1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * isp.c 4 * 5 * TI OMAP3 ISP - Core 6 * 7 * Copyright (C) 2006-2010 Nokia Corporation 8 * Copyright (C) 2007-2009 Texas Instruments, Inc. 9 * 10 * Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com> 11 * Sakari Ailus <sakari.ailus@iki.fi> 12 * 13 * Contributors: 14 * Laurent Pinchart <laurent.pinchart@ideasonboard.com> 15 * Sakari Ailus <sakari.ailus@iki.fi> 16 * David Cohen <dacohen@gmail.com> 17 * Stanimir Varbanov <svarbanov@mm-sol.com> 18 * Vimarsh Zutshi <vimarsh.zutshi@gmail.com> 19 * Tuukka Toivonen <tuukkat76@gmail.com> 20 * Sergio Aguirre <saaguirre@ti.com> 21 * Antti Koskipaa <akoskipa@gmail.com> 22 * Ivan T. Ivanov <iivanov@mm-sol.com> 23 * RaniSuneela <r-m@ti.com> 24 * Atanas Filipov <afilipov@mm-sol.com> 25 * Gjorgji Rosikopulos <grosikopulos@mm-sol.com> 26 * Hiroshi DOYU <hiroshi.doyu@nokia.com> 27 * Nayden Kanchev <nkanchev@mm-sol.com> 28 * Phil Carmody <ext-phil.2.carmody@nokia.com> 29 * Artem Bityutskiy <artem.bityutskiy@nokia.com> 30 * Dominic Curran <dcurran@ti.com> 31 * Ilkka Myllyperkio <ilkka.myllyperkio@sofica.fi> 32 * Pallavi Kulkarni <p-kulkarni@ti.com> 33 * Vaibhav Hiremath <hvaibhav@ti.com> 34 * Mohit Jalori <mjalori@ti.com> 35 * Sameer Venkatraman <sameerv@ti.com> 36 * Senthilvadivu Guruswamy <svadivu@ti.com> 37 * Thara Gopinath <thara@ti.com> 38 * Toni Leinonen <toni.leinonen@nokia.com> 39 * Troy Laramy <t-laramy@ti.com> 40 */ 41 42 #include <linux/clk.h> 43 #include <linux/clkdev.h> 44 #include <linux/delay.h> 45 #include <linux/device.h> 46 #include <linux/dma-mapping.h> 47 #include <linux/i2c.h> 48 #include <linux/interrupt.h> 49 #include <linux/mfd/syscon.h> 50 #include <linux/module.h> 51 #include <linux/omap-iommu.h> 52 #include <linux/platform_device.h> 53 #include <linux/property.h> 54 #include <linux/regulator/consumer.h> 55 #include <linux/slab.h> 56 #include <linux/sched.h> 57 #include <linux/vmalloc.h> 58 59 #ifdef CONFIG_ARM_DMA_USE_IOMMU 60 #include <asm/dma-iommu.h> 61 #endif 62 63 #include <media/v4l2-common.h> 64 #include <media/v4l2-fwnode.h> 65 #include <media/v4l2-device.h> 66 #include <media/v4l2-mc.h> 67 68 #include "isp.h" 69 #include "ispreg.h" 70 #include "ispccdc.h" 71 #include "isppreview.h" 72 #include "ispresizer.h" 73 #include "ispcsi2.h" 74 #include "ispccp2.h" 75 #include "isph3a.h" 76 #include "isphist.h" 77 78 static unsigned int autoidle; 79 module_param(autoidle, int, 0444); 80 MODULE_PARM_DESC(autoidle, "Enable OMAP3ISP AUTOIDLE support"); 81 82 static void isp_save_ctx(struct isp_device *isp); 83 84 static void isp_restore_ctx(struct isp_device *isp); 85 86 static const struct isp_res_mapping isp_res_maps[] = { 87 { 88 .isp_rev = ISP_REVISION_2_0, 89 .offset = { 90 /* first MMIO area */ 91 0x0000, /* base, len 0x0070 */ 92 0x0400, /* ccp2, len 0x01f0 */ 93 0x0600, /* ccdc, len 0x00a8 */ 94 0x0a00, /* hist, len 0x0048 */ 95 0x0c00, /* h3a, len 0x0060 */ 96 0x0e00, /* preview, len 0x00a0 */ 97 0x1000, /* resizer, len 0x00ac */ 98 0x1200, /* sbl, len 0x00fc */ 99 /* second MMIO area */ 100 0x0000, /* csi2a, len 0x0170 */ 101 0x0170, /* csiphy2, len 0x000c */ 102 }, 103 .phy_type = ISP_PHY_TYPE_3430, 104 }, 105 { 106 .isp_rev = ISP_REVISION_15_0, 107 .offset = { 108 /* first MMIO area */ 109 0x0000, /* base, len 0x0070 */ 110 0x0400, /* ccp2, len 0x01f0 */ 111 0x0600, /* ccdc, len 0x00a8 */ 112 0x0a00, /* hist, len 0x0048 */ 113 0x0c00, /* h3a, len 0x0060 */ 114 0x0e00, /* preview, len 0x00a0 */ 115 0x1000, /* resizer, len 0x00ac */ 116 0x1200, /* sbl, len 0x00fc */ 117 /* second MMIO area */ 118 0x0000, /* csi2a, len 0x0170 (1st area) */ 119 0x0170, /* csiphy2, len 0x000c */ 120 0x01c0, /* csi2a, len 0x0040 (2nd area) */ 121 0x0400, /* csi2c, len 0x0170 (1st area) */ 122 0x0570, /* csiphy1, len 0x000c */ 123 0x05c0, /* csi2c, len 0x0040 (2nd area) */ 124 }, 125 .phy_type = ISP_PHY_TYPE_3630, 126 }, 127 }; 128 129 /* Structure for saving/restoring ISP module registers */ 130 static struct isp_reg isp_reg_list[] = { 131 {OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG, 0}, 132 {OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, 0}, 133 {OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL, 0}, 134 {0, ISP_TOK_TERM, 0} 135 }; 136 137 /* 138 * omap3isp_flush - Post pending L3 bus writes by doing a register readback 139 * @isp: OMAP3 ISP device 140 * 141 * In order to force posting of pending writes, we need to write and 142 * readback the same register, in this case the revision register. 143 * 144 * See this link for reference: 145 * https://www.mail-archive.com/linux-omap@vger.kernel.org/msg08149.html 146 */ 147 void omap3isp_flush(struct isp_device *isp) 148 { 149 isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION); 150 isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION); 151 } 152 153 /* ----------------------------------------------------------------------------- 154 * XCLK 155 */ 156 157 #define to_isp_xclk(_hw) container_of(_hw, struct isp_xclk, hw) 158 159 static void isp_xclk_update(struct isp_xclk *xclk, u32 divider) 160 { 161 switch (xclk->id) { 162 case ISP_XCLK_A: 163 isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL, 164 ISPTCTRL_CTRL_DIVA_MASK, 165 divider << ISPTCTRL_CTRL_DIVA_SHIFT); 166 break; 167 case ISP_XCLK_B: 168 isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL, 169 ISPTCTRL_CTRL_DIVB_MASK, 170 divider << ISPTCTRL_CTRL_DIVB_SHIFT); 171 break; 172 } 173 } 174 175 static int isp_xclk_prepare(struct clk_hw *hw) 176 { 177 struct isp_xclk *xclk = to_isp_xclk(hw); 178 179 omap3isp_get(xclk->isp); 180 181 return 0; 182 } 183 184 static void isp_xclk_unprepare(struct clk_hw *hw) 185 { 186 struct isp_xclk *xclk = to_isp_xclk(hw); 187 188 omap3isp_put(xclk->isp); 189 } 190 191 static int isp_xclk_enable(struct clk_hw *hw) 192 { 193 struct isp_xclk *xclk = to_isp_xclk(hw); 194 unsigned long flags; 195 196 spin_lock_irqsave(&xclk->lock, flags); 197 isp_xclk_update(xclk, xclk->divider); 198 xclk->enabled = true; 199 spin_unlock_irqrestore(&xclk->lock, flags); 200 201 return 0; 202 } 203 204 static void isp_xclk_disable(struct clk_hw *hw) 205 { 206 struct isp_xclk *xclk = to_isp_xclk(hw); 207 unsigned long flags; 208 209 spin_lock_irqsave(&xclk->lock, flags); 210 isp_xclk_update(xclk, 0); 211 xclk->enabled = false; 212 spin_unlock_irqrestore(&xclk->lock, flags); 213 } 214 215 static unsigned long isp_xclk_recalc_rate(struct clk_hw *hw, 216 unsigned long parent_rate) 217 { 218 struct isp_xclk *xclk = to_isp_xclk(hw); 219 220 return parent_rate / xclk->divider; 221 } 222 223 static u32 isp_xclk_calc_divider(unsigned long *rate, unsigned long parent_rate) 224 { 225 u32 divider; 226 227 if (*rate >= parent_rate) { 228 *rate = parent_rate; 229 return ISPTCTRL_CTRL_DIV_BYPASS; 230 } 231 232 if (*rate == 0) 233 *rate = 1; 234 235 divider = DIV_ROUND_CLOSEST(parent_rate, *rate); 236 if (divider >= ISPTCTRL_CTRL_DIV_BYPASS) 237 divider = ISPTCTRL_CTRL_DIV_BYPASS - 1; 238 239 *rate = parent_rate / divider; 240 return divider; 241 } 242 243 static long isp_xclk_round_rate(struct clk_hw *hw, unsigned long rate, 244 unsigned long *parent_rate) 245 { 246 isp_xclk_calc_divider(&rate, *parent_rate); 247 return rate; 248 } 249 250 static int isp_xclk_set_rate(struct clk_hw *hw, unsigned long rate, 251 unsigned long parent_rate) 252 { 253 struct isp_xclk *xclk = to_isp_xclk(hw); 254 unsigned long flags; 255 u32 divider; 256 257 divider = isp_xclk_calc_divider(&rate, parent_rate); 258 259 spin_lock_irqsave(&xclk->lock, flags); 260 261 xclk->divider = divider; 262 if (xclk->enabled) 263 isp_xclk_update(xclk, divider); 264 265 spin_unlock_irqrestore(&xclk->lock, flags); 266 267 dev_dbg(xclk->isp->dev, "%s: cam_xclk%c set to %lu Hz (div %u)\n", 268 __func__, xclk->id == ISP_XCLK_A ? 'a' : 'b', rate, divider); 269 return 0; 270 } 271 272 static const struct clk_ops isp_xclk_ops = { 273 .prepare = isp_xclk_prepare, 274 .unprepare = isp_xclk_unprepare, 275 .enable = isp_xclk_enable, 276 .disable = isp_xclk_disable, 277 .recalc_rate = isp_xclk_recalc_rate, 278 .round_rate = isp_xclk_round_rate, 279 .set_rate = isp_xclk_set_rate, 280 }; 281 282 static const char *isp_xclk_parent_name = "cam_mclk"; 283 284 static struct clk *isp_xclk_src_get(struct of_phandle_args *clkspec, void *data) 285 { 286 unsigned int idx = clkspec->args[0]; 287 struct isp_device *isp = data; 288 289 if (idx >= ARRAY_SIZE(isp->xclks)) 290 return ERR_PTR(-ENOENT); 291 292 return isp->xclks[idx].clk; 293 } 294 295 static int isp_xclk_init(struct isp_device *isp) 296 { 297 struct device_node *np = isp->dev->of_node; 298 struct clk_init_data init = {}; 299 unsigned int i; 300 301 for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) 302 isp->xclks[i].clk = ERR_PTR(-EINVAL); 303 304 for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) { 305 struct isp_xclk *xclk = &isp->xclks[i]; 306 307 xclk->isp = isp; 308 xclk->id = i == 0 ? ISP_XCLK_A : ISP_XCLK_B; 309 xclk->divider = 1; 310 spin_lock_init(&xclk->lock); 311 312 init.name = i == 0 ? "cam_xclka" : "cam_xclkb"; 313 init.ops = &isp_xclk_ops; 314 init.parent_names = &isp_xclk_parent_name; 315 init.num_parents = 1; 316 317 xclk->hw.init = &init; 318 /* 319 * The first argument is NULL in order to avoid circular 320 * reference, as this driver takes reference on the 321 * sensor subdevice modules and the sensors would take 322 * reference on this module through clk_get(). 