video_out);
1027 	if (buffer != NULL) {
1028 		resizer_set_outaddr(res, buffer->dma);
1029 		restart = 1;
1030 	}
1031 
1032 	pipe->state |= ISP_PIPELINE_IDLE_OUTPUT;
1033 
1034 	if (res->input == RESIZER_INPUT_MEMORY) {
1035 		buffer = omap3isp_video_buffer_next(&res->video_in);
1036 		if (buffer != NULL)
1037 			resizer_set_inaddr(res, buffer->dma);
1038 		pipe->state |= ISP_PIPELINE_IDLE_INPUT;
1039 	}
1040 
1041 	if (res->state == ISP_PIPELINE_STREAM_SINGLESHOT) {
1042 		if (isp_pipeline_ready(pipe))
1043 			omap3isp_pipeline_set_stream(pipe,
1044 						ISP_PIPELINE_STREAM_SINGLESHOT);
1045 	} else {
1046 		/* If an underrun occurs, the video queue operation handler will
1047 		 * restart the resizer. Otherwise restart it immediately.
1048 		 */
1049 		if (restart)
1050 			resizer_enable_oneshot(res);
1051 	}
1052 }
1053 
1054 /*
1055  * omap3isp_resizer_isr - ISP resizer interrupt handler
1056  *
1057  * Manage the resizer video buffers and configure shadowed and busy-locked
1058  * registers.
1059  */
1060 void omap3isp_resizer_isr(struct isp_res_device *res)
1061 {
1062 	struct v4l2_mbus_framefmt *informat, *outformat;
1063 	unsigned long flags;
1064 
1065 	if (omap3isp_module_sync_is_stopping(&res->wait, &res->stopping))
1066 		return;
1067 
1068 	spin_lock_irqsave(&res->lock, flags);
1069 
1070 	if (res->applycrop) {
1071 		outformat = __resizer_get_format(res, NULL, RESZ_PAD_SOURCE,
1072 					      V4L2_SUBDEV_FORMAT_ACTIVE);
1073 		informat = __resizer_get_format(res, NULL, RESZ_PAD_SINK,
1074 					      V4L2_SUBDEV_FORMAT_ACTIVE);
1075 		resizer_set_crop_params(res, informat, outformat);
1076 		res->applycrop = 0;
1077 	}
1078 
1079 	spin_unlock_irqrestore(&res->lock, flags);
1080 
1081 	resizer_isr_buffer(res);
1082 }
1083 
1084 /* -----------------------------------------------------------------------------
1085  * ISP video operations
1086  */
1087 
1088 static int resizer_video_queue(struct isp_video *video,
1089 			       struct isp_buffer *buffer)
1090 {
1091 	struct isp_res_device *res = &video->isp->isp_res;
1092 
1093 	if (video->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1094 		resizer_set_inaddr(res, buffer->dma);
1095 
1096 	/*
1097 	 * We now have a buffer queued on the output. Despite what the
1098 	 * TRM says, the resizer can't be restarted immediately.
1099 	 * Enabling it in one shot mode in the middle of a frame (or at
1100 	 * least asynchronously to the frame) results in the output
1101 	 * being shifted randomly left/right and up/down, as if the
1102 	 * hardware didn't synchronize itself to the beginning of the
1103 	 * frame correctly.
1104 	 *
1105 	 * Restart the resizer on the next sync interrupt if running in
1106 	 * continuous mode or when starting the stream.
1107 	 */
1108 	if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1109 		resizer_set_outaddr(res, buffer->dma);
1110 
1111 	return 0;
1112 }
1113 
1114 static const struct isp_video_operations resizer_video_ops = {
1115 	.queue = resizer_video_queue,
1116 };
1117 
1118 /* -----------------------------------------------------------------------------
1119  * V4L2 subdev operations
1120  */
1121 
1122 /*
1123  * resizer_set_stream - Enable/Disable streaming on resizer subdev
1124  * @sd: ISP resizer V4L2 subdev
1125  * @enable: 1 == Enable, 0 == Disable
1126  *
1127  * The resizer hardware can't be enabled without a memory buffer to write to.
1128  * As the s_stream operation is called in response to a STREAMON call without
1129  * any buffer queued yet, just update the state field and return immediately.
