xref: /linux/drivers/media/platform/ti/omap3isp/isp.c (revision 404bec4c8f6c38ae5fa208344f1086d38026e93d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * isp.c
4  *
5  * TI OMAP3 ISP - Core
6  *
7  * Copyright (C) 2006-2010 Nokia Corporation
8  * Copyright (C) 2007-2009 Texas Instruments, Inc.
9  *
10  * Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
11  *	     Sakari Ailus <sakari.ailus@iki.fi>
12  *
13  * Contributors:
14  *	Laurent Pinchart <laurent.pinchart@ideasonboard.com>
15  *	Sakari Ailus <sakari.ailus@iki.fi>
16  *	David Cohen <dacohen@gmail.com>
17  *	Stanimir Varbanov <svarbanov@mm-sol.com>
18  *	Vimarsh Zutshi <vimarsh.zutshi@gmail.com>
19  *	Tuukka Toivonen <tuukkat76@gmail.com>
20  *	Sergio Aguirre <saaguirre@ti.com>
21  *	Antti Koskipaa <akoskipa@gmail.com>
22  *	Ivan T. Ivanov <iivanov@mm-sol.com>
23  *	RaniSuneela <r-m@ti.com>
24  *	Atanas Filipov <afilipov@mm-sol.com>
25  *	Gjorgji Rosikopulos <grosikopulos@mm-sol.com>
26  *	Hiroshi DOYU <hiroshi.doyu@nokia.com>
27  *	Nayden Kanchev <nkanchev@mm-sol.com>
28  *	Phil Carmody <ext-phil.2.carmody@nokia.com>
29  *	Artem Bityutskiy <artem.bityutskiy@nokia.com>
30  *	Dominic Curran <dcurran@ti.com>
31  *	Ilkka Myllyperkio <ilkka.myllyperkio@sofica.fi>
32  *	Pallavi Kulkarni <p-kulkarni@ti.com>
33  *	Vaibhav Hiremath <hvaibhav@ti.com>
34  *	Mohit Jalori <mjalori@ti.com>
35  *	Sameer Venkatraman <sameerv@ti.com>
36  *	Senthilvadivu Guruswamy <svadivu@ti.com>
37  *	Thara Gopinath <thara@ti.com>
38  *	Toni Leinonen <toni.leinonen@nokia.com>
39  *	Troy Laramy <t-laramy@ti.com>
40  */
41 
42 #include <linux/clk.h>
43 #include <linux/clkdev.h>
44 #include <linux/delay.h>
45 #include <linux/device.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/i2c.h>
48 #include <linux/interrupt.h>
49 #include <linux/mfd/syscon.h>
50 #include <linux/module.h>
51 #include <linux/omap-iommu.h>
52 #include <linux/platform_device.h>
53 #include <linux/property.h>
54 #include <linux/regulator/consumer.h>
55 #include <linux/slab.h>
56 #include <linux/sched.h>
57 #include <linux/vmalloc.h>
58 
59 #ifdef CONFIG_ARM_DMA_USE_IOMMU
60 #include <asm/dma-iommu.h>
61 #endif
62 
63 #include <media/v4l2-common.h>
64 #include <media/v4l2-fwnode.h>
65 #include <media/v4l2-device.h>
66 #include <media/v4l2-mc.h>
67 
68 #include "isp.h"
69 #include "ispreg.h"
70 #include "ispccdc.h"
71 #include "isppreview.h"
72 #include "ispresizer.h"
73 #include "ispcsi2.h"
74 #include "ispccp2.h"
75 #include "isph3a.h"
76 #include "isphist.h"
77 
78 static unsigned int autoidle;
79 module_param(autoidle, int, 0444);
80 MODULE_PARM_DESC(autoidle, "Enable OMAP3ISP AUTOIDLE support");
81 
82 static void isp_save_ctx(struct isp_device *isp);
83 
84 static void isp_restore_ctx(struct isp_device *isp);
85 
86 static const struct isp_res_mapping isp_res_maps[] = {
87 	{
88 		.isp_rev = ISP_REVISION_2_0,
89 		.offset = {
90 			/* first MMIO area */
91 			0x0000, /* base, len 0x0070 */
92 			0x0400, /* ccp2, len 0x01f0 */
93 			0x0600, /* ccdc, len 0x00a8 */
94 			0x0a00, /* hist, len 0x0048 */
95 			0x0c00, /* h3a, len 0x0060 */
96 			0x0e00, /* preview, len 0x00a0 */
97 			0x1000, /* resizer, len 0x00ac */
98 			0x1200, /* sbl, len 0x00fc */
99 			/* second MMIO area */
100 			0x0000, /* csi2a, len 0x0170 */