323 */ 324 xclk->clk = clk_register(NULL, &xclk->hw); 325 if (IS_ERR(xclk->clk)) 326 return PTR_ERR(xclk->clk); 327 } 328 329 if (np) 330 of_clk_add_provider(np, isp_xclk_src_get, isp); 331 332 return 0; 333 } 334 335 static void isp_xclk_cleanup(struct isp_device *isp) 336 { 337 struct device_node *np = isp->dev->of_node; 338 unsigned int i; 339 340 if (np) 341 of_clk_del_provider(np); 342 343 for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) { 344 struct isp_xclk *xclk = &isp->xclks[i]; 345 346 if (!IS_ERR(xclk->clk)) 347 clk_unregister(xclk->clk); 348 } 349 } 350 351 /* ----------------------------------------------------------------------------- 352 * Interrupts 353 */ 354 355 /* 356 * isp_enable_interrupts - Enable ISP interrupts. 357 * @isp: OMAP3 ISP device 358 */ 359 static void isp_enable_interrupts(struct isp_device *isp) 360 { 361 static const u32 irq = IRQ0ENABLE_CSIA_IRQ 362 | IRQ0ENABLE_CSIB_IRQ 363 | IRQ0ENABLE_CCDC_LSC_PREF_ERR_IRQ 364 | IRQ0ENABLE_CCDC_LSC_DONE_IRQ 365 | IRQ0ENABLE_CCDC_VD0_IRQ 366 | IRQ0ENABLE_CCDC_VD1_IRQ 367 | IRQ0ENABLE_HS_VS_IRQ 368 | IRQ0ENABLE_HIST_DONE_IRQ 369 | IRQ0ENABLE_H3A_AWB_DONE_IRQ 370 | IRQ0ENABLE_H3A_AF_DONE_IRQ 371 | IRQ0ENABLE_PRV_DONE_IRQ 372 | IRQ0ENABLE_RSZ_DONE_IRQ; 373 374 isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS); 375 isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE); 376 } 377 378 /* 379 * isp_disable_interrupts - Disable ISP interrupts. 380 * @isp: OMAP3 ISP device 381 */ 382 static void isp_disable_interrupts(struct isp_device *isp) 383 { 384 isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE); 385 } 386 387 /* 388 * isp_core_init - ISP core settings 389 * @isp: OMAP3 ISP device 390 * @idle: Consider idle state. 391 * 392 * Set the power settings for the ISP and SBL bus and configure the HS/VS 393 * interrupt source. 394 * 395 * We need to configure the HS/VS interrupt source before interrupts get 396 * enabled, as the sensor might be free-running and the ISP default setting 397 * (HS edge) would put an unnecessary burden on the CPU. 398 */ 399 static void isp_core_init(struct isp_device *isp, int idle) 400 { 401 isp_reg_writel(isp, 402 ((idle ? ISP_SYSCONFIG_MIDLEMODE_SMARTSTANDBY : 403 ISP_SYSCONFIG_MIDLEMODE_FORCESTANDBY) << 404 ISP_SYSCONFIG_MIDLEMODE_SHIFT) | 405 ((isp->revision == ISP_REVISION_15_0) ? 406 ISP_SYSCONFIG_AUTOIDLE : 0), 407 OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG); 408 409 isp_reg_writel(isp, 410 (isp->autoidle ? ISPCTRL_SBL_AUTOIDLE : 0) | 411 ISPCTRL_SYNC_DETECT_VSRISE, 412 OMAP3_ISP_IOMEM_MAIN, ISP_CTRL); 413 } 414 415 /* 416 * Configure the bridge and lane shifter. Valid inputs are 417 * 418 * CCDC_INPUT_PARALLEL: Parallel interface 419 * CCDC_INPUT_CSI2A: CSI2a receiver 420 * CCDC_INPUT_CCP2B: CCP2b receiver 421 * CCDC_INPUT_CSI2C: CSI2c receiver 422 * 423 * The bridge and lane shifter are configured according to the selected input 424 * and the ISP platform data. 425 */ 426 void omap3isp_configure_bridge(struct isp_device *isp, 427 enum ccdc_input_entity input, 428 const struct isp_parallel_cfg *parcfg, 429 unsigned int shift, unsigned int bridge) 430 { 431 u32 ispctrl_val; 432 433 ispctrl_val = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL); 434 ispctrl_val &= ~ISPCTRL_SHIFT_MASK; 435 ispctrl_val &= ~ISPCTRL_PAR_CLK_POL_INV; 436 ispctrl_val &= ~ISPCTRL_PAR_SER_CLK_SEL_MASK; 437 ispctrl_val &= ~ISPCTRL_PAR_BRIDGE_MASK; 438 ispctrl_val |= bridge; 439 440 switch (input) { 441 case CCDC_INPUT_PARALLEL: 442 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_PARALLEL; 443 ispctrl_val |= parcfg->clk_pol << ISPCTRL_PAR_CLK_POL_SHIFT; 444 shift += parcfg->data_lane_shift; 445 break; 446 447 case CCDC_INPUT_CSI2A: 448 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIA; 449 break; 450 451 case CCDC_INPUT_CCP2B: 452 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIB; 453 break; 454 455 case CCDC_INPUT_CSI2C: 456 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIC; 457 break; 458 459 default: 460 return; 461 } 462 463 ispctrl_val |= ((shift/2) << ISPCTRL_SHIFT_SHIFT) & ISPCTRL_SHIFT_MASK; 464 465 isp_reg_writel(isp, ispctrl_val, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL); 466 } 467 468 void omap3isp_hist_dma_done(struct isp_device *isp) 469 { 470 if (omap3isp_ccdc_busy(&isp->isp_ccdc) || 471 omap3isp_stat_pcr_busy(&isp->isp_hist)) { 472 /* Histogram cannot be enabled in this frame anymore */ 473 atomic_set(&isp->isp_hist.buf_err, 1); 474 dev_dbg(isp->dev, 475 "hist: Out of synchronization with CCDC. Ignoring next buffer.\n"); 476 } 477 } 478 479 static inline void __maybe_unused isp_isr_dbg(struct isp_device *isp, 480 u32 irqstatus) 481 { 482 static const char *name[] = { 483 "CSIA_IRQ", 484 "res1", 485 "res2", 486 "CSIB_LCM_IRQ", 487 "CSIB_IRQ", 488 "res5", 489 "res6", 490 "res7", 491 "CCDC_VD0_IRQ", 492 "CCDC_VD1_IRQ", 493 "CCDC_VD2_IRQ", 494 "CCDC_ERR_IRQ", 495 "H3A_AF_DONE_IRQ", 496 "H3A_AWB_DONE_IRQ", 497 "res14", 498 "res15", 499 "HIST_DONE_IRQ", 500 "CCDC_LSC_DONE", 501 "CCDC_LSC_PREFETCH_COMPLETED", 502 "CCDC_LSC_PREFETCH_ERROR", 503 "PRV_DONE_IRQ", 504 "CBUFF_IRQ", 505 "res22", 506 "res23", 507 "RSZ_DONE_IRQ", 508 "OVF_IRQ", 509 "res26", 510 "res27", 511 "MMU_ERR_IRQ", 512 "OCP_ERR_IRQ", 513 "SEC_ERR_IRQ", 514 "HS_VS_IRQ", 515 }; 516 int i; 517 518 dev_dbg(isp->dev, "ISP IRQ: "); 519 520 for (i = 0; i < ARRAY_SIZE(name); i++) { 521 if ((1 << i) & irqstatus) 522 printk(KERN_CONT "%s ", name[i]); 523 } 524 printk(KERN_CONT "\n"); 525 } 526 527 static void isp_isr_sbl(struct isp_device *isp) 528 { 529 struct device *dev = isp->dev; 530 struct isp_pipeline *pipe; 531 u32 sbl_pcr; 532 533 /* 534 * Handle shared buffer logic overflows for video buffers. 535 * ISPSBL_PCR_CCDCPRV_2_RSZ_OVF can be safely ignored. 536 */ 537 sbl_pcr = isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR); 538 isp_reg_writel(isp, sbl_pcr, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR); 539 sbl_pcr &= ~ISPSBL_PCR_CCDCPRV_2_RSZ_OVF; 540 541 if (sbl_pcr) 542 dev_dbg(dev, "SBL overflow (PCR = 0x%08x)\n", sbl_pcr); 543 544 if (sbl_pcr & ISPSBL_PCR_CSIB_WBL_OVF) { 545 pipe = to_isp_pipeline(&isp->isp_ccp2.subdev.entity); 546 if (pipe != NULL) 547 pipe->error = true; 548 } 549 550 if (sbl_pcr & ISPSBL_PCR_CSIA_WBL_OVF) { 551 pipe = to_isp_pipeline(&isp->isp_csi2a.subdev.entity); 552 if (pipe != NULL) 553 pipe->error = true; 554 } 555 556 if (sbl_pcr & ISPSBL_PCR_CCDC_WBL_OVF) { 557 pipe = to_isp_pipeline(&isp->isp_ccdc.subdev.entity); 558 if (pipe != NULL) 559 pipe->error = true; 560 } 561 562 if (sbl_pcr & ISPSBL_PCR_PRV_WBL_OVF) { 563 pipe = to_isp_pipeline(&isp->isp_prev.subdev.entity); 564 if (pipe != NULL) 565 pipe->error = true; 566 } 567 568 if (sbl_pcr & (ISPSBL_PCR_RSZ1_WBL_OVF 569 | ISPSBL_PCR_RSZ2_WBL_OVF 570 | ISPSBL_PCR_RSZ3_WBL_OVF 571 | ISPSBL_PCR_RSZ4_WBL_OVF)) { 572 pipe = to_isp_pipeline(&isp->isp_res.subdev.entity); 573 if (pipe != NULL) 574 pipe->error = true; 575 } 576 577 if (sbl_pcr & ISPSBL_PCR_H3A_AF_WBL_OVF) 578 omap3isp_stat_sbl_overflow(&isp->isp_af); 579 580 if (sbl_pcr & ISPSBL_PCR_H3A_AEAWB_WBL_OVF) 581 omap3isp_stat_sbl_overflow(&isp->isp_aewb); 582 } 583 584 /* 585 * isp_isr - Interrupt Service Routine for Camera ISP module. 586 * @irq: Not used currently. 587 * @_isp: Pointer to the OMAP3 ISP device 588 * 589 * Handles the corresponding callback if plugged in. 590 */ 591 static irqreturn_t isp_isr(int irq, void *_isp) 592 { 593 static const u32 ccdc_events = IRQ0STATUS_CCDC_LSC_PREF_ERR_IRQ | 594 IRQ0STATUS_CCDC_LSC_DONE_IRQ | 595 IRQ0STATUS_CCDC_VD0_IRQ | 596 IRQ0STATUS_CCDC_VD1_IRQ | 597 IRQ0STATUS_HS_VS_IRQ; 598 struct isp_device *isp = _isp; 599 u32 irqstatus; 600 601 irqstatus = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS); 602 isp_reg_writel(isp, irqstatus, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS); 603 604 isp_isr_sbl(isp); 605 606 if (irqstatus & IRQ0STATUS_CSIA_IRQ) 607 omap3isp_csi2_isr(&isp->isp_csi2a); 608 609 if (irqstatus & IRQ0STATUS_CSIB_IRQ) 610 omap3isp_ccp2_isr(&isp->isp_ccp2); 611 612 if (irqstatus & IRQ0STATUS_CCDC_VD0_IRQ) { 613 if (isp->isp_ccdc.output & CCDC_OUTPUT_PREVIEW) 614 omap3isp_preview_isr_frame_sync(&isp->isp_prev); 615 if (isp->isp_ccdc.output & CCDC_OUTPUT_RESIZER) 616 omap3isp_resizer_isr_frame_sync(&isp->isp_res); 617 omap3isp_stat_isr_frame_sync(&isp->isp_aewb); 618 omap3isp_stat_isr_frame_sync(&isp->isp_af); 619 omap3isp_stat_isr_frame_sync(&isp->isp_hist); 620 } 621 622 if (irqstatus & ccdc_events) 623 omap3isp_ccdc_isr(&isp->isp_ccdc, irqstatus & ccdc_events); 624 625 if (irqstatus & IRQ0STATUS_PRV_DONE_IRQ) { 626 if (isp->isp_prev.output & PREVIEW_OUTPUT_RESIZER) 627 omap3isp_resizer_isr_frame_sync(&isp->isp_res); 628 omap3isp_preview_isr(&isp->isp_prev); 629 } 630 631 if (irqstatus & IRQ0STATUS_RSZ_DONE_IRQ) 632 omap3isp_resizer_isr(&isp->isp_res); 633 634 if (irqstatus & IRQ0STATUS_H3A_AWB_DONE_IRQ) 635 omap3isp_stat_isr(&isp->isp_aewb); 636 637 if (irqstatus & IRQ0STATUS_H3A_AF_DONE_IRQ) 638 omap3isp_stat_isr(&isp->isp_af); 639 640 if (irqstatus & IRQ0STATUS_HIST_DONE_IRQ) 641 omap3isp_stat_isr(&isp->isp_hist); 642 643 omap3isp_flush(isp); 644 645 #if defined(DEBUG) && defined(ISP_ISR_DEBUG) 646 isp_isr_dbg(isp, irqstatus); 647 #endif 648 649 return IRQ_HANDLED; 650 } 651 652 static const struct media_device_ops isp_media_ops = { 653 .link_notify = v4l2_pipeline_link_notify, 654 }; 655 656 /* ----------------------------------------------------------------------------- 657 * Pipeline stream management 658 */ 659 660 /* 661 * isp_pipeline_enable - Enable streaming on a pipeline 662 * @pipe: ISP pipeline 663 * @mode: Stream mode (single shot or continuous) 664 * 665 * Walk the entities chain starting at the pipeline output video node and start 666 * all modules in the chain in the given mode. 667 * 668 * Return 0 if successful, or the return value of the failed video::s_stream 669 * operation otherwise. 