1130  * The resizer will be enabled in resizer_video_queue().
1131  */
1132 static int resizer_set_stream(struct v4l2_subdev *sd, int enable)
1133 {
1134 	struct isp_res_device *res = v4l2_get_subdevdata(sd);
1135 	struct isp_video *video_out = &res->video_out;
1136 	struct isp_device *isp = to_isp_device(res);
1137 	struct device *dev = to_device(res);
1138 
1139 	if (res->state == ISP_PIPELINE_STREAM_STOPPED) {
1140 		if (enable == ISP_PIPELINE_STREAM_STOPPED)
1141 			return 0;
1142 
1143 		omap3isp_subclk_enable(isp, OMAP3_ISP_SUBCLK_RESIZER);
1144 		resizer_configure(res);
1145 		resizer_print_status(res);
1146 	}
1147 
1148 	switch (enable) {
1149 	case ISP_PIPELINE_STREAM_CONTINUOUS:
1150 		omap3isp_sbl_enable(isp, OMAP3_ISP_SBL_RESIZER_WRITE);
1151 		if (video_out->dmaqueue_flags & ISP_VIDEO_DMAQUEUE_QUEUED) {
1152 			resizer_enable_oneshot(res);
1153 			isp_video_dmaqueue_flags_clr(video_out);
1154 		}
1155 		break;
1156 
1157 	case ISP_PIPELINE_STREAM_SINGLESHOT:
1158 		if (res->input == RESIZER_INPUT_MEMORY)
1159 			omap3isp_sbl_enable(isp, OMAP3_ISP_SBL_RESIZER_READ);
1160 		omap3isp_sbl_enable(isp, OMAP3_ISP_SBL_RESIZER_WRITE);
1161 
1162 		resizer_enable_oneshot(res);
1163 		break;
1164 
1165 	case ISP_PIPELINE_STREAM_STOPPED:
1166 		if (omap3isp_module_sync_idle(&sd->entity, &res->wait,
1167 					      &res->stopping))
1168 			dev_dbg(dev, "%s: module stop timeout.\n", sd->name);
1169 		omap3isp_sbl_disable(isp, OMAP3_ISP_SBL_RESIZER_READ |
1170 				OMAP3_ISP_SBL_RESIZER_WRITE);
1171 		omap3isp_subclk_disable(isp, OMAP3_ISP_SUBCLK_RESIZER);
1172 		isp_video_dmaqueue_flags_clr(video_out);
1173 		break;
1174 	}
1175 
1176 	res->state = enable;
1177 	return 0;
1178 }
1179 
1180 /*
1181  * resizer_try_crop - mangles crop parameters.
1182  */
1183 static void resizer_try_crop(const struct v4l2_mbus_framefmt *sink,
1184 			     const struct v4l2_mbus_framefmt *source,
1185 			     struct v4l2_rect *crop)
1186 {
1187 	const unsigned int spv = DEFAULT_PHASE;
1188 	const unsigned int sph = DEFAULT_PHASE;
1189 
1190 	/* Crop rectangle is constrained by the output size so that zoom ratio
1191 	 * cannot exceed +/-4.0.
1192 	 */
1193 	unsigned int min_width =
1194 		((32 * sph + (source->width - 1) * 64 + 16) >> 8) + 7;
1195 	unsigned int min_height =
1196 		((32 * spv + (source->height - 1) * 64 + 16) >> 8) + 4;
1197 	unsigned int max_width =
1198 		((64 * sph + (source->width - 1) * 1024 + 32) >> 8) + 7;
1199 	unsigned int max_height =
1200 		((64 * spv + (source->height - 1) * 1024 + 32) >> 8) + 7;
1201 
1202 	crop->width = clamp_t(u32, crop->width, min_width, max_width);
1203 	crop->height = clamp_t(u32, crop->height, min_height, max_height);
1204 
1205 	/* Crop can not go beyond of the input rectangle */
1206 	crop->left = clamp_t(u32, crop->left, 0, sink->width - MIN_IN_WIDTH);
1207 	crop->width = clamp_t(u32, crop->width, MIN_IN_WIDTH,
1208 			      sink->width - crop->left);
1209 	crop->top = clamp_t(u32, crop->top, 0, sink->height - MIN_IN_HEIGHT);
1210 	crop->height = clamp_t(u32, crop->height, MIN_IN_HEIGHT,
1211 			       sink->height - crop->top);
1212 }
1213 
1214 /*
1215  * resizer_get_selection - Retrieve a selection rectangle on a pad
1216  * @sd: ISP resizer V4L2 subdevice
1217  * @sd_state: V4L2 subdev state
1218  * @sel: Selection rectangle
1219  *
1220  * The only supported rectangles are the crop rectangles on the sink pad.