101 			0x0170, /* csiphy2, len 0x000c */
102 		},
103 		.phy_type = ISP_PHY_TYPE_3430,
104 	},
105 	{
106 		.isp_rev = ISP_REVISION_15_0,
107 		.offset = {
108 			/* first MMIO area */
109 			0x0000, /* base, len 0x0070 */
110 			0x0400, /* ccp2, len 0x01f0 */
111 			0x0600, /* ccdc, len 0x00a8 */
112 			0x0a00, /* hist, len 0x0048 */
113 			0x0c00, /* h3a, len 0x0060 */
114 			0x0e00, /* preview, len 0x00a0 */
115 			0x1000, /* resizer, len 0x00ac */
116 			0x1200, /* sbl, len 0x00fc */
117 			/* second MMIO area */
118 			0x0000, /* csi2a, len 0x0170 (1st area) */
119 			0x0170, /* csiphy2, len 0x000c */
120 			0x01c0, /* csi2a, len 0x0040 (2nd area) */
121 			0x0400, /* csi2c, len 0x0170 (1st area) */
122 			0x0570, /* csiphy1, len 0x000c */
123 			0x05c0, /* csi2c, len 0x0040 (2nd area) */
124 		},
125 		.phy_type = ISP_PHY_TYPE_3630,
126 	},
127 };
128 
129 /* Structure for saving/restoring ISP module registers */
130 static struct isp_reg isp_reg_list[] = {
131 	{OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG, 0},
132 	{OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, 0},
133 	{OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL, 0},
134 	{0, ISP_TOK_TERM, 0}
135 };
136 
137 /*
138  * omap3isp_flush - Post pending L3 bus writes by doing a register readback
139  * @isp: OMAP3 ISP device
140  *
141  * In order to force posting of pending writes, we need to write and
142  * readback the same register, in this case the revision register.
143  *
144  * See this link for reference:
145  *   https://www.mail-archive.com/linux-omap@vger.kernel.org/msg08149.html
146  */
147 void omap3isp_flush(struct isp_device *isp)
148 {
149 	isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
150 	isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
151 }
152 
153 /* -----------------------------------------------------------------------------
154  * XCLK
155  */
156 
157 #define to_isp_xclk(_hw)	container_of(_hw, struct isp_xclk, hw)
158 
159 static void isp_xclk_update(struct isp_xclk *xclk, u32 divider)
160 {
161 	switch (xclk->id) {
162 	case ISP_XCLK_A:
163 		isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
164 				ISPTCTRL_CTRL_DIVA_MASK,
165 				divider << ISPTCTRL_CTRL_DIVA_SHIFT);
166 		break;
167 	case ISP_XCLK_B:
168 		isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
169 				ISPTCTRL_CTRL_DIVB_MASK,
170 				divider << ISPTCTRL_CTRL_DIVB_SHIFT);
171 		break;
172 	}
173 }
174 
175 static int isp_xclk_prepare(struct clk_hw *hw)
176 {
177 	struct isp_xclk *xclk = to_isp_xclk(hw);
178 
179 	omap3isp_get(xclk->isp);
180 
181 	return 0;
182 }
183 
184 static void isp_xclk_unprepare(struct clk_hw *hw)
185 {
186 	struct isp_xclk *xclk = to_isp_xclk(hw);
187 
188 	omap3isp_put(xclk->isp);
189 }
190 
191 static int isp_xclk_enable(struct clk_hw *hw)
192 {
193 	struct isp_xclk *xclk = to_isp_xclk(hw);
194 	unsigned long flags;
195 
196 	spin_lock_irqsave(&xclk->lock, flags);
197 	isp_xclk_update(xclk, xclk->divider);
198 	xclk->enabled = true;
199 	spin_unlock_irqrestore(&xclk->lock, flags);
200 
201 	return 0;
202 }
203 
204 static void isp_xclk_disable(struct clk_hw *hw)
205 {
206 	struct isp_xclk *xclk = to_isp_xclk(hw);
207 	unsigned long flags;
208 
209 	spin_lock_irqsave(&xclk->lock, flags);