670 */ 671 static int isp_pipeline_enable(struct isp_pipeline *pipe, 672 enum isp_pipeline_stream_state mode) 673 { 674 struct isp_device *isp = pipe->output->isp; 675 struct media_entity *entity; 676 struct media_pad *pad; 677 struct v4l2_subdev *subdev; 678 unsigned long flags; 679 int ret; 680 681 /* Refuse to start streaming if an entity included in the pipeline has 682 * crashed. This check must be performed before the loop below to avoid 683 * starting entities if the pipeline won't start anyway (those entities 684 * would then likely fail to stop, making the problem worse). 685 */ 686 if (media_entity_enum_intersects(&pipe->ent_enum, &isp->crashed)) 687 return -EIO; 688 689 spin_lock_irqsave(&pipe->lock, flags); 690 pipe->state &= ~(ISP_PIPELINE_IDLE_INPUT | ISP_PIPELINE_IDLE_OUTPUT); 691 spin_unlock_irqrestore(&pipe->lock, flags); 692 693 pipe->do_propagation = false; 694 695 mutex_lock(&isp->media_dev.graph_mutex); 696 697 entity = &pipe->output->video.entity; 698 while (1) { 699 pad = &entity->pads[0]; 700 if (!(pad->flags & MEDIA_PAD_FL_SINK)) 701 break; 702 703 pad = media_pad_remote_pad_first(pad); 704 if (!pad || !is_media_entity_v4l2_subdev(pad->entity)) 705 break; 706 707 entity = pad->entity; 708 subdev = media_entity_to_v4l2_subdev(entity); 709 710 ret = v4l2_subdev_call(subdev, video, s_stream, mode); 711 if (ret < 0 && ret != -ENOIOCTLCMD) { 712 mutex_unlock(&isp->media_dev.graph_mutex); 713 return ret; 714 } 715 716 if (subdev == &isp->isp_ccdc.subdev) { 717 v4l2_subdev_call(&isp->isp_aewb.subdev, video, 718 s_stream, mode); 719 v4l2_subdev_call(&isp->isp_af.subdev, video, 720 s_stream, mode); 721 v4l2_subdev_call(&isp->isp_hist.subdev, video, 722 s_stream, mode); 723 pipe->do_propagation = true; 724 } 725 726 /* Stop at the first external sub-device. */ 727 if (subdev->dev != isp->dev) 728 break; 729 } 730 731 mutex_unlock(&isp->media_dev.graph_mutex); 732 733 return 0; 734 } 735 736 static int isp_pipeline_wait_resizer(struct isp_device *isp) 737 { 738 return omap3isp_resizer_busy(&isp->isp_res); 739 } 740 741 static int isp_pipeline_wait_preview(struct isp_device *isp) 742 { 743 return omap3isp_preview_busy(&isp->isp_prev); 744 } 745 746 static int isp_pipeline_wait_ccdc(struct isp_device *isp) 747 { 748 return omap3isp_stat_busy(&isp->isp_af) 749 || omap3isp_stat_busy(&isp->isp_aewb) 750 || omap3isp_stat_busy(&isp->isp_hist) 751 || omap3isp_ccdc_busy(&isp->isp_ccdc); 752 } 753 754 #define ISP_STOP_TIMEOUT msecs_to_jiffies(1000) 755 756 static int isp_pipeline_wait(struct isp_device *isp, 757 int(*busy)(struct isp_device *isp)) 758 { 759 unsigned long timeout = jiffies + ISP_STOP_TIMEOUT; 760 761 while (!time_after(jiffies, timeout)) { 762 if (!busy(isp)) 763 return 0; 764 } 765 766 return 1; 767 } 768 769 /* 770 * isp_pipeline_disable - Disable streaming on a pipeline 771 * @pipe: ISP pipeline 772 * 773 * Walk the entities chain starting at the pipeline output video node and stop 774 * all modules in the chain. Wait synchronously for the modules to be stopped if 775 * necessary. 776 * 777 * Return 0 if all modules have been properly stopped, or -ETIMEDOUT if a module 778 * can't be stopped (in which case a software reset of the ISP is probably 779 * necessary). 780 */ 781 static int isp_pipeline_disable(struct isp_pipeline *pipe) 782 { 783 struct isp_device *isp = pipe->output->isp; 784 struct media_entity *entity; 785 struct media_pad *pad; 786 struct v4l2_subdev *subdev; 787 int failure = 0; 788 int ret; 789 790 /* 791 * We need to stop all the modules after CCDC first or they'll 792 * never stop since they may not get a full frame from CCDC. 793 */ 794 entity = &pipe->output->video.entity; 795 while (1) { 796 pad = &entity->pads[0]; 797 if (!(pad->flags & MEDIA_PAD_FL_SINK)) 798 break; 799 800 pad = media_pad_remote_pad_first(pad); 801 if (!pad || !is_media_entity_v4l2_subdev(pad->entity)) 802 break; 803 804 entity = pad->entity; 805 subdev = media_entity_to_v4l2_subdev(entity); 806 807 if (subdev == &isp->isp_ccdc.subdev) { 808 v4l2_subdev_call(&isp->isp_aewb.subdev, 809 video, s_stream, 0); 810 v4l2_subdev_call(&isp->isp_af.subdev, 811 video, s_stream, 0); 812 v4l2_subdev_call(&isp->isp_hist.subdev, 813 video, s_stream, 0); 814 } 815 816 ret = v4l2_subdev_call(subdev, video, s_stream, 0); 817 818 /* Stop at the first external sub-device. */ 819 if (subdev->dev != isp->dev) 820 break; 821 822 if (subdev == &isp->isp_res.subdev) 823 ret |= isp_pipeline_wait(isp, isp_pipeline_wait_resizer); 824 else if (subdev == &isp->isp_prev.subdev) 825 ret |= isp_pipeline_wait(isp, isp_pipeline_wait_preview); 826 else if (subdev == &isp->isp_ccdc.subdev) 827 ret |= isp_pipeline_wait(isp, isp_pipeline_wait_ccdc); 828 829 /* Handle stop failures. An entity that fails to stop can 830 * usually just be restarted. Flag the stop failure nonetheless 831 * to trigger an ISP reset the next time the device is released, 832 * just in case. 833 * 834 * The preview engine is a special case. A failure to stop can 835 * mean a hardware crash. When that happens the preview engine 836 * won't respond to read/write operations on the L4 bus anymore, 837 * resulting in a bus fault and a kernel oops next time it gets 838 * accessed. Mark it as crashed to prevent pipelines including 839 * it from being started. 840 */ 841 if (ret) { 842 dev_info(isp->dev, "Unable to stop %s\n", subdev->name); 843 isp->stop_failure = true; 844 if (subdev == &isp->isp_prev.subdev) 845 media_entity_enum_set(&isp->crashed, 846 &subdev->entity); 847 failure = -ETIMEDOUT; 848 } 849 } 850 851 return failure; 852 } 853 854 /* 855 * omap3isp_pipeline_set_stream - Enable/disable streaming on a pipeline 856 * @pipe: ISP pipeline 857 * @state: Stream state (stopped, single shot or continuous) 858 * 859 * Set the pipeline to the given stream state. Pipelines can be started in 860 * single-shot or continuous mode. 861 * 862 * Return 0 if successful, or the return value of the failed video::s_stream 863 * operation otherwise. The pipeline state is not updated when the operation 864 * fails, except when stopping the pipeline. 865 */ 866 int omap3isp_pipeline_set_stream(struct isp_pipeline *pipe, 867 enum isp_pipeline_stream_state state) 868 { 869 int ret; 870 871 if (state == ISP_PIPELINE_STREAM_STOPPED) 872 ret = isp_pipeline_disable(pipe); 873 else 874 ret = isp_pipeline_enable(pipe, state); 875 876 if (ret == 0 || state == ISP_PIPELINE_STREAM_STOPPED) 877 pipe->stream_state = state; 878 879 return ret; 880 } 881 882 /* 883 * omap3isp_pipeline_cancel_stream - Cancel stream on a pipeline 884 * @pipe: ISP pipeline 885 * 886 * Cancelling a stream mark all buffers on all video nodes in the pipeline as 887 * erroneous and makes sure no new buffer can be queued. This function is called 888 * when a fatal error that prevents any further operation on the pipeline 889 * occurs. 890 */ 891 void omap3isp_pipeline_cancel_stream(struct isp_pipeline *pipe) 892 { 893 if (pipe->input) 894 omap3isp_video_cancel_stream(pipe->input); 895 if (pipe->output) 896 omap3isp_video_cancel_stream(pipe->output); 897 } 898 899 /* 900 * isp_pipeline_resume - Resume streaming on a pipeline 901 * @pipe: ISP pipeline 902 * 903 * Resume video output and input and re-enable pipeline. 904 */ 905 static void isp_pipeline_resume(struct isp_pipeline *pipe) 906 { 907 int singleshot = pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT; 908 909 omap3isp_video_resume(pipe->output, !singleshot); 910 if (singleshot) 911 omap3isp_video_resume(pipe->input, 0); 912 isp_pipeline_enable(pipe, pipe->stream_state); 913 } 914 915 /* 916 * isp_pipeline_suspend - Suspend streaming on a pipeline 917 * @pipe: ISP pipeline 918 * 919 * Suspend pipeline. 