1221  *
1222  * Return 0 on success or a negative error code otherwise.
1223  */
1224 static int resizer_get_selection(struct v4l2_subdev *sd,
1225 				 struct v4l2_subdev_state *sd_state,
1226 				 struct v4l2_subdev_selection *sel)
1227 {
1228 	struct isp_res_device *res = v4l2_get_subdevdata(sd);
1229 	struct v4l2_mbus_framefmt *format_source;
1230 	struct v4l2_mbus_framefmt *format_sink;
1231 	struct resizer_ratio ratio;
1232 
1233 	if (sel->pad != RESZ_PAD_SINK)
1234 		return -EINVAL;
1235 
1236 	format_sink = __resizer_get_format(res, sd_state, RESZ_PAD_SINK,
1237 					   sel->which);
1238 	format_source = __resizer_get_format(res, sd_state, RESZ_PAD_SOURCE,
1239 					     sel->which);
1240 
1241 	switch (sel->target) {
1242 	case V4L2_SEL_TGT_CROP_BOUNDS:
1243 		sel->r.left = 0;
1244 		sel->r.top = 0;
1245 		sel->r.width = INT_MAX;
1246 		sel->r.height = INT_MAX;
1247 
1248 		resizer_try_crop(format_sink, format_source, &sel->r);
1249 		resizer_calc_ratios(res, &sel->r, format_source, &ratio);
1250 		break;
1251 
1252 	case V4L2_SEL_TGT_CROP:
1253 		sel->r = *__resizer_get_crop(res, sd_state, sel->which);
1254 		resizer_calc_ratios(res, &sel->r, format_source, &ratio);
1255 		break;
1256 
1257 	default:
1258 		return -EINVAL;
1259 	}
1260 
1261 	return 0;
1262 }
1263 
1264 /*
1265  * resizer_set_selection - Set a selection rectangle on a pad
1266  * @sd: ISP resizer V4L2 subdevice
1267  * @sd_state: V4L2 subdev state
1268  * @sel: Selection rectangle
1269  *
1270  * The only supported rectangle is the actual crop rectangle on the sink pad.
1271  *
1272  * FIXME: This function currently behaves as if the KEEP_CONFIG selection flag
1273  * was always set.
1274  *
1275  * Return 0 on success or a negative error code otherwise.
1276  */
1277 static int resizer_set_selection(struct v4l2_subdev *sd,
1278 				 struct v4l2_subdev_state *sd_state,
1279 				 struct v4l2_subdev_selection *sel)
1280 {
1281 	struct isp_res_device *res = v4l2_get_subdevdata(sd);
1282 	struct isp_device *isp = to_isp_device(res);
1283 	const struct v4l2_mbus_framefmt *format_sink;
1284 	struct v4l2_mbus_framefmt format_source;
1285 	struct resizer_ratio ratio;
1286 	unsigned long flags;
1287 
1288 	if (sel->target != V4L2_SEL_TGT_CROP ||
1289 	    sel->pad != RESZ_PAD_SINK)
1290 		return -EINVAL;
1291 
1292 	format_sink = __resizer_get_format(res, sd_state, RESZ_PAD_SINK,
1293 					   sel->which);
1294 	format_source = *__resizer_get_format(res, sd_state, RESZ_PAD_SOURCE,
1295 					      sel->which);
1296 
1297 	dev_dbg(isp->dev, "%s(%s): req %ux%u -> (%d,%d)/%ux%u -> %ux%u\n",
1298 		__func__, sel->which == V4L2_SUBDEV_FORMAT_TRY ? "try" : "act",
1299 		format_sink->width, format_sink->height,
1300 		sel->r.left, sel->r.top, sel->r.width, sel->r.height,
1301 		format_source.width, format_source.height);
1302 
1303 	/* Clamp the crop rectangle to the bounds, and then mangle it further to
1304 	 * fulfill the TRM equations. Store the clamped but otherwise unmangled
1305 	 * rectangle to avoid cropping the input multiple times: when an
1306 	 * application sets the output format, the current crop rectangle is
1307 	 * mangled during crop rectangle computation, which would lead to a new,
1308 	 * smaller input crop rectangle every time the output size is set if we
1309 	 * stored the mangled rectangle.