210 	isp_xclk_update(xclk, 0);
211 	xclk->enabled = false;
212 	spin_unlock_irqrestore(&xclk->lock, flags);
213 }
214 
215 static unsigned long isp_xclk_recalc_rate(struct clk_hw *hw,
216 					  unsigned long parent_rate)
217 {
218 	struct isp_xclk *xclk = to_isp_xclk(hw);
219 
220 	return parent_rate / xclk->divider;
221 }
222 
223 static u32 isp_xclk_calc_divider(unsigned long *rate, unsigned long parent_rate)
224 {
225 	u32 divider;
226 
227 	if (*rate >= parent_rate) {
228 		*rate = parent_rate;
229 		return ISPTCTRL_CTRL_DIV_BYPASS;
230 	}
231 
232 	if (*rate == 0)
233 		*rate = 1;
234 
235 	divider = DIV_ROUND_CLOSEST(parent_rate, *rate);
236 	if (divider >= ISPTCTRL_CTRL_DIV_BYPASS)
237 		divider = ISPTCTRL_CTRL_DIV_BYPASS - 1;
238 
239 	*rate = parent_rate / divider;
240 	return divider;
241 }
242 
243 static long isp_xclk_round_rate(struct clk_hw *hw, unsigned long rate,
244 				unsigned long *parent_rate)
245 {
246 	isp_xclk_calc_divider(&rate, *parent_rate);
247 	return rate;
248 }
249 
250 static int isp_xclk_set_rate(struct clk_hw *hw, unsigned long rate,
251 			     unsigned long parent_rate)
252 {
253 	struct isp_xclk *xclk = to_isp_xclk(hw);
254 	unsigned long flags;
255 	u32 divider;
256 
257 	divider = isp_xclk_calc_divider(&rate, parent_rate);
258 
259 	spin_lock_irqsave(&xclk->lock, flags);
260 
261 	xclk->divider = divider;
262 	if (xclk->enabled)
263 		isp_xclk_update(xclk, divider);
264 
265 	spin_unlock_irqrestore(&xclk->lock, flags);
266 
267 	dev_dbg(xclk->isp->dev, "%s: cam_xclk%c set to %lu Hz (div %u)\n",
268 		__func__, xclk->id == ISP_XCLK_A ? 'a' : 'b', rate, divider);
269 	return 0;
270 }
271 
272 static const struct clk_ops isp_xclk_ops = {
273 	.prepare = isp_xclk_prepare,
274 	.unprepare = isp_xclk_unprepare,
275 	.enable = isp_xclk_enable,
276 	.disable = isp_xclk_disable,
277 	.recalc_rate = isp_xclk_recalc_rate,
278 	.round_rate = isp_xclk_round_rate,
279 	.set_rate = isp_xclk_set_rate,
280 };
281 
282 static const char *isp_xclk_parent_name = "cam_mclk";
283 
284 static struct clk *isp_xclk_src_get(struct of_phandle_args *clkspec, void *data)
285 {
286 	unsigned int idx = clkspec->args[0];
287 	struct isp_device *isp = data;
288 
289 	if (idx >= ARRAY_SIZE(isp->xclks))
290 		return ERR_PTR(-ENOENT);
291 
292 	return isp->xclks[idx].clk;
293 }
294 
295 static int isp_xclk_init(struct isp_device *isp)
296 {
297 	struct device_node *np = isp->dev->of_node;
298 	struct clk_init_data init = {};
299 	unsigned int i;
300 
301 	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i)
302 		isp->xclks[i].clk = ERR_PTR(-EINVAL);
303 
304 	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
305 		struct isp_xclk *xclk = &isp->xclks[i];
306 
307 		xclk->isp = isp;
308 		xclk->id = i == 0 ? ISP_XCLK_A : ISP_XCLK_B;
309 		xclk->divider = 1;
310 		spin_lock_init(&xclk->lock);
311 
312 		init.name = i == 0 ? "cam_xclka" : "cam_xclkb";
313 		init.ops = &isp_xclk_ops;
314 		init.parent_names = &isp_xclk_parent_name;
315 		init.num_parents = 1;
316 
317 		xclk->hw.init = &init;
318 		/*
319 		 * The first argument is NULL in order to avoid circular
320 		 * reference, as this driver takes reference on the
321 		 * sensor subdevice modules and the sensors would take
322 		 * reference on this module through clk_get().