920 */ 921 static void isp_pipeline_suspend(struct isp_pipeline *pipe) 922 { 923 isp_pipeline_disable(pipe); 924 } 925 926 /* 927 * isp_pipeline_is_last - Verify if entity has an enabled link to the output 928 * video node 929 * @me: ISP module's media entity 930 * 931 * Returns 1 if the entity has an enabled link to the output video node or 0 932 * otherwise. It's true only while pipeline can have no more than one output 933 * node. 934 */ 935 static int isp_pipeline_is_last(struct media_entity *me) 936 { 937 struct isp_pipeline *pipe; 938 struct media_pad *pad; 939 940 pipe = to_isp_pipeline(me); 941 if (!pipe || pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED) 942 return 0; 943 pad = media_pad_remote_pad_first(&pipe->output->pad); 944 return pad->entity == me; 945 } 946 947 /* 948 * isp_suspend_module_pipeline - Suspend pipeline to which belongs the module 949 * @me: ISP module's media entity 950 * 951 * Suspend the whole pipeline if module's entity has an enabled link to the 952 * output video node. It works only while pipeline can have no more than one 953 * output node. 954 */ 955 static void isp_suspend_module_pipeline(struct media_entity *me) 956 { 957 if (isp_pipeline_is_last(me)) 958 isp_pipeline_suspend(to_isp_pipeline(me)); 959 } 960 961 /* 962 * isp_resume_module_pipeline - Resume pipeline to which belongs the module 963 * @me: ISP module's media entity 964 * 965 * Resume the whole pipeline if module's entity has an enabled link to the 966 * output video node. It works only while pipeline can have no more than one 967 * output node. 968 */ 969 static void isp_resume_module_pipeline(struct media_entity *me) 970 { 971 if (isp_pipeline_is_last(me)) 972 isp_pipeline_resume(to_isp_pipeline(me)); 973 } 974 975 /* 976 * isp_suspend_modules - Suspend ISP submodules. 977 * @isp: OMAP3 ISP device 978 * 979 * Returns 0 if suspend left in idle state all the submodules properly, 980 * or returns 1 if a general Reset is required to suspend the submodules. 981 */ 982 static int __maybe_unused isp_suspend_modules(struct isp_device *isp) 983 { 984 unsigned long timeout; 985 986 omap3isp_stat_suspend(&isp->isp_aewb); 987 omap3isp_stat_suspend(&isp->isp_af); 988 omap3isp_stat_suspend(&isp->isp_hist); 989 isp_suspend_module_pipeline(&isp->isp_res.subdev.entity); 990 isp_suspend_module_pipeline(&isp->isp_prev.subdev.entity); 991 isp_suspend_module_pipeline(&isp->isp_ccdc.subdev.entity); 992 isp_suspend_module_pipeline(&isp->isp_csi2a.subdev.entity); 993 isp_suspend_module_pipeline(&isp->isp_ccp2.subdev.entity); 994 995 timeout = jiffies + ISP_STOP_TIMEOUT; 996 while (omap3isp_stat_busy(&isp->isp_af) 997 || omap3isp_stat_busy(&isp->isp_aewb) 998 || omap3isp_stat_busy(&isp->isp_hist) 999 || omap3isp_preview_busy(&isp->isp_prev) 1000 || omap3isp_resizer_busy(&isp->isp_res) 1001 || omap3isp_ccdc_busy(&isp->isp_ccdc)) { 1002 if (time_after(jiffies, timeout)) { 1003 dev_info(isp->dev, "can't stop modules.\n"); 1004 return 1; 1005 } 1006 msleep(1); 1007 } 1008 1009 return 0; 1010 } 1011 1012 /* 1013 * isp_resume_modules - Resume ISP submodules. 1014 * @isp: OMAP3 ISP device 1015 */ 1016 static void __maybe_unused isp_resume_modules(struct isp_device *isp) 1017 { 1018 omap3isp_stat_resume(&isp->isp_aewb); 1019 omap3isp_stat_resume(&isp->isp_af); 1020 omap3isp_stat_resume(&isp->isp_hist); 1021 isp_resume_module_pipeline(&isp->isp_res.subdev.entity); 1022 isp_resume_module_pipeline(&isp->isp_prev.subdev.entity); 1023 isp_resume_module_pipeline(&isp->isp_ccdc.subdev.entity); 1024 isp_resume_module_pipeline(&isp->isp_csi2a.subdev.entity); 1025 isp_resume_module_pipeline(&isp->isp_ccp2.subdev.entity); 1026 } 1027 1028 /* 1029 * isp_reset - Reset ISP with a timeout wait for idle. 1030 * @isp: OMAP3 ISP device 1031 */ 1032 static int isp_reset(struct isp_device *isp) 1033 { 1034 unsigned long timeout = 0; 1035 1036 isp_reg_writel(isp, 1037 isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG) 1038 | ISP_SYSCONFIG_SOFTRESET, 1039 OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG); 1040 while (!(isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, 1041 ISP_SYSSTATUS) & 0x1)) { 1042 if (timeout++ > 10000) { 1043 dev_alert(isp->dev, "cannot reset ISP\n"); 1044 return -ETIMEDOUT; 1045 } 1046 udelay(1); 1047 } 1048 1049 isp->stop_failure = false; 1050 media_entity_enum_zero(&isp->crashed); 1051 return 0; 1052 } 1053 1054 /* 1055 * isp_save_context - Saves the values of the ISP module registers. 1056 * @isp: OMAP3 ISP device 1057 * @reg_list: Structure containing pairs of register address and value to 1058 * modify on OMAP. 1059 */ 1060 static void 1061 isp_save_context(struct isp_device *isp, struct isp_reg *reg_list) 1062 { 1063 struct isp_reg *next = reg_list; 1064 1065 for (; next->reg != ISP_TOK_TERM; next++) 1066 next->val = isp_reg_readl(isp, next->mmio_range, next->reg); 1067 } 1068 1069 /* 1070 * isp_restore_context - Restores the values of the ISP module registers. 1071 * @isp: OMAP3 ISP device 1072 * @reg_list: Structure containing pairs of register address and value to 1073 * modify on OMAP. 1074 */ 1075 static void 1076 isp_restore_context(struct isp_device *isp, struct isp_reg *reg_list) 1077 { 1078 struct isp_reg *next = reg_list; 1079 1080 for (; next->reg != ISP_TOK_TERM; next++) 1081 isp_reg_writel(isp, next->val, next->mmio_range, next->reg); 1082 } 1083 1084 /* 1085 * isp_save_ctx - Saves ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context. 1086 * @isp: OMAP3 ISP device 1087 * 1088 * Routine for saving the context of each module in the ISP. 1089 * CCDC, HIST, H3A, PREV, RESZ and MMU. 1090 */ 1091 static void isp_save_ctx(struct isp_device *isp) 1092 { 1093 isp_save_context(isp, isp_reg_list); 1094 omap_iommu_save_ctx(isp->dev); 1095 } 1096 1097 /* 1098 * isp_restore_ctx - Restores ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context. 1099 * @isp: OMAP3 ISP device 1100 * 1101 * Routine for restoring the context of each module in the ISP. 1102 * CCDC, HIST, H3A, PREV, RESZ and MMU. 1103 */ 1104 static void isp_restore_ctx(struct isp_device *isp) 1105 { 1106 isp_restore_context(isp, isp_reg_list); 1107 omap_iommu_restore_ctx(isp->dev); 1108 omap3isp_ccdc_restore_context(isp); 1109 omap3isp_preview_restore_context(isp); 1110 } 1111 1112 /* ----------------------------------------------------------------------------- 1113 * SBL resources management 1114 */ 1115 #define OMAP3_ISP_SBL_READ (OMAP3_ISP_SBL_CSI1_READ | \ 1116 OMAP3_ISP_SBL_CCDC_LSC_READ | \ 1117 OMAP3_ISP_SBL_PREVIEW_READ | \ 1118 OMAP3_ISP_SBL_RESIZER_READ) 1119 #define OMAP3_ISP_SBL_WRITE (OMAP3_ISP_SBL_CSI1_WRITE | \ 1120 OMAP3_ISP_SBL_CSI2A_WRITE | \ 1121 OMAP3_ISP_SBL_CSI2C_WRITE | \ 1122 OMAP3_ISP_SBL_CCDC_WRITE | \ 1123 OMAP3_ISP_SBL_PREVIEW_WRITE) 1124 1125 void omap3isp_sbl_enable(struct isp_device *isp, enum isp_sbl_resource res) 1126 { 1127 u32 sbl = 0; 1128 1129 isp->sbl_resources |= res; 1130 1131 if (isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ) 1132 sbl |= ISPCTRL_SBL_SHARED_RPORTA; 1133 1134 if (isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ) 1135 sbl |= ISPCTRL_SBL_SHARED_RPORTB; 1136 1137 if (isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE) 1138 sbl |= ISPCTRL_SBL_SHARED_WPORTC; 1139 1140 if (isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE) 1141 sbl |= ISPCTRL_SBL_WR0_RAM_EN; 1142 1143 if (isp->sbl_resources & OMAP3_ISP_SBL_WRITE) 1144 sbl |= ISPCTRL_SBL_WR1_RAM_EN; 1145 1146 if (isp->sbl_resources & OMAP3_ISP_SBL_READ) 1147 sbl |= ISPCTRL_SBL_RD_RAM_EN; 1148 1149 isp_reg_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl); 1150 } 1151 1152 void omap3isp_sbl_disable(struct isp_device *isp, enum isp_sbl_resource res) 1153 { 1154 u32 sbl = 0; 1155 1156 isp->sbl_resources &= ~res; 1157 1158 if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ)) 1159 sbl |= ISPCTRL_SBL_SHARED_RPORTA; 1160 1161 if (!(isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ)) 1162 sbl |= ISPCTRL_SBL_SHARED_RPORTB; 1163 1164 if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE)) 1165 sbl |= ISPCTRL_SBL_SHARED_WPORTC; 1166 1167 if (!(isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE)) 1168 sbl |= ISPCTRL_SBL_WR0_RAM_EN; 1169 1170 if (!(isp->sbl_resources & OMAP3_ISP_SBL_WRITE)) 1171 sbl |= ISPCTRL_SBL_WR1_RAM_EN; 1172 1173 if (!(isp->sbl_resources & OMAP3_ISP_SBL_READ)) 1174 sbl |= ISPCTRL_SBL_RD_RAM_EN; 1175 1176 isp_reg_clr(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl); 1177 } 1178 1179 /* 1180 * isp_module_sync_idle - Helper to sync module with its idle state 1181 * @me: ISP submodule's media entity 1182 * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization 1183 * @stopping: flag which tells module wants to stop 1184 * 1185 * This function checks if ISP submodule needs to wait for next interrupt. If 1186 * yes, makes the caller to sleep while waiting for such event. 1187 */ 1188 int omap3isp_module_sync_idle(struct media_entity *me, wait_queue_head_t *wait, 1189 atomic_t *stopping) 1190 { 1191 struct isp_pipeline *pipe = to_isp_pipeline(me); 1192 1193 if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED || 1194 (pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT && 1195 !isp_pipeline_ready(pipe))) 1196 return 0; 1197 1198 /* 1199 * atomic_set() doesn't include memory barrier on ARM platform for SMP 1200 * scenario. We'll call it here to avoid race conditions. 