1310 	 */
1311 	resizer_try_crop(format_sink, &format_source, &sel->r);
1312 	*__resizer_get_crop(res, sd_state, sel->which) = sel->r;
1313 	resizer_calc_ratios(res, &sel->r, &format_source, &ratio);
1314 
1315 	dev_dbg(isp->dev, "%s(%s): got %ux%u -> (%d,%d)/%ux%u -> %ux%u\n",
1316 		__func__, sel->which == V4L2_SUBDEV_FORMAT_TRY ? "try" : "act",
1317 		format_sink->width, format_sink->height,
1318 		sel->r.left, sel->r.top, sel->r.width, sel->r.height,
1319 		format_source.width, format_source.height);
1320 
1321 	if (sel->which == V4L2_SUBDEV_FORMAT_TRY) {
1322 		*__resizer_get_format(res, sd_state, RESZ_PAD_SOURCE,
1323 				      sel->which) =
1324 			format_source;
1325 		return 0;
1326 	}
1327 
1328 	/* Update the source format, resizing ratios and crop rectangle. If
1329 	 * streaming is on the IRQ handler will reprogram the resizer after the
1330 	 * current frame. We thus we need to protect against race conditions.
1331 	 */
1332 	spin_lock_irqsave(&res->lock, flags);
1333 
1334 	*__resizer_get_format(res, sd_state, RESZ_PAD_SOURCE, sel->which) =
1335 		format_source;
1336 
1337 	res->ratio = ratio;
1338 	res->crop.active = sel->r;
1339 
1340 	if (res->state != ISP_PIPELINE_STREAM_STOPPED)
1341 		res->applycrop = 1;
1342 
1343 	spin_unlock_irqrestore(&res->lock, flags);
1344 
1345 	return 0;
1346 }
1347 
1348 /* resizer pixel formats */
1349 static const unsigned int resizer_formats[] = {
1350 	MEDIA_BUS_FMT_UYVY8_1X16,
1351 	MEDIA_BUS_FMT_YUYV8_1X16,
1352 };
1353 
1354 static unsigned int resizer_max_in_width(struct isp_res_device *res)
1355 {
1356 	struct isp_device *isp = to_isp_device(res);
1357 
1358 	if (res->input == RESIZER_INPUT_MEMORY) {
1359 		return MAX_IN_WIDTH_MEMORY_MODE;
1360 	} else {
1361 		if (isp->revision == ISP_REVISION_1_0)
1362 			return MAX_IN_WIDTH_ONTHEFLY_MODE_ES1;
1363 		else
1364 			return MAX_IN_WIDTH_ONTHEFLY_MODE_ES2;
1365 	}
1366 }
1367 
1368 /*
1369  * resizer_try_format - Handle try format by pad subdev method
1370  * @res   : ISP resizer device
1371  * @sd_state: V4L2 subdev state
1372  * @pad   : pad num
1373  * @fmt   : pointer to v4l2 format structure
1374  * @which : wanted subdev format
1375  */
1376 static void resizer_try_format(struct isp_res_device *res,
1377 			       struct v4l2_subdev_state *sd_state,
1378 			       unsigned int pad,
1379 			       struct v4l2_mbus_framefmt *fmt,
1380 			       enum v4l2_subdev_format_whence which)
1381 {
1382 	struct v4l2_mbus_framefmt *format;
1383 	struct resizer_ratio ratio;
1384 	struct v4l2_rect crop;
1385 
1386 	switch (pad) {
1387 	case RESZ_PAD_SINK:
1388 		if (fmt->code != MEDIA_BUS_FMT_YUYV8_1X16 &&
1389 		    fmt->code != MEDIA_BUS_FMT_UYVY8_1X16)
1390 			fmt->code = MEDIA_BUS_FMT_YUYV8_1X16;
1391 
1392 		fmt->width = clamp_t(u32, fmt->width, MIN_IN_WIDTH,
1393 				     resizer_max_in_width(res));