323 		 */
324 		xclk->clk = clk_register(NULL, &xclk->hw);
325 		if (IS_ERR(xclk->clk))
326 			return PTR_ERR(xclk->clk);
327 	}
328 
329 	if (np)
330 		of_clk_add_provider(np, isp_xclk_src_get, isp);
331 
332 	return 0;
333 }
334 
335 static void isp_xclk_cleanup(struct isp_device *isp)
336 {
337 	struct device_node *np = isp->dev->of_node;
338 	unsigned int i;
339 
340 	if (np)
341 		of_clk_del_provider(np);
342 
343 	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
344 		struct isp_xclk *xclk = &isp->xclks[i];
345 
346 		if (!IS_ERR(xclk->clk))
347 			clk_unregister(xclk->clk);
348 	}
349 }
350 
351 /* -----------------------------------------------------------------------------
352  * Interrupts
353  */
354 
355 /*
356  * isp_enable_interrupts - Enable ISP interrupts.
357  * @isp: OMAP3 ISP device
358  */
359 static void isp_enable_interrupts(struct isp_device *isp)
360 {
361 	static const u32 irq = IRQ0ENABLE_CSIA_IRQ
362 			     | IRQ0ENABLE_CSIB_IRQ
363 			     | IRQ0ENABLE_CCDC_LSC_PREF_ERR_IRQ
364 			     | IRQ0ENABLE_CCDC_LSC_DONE_IRQ
365 			     | IRQ0ENABLE_CCDC_VD0_IRQ
366 			     | IRQ0ENABLE_CCDC_VD1_IRQ
367 			     | IRQ0ENABLE_HS_VS_IRQ
368 			     | IRQ0ENABLE_HIST_DONE_IRQ
369 			     | IRQ0ENABLE_H3A_AWB_DONE_IRQ
370 			     | IRQ0ENABLE_H3A_AF_DONE_IRQ
371 			     | IRQ0ENABLE_PRV_DONE_IRQ
372 			     | IRQ0ENABLE_RSZ_DONE_IRQ;
373 
374 	isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
375 	isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
376 }
377 
378 /*
379  * isp_disable_interrupts - Disable ISP interrupts.
380  * @isp: OMAP3 ISP device
381  */
382 static void isp_disable_interrupts(struct isp_device *isp)
383 {
384 	isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
385 }
386 
387 /*
388  * isp_core_init - ISP core settings
389  * @isp: OMAP3 ISP device
390  * @idle: Consider idle state.
391  *
392  * Set the power settings for the ISP and SBL bus and configure the HS/VS
393  * interrupt source.
394  *
395  * We need to configure the HS/VS interrupt source before interrupts get
396  * enabled, as the sensor might be free-running and the ISP default setting
397  * (HS edge) would put an unnecessary burden on the CPU.
398  */
399 static void isp_core_init(struct isp_device *isp, int idle)
400 {
401 	isp_reg_writel(isp,
402 		       ((idle ? ISP_SYSCONFIG_MIDLEMODE_SMARTSTANDBY :
403 				ISP_SYSCONFIG_MIDLEMODE_FORCESTANDBY) <<
404 			ISP_SYSCONFIG_MIDLEMODE_SHIFT) |
405 			((isp->revision == ISP_REVISION_15_0) ?
406 			  ISP_SYSCONFIG_AUTOIDLE : 0),
407 		       OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
408 
409 	isp_reg_writel(isp,
410 		       (isp->autoidle ? ISPCTRL_SBL_AUTOIDLE : 0) |
411 		       ISPCTRL_SYNC_DETECT_VSRISE,
412 		       OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
413 }
414 
415 /*
416  * Configure the bridge and lane shifter. Valid inputs are
417  *
418  * CCDC_INPUT_PARALLEL: Parallel interface
419  * CCDC_INPUT_CSI2A: CSI2a receiver
420  * CCDC_INPUT_CCP2B: CCP2b receiver
421  * CCDC_INPUT_CSI2C: CSI2c receiver
422  *
423  * The bridge and lane shifter are configured according to the selected input
424  * and the ISP platform data.