1201 */ 1202 atomic_set(stopping, 1); 1203 smp_mb(); 1204 1205 /* 1206 * If module is the last one, it's writing to memory. In this case, 1207 * it's necessary to check if the module is already paused due to 1208 * DMA queue underrun or if it has to wait for next interrupt to be 1209 * idle. 1210 * If it isn't the last one, the function won't sleep but *stopping 1211 * will still be set to warn next submodule caller's interrupt the 1212 * module wants to be idle. 1213 */ 1214 if (isp_pipeline_is_last(me)) { 1215 struct isp_video *video = pipe->output; 1216 unsigned long flags; 1217 spin_lock_irqsave(&video->irqlock, flags); 1218 if (video->dmaqueue_flags & ISP_VIDEO_DMAQUEUE_UNDERRUN) { 1219 spin_unlock_irqrestore(&video->irqlock, flags); 1220 atomic_set(stopping, 0); 1221 smp_mb(); 1222 return 0; 1223 } 1224 spin_unlock_irqrestore(&video->irqlock, flags); 1225 if (!wait_event_timeout(*wait, !atomic_read(stopping), 1226 msecs_to_jiffies(1000))) { 1227 atomic_set(stopping, 0); 1228 smp_mb(); 1229 return -ETIMEDOUT; 1230 } 1231 } 1232 1233 return 0; 1234 } 1235 1236 /* 1237 * omap3isp_module_sync_is_stopping - Helper to verify if module was stopping 1238 * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization 1239 * @stopping: flag which tells module wants to stop 1240 * 1241 * This function checks if ISP submodule was stopping. In case of yes, it 1242 * notices the caller by setting stopping to 0 and waking up the wait queue. 1243 * Returns 1 if it was stopping or 0 otherwise. 1244 */ 1245 int omap3isp_module_sync_is_stopping(wait_queue_head_t *wait, 1246 atomic_t *stopping) 1247 { 1248 if (atomic_cmpxchg(stopping, 1, 0)) { 1249 wake_up(wait); 1250 return 1; 1251 } 1252 1253 return 0; 1254 } 1255 1256 /* -------------------------------------------------------------------------- 1257 * Clock management 1258 */ 1259 1260 #define ISPCTRL_CLKS_MASK (ISPCTRL_H3A_CLK_EN | \ 1261 ISPCTRL_HIST_CLK_EN | \ 1262 ISPCTRL_RSZ_CLK_EN | \ 1263 (ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN) | \ 1264 (ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN)) 1265 1266 static void __isp_subclk_update(struct isp_device *isp) 1267 { 1268 u32 clk = 0; 1269 1270 /* AEWB and AF share the same clock. */ 1271 if (isp->subclk_resources & 1272 (OMAP3_ISP_SUBCLK_AEWB | OMAP3_ISP_SUBCLK_AF)) 1273 clk |= ISPCTRL_H3A_CLK_EN; 1274 1275 if (isp->subclk_resources & OMAP3_ISP_SUBCLK_HIST) 1276 clk |= ISPCTRL_HIST_CLK_EN; 1277 1278 if (isp->subclk_resources & OMAP3_ISP_SUBCLK_RESIZER) 1279 clk |= ISPCTRL_RSZ_CLK_EN; 1280 1281 /* NOTE: For CCDC & Preview submodules, we need to affect internal 1282 * RAM as well. 1283 */ 1284 if (isp->subclk_resources & OMAP3_ISP_SUBCLK_CCDC) 1285 clk |= ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN; 1286 1287 if (isp->subclk_resources & OMAP3_ISP_SUBCLK_PREVIEW) 1288 clk |= ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN; 1289 1290 isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, 1291 ISPCTRL_CLKS_MASK, clk); 1292 } 1293 1294 void omap3isp_subclk_enable(struct isp_device *isp, 1295 enum isp_subclk_resource res) 1296 { 1297 isp->subclk_resources |= res; 1298 1299 __isp_subclk_update(isp); 1300 } 1301 1302 void omap3isp_subclk_disable(struct isp_device *isp, 1303 enum isp_subclk_resource res) 1304 { 1305 isp->subclk_resources &= ~res; 1306 1307 __isp_subclk_update(isp); 1308 } 1309 1310 /* 1311 * isp_enable_clocks - Enable ISP clocks 1312 * @isp: OMAP3 ISP device 1313 * 1314 * Return 0 if successful, or clk_prepare_enable return value if any of them 1315 * fails. 1316 */ 1317 static int isp_enable_clocks(struct isp_device *isp) 1318 { 1319 int r; 1320 unsigned long rate; 1321 1322 r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_ICK]); 1323 if (r) { 1324 dev_err(isp->dev, "failed to enable cam_ick clock\n"); 1325 goto out_clk_enable_ick; 1326 } 1327 r = clk_set_rate(isp->clock[ISP_CLK_CAM_MCLK], CM_CAM_MCLK_HZ); 1328 if (r) { 1329 dev_err(isp->dev, "clk_set_rate for cam_mclk failed\n"); 1330 goto out_clk_enable_mclk; 1331 } 1332 r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_MCLK]); 1333 if (r) { 1334 dev_err(isp->dev, "failed to enable cam_mclk clock\n"); 1335 goto out_clk_enable_mclk; 1336 } 1337 rate = clk_get_rate(isp->clock[ISP_CLK_CAM_MCLK]); 1338 if (rate != CM_CAM_MCLK_HZ) 1339 dev_warn(isp->dev, "unexpected cam_mclk rate:\n" 1340 " expected : %d\n" 1341 " actual : %ld\n", CM_CAM_MCLK_HZ, rate); 1342 r = clk_prepare_enable(isp->clock[ISP_CLK_CSI2_FCK]); 1343 if (r) { 1344 dev_err(isp->dev, "failed to enable csi2_fck clock\n"); 1345 goto out_clk_enable_csi2_fclk; 1346 } 1347 return 0; 1348 1349 out_clk_enable_csi2_fclk: 1350 clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]); 1351 out_clk_enable_mclk: 1352 clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]); 1353 out_clk_enable_ick: 1354 return r; 1355 } 1356 1357 /* 1358 * isp_disable_clocks - Disable ISP clocks 1359 * @isp: OMAP3 ISP device 1360 */ 1361 static void isp_disable_clocks(struct isp_device *isp) 1362 { 1363 clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]); 1364 clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]); 1365 clk_disable_unprepare(isp->clock[ISP_CLK_CSI2_FCK]); 1366 } 1367 1368 static const char *isp_clocks[] = { 1369 "cam_ick", 1370 "cam_mclk", 1371 "csi2_96m_fck", 1372 "l3_ick", 1373 }; 1374 1375 static int isp_get_clocks(struct isp_device *isp) 1376 { 1377 struct clk *clk; 1378 unsigned int i; 1379 1380 for (i = 0; i < ARRAY_SIZE(isp_clocks); ++i) { 1381 clk = devm_clk_get(isp->dev, isp_clocks[i]); 1382 if (IS_ERR(clk)) { 1383 dev_err(isp->dev, "clk_get %s failed\n", isp_clocks[i]); 1384 return PTR_ERR(clk); 1385 } 1386 1387 isp->clock[i] = clk; 1388 } 1389 1390 return 0; 1391 } 1392 1393 /* 1394 * omap3isp_get - Acquire the ISP resource. 1395 * 1396 * Initializes the clocks for the first acquire. 1397 * 1398 * Increment the reference count on the ISP. If the first reference is taken, 1399 * enable clocks and power-up all submodules. 1400 * 1401 * Return a pointer to the ISP device structure, or NULL if an error occurred. 1402 */ 1403 static struct isp_device *__omap3isp_get(struct isp_device *isp, bool irq) 1404 { 1405 struct isp_device *__isp = isp; 1406 1407 if (isp == NULL) 1408 return NULL; 1409 1410 mutex_lock(&isp->isp_mutex); 1411 if (isp->ref_count > 0) 1412 goto out; 1413 1414 if (isp_enable_clocks(isp) < 0) { 1415 __isp = NULL; 1416 goto out; 1417 } 1418 1419 /* We don't want to restore context before saving it! */ 1420 if (isp->has_context) 1421 isp_restore_ctx(isp); 1422 1423 if (irq) 1424 isp_enable_interrupts(isp); 1425 1426 out: 1427 if (__isp != NULL) 1428 isp->ref_count++; 1429 mutex_unlock(&isp->isp_mutex); 1430 1431 return __isp; 1432 } 1433 1434 struct isp_device *omap3isp_get(struct isp_device *isp) 1435 { 1436 return __omap3isp_get(isp, true); 1437 } 1438 1439 /* 1440 * omap3isp_put - Release the ISP 1441 * 1442 * Decrement the reference count on the ISP. If the last reference is released, 1443 * power-down all submodules, disable clocks and free temporary buffers. 1444 */ 1445 static void __omap3isp_put(struct isp_device *isp, bool save_ctx) 1446 { 1447 if (isp == NULL) 1448 return; 1449 1450 mutex_lock(&isp->isp_mutex); 1451 BUG_ON(isp->ref_count == 0); 1452 if (--isp->ref_count == 0) { 1453 isp_disable_interrupts(isp); 1454 if (save_ctx) { 1455 isp_save_ctx(isp); 1456 isp->has_context = 1; 1457 } 1458 /* Reset the ISP if an entity has failed to stop. This is the 1459 * only way to recover from such conditions. 1460 */ 1461 if (!media_entity_enum_empty(&isp->crashed) || 1462 isp->stop_failure) 1463 isp_reset(isp); 1464 isp_disable_clocks(isp); 1465 } 1466 mutex_unlock(&isp->isp_mutex); 1467 } 1468 1469 void omap3isp_put(struct isp_device *isp) 1470 { 1471 __omap3isp_put(isp, true); 1472 } 1473 1474 /* -------------------------------------------------------------------------- 1475 * Platform device driver 1476 */ 1477 1478 #ifdef CONFIG_PM 1479 1480 /* 1481 * Power management support. 1482 * 1483 * As the ISP can't properly handle an input video stream interruption on a non 1484 * frame boundary, the ISP pipelines need to be stopped before sensors get 1485 * suspended. However, as suspending the sensors can require a running clock, 1486 * which can be provided by the ISP, the ISP can't be completely suspended 1487 * before the sensor. 1488 * 1489 * To solve this problem power management support is split into prepare/complete 1490 * and suspend/resume operations. The pipelines are stopped in prepare() and the 1491 * ISP clocks get disabled in suspend(). Similarly, the clocks are re-enabled in 1492 * resume(), and the pipelines are restarted in complete(). 