1394 		fmt->height = clamp_t(u32, fmt->height, MIN_IN_HEIGHT,
1395 				      MAX_IN_HEIGHT);
1396 		break;
1397 
1398 	case RESZ_PAD_SOURCE:
1399 		format = __resizer_get_format(res, sd_state, RESZ_PAD_SINK,
1400 					      which);
1401 		fmt->code = format->code;
1402 
1403 		crop = *__resizer_get_crop(res, sd_state, which);
1404 		resizer_calc_ratios(res, &crop, fmt, &ratio);
1405 		break;
1406 	}
1407 
1408 	fmt->colorspace = V4L2_COLORSPACE_JPEG;
1409 	fmt->field = V4L2_FIELD_NONE;
1410 }
1411 
1412 /*
1413  * resizer_enum_mbus_code - Handle pixel format enumeration
1414  * @sd     : pointer to v4l2 subdev structure
1415  * @sd_state: V4L2 subdev state
1416  * @code   : pointer to v4l2_subdev_mbus_code_enum structure
1417  * return -EINVAL or zero on success
1418  */
1419 static int resizer_enum_mbus_code(struct v4l2_subdev *sd,
1420 				  struct v4l2_subdev_state *sd_state,
1421 				  struct v4l2_subdev_mbus_code_enum *code)
1422 {
1423 	struct isp_res_device *res = v4l2_get_subdevdata(sd);
1424 	struct v4l2_mbus_framefmt *format;
1425 
1426 	if (code->pad == RESZ_PAD_SINK) {
1427 		if (code->index >= ARRAY_SIZE(resizer_formats))
1428 			return -EINVAL;
1429 
1430 		code->code = resizer_formats[code->index];
1431 	} else {
1432 		if (code->index != 0)
1433 			return -EINVAL;
1434 
1435 		format = __resizer_get_format(res, sd_state, RESZ_PAD_SINK,
1436 					      code->which);
1437 		code->code = format->code;
1438 	}
1439 
1440 	return 0;
1441 }
1442 
1443 static int resizer_enum_frame_size(struct v4l2_subdev *sd,
1444 				   struct v4l2_subdev_state *sd_state,
1445 				   struct v4l2_subdev_frame_size_enum *fse)
1446 {
1447 	struct isp_res_device *res = v4l2_get_subdevdata(sd);
1448 	struct v4l2_mbus_framefmt format;
1449 
1450 	if (fse->index != 0)
1451 		return -EINVAL;
1452 
1453 	format.code = fse->code;
1454 	format.width = 1;
1455 	format.height = 1;
1456 	resizer_try_format(res, sd_state, fse->pad, &format, fse->which);
1457 	fse->min_width = format.width;
1458 	fse->min_height = format.height;
1459 
1460 	if (format.code != fse->code)
1461 		return -EINVAL;
1462 
1463 	format.code = fse->code;
1464 	format.width = -1;
1465 	format.height = -1;
1466 	resizer_try_format(res, sd_state, fse->pad, &format, fse->which);
1467 	fse->max_width = format.width;
1468 	fse->max_height = format.height;
1469 
1470 	return 0;
1471 }
1472 
1473 /*
1474  * resizer_get_format - Handle get format by pads subdev method
1475  * @sd    : pointer to v4l2 subdev structure
1476  * @sd_state: V4L2 subdev state
1477  * @fmt   : pointer to v4l2 subdev format structure
1478  * return -EINVAL or zero on success
1479  */
1480 static int resizer_get_format(struct v4l2_subdev *sd,
1481 			      struct v4l2_subdev_state *sd_state,
1482 			      struct v4l2_subdev_format *fmt)
1483 {
1484 	struct isp_res_device *res = v4l2_get_subdevdata(sd);