425  */
426 void omap3isp_configure_bridge(struct isp_device *isp,
427 			       enum ccdc_input_entity input,
428 			       const struct isp_parallel_cfg *parcfg,
429 			       unsigned int shift, unsigned int bridge)
430 {
431 	u32 ispctrl_val;
432 
433 	ispctrl_val  = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
434 	ispctrl_val &= ~ISPCTRL_SHIFT_MASK;
435 	ispctrl_val &= ~ISPCTRL_PAR_CLK_POL_INV;
436 	ispctrl_val &= ~ISPCTRL_PAR_SER_CLK_SEL_MASK;
437 	ispctrl_val &= ~ISPCTRL_PAR_BRIDGE_MASK;
438 	ispctrl_val |= bridge;
439 
440 	switch (input) {
441 	case CCDC_INPUT_PARALLEL:
442 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_PARALLEL;
443 		ispctrl_val |= parcfg->clk_pol << ISPCTRL_PAR_CLK_POL_SHIFT;
444 		shift += parcfg->data_lane_shift;
445 		break;
446 
447 	case CCDC_INPUT_CSI2A:
448 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIA;
449 		break;
450 
451 	case CCDC_INPUT_CCP2B:
452 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIB;
453 		break;
454 
455 	case CCDC_INPUT_CSI2C:
456 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIC;
457 		break;
458 
459 	default:
460 		return;
461 	}
462 
463 	ispctrl_val |= ((shift/2) << ISPCTRL_SHIFT_SHIFT) & ISPCTRL_SHIFT_MASK;
464 
465 	isp_reg_writel(isp, ispctrl_val, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
466 }
467 
468 void omap3isp_hist_dma_done(struct isp_device *isp)
469 {
470 	if (omap3isp_ccdc_busy(&isp->isp_ccdc) ||
471 	    omap3isp_stat_pcr_busy(&isp->isp_hist)) {
472 		/* Histogram cannot be enabled in this frame anymore */
473 		atomic_set(&isp->isp_hist.buf_err, 1);
474 		dev_dbg(isp->dev,
475 			"hist: Out of synchronization with CCDC. Ignoring next buffer.\n");
476 	}
477 }
478 
479 static inline void __maybe_unused isp_isr_dbg(struct isp_device *isp,
480 					      u32 irqstatus)
481 {
482 	static const char *name[] = {
483 		"CSIA_IRQ",
484 		"res1",
485 		"res2",
486 		"CSIB_LCM_IRQ",
487 		"CSIB_IRQ",
488 		"res5",
489 		"res6",
490 		"res7",
491 		"CCDC_VD0_IRQ",
492 		"CCDC_VD1_IRQ",
493 		"CCDC_VD2_IRQ",
494 		"CCDC_ERR_IRQ",
495 		"H3A_AF_DONE_IRQ",
496 		"H3A_AWB_DONE_IRQ",
497 		"res14",
498 		"res15",
499 		"HIST_DONE_IRQ",
500 		"CCDC_LSC_DONE",
501 		"CCDC_LSC_PREFETCH_COMPLETED",
502 		"CCDC_LSC_PREFETCH_ERROR",
503 		"PRV_DONE_IRQ",
504 		"CBUFF_IRQ",
505 		"res22",
506 		"res23",
507 		"RSZ_DONE_IRQ",
508 		"OVF_IRQ",
509 		"res26",
510 		"res27",
511 		"MMU_ERR_IRQ",
512 		"OCP_ERR_IRQ",
513 		"SEC_ERR_IRQ",
514 		"HS_VS_IRQ",
515 	};
516 	int i;
517 
518 	dev_dbg(isp->dev, "ISP IRQ: ");
519 
520 	for (i = 0; i < ARRAY_SIZE(name); i++) {
521 		if ((1 << i) & irqstatus)
522 			printk(KERN_CONT "%s ", name[i]);
523 	}
524 	printk(KERN_CONT "\n");
525 }
526 
527 static void isp_isr_sbl(struct isp_device *isp)
528 {
529 	struct device *dev = isp->dev;
530 	struct isp_pipeline *pipe;
531 	u32 sbl_pcr;
532 
533 	/*
534 	 * Handle shared buffer logic overflows for video buffers.
535 	 * ISPSBL_PCR_CCDCPRV_2_RSZ_OVF can be safely ignored.