1493 * 1494 * TODO: PM dependencies between the ISP and sensors are not modelled explicitly 1495 * yet. 1496 */ 1497 static int isp_pm_prepare(struct device *dev) 1498 { 1499 struct isp_device *isp = dev_get_drvdata(dev); 1500 int reset; 1501 1502 WARN_ON(mutex_is_locked(&isp->isp_mutex)); 1503 1504 if (isp->ref_count == 0) 1505 return 0; 1506 1507 reset = isp_suspend_modules(isp); 1508 isp_disable_interrupts(isp); 1509 isp_save_ctx(isp); 1510 if (reset) 1511 isp_reset(isp); 1512 1513 return 0; 1514 } 1515 1516 static int isp_pm_suspend(struct device *dev) 1517 { 1518 struct isp_device *isp = dev_get_drvdata(dev); 1519 1520 WARN_ON(mutex_is_locked(&isp->isp_mutex)); 1521 1522 if (isp->ref_count) 1523 isp_disable_clocks(isp); 1524 1525 return 0; 1526 } 1527 1528 static int isp_pm_resume(struct device *dev) 1529 { 1530 struct isp_device *isp = dev_get_drvdata(dev); 1531 1532 if (isp->ref_count == 0) 1533 return 0; 1534 1535 return isp_enable_clocks(isp); 1536 } 1537 1538 static void isp_pm_complete(struct device *dev) 1539 { 1540 struct isp_device *isp = dev_get_drvdata(dev); 1541 1542 if (isp->ref_count == 0) 1543 return; 1544 1545 isp_restore_ctx(isp); 1546 isp_enable_interrupts(isp); 1547 isp_resume_modules(isp); 1548 } 1549 1550 #else 1551 1552 #define isp_pm_prepare NULL 1553 #define isp_pm_suspend NULL 1554 #define isp_pm_resume NULL 1555 #define isp_pm_complete NULL 1556 1557 #endif /* CONFIG_PM */ 1558 1559 static void isp_unregister_entities(struct isp_device *isp) 1560 { 1561 media_device_unregister(&isp->media_dev); 1562 1563 omap3isp_csi2_unregister_entities(&isp->isp_csi2a); 1564 omap3isp_ccp2_unregister_entities(&isp->isp_ccp2); 1565 omap3isp_ccdc_unregister_entities(&isp->isp_ccdc); 1566 omap3isp_preview_unregister_entities(&isp->isp_prev); 1567 omap3isp_resizer_unregister_entities(&isp->isp_res); 1568 omap3isp_stat_unregister_entities(&isp->isp_aewb); 1569 omap3isp_stat_unregister_entities(&isp->isp_af); 1570 omap3isp_stat_unregister_entities(&isp->isp_hist); 1571 1572 v4l2_device_unregister(&isp->v4l2_dev); 1573 media_device_cleanup(&isp->media_dev); 1574 } 1575 1576 static int isp_link_entity( 1577 struct isp_device *isp, struct media_entity *entity, 1578 enum isp_interface_type interface) 1579 { 1580 struct media_entity *input; 1581 unsigned int flags; 1582 unsigned int pad; 1583 unsigned int i; 1584 1585 /* Connect the sensor to the correct interface module. 1586 * Parallel sensors are connected directly to the CCDC, while 1587 * serial sensors are connected to the CSI2a, CCP2b or CSI2c 1588 * receiver through CSIPHY1 or CSIPHY2. 1589 */ 1590 switch (interface) { 1591 case ISP_INTERFACE_PARALLEL: 1592 input = &isp->isp_ccdc.subdev.entity; 1593 pad = CCDC_PAD_SINK; 1594 flags = 0; 1595 break; 1596 1597 case ISP_INTERFACE_CSI2A_PHY2: 1598 input = &isp->isp_csi2a.subdev.entity; 1599 pad = CSI2_PAD_SINK; 1600 flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED; 1601 break; 1602 1603 case ISP_INTERFACE_CCP2B_PHY1: 1604 case ISP_INTERFACE_CCP2B_PHY2: 1605 input = &isp->isp_ccp2.subdev.entity; 1606 pad = CCP2_PAD_SINK; 1607 flags = 0; 1608 break; 1609 1610 case ISP_INTERFACE_CSI2C_PHY1: 1611 input = &isp->isp_csi2c.subdev.entity; 1612 pad = CSI2_PAD_SINK; 1613 flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED; 1614 break; 1615 1616 default: 1617 dev_err(isp->dev, "%s: invalid interface type %u\n", __func__, 1618 interface); 1619 return -EINVAL; 1620 } 1621 1622 /* 1623 * Not all interfaces are available on all revisions of the 1624 * ISP. The sub-devices of those interfaces aren't initialised 1625 * in such a case. Check this by ensuring the num_pads is 1626 * non-zero. 1627 */ 1628 if (!input->num_pads) { 1629 dev_err(isp->dev, "%s: invalid input %u\n", entity->name, 1630 interface); 1631 return -EINVAL; 1632 } 1633 1634 for (i = 0; i < entity->num_pads; i++) { 1635 if (entity->pads[i].flags & MEDIA_PAD_FL_SOURCE) 1636 break; 1637 } 1638 if (i == entity->num_pads) { 1639 dev_err(isp->dev, "%s: no source pad in external entity %s\n", 1640 __func__, entity->name); 1641 return -EINVAL; 1642 } 1643 1644 return media_create_pad_link(entity, i, input, pad, flags); 1645 } 1646 1647 static int isp_register_entities(struct isp_device *isp) 1648 { 1649 int ret; 1650 1651 isp->media_dev.dev = isp->dev; 1652 strscpy(isp->media_dev.model, "TI OMAP3 ISP", 1653 sizeof(isp->media_dev.model)); 1654 isp->media_dev.hw_revision = isp->revision; 1655 isp->media_dev.ops = &isp_media_ops; 1656 media_device_init(&isp->media_dev); 1657 1658 isp->v4l2_dev.mdev = &isp->media_dev; 1659 ret = v4l2_device_register(isp->dev, &isp->v4l2_dev); 1660 if (ret < 0) { 1661 dev_err(isp->dev, "%s: V4L2 device registration failed (%d)\n", 1662 __func__, ret); 1663 goto done; 1664 } 1665 1666 /* Register internal entities */ 1667 ret = omap3isp_ccp2_register_entities(&isp->isp_ccp2, &isp->v4l2_dev); 1668 if (ret < 0) 1669 goto done; 1670 1671 ret = omap3isp_csi2_register_entities(&isp->isp_csi2a, &isp->v4l2_dev); 1672 if (ret < 0) 1673 goto done; 1674 1675 ret = omap3isp_ccdc_register_entities(&isp->isp_ccdc, &isp->v4l2_dev); 1676 if (ret < 0) 1677 goto done; 1678 1679 ret = omap3isp_preview_register_entities(&isp->isp_prev, 1680 &isp->v4l2_dev); 1681 if (ret < 0) 1682 goto done; 1683 1684 ret = omap3isp_resizer_register_entities(&isp->isp_res, &isp->v4l2_dev); 1685 if (ret < 0) 1686 goto done; 1687 1688 ret = omap3isp_stat_register_entities(&isp->isp_aewb, &isp->v4l2_dev); 1689 if (ret < 0) 1690 goto done; 1691 1692 ret = omap3isp_stat_register_entities(&isp->isp_af, &isp->v4l2_dev); 1693 if (ret < 0) 1694 goto done; 1695 1696 ret = omap3isp_stat_register_entities(&isp->isp_hist, &isp->v4l2_dev); 1697 if (ret < 0) 1698 goto done; 1699 1700 done: 1701 if (ret < 0) 1702 isp_unregister_entities(isp); 1703 1704 return ret; 1705 } 1706 1707 /* 1708 * isp_create_links() - Create links for internal and external ISP entities 1709 * @isp : Pointer to ISP device 1710 * 1711 * This function creates all links between ISP internal and external entities. 1712 * 1713 * Return: A negative error code on failure or zero on success. Possible error 1714 * codes are those returned by media_create_pad_link(). 1715 */ 1716 static int isp_create_links(struct isp_device *isp) 1717 { 1718 int ret; 1719 1720 /* Create links between entities and video nodes. */ 1721 ret = media_create_pad_link( 1722 &isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE, 1723 &isp->isp_csi2a.video_out.video.entity, 0, 0); 1724 if (ret < 0) 1725 return ret; 1726 1727 ret = media_create_pad_link( 1728 &isp->isp_ccp2.video_in.video.entity, 0, 1729 &isp->isp_ccp2.subdev.entity, CCP2_PAD_SINK, 0); 1730 if (ret < 0) 1731 return ret; 1732 1733 ret = media_create_pad_link( 1734 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF, 1735 &isp->isp_ccdc.video_out.video.entity, 0, 0); 1736 if (ret < 0) 1737 return ret; 1738 1739 ret = media_create_pad_link( 1740 &isp->isp_prev.video_in.video.entity, 0, 1741 &isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0); 1742 if (ret < 0) 1743 return ret; 1744 1745 ret = media_create_pad_link( 1746 &isp->isp_prev.subdev.entity, PREV_PAD_SOURCE, 1747 &isp->isp_prev.video_out.video.entity, 0, 0); 1748 if (ret < 0) 1749 return ret; 1750 1751 ret = media_create_pad_link( 1752 &isp->isp_res.video_in.video.entity, 0, 1753 &isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0); 1754 if (ret < 0) 1755 return ret; 1756 1757 ret = media_create_pad_link( 1758 &isp->isp_res.subdev.entity, RESZ_PAD_SOURCE, 1759 &isp->isp_res.video_out.video.entity, 0, 0); 1760 1761 if (ret < 0) 1762 return ret; 1763 1764 /* Create links between entities. */ 1765 ret = media_create_pad_link( 1766 &isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE, 1767 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0); 1768 if (ret < 0) 1769 return ret; 1770 1771 ret = media_create_pad_link( 1772 &isp->isp_ccp2.subdev.entity, CCP2_PAD_SOURCE, 1773 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0); 1774 if (ret < 0) 1775 return ret; 1776 1777 ret = media_create_pad_link( 1778 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP, 1779 &isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0); 1780 if (ret < 0) 1781 return ret; 1782 1783 ret = media_create_pad_link( 1784 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF, 1785 &isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0); 1786 if (ret < 0) 1787 return ret; 1788 1789 ret = media_create_pad_link( 1790 &isp->isp_prev.subdev.entity, PREV_PAD_SOURCE, 1791 &isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0); 1792 if (ret < 0) 1793 return ret; 1794 1795 ret = media_create_pad_link( 1796 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP, 1797 &isp->isp_aewb.subdev.entity, 0, 1798 MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE); 1799 if (ret < 0) 1800 return ret; 1801 1802 ret = media_create_pad_link( 1803 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP, 1804 &isp->isp_af.subdev.entity, 0, 1805 MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE); 1806 if (ret < 0) 1807 return ret; 1808 1809 ret = media_create_pad_link( 1810 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP, 