1485 	struct v4l2_mbus_framefmt *format;
1486 
1487 	format = __resizer_get_format(res, sd_state, fmt->pad, fmt->which);
1488 	if (format == NULL)
1489 		return -EINVAL;
1490 
1491 	fmt->format = *format;
1492 	return 0;
1493 }
1494 
1495 /*
1496  * resizer_set_format - Handle set format by pads subdev method
1497  * @sd    : pointer to v4l2 subdev structure
1498  * @sd_state: V4L2 subdev state
1499  * @fmt   : pointer to v4l2 subdev format structure
1500  * return -EINVAL or zero on success
1501  */
1502 static int resizer_set_format(struct v4l2_subdev *sd,
1503 			      struct v4l2_subdev_state *sd_state,
1504 			      struct v4l2_subdev_format *fmt)
1505 {
1506 	struct isp_res_device *res = v4l2_get_subdevdata(sd);
1507 	struct v4l2_mbus_framefmt *format;
1508 	struct v4l2_rect *crop;
1509 
1510 	format = __resizer_get_format(res, sd_state, fmt->pad, fmt->which);
1511 	if (format == NULL)
1512 		return -EINVAL;
1513 
1514 	resizer_try_format(res, sd_state, fmt->pad, &fmt->format, fmt->which);
1515 	*format = fmt->format;
1516 
1517 	if (fmt->pad == RESZ_PAD_SINK) {
1518 		/* reset crop rectangle */
1519 		crop = __resizer_get_crop(res, sd_state, fmt->which);
1520 		crop->left = 0;
1521 		crop->top = 0;
1522 		crop->width = fmt->format.width;
1523 		crop->height = fmt->format.height;
1524 
1525 		/* Propagate the format from sink to source */
1526 		format = __resizer_get_format(res, sd_state, RESZ_PAD_SOURCE,
1527 					      fmt->which);
1528 		*format = fmt->format;
1529 		resizer_try_format(res, sd_state, RESZ_PAD_SOURCE, format,
1530 				   fmt->which);
1531 	}
1532 
1533 	if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1534 		/* Compute and store the active crop rectangle and resizer
1535 		 * ratios. format already points to the source pad active
1536 		 * format.
1537 		 */
1538 		res->crop.active = res->crop.request;
1539 		resizer_calc_ratios(res, &res->crop.active, format,
1540 				       &res->ratio);
1541 	}
1542 
1543 	return 0;
1544 }
1545 
1546 static int resizer_link_validate(struct v4l2_subdev *sd,
1547 				 struct media_link *link,
1548 				 struct v4l2_subdev_format *source_fmt,
1549 				 struct v4l2_subdev_format *sink_fmt)
1550 {
1551 	struct isp_res_device *res = v4l2_get_subdevdata(sd);
1552 	struct isp_pipeline *pipe = to_isp_pipeline(&sd->entity);
1553 
1554 	omap3isp_resizer_max_rate(res, &pipe->max_rate);
1555 
1556 	return v4l2_subdev_link_validate_default(sd, link,
1557 						 source_fmt, sink_fmt);
1558 }
1559 
1560 /*
1561  * resizer_init_formats - Initialize formats on all pads
1562  * @sd: ISP resizer V4L2 subdevice
1563  * @fh: V4L2 subdev file handle
1564  *
1565  * Initialize all pad formats with default values. If fh is not NULL, try
1566  * formats are initialized on the file handle. Otherwise active formats are
1567  * initialized on the device.