536 	 */
537 	sbl_pcr = isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
538 	isp_reg_writel(isp, sbl_pcr, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
539 	sbl_pcr &= ~ISPSBL_PCR_CCDCPRV_2_RSZ_OVF;
540 
541 	if (sbl_pcr)
542 		dev_dbg(dev, "SBL overflow (PCR = 0x%08x)\n", sbl_pcr);
543 
544 	if (sbl_pcr & ISPSBL_PCR_CSIB_WBL_OVF) {
545 		pipe = to_isp_pipeline(&isp->isp_ccp2.subdev.entity);
546 		if (pipe != NULL)
547 			pipe->error = true;
548 	}
549 
550 	if (sbl_pcr & ISPSBL_PCR_CSIA_WBL_OVF) {
551 		pipe = to_isp_pipeline(&isp->isp_csi2a.subdev.entity);
552 		if (pipe != NULL)
553 			pipe->error = true;
554 	}
555 
556 	if (sbl_pcr & ISPSBL_PCR_CCDC_WBL_OVF) {
557 		pipe = to_isp_pipeline(&isp->isp_ccdc.subdev.entity);
558 		if (pipe != NULL)
559 			pipe->error = true;
560 	}
561 
562 	if (sbl_pcr & ISPSBL_PCR_PRV_WBL_OVF) {
563 		pipe = to_isp_pipeline(&isp->isp_prev.subdev.entity);
564 		if (pipe != NULL)
565 			pipe->error = true;
566 	}
567 
568 	if (sbl_pcr & (ISPSBL_PCR_RSZ1_WBL_OVF
569 		       | ISPSBL_PCR_RSZ2_WBL_OVF
570 		       | ISPSBL_PCR_RSZ3_WBL_OVF
571 		       | ISPSBL_PCR_RSZ4_WBL_OVF)) {
572 		pipe = to_isp_pipeline(&isp->isp_res.subdev.entity);
573 		if (pipe != NULL)
574 			pipe->error = true;
575 	}
576 
577 	if (sbl_pcr & ISPSBL_PCR_H3A_AF_WBL_OVF)
578 		omap3isp_stat_sbl_overflow(&isp->isp_af);
579 
580 	if (sbl_pcr & ISPSBL_PCR_H3A_AEAWB_WBL_OVF)
581 		omap3isp_stat_sbl_overflow(&isp->isp_aewb);
582 }
583 
584 /*
585  * isp_isr - Interrupt Service Routine for Camera ISP module.
586  * @irq: Not used currently.
587  * @_isp: Pointer to the OMAP3 ISP device
588  *
589  * Handles the corresponding callback if plugged in.
590  */
591 static irqreturn_t isp_isr(int irq, void *_isp)
592 {
593 	static const u32 ccdc_events = IRQ0STATUS_CCDC_LSC_PREF_ERR_IRQ |
594 				       IRQ0STATUS_CCDC_LSC_DONE_IRQ |
595 				       IRQ0STATUS_CCDC_VD0_IRQ |
596 				       IRQ0STATUS_CCDC_VD1_IRQ |
597 				       IRQ0STATUS_HS_VS_IRQ;
598 	struct isp_device *isp = _isp;
599 	u32 irqstatus;
600 
601 	irqstatus = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
602 	isp_reg_writel(isp, irqstatus, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
603 
604 	isp_isr_sbl(isp);
605 
606 	if (irqstatus & IRQ0STATUS_CSIA_IRQ)
607 		omap3isp_csi2_isr(&isp->isp_csi2a);
608 
609 	if (irqstatus & IRQ0STATUS_CSIB_IRQ)
610 		omap3isp_ccp2_isr(&isp->isp_ccp2);
611 
612 	if (irqstatus & IRQ0STATUS_CCDC_VD0_IRQ) {
613 		if (isp->isp_ccdc.output & CCDC_OUTPUT_PREVIEW)
614 			omap3isp_preview_isr_frame_sync(&isp->isp_prev);
615 		if (isp->isp_ccdc.output & CCDC_OUTPUT_RESIZER)
616 			omap3isp_resizer_isr_frame_sync(&isp->isp_res);
617 		omap3isp_stat_isr_frame_sync(&isp->isp_aewb);
618 		omap3isp_stat_isr_frame_sync(&isp->isp_af);
619 		omap3isp_stat_isr_frame_sync(&isp->isp_hist);
620 	}
621 
622 	if (irqstatus & ccdc_events)
623 		omap3isp_ccdc_isr(&isp->isp_ccdc, irqstatus & ccdc_events);
624 
625 	if (irqstatus & IRQ0STATUS_PRV_DONE_IRQ) {
626 		if (isp->isp_prev.output & PREVIEW_OUTPUT_RESIZER)
627 			omap3isp_resizer_isr_frame_sync(&isp->isp_res);
628 		omap3isp_preview_isr(&isp->isp_prev);
629 	}
630 
631 	if (irqstatus & IRQ0STATUS_RSZ_DONE_IRQ)
632 		omap3isp_resizer_isr(&isp->isp_res);
633 
634 	if (irqstatus & IRQ0STATUS_H3A_AWB_DONE_IRQ)
635 		omap3isp_stat_isr(&isp->isp_aewb);
636 
637 	if (irqstatus & IRQ0STATUS_H3A_AF_DONE_IRQ)
638 		omap3isp_stat_isr(&isp->isp_af);