1811 &isp->isp_hist.subdev.entity, 0, 1812 MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE); 1813 if (ret < 0) 1814 return ret; 1815 1816 return 0; 1817 } 1818 1819 static void isp_cleanup_modules(struct isp_device *isp) 1820 { 1821 omap3isp_h3a_aewb_cleanup(isp); 1822 omap3isp_h3a_af_cleanup(isp); 1823 omap3isp_hist_cleanup(isp); 1824 omap3isp_resizer_cleanup(isp); 1825 omap3isp_preview_cleanup(isp); 1826 omap3isp_ccdc_cleanup(isp); 1827 omap3isp_ccp2_cleanup(isp); 1828 omap3isp_csi2_cleanup(isp); 1829 omap3isp_csiphy_cleanup(isp); 1830 } 1831 1832 static int isp_initialize_modules(struct isp_device *isp) 1833 { 1834 int ret; 1835 1836 ret = omap3isp_csiphy_init(isp); 1837 if (ret < 0) { 1838 dev_err(isp->dev, "CSI PHY initialization failed\n"); 1839 return ret; 1840 } 1841 1842 ret = omap3isp_csi2_init(isp); 1843 if (ret < 0) { 1844 dev_err(isp->dev, "CSI2 initialization failed\n"); 1845 goto error_csi2; 1846 } 1847 1848 ret = omap3isp_ccp2_init(isp); 1849 if (ret < 0) { 1850 dev_err_probe(isp->dev, ret, "CCP2 initialization failed\n"); 1851 goto error_ccp2; 1852 } 1853 1854 ret = omap3isp_ccdc_init(isp); 1855 if (ret < 0) { 1856 dev_err(isp->dev, "CCDC initialization failed\n"); 1857 goto error_ccdc; 1858 } 1859 1860 ret = omap3isp_preview_init(isp); 1861 if (ret < 0) { 1862 dev_err(isp->dev, "Preview initialization failed\n"); 1863 goto error_preview; 1864 } 1865 1866 ret = omap3isp_resizer_init(isp); 1867 if (ret < 0) { 1868 dev_err(isp->dev, "Resizer initialization failed\n"); 1869 goto error_resizer; 1870 } 1871 1872 ret = omap3isp_hist_init(isp); 1873 if (ret < 0) { 1874 dev_err(isp->dev, "Histogram initialization failed\n"); 1875 goto error_hist; 1876 } 1877 1878 ret = omap3isp_h3a_aewb_init(isp); 1879 if (ret < 0) { 1880 dev_err(isp->dev, "H3A AEWB initialization failed\n"); 1881 goto error_h3a_aewb; 1882 } 1883 1884 ret = omap3isp_h3a_af_init(isp); 1885 if (ret < 0) { 1886 dev_err(isp->dev, "H3A AF initialization failed\n"); 1887 goto error_h3a_af; 1888 } 1889 1890 return 0; 1891 1892 error_h3a_af: 1893 omap3isp_h3a_aewb_cleanup(isp); 1894 error_h3a_aewb: 1895 omap3isp_hist_cleanup(isp); 1896 error_hist: 1897 omap3isp_resizer_cleanup(isp); 1898 error_resizer: 1899 omap3isp_preview_cleanup(isp); 1900 error_preview: 1901 omap3isp_ccdc_cleanup(isp); 1902 error_ccdc: 1903 omap3isp_ccp2_cleanup(isp); 1904 error_ccp2: 1905 omap3isp_csi2_cleanup(isp); 1906 error_csi2: 1907 omap3isp_csiphy_cleanup(isp); 1908 1909 return ret; 1910 } 1911 1912 static void isp_detach_iommu(struct isp_device *isp) 1913 { 1914 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1915 arm_iommu_detach_device(isp->dev); 1916 arm_iommu_release_mapping(isp->mapping); 1917 isp->mapping = NULL; 1918 #endif 1919 } 1920 1921 static int isp_attach_iommu(struct isp_device *isp) 1922 { 1923 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1924 struct dma_iommu_mapping *mapping; 1925 int ret; 1926 1927 /* We always want to replace any default mapping from the arch code */ 1928 mapping = to_dma_iommu_mapping(isp->dev); 1929 if (mapping) { 1930 arm_iommu_detach_device(isp->dev); 1931 arm_iommu_release_mapping(mapping); 1932 } 1933 1934 /* 1935 * Create the ARM mapping, used by the ARM DMA mapping core to allocate 1936 * VAs. This will allocate a corresponding IOMMU domain. 1937 */ 1938 mapping = arm_iommu_create_mapping(isp->dev, SZ_1G, SZ_2G); 1939 if (IS_ERR(mapping)) { 1940 dev_err(isp->dev, "failed to create ARM IOMMU mapping\n"); 1941 return PTR_ERR(mapping); 1942 } 1943 1944 isp->mapping = mapping; 1945 1946 /* Attach the ARM VA mapping to the device. */ 1947 ret = arm_iommu_attach_device(isp->dev, mapping); 1948 if (ret < 0) { 1949 dev_err(isp->dev, "failed to attach device to VA mapping\n"); 1950 goto error; 1951 } 1952 1953 return 0; 1954 1955 error: 1956 arm_iommu_release_mapping(isp->mapping); 1957 isp->mapping = NULL; 1958 return ret; 1959 #else 1960 return -ENODEV; 1961 #endif 1962 } 1963 1964 /* 1965 * isp_remove - Remove ISP platform device 1966 * @pdev: Pointer to ISP platform device 1967 * 1968 * Always returns 0. 1969 */ 1970 static void isp_remove(struct platform_device *pdev) 1971 { 1972 struct isp_device *isp = platform_get_drvdata(pdev); 1973 1974 v4l2_async_nf_unregister(&isp->notifier); 1975 v4l2_async_nf_cleanup(&isp->notifier); 1976 isp_unregister_entities(isp); 1977 isp_cleanup_modules(isp); 1978 isp_xclk_cleanup(isp); 1979 1980 __omap3isp_get(isp, false); 1981 isp_detach_iommu(isp); 1982 __omap3isp_put(isp, false); 1983 1984 media_entity_enum_cleanup(&isp->crashed); 1985 1986 kfree(isp); 1987 } 1988 1989 enum isp_of_phy { 1990 ISP_OF_PHY_PARALLEL = 0, 1991 ISP_OF_PHY_CSIPHY1, 1992 ISP_OF_PHY_CSIPHY2, 1993 }; 1994 1995 static int isp_subdev_notifier_bound(struct v4l2_async_notifier *async, 1996 struct v4l2_subdev *sd, 1997 struct v4l2_async_connection *asc) 1998 { 1999 struct isp_device *isp = container_of(async, struct isp_device, 2000 notifier); 2001 struct isp_bus_cfg *bus_cfg = 2002 &container_of(asc, struct isp_async_subdev, asd)->bus; 2003 int ret; 2004 2005 mutex_lock(&isp->media_dev.graph_mutex); 2006 ret = isp_link_entity(isp, &sd->entity, bus_cfg->interface); 2007 mutex_unlock(&isp->media_dev.graph_mutex); 2008 2009 return ret; 2010 } 2011 2012 static int isp_subdev_notifier_complete(struct v4l2_async_notifier *async) 2013 { 2014 struct isp_device *isp = container_of(async, struct isp_device, 2015 notifier); 2016 int ret; 2017 2018 mutex_lock(&isp->media_dev.graph_mutex); 2019 ret = media_entity_enum_init(&isp->crashed, &isp->media_dev); 2020 mutex_unlock(&isp->media_dev.graph_mutex); 2021 if (ret) 2022 return ret; 2023 2024 ret = v4l2_device_register_subdev_nodes(&isp->v4l2_dev); 2025 if (ret < 0) 2026 return ret; 2027 2028 return media_device_register(&isp->media_dev); 2029 } 2030 2031 static void isp_parse_of_parallel_endpoint(struct device *dev, 2032 struct v4l2_fwnode_endpoint *vep, 2033 struct isp_bus_cfg *buscfg) 2034 { 2035 buscfg->interface = ISP_INTERFACE_PARALLEL; 2036 buscfg->bus.parallel.data_lane_shift = vep->bus.parallel.data_shift; 2037 buscfg->bus.parallel.clk_pol = 2038 !!(vep->bus.parallel.flags & V4L2_MBUS_PCLK_SAMPLE_FALLING); 2039 buscfg->bus.parallel.hs_pol = 2040 !!(vep->bus.parallel.flags & V4L2_MBUS_VSYNC_ACTIVE_LOW); 2041 buscfg->bus.parallel.vs_pol = 2042 !!(vep->bus.parallel.flags & V4L2_MBUS_HSYNC_ACTIVE_LOW); 2043 buscfg->bus.parallel.fld_pol = 2044 !!(vep->bus.parallel.flags & V4L2_MBUS_FIELD_EVEN_LOW); 2045 buscfg->bus.parallel.data_pol = 2046 !!(vep->bus.parallel.flags & V4L2_MBUS_DATA_ACTIVE_LOW); 2047 buscfg->bus.parallel.bt656 = vep->bus_type == V4L2_MBUS_BT656; 2048 } 2049 2050 static void isp_parse_of_csi2_endpoint(struct device *dev, 2051 struct v4l2_fwnode_endpoint *vep, 2052 struct isp_bus_cfg *buscfg) 2053 { 2054 unsigned int i; 2055 2056 buscfg->bus.csi2.lanecfg.clk.pos = vep->bus.mipi_csi2.clock_lane; 2057 buscfg->bus.csi2.lanecfg.clk.pol = 2058 vep->bus.mipi_csi2.lane_polarities[0]; 2059 dev_dbg(dev, "clock lane polarity %u, pos %u\n", 2060 buscfg->bus.csi2.lanecfg.clk.pol, 2061 buscfg->bus.csi2.lanecfg.clk.pos); 2062 2063 buscfg->bus.csi2.num_data_lanes = vep->bus.mipi_csi2.num_data_lanes; 2064 2065 for (i = 0; i < buscfg->bus.csi2.num_data_lanes; i++) { 2066 buscfg->bus.csi2.lanecfg.data[i].pos = 2067 vep->bus.mipi_csi2.data_lanes[i]; 2068 buscfg->bus.csi2.lanecfg.data[i].pol = 2069 vep->bus.mipi_csi2.lane_polarities[i + 1]; 2070 dev_dbg(dev, 2071 "data lane %u polarity %u, pos %u\n", i, 2072 buscfg->bus.csi2.lanecfg.data[i].pol, 2073 buscfg->bus.csi2.lanecfg.data[i].pos); 2074 } 2075 /* 2076 * FIXME: now we assume the CRC is always there. Implement a way to 2077 * obtain this information from the sensor. Frame descriptors, perhaps? 