1568  */
1569 static int resizer_init_formats(struct v4l2_subdev *sd,
1570 				struct v4l2_subdev_fh *fh)
1571 {
1572 	struct v4l2_subdev_format format;
1573 
1574 	memset(&format, 0, sizeof(format));
1575 	format.pad = RESZ_PAD_SINK;
1576 	format.which = fh ? V4L2_SUBDEV_FORMAT_TRY : V4L2_SUBDEV_FORMAT_ACTIVE;
1577 	format.format.code = MEDIA_BUS_FMT_YUYV8_1X16;
1578 	format.format.width = 4096;
1579 	format.format.height = 4096;
1580 	resizer_set_format(sd, fh ? fh->state : NULL, &format);
1581 
1582 	return 0;
1583 }
1584 
1585 /* subdev video operations */
1586 static const struct v4l2_subdev_video_ops resizer_v4l2_video_ops = {
1587 	.s_stream = resizer_set_stream,
1588 };
1589 
1590 /* subdev pad operations */
1591 static const struct v4l2_subdev_pad_ops resizer_v4l2_pad_ops = {
1592 	.enum_mbus_code = resizer_enum_mbus_code,
1593 	.enum_frame_size = resizer_enum_frame_size,
1594 	.get_fmt = resizer_get_format,
1595 	.set_fmt = resizer_set_format,
1596 	.get_selection = resizer_get_selection,
1597 	.set_selection = resizer_set_selection,
1598 	.link_validate = resizer_link_validate,
1599 };
1600 
1601 /* subdev operations */
1602 static const struct v4l2_subdev_ops resizer_v4l2_ops = {
1603 	.video = &resizer_v4l2_video_ops,
1604 	.pad = &resizer_v4l2_pad_ops,
1605 };
1606 
1607 /* subdev internal operations */
1608 static const struct v4l2_subdev_internal_ops resizer_v4l2_internal_ops = {
1609 	.open = resizer_init_formats,
1610 };
1611 
1612 /* -----------------------------------------------------------------------------
1613  * Media entity operations
1614  */
1615 
1616 /*
1617  * resizer_link_setup - Setup resizer connections.
1618  * @entity : Pointer to media entity structure
1619  * @local  : Pointer to local pad array
1620  * @remote : Pointer to remote pad array
1621  * @flags  : Link flags
1622  * return -EINVAL or zero on success
1623  */
1624 static int resizer_link_setup(struct media_entity *entity,
1625 			      const struct media_pad *local,
1626 			      const struct media_pad *remote, u32 flags)
1627 {
1628 	struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(entity);
1629 	struct isp_res_device *res = v4l2_get_subdevdata(sd);
1630 	unsigned int index = local->index;
1631 
1632 	/* FIXME: this is actually a hack! */
1633 	if (is_media_entity_v4l2_subdev(remote->entity))
1634 		index |= 2 << 16;
1635 
1636 	switch (index) {
1637 	case RESZ_PAD_SINK:
1638 		/* read from memory */
1639 		if (flags & MEDIA_LNK_FL_ENABLED) {
1640 			if (res->input == RESIZER_INPUT_VP)
1641 				return -EBUSY;
1642 			res->input = RESIZER_INPUT_MEMORY;
1643 		} else {
1644 			if (res->input == RESIZER_INPUT_MEMORY)
1645 				res->input = RESIZER_INPUT_NONE;
1646 		}
1647 		break;
1648 
1649 	case RESZ_PAD_SINK | 2 << 16:
1650 		/* read from ccdc or previewer */
1651 		if (flags & MEDIA_LNK_FL_ENABLED) {
1652 			if (res->input == RESIZER_INPUT_MEMORY)
1653 				return -EBUSY;
1654 			res->input = RESIZER_INPUT_VP;
1655 		} else {
1656 			if (res->input == RESIZER_INPUT_VP)
1657 				res->input = RESIZER_INPUT_NONE;
1658 		}
1659 		break;
1660 
1661 	case RESZ_PAD_SOURCE:
1662 		/* resizer always write to memory */
1663 		break;
1664 
1665 	default:
1666 		return -EINVAL;
1667 	}
1668 
1669 	return 0;
1670 }
1671 
1672 /* media operations */
1673 static const struct media_entity_operations resizer_media_ops = {
1674 	.link_setup = resizer_link_setup,
1675 	.link_validate = v4l2_subdev_link_validate,
1676 };
1677 
1678 void omap3isp_resizer_unregister_entities(struct isp_res_device *res)
1679 {
1680 	v4l2_device_unregister_subdev(&res->subdev);
1681 	omap3isp_video_unregister(&res->video_in);
1682 	omap3isp_video_unregister(&res->video_out);
1683 }
1684 
1685 int omap3isp_resizer_register_entities(struct isp_res_device *res,
1686 				       struct v4l2_device *vdev)
1687 {
1688 	int ret;
1689 
1690 	/* Register the subdev and video nodes. */
1691 	res->subdev.dev = vdev->mdev->dev;
1692 	ret = v4l2_device_register_subdev(vdev, &res->subdev);
1693 	if (ret < 0)
1694 		goto error;
1695 
1696 	ret = omap3isp_video_register(&res->video_in, vdev);
1697 	if (ret < 0)
1698 		goto error;
1699 
1700 	ret = omap3isp_video_register(&res->video_out, vdev);
1701 	if (ret < 0)
1702 		goto error;
1703 
1704 	return 0;
1705 
1706 error:
1707 	omap3isp_resizer_unregister_entities(res);
1708 	return ret;
1709 }
1710 
1711 /* -----------------------------------------------------------------------------
1712  * ISP resizer initialization and cleanup
1713  */
1714 
1715 /*
1716  * resizer_init_entities - Initialize resizer subdev and media entity.