639 
640 	if (irqstatus & IRQ0STATUS_HIST_DONE_IRQ)
641 		omap3isp_stat_isr(&isp->isp_hist);
642 
643 	omap3isp_flush(isp);
644 
645 #if defined(DEBUG) && defined(ISP_ISR_DEBUG)
646 	isp_isr_dbg(isp, irqstatus);
647 #endif
648 
649 	return IRQ_HANDLED;
650 }
651 
652 static const struct media_device_ops isp_media_ops = {
653 	.link_notify = v4l2_pipeline_link_notify,
654 };
655 
656 /* -----------------------------------------------------------------------------
657  * Pipeline stream management
658  */
659 
660 /*
661  * isp_pipeline_enable - Enable streaming on a pipeline
662  * @pipe: ISP pipeline
663  * @mode: Stream mode (single shot or continuous)
664  *
665  * Walk the entities chain starting at the pipeline output video node and start
666  * all modules in the chain in the given mode.
667  *
668  * Return 0 if successful, or the return value of the failed video::s_stream
669  * operation otherwise.
670  */
671 static int isp_pipeline_enable(struct isp_pipeline *pipe,
672 			       enum isp_pipeline_stream_state mode)
673 {
674 	struct isp_device *isp = pipe->output->isp;
675 	struct media_entity *entity;
676 	struct media_pad *pad;
677 	struct v4l2_subdev *subdev;
678 	unsigned long flags;
679 	int ret;
680 
681 	/* Refuse to start streaming if an entity included in the pipeline has
682 	 * crashed. This check must be performed before the loop below to avoid
683 	 * starting entities if the pipeline won't start anyway (those entities
684 	 * would then likely fail to stop, making the problem worse).
685 	 */
686 	if (media_entity_enum_intersects(&pipe->ent_enum, &isp->crashed))
687 		return -EIO;
688 
689 	spin_lock_irqsave(&pipe->lock, flags);
690 	pipe->state &= ~(ISP_PIPELINE_IDLE_INPUT | ISP_PIPELINE_IDLE_OUTPUT);
691 	spin_unlock_irqrestore(&pipe->lock, flags);
692 
693 	pipe->do_propagation = false;
694 
695 	mutex_lock(&isp->media_dev.graph_mutex);
696 
697 	entity = &pipe->output->video.entity;
698 	while (1) {
699 		pad = &entity->pads[0];
700 		if (!(pad->flags & MEDIA_PAD_FL_SINK))
701 			break;
702 
703 		pad = media_pad_remote_pad_first(pad);
704 		if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
705 			break;
706 
707 		entity = pad->entity;
708 		subdev = media_entity_to_v4l2_subdev(entity);
709 
710 		ret = v4l2_subdev_call(subdev, video, s_stream, mode);
711 		if (ret < 0 && ret != -ENOIOCTLCMD) {
712 			mutex_unlock(&isp->media_dev.graph_mutex);
713 			return ret;
714 		}
715 
716 		if (subdev == &isp->isp_ccdc.subdev) {
717 			v4l2_subdev_call(&isp->isp_aewb.subdev, video,
718 					s_stream, mode);
719 			v4l2_subdev_call(&isp->isp_af.subdev, video,
720 					s_stream, mode);
721 			v4l2_subdev_call(&isp->isp_hist.subdev, video,
722 					s_stream, mode);
723 			pipe->do_propagation = true;
724 		}
725 
726 		/* Stop at the first external sub-device. */
727 		if (subdev->dev != isp->dev)
728 			break;
729 	}
730 
731 	mutex_unlock(&isp->media_dev.graph_mutex);
732 
733 	return 0;
734 }
735 
736 static int isp_pipeline_wait_resizer(struct isp_device *isp)
737 {
738 	return omap3isp_resizer_busy(&isp->isp_res);
739 }
740 
741 static int isp_pipeline_wait_preview(struct isp_device *isp)
742 {
743 	return omap3isp_preview_busy(&isp->isp_prev);
744 }
745 
746 static int isp_pipeline_wait_ccdc(struct isp_device *isp)
747 {
748 	return omap3isp_stat_busy(&isp->isp_af)
749 	    || omap3isp_stat_busy(&isp->isp_aewb)
750 	    || omap3isp_stat_busy(&isp->isp_hist)