2078 */ 2079 buscfg->bus.csi2.crc = 1; 2080 } 2081 2082 static void isp_parse_of_csi1_endpoint(struct device *dev, 2083 struct v4l2_fwnode_endpoint *vep, 2084 struct isp_bus_cfg *buscfg) 2085 { 2086 buscfg->bus.ccp2.lanecfg.clk.pos = vep->bus.mipi_csi1.clock_lane; 2087 buscfg->bus.ccp2.lanecfg.clk.pol = vep->bus.mipi_csi1.lane_polarity[0]; 2088 dev_dbg(dev, "clock lane polarity %u, pos %u\n", 2089 buscfg->bus.ccp2.lanecfg.clk.pol, 2090 buscfg->bus.ccp2.lanecfg.clk.pos); 2091 2092 buscfg->bus.ccp2.lanecfg.data[0].pos = vep->bus.mipi_csi1.data_lane; 2093 buscfg->bus.ccp2.lanecfg.data[0].pol = 2094 vep->bus.mipi_csi1.lane_polarity[1]; 2095 2096 dev_dbg(dev, "data lane polarity %u, pos %u\n", 2097 buscfg->bus.ccp2.lanecfg.data[0].pol, 2098 buscfg->bus.ccp2.lanecfg.data[0].pos); 2099 2100 buscfg->bus.ccp2.strobe_clk_pol = vep->bus.mipi_csi1.clock_inv; 2101 buscfg->bus.ccp2.phy_layer = vep->bus.mipi_csi1.strobe; 2102 buscfg->bus.ccp2.ccp2_mode = vep->bus_type == V4L2_MBUS_CCP2; 2103 buscfg->bus.ccp2.vp_clk_pol = 1; 2104 2105 buscfg->bus.ccp2.crc = 1; 2106 } 2107 2108 static struct { 2109 u32 phy; 2110 u32 csi2_if; 2111 u32 csi1_if; 2112 } isp_bus_interfaces[2] = { 2113 { ISP_OF_PHY_CSIPHY1, 2114 ISP_INTERFACE_CSI2C_PHY1, ISP_INTERFACE_CCP2B_PHY1 }, 2115 { ISP_OF_PHY_CSIPHY2, 2116 ISP_INTERFACE_CSI2A_PHY2, ISP_INTERFACE_CCP2B_PHY2 }, 2117 }; 2118 2119 static int isp_parse_of_endpoints(struct isp_device *isp) 2120 { 2121 struct fwnode_handle *ep; 2122 struct isp_async_subdev *isd = NULL; 2123 unsigned int i; 2124 2125 ep = fwnode_graph_get_endpoint_by_id( 2126 dev_fwnode(isp->dev), ISP_OF_PHY_PARALLEL, 0, 2127 FWNODE_GRAPH_ENDPOINT_NEXT); 2128 2129 if (ep) { 2130 struct v4l2_fwnode_endpoint vep = { 2131 .bus_type = V4L2_MBUS_PARALLEL 2132 }; 2133 int ret; 2134 2135 dev_dbg(isp->dev, "parsing parallel interface\n"); 2136 2137 ret = v4l2_fwnode_endpoint_parse(ep, &vep); 2138 2139 if (!ret) { 2140 isd = v4l2_async_nf_add_fwnode_remote(&isp->notifier, 2141 ep, struct 2142 isp_async_subdev); 2143 if (!IS_ERR(isd)) 2144 isp_parse_of_parallel_endpoint(isp->dev, &vep, &isd->bus); 2145 } 2146 2147 fwnode_handle_put(ep); 2148 } 2149 2150 for (i = 0; i < ARRAY_SIZE(isp_bus_interfaces); i++) { 2151 struct v4l2_fwnode_endpoint vep = { 2152 .bus_type = V4L2_MBUS_CSI2_DPHY 2153 }; 2154 int ret; 2155 2156 ep = fwnode_graph_get_endpoint_by_id( 2157 dev_fwnode(isp->dev), isp_bus_interfaces[i].phy, 0, 2158 FWNODE_GRAPH_ENDPOINT_NEXT); 2159 2160 if (!ep) 2161 continue; 2162 2163 dev_dbg(isp->dev, "parsing serial interface %u, node %pOF\n", i, 2164 to_of_node(ep)); 2165 2166 ret = v4l2_fwnode_endpoint_parse(ep, &vep); 2167 if (ret == -ENXIO) { 2168 vep = (struct v4l2_fwnode_endpoint) 2169 { .bus_type = V4L2_MBUS_CSI1 }; 2170 ret = v4l2_fwnode_endpoint_parse(ep, &vep); 2171 2172 if (ret == -ENXIO) { 2173 vep = (struct v4l2_fwnode_endpoint) 2174 { .bus_type = V4L2_MBUS_CCP2 }; 2175 ret = v4l2_fwnode_endpoint_parse(ep, &vep); 2176 } 2177 } 2178 2179 if (!ret) { 2180 isd = v4l2_async_nf_add_fwnode_remote(&isp->notifier, 2181 ep, 2182 struct 2183 isp_async_subdev); 2184 2185 if (!IS_ERR(isd)) { 2186 switch (vep.bus_type) { 2187 case V4L2_MBUS_CSI2_DPHY: 2188 isd->bus.interface = 2189 isp_bus_interfaces[i].csi2_if; 2190 isp_parse_of_csi2_endpoint(isp->dev, &vep, &isd->bus); 2191 break; 2192 case V4L2_MBUS_CSI1: 2193 case V4L2_MBUS_CCP2: 2194 isd->bus.interface = 2195 isp_bus_interfaces[i].csi1_if; 2196 isp_parse_of_csi1_endpoint(isp->dev, &vep, 2197 &isd->bus); 2198 break; 2199 default: 2200 break; 2201 } 2202 } 2203 } 2204 2205 fwnode_handle_put(ep); 2206 } 2207 2208 return 0; 2209 } 2210 2211 static const struct v4l2_async_notifier_operations isp_subdev_notifier_ops = { 2212 .bound = isp_subdev_notifier_bound, 2213 .complete = isp_subdev_notifier_complete, 2214 }; 2215 2216 /* 2217 * isp_probe - Probe ISP platform device 2218 * @pdev: Pointer to ISP platform device 2219 * 2220 * Returns 0 if successful, 2221 * -ENOMEM if no memory available, 2222 * -ENODEV if no platform device resources found 2223 * or no space for remapping registers, 2224 * -EINVAL if couldn't install ISR, 2225 * or clk_get return error value. 2226 */ 2227 static int isp_probe(struct platform_device *pdev) 2228 { 2229 struct isp_device *isp; 2230 struct resource *mem; 2231 int ret; 2232 int i, m; 2233 2234 isp = kzalloc(sizeof(*isp), GFP_KERNEL); 2235 if (!isp) { 2236 dev_err(&pdev->dev, "could not allocate memory\n"); 2237 return -ENOMEM; 2238 } 2239 2240 ret = fwnode_property_read_u32(of_fwnode_handle(pdev->dev.of_node), 2241 "ti,phy-type", &isp->phy_type); 2242 if (ret) 2243 goto error_release_isp; 2244 2245 isp->syscon = syscon_regmap_lookup_by_phandle_args(pdev->dev.of_node, 2246 "syscon", 1, 2247 &isp->syscon_offset); 2248 if (IS_ERR(isp->syscon)) { 2249 ret = PTR_ERR(isp->syscon); 2250 goto error_release_isp; 2251 } 2252 2253 isp->autoidle = autoidle; 2254 2255 mutex_init(&isp->isp_mutex); 2256 spin_lock_init(&isp->stat_lock); 2257 isp->dev = &pdev->dev; 2258 2259 isp->ref_count = 0; 2260 2261 ret = dma_coerce_mask_and_coherent(isp->dev, DMA_BIT_MASK(32)); 2262 if (ret) 2263 goto error; 2264 2265 platform_set_drvdata(pdev, isp); 2266 2267 /* Regulators */ 2268 isp->isp_csiphy1.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy1"); 2269 if (IS_ERR(isp->isp_csiphy1.vdd)) { 2270 ret = PTR_ERR(isp->isp_csiphy1.vdd); 2271 goto error; 2272 } 2273 2274 isp->isp_csiphy2.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy2"); 2275 if (IS_ERR(isp->isp_csiphy2.vdd)) { 2276 ret = PTR_ERR(isp->isp_csiphy2.vdd); 2277 goto error; 2278 } 2279 2280 /* Clocks 2281 * 2282 * The ISP clock tree is revision-dependent. We thus need to enable ICLK 2283 * manually to read the revision before calling __omap3isp_get(). 2284 * 2285 * Start by mapping the ISP MMIO area, which is in two pieces. 2286 * The ISP IOMMU is in between. Map both now, and fill in the 2287 * ISP revision specific portions a little later in the 2288 * function. 2289 */ 2290 for (i = 0; i < 2; i++) { 2291 unsigned int map_idx = i ? OMAP3_ISP_IOMEM_CSI2A_REGS1 : 0; 2292 2293 isp->mmio_base[map_idx] = 2294 devm_platform_get_and_ioremap_resource(pdev, i, &mem); 2295 if (IS_ERR(isp->mmio_base[map_idx])) { 2296 ret = PTR_ERR(isp->mmio_base[map_idx]); 2297 goto error; 2298 } 2299 } 2300 2301 ret = isp_get_clocks(isp); 2302 if (ret < 0) 2303 goto error; 2304 2305 ret = clk_enable(isp->clock[ISP_CLK_CAM_ICK]); 2306 if (ret < 0) 2307 goto error; 2308 2309 isp->revision = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION); 2310 dev_info(isp->dev, "Revision %d.%d found\n", 2311 (isp->revision & 0xf0) >> 4, isp->revision & 0x0f); 2312 2313 clk_disable(isp->clock[ISP_CLK_CAM_ICK]); 2314 2315 if (__omap3isp_get(isp, false) == NULL) { 2316 ret = -ENODEV; 2317 goto error; 2318 } 2319 2320 ret = isp_reset(isp); 2321 if (ret < 0) 2322 goto error_isp; 2323 2324 ret = isp_xclk_init(isp); 2325 if (ret < 0) 2326 goto error_isp; 2327 2328 /* Memory resources */ 2329 for (m = 0; m < ARRAY_SIZE(isp_res_maps); m++) 2330 if (isp->revision == isp_res_maps[m].isp_rev) 2331 break; 2332 2333 if (m == ARRAY_SIZE(isp_res_maps)) { 2334 dev_err(isp->dev, "No resource map found for ISP rev %d.%d\n", 2335 (isp->revision & 0xf0) >> 4, isp->revision & 0xf); 2336 ret = -ENODEV; 2337 goto error_isp; 2338 } 2339 2340 for (i = 1; i < OMAP3_ISP_IOMEM_CSI2A_REGS1; i++) 2341 isp->mmio_base[i] = 2342 isp->mmio_base[0] + isp_res_maps[m].offset[i]; 2343 2344 for (i = OMAP3_ISP_IOMEM_CSIPHY2; i < OMAP3_ISP_IOMEM_LAST; i++) 2345 isp->mmio_base[i] = 2346 isp->mmio_base[OMAP3_ISP_IOMEM_CSI2A_REGS1] 2347 + isp_res_maps[m].offset[i]; 2348 2349 isp->mmio_hist_base_phys = 2350 mem->start + isp_res_maps[m].offset[OMAP3_ISP_IOMEM_HIST]; 2351 2352 /* IOMMU */ 2353 ret = isp_attach_iommu(isp); 2354 if (ret < 0) { 2355 dev_err(&pdev->dev, "unable to attach to IOMMU\n"); 2356 goto error_isp; 2357 } 2358 2359 /* Interrupt */ 2360 ret = platform_get_irq(pdev, 0); 2361 if (ret < 0) 2362 goto error_iommu; 2363 isp->irq_num = ret; 2364 2365 if (devm_request_irq(isp->dev, isp->irq_num, isp_isr, IRQF_SHARED, 2366 "OMAP3 ISP", isp)) { 2367 dev_err(isp->dev, "Unable to request IRQ\n"); 2368 ret = -EINVAL; 2369 goto error_iommu; 2370 } 2371 2372 /* Entities */ 2373 ret = isp_initialize_modules(isp); 2374 if (ret < 0) 2375 goto error_iommu; 2376 2377 ret = isp_register_entities(isp); 2378 if (ret < 0) 2379 goto error_modules; 2380 2381 ret = isp_create_links(isp); 2382 if (ret < 0) 2383 goto error_register_entities; 2384 2385 isp->notifier.ops = &isp_subdev_notifier_ops; 2386 2387 v4l2_async_nf_init(&isp->notifier, &isp->v4l2_dev); 2388 2389 ret = isp_parse_of_endpoints(isp); 2390 if (ret < 0) 2391 goto error_register_entities; 2392 2393 ret = v4l2_async_nf_register(&isp->notifier); 2394 if (ret) 2395 goto error_register_entities; 2396 2397 isp_core_init(isp, 1); 2398 omap3isp_put(isp); 2399 2400 return 0; 2401 2402 error_register_entities: 2403 v4l2_async_nf_cleanup(&isp->notifier); 2404 isp_unregister_entities(isp); 2405 error_modules: 2406 isp_cleanup_modules(isp); 2407 error_iommu: 2408 isp_detach_iommu(isp); 2409 error_isp: 2410 isp_xclk_cleanup(isp); 2411 __omap3isp_put(isp, false); 2412 error: 2413 mutex_destroy(&isp->isp_mutex); 2414 error_release_isp: 2415 kfree(isp); 2416 2417 return ret; 2418 } 2419 2420 static const struct dev_pm_ops omap3isp_pm_ops = { 2421 .prepare = isp_pm_prepare, 2422 .suspend = isp_pm_suspend, 2423 .resume = isp_pm_resume, 2424 .complete = isp_pm_complete, 2425 }; 2426 2427 static const struct platform_device_id omap3isp_id_table[] = { 2428 { "omap3isp", 0 }, 2429 { }, 2430 }; 2431 MODULE_DEVICE_TABLE(platform, omap3isp_id_table); 2432 2433 static const struct of_device_id omap3isp_of_table[] = { 2434 { .compatible = "ti,omap3-isp" }, 2435 { }, 2436 }; 2437 MODULE_DEVICE_TABLE(of, omap3isp_of_table); 2438 2439 static struct platform_driver omap3isp_driver = { 2440 .probe = isp_probe, 2441 .remove = isp_remove, 2442 .id_table = omap3isp_id_table, 2443 .driver = { 2444 .name = "omap3isp", 2445 .pm = &omap3isp_pm_ops, 2446 .of_match_table = omap3isp_of_table, 2447 }, 2448 }; 2449 2450 module_platform_driver(omap3isp_driver); 2451 2452 MODULE_AUTHOR("Nokia Corporation"); 2453 MODULE_DESCRIPTION("TI OMAP3 ISP driver"); 2454 MODULE_LICENSE("GPL"); 2455 MODULE_VERSION(ISP_VIDEO_DRIVER_VERSION); 2456