1717  * @res : Pointer to resizer device structure
1718  * return -ENOMEM or zero on success
1719  */
1720 static int resizer_init_entities(struct isp_res_device *res)
1721 {
1722 	struct v4l2_subdev *sd = &res->subdev;
1723 	struct media_pad *pads = res->pads;
1724 	struct media_entity *me = &sd->entity;
1725 	int ret;
1726 
1727 	res->input = RESIZER_INPUT_NONE;
1728 
1729 	v4l2_subdev_init(sd, &resizer_v4l2_ops);
1730 	sd->internal_ops = &resizer_v4l2_internal_ops;
1731 	strscpy(sd->name, "OMAP3 ISP resizer", sizeof(sd->name));
1732 	sd->grp_id = 1 << 16;	/* group ID for isp subdevs */
1733 	v4l2_set_subdevdata(sd, res);
1734 	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
1735 
1736 	pads[RESZ_PAD_SINK].flags = MEDIA_PAD_FL_SINK
1737 				    | MEDIA_PAD_FL_MUST_CONNECT;
1738 	pads[RESZ_PAD_SOURCE].flags = MEDIA_PAD_FL_SOURCE;
1739 
1740 	me->ops = &resizer_media_ops;
1741 	ret = media_entity_pads_init(me, RESZ_PADS_NUM, pads);
1742 	if (ret < 0)
1743 		return ret;
1744 
1745 	resizer_init_formats(sd, NULL);
1746 
1747 	res->video_in.type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
1748 	res->video_in.ops = &resizer_video_ops;
1749 	res->video_in.isp = to_isp_device(res);
1750 	res->video_in.capture_mem = PAGE_ALIGN(4096 * 4096) * 2 * 3;
1751 	res->video_in.bpl_alignment = 32;
1752 	res->video_out.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1753 	res->video_out.ops = &resizer_video_ops;
1754 	res->video_out.isp = to_isp_device(res);
1755 	res->video_out.capture_mem = PAGE_ALIGN(4096 * 4096) * 2 * 3;
1756 	res->video_out.bpl_alignment = 32;
1757 
1758 	ret = omap3isp_video_init(&res->video_in, "resizer");
1759 	if (ret < 0)
1760 		goto error_video_in;
1761 
1762 	ret = omap3isp_video_init(&res->video_out, "resizer");
1763 	if (ret < 0)
1764 		goto error_video_out;
1765 
1766 	res->video_out.video.entity.flags |= MEDIA_ENT_FL_DEFAULT;
1767 
1768 	return 0;
1769 
1770 error_video_out:
1771 	omap3isp_video_cleanup(&res->video_in);
1772 error_video_in:
1773 	media_entity_cleanup(&res->subdev.entity);
1774 	return ret;
1775 }
1776 
1777 /*
1778  * isp_resizer_init - Resizer initialization.
1779  * @isp : Pointer to ISP device
1780  * return -ENOMEM or zero on success
1781  */
1782 int omap3isp_resizer_init(struct isp_device *isp)
1783 {
1784 	struct isp_res_device *res = &isp->isp_res;
1785 
1786 	init_waitqueue_head(&res->wait);
1787 	atomic_set(&res->stopping, 0);
1788 	spin_lock_init(&res->lock);
1789 
1790 	return resizer_init_entities(res);
1791 }
1792 
1793 void omap3isp_resizer_cleanup(struct isp_device *isp)
1794 {
1795 	struct isp_res_device *res = &isp->isp_res;
1796 
1797 	omap3isp_video_cleanup(&res->video_in);
1798 	omap3isp_video_cleanup(&res->video_out);
1799 	media_entity_cleanup(&res->subdev.entity);
1800 }
1801