751 	    || omap3isp_ccdc_busy(&isp->isp_ccdc);
752 }
753 
754 #define ISP_STOP_TIMEOUT	msecs_to_jiffies(1000)
755 
756 static int isp_pipeline_wait(struct isp_device *isp,
757 			     int(*busy)(struct isp_device *isp))
758 {
759 	unsigned long timeout = jiffies + ISP_STOP_TIMEOUT;
760 
761 	while (!time_after(jiffies, timeout)) {
762 		if (!busy(isp))
763 			return 0;
764 	}
765 
766 	return 1;
767 }
768 
769 /*
770  * isp_pipeline_disable - Disable streaming on a pipeline
771  * @pipe: ISP pipeline
772  *
773  * Walk the entities chain starting at the pipeline output video node and stop
774  * all modules in the chain. Wait synchronously for the modules to be stopped if
775  * necessary.
776  *
777  * Return 0 if all modules have been properly stopped, or -ETIMEDOUT if a module
778  * can't be stopped (in which case a software reset of the ISP is probably
779  * necessary).
780  */
781 static int isp_pipeline_disable(struct isp_pipeline *pipe)
782 {
783 	struct isp_device *isp = pipe->output->isp;
784 	struct media_entity *entity;
785 	struct media_pad *pad;
786 	struct v4l2_subdev *subdev;
787 	int failure = 0;
788 	int ret;
789 
790 	/*
791 	 * We need to stop all the modules after CCDC first or they'll
792 	 * never stop since they may not get a full frame from CCDC.
793 	 */
794 	entity = &pipe->output->video.entity;
795 	while (1) {
796 		pad = &entity->pads[0];
797 		if (!(pad->flags & MEDIA_PAD_FL_SINK))
798 			break;
799 
800 		pad = media_pad_remote_pad_first(pad);
801 		if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
802 			break;
803 
804 		entity = pad->entity;
805 		subdev = media_entity_to_v4l2_subdev(entity);
806 
807 		if (subdev == &isp->isp_ccdc.subdev) {
808 			v4l2_subdev_call(&isp->isp_aewb.subdev,
809 					 video, s_stream, 0);
810 			v4l2_subdev_call(&isp->isp_af.subdev,
811 					 video, s_stream, 0);
812 			v4l2_subdev_call(&isp->isp_hist.subdev,
813 					 video, s_stream, 0);
814 		}
815 
816 		ret = v4l2_subdev_call(subdev, video, s_stream, 0);
817 
818 		/* Stop at the first external sub-device. */
819 		if (subdev->dev != isp->dev)
820 			break;
821 
822 		if (subdev == &isp->isp_res.subdev)
823 			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_resizer);
824 		else if (subdev == &isp->isp_prev.subdev)
825 			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_preview);
826 		else if (subdev == &isp->isp_ccdc.subdev)
827 			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_ccdc);
828 
829 		/* Handle stop failures. An entity that fails to stop can
830 		 * usually just be restarted. Flag the stop failure nonetheless
831 		 * to trigger an ISP reset the next time the device is released,
832 		 * just in case.
833 		 *
834 		 * The preview engine is a special case. A failure to stop can
835 		 * mean a hardware crash. When that happens the preview engine
836 		 * won't respond to read/write operations on the L4 bus anymore,
837 		 * resulting in a bus fault and a kernel oops next time it gets
838 		 * accessed. Mark it as crashed to prevent pipelines including
839 		 * it from being started.
840 		 */
841 		if (ret) {
842 			dev_info(isp->dev, "Unable to stop %s\n", subdev->name);
843 			isp->stop_failure = true;
844 			if (subdev == &isp->isp_prev.subdev)
845 				media_entity_enum_set(&isp->crashed,
846 						      &subdev->entity);
847 			failure = -ETIMEDOUT;
848 		}
849 	}
850 
851 	return failure;
852 }
853 
854 /*
855  * omap3isp_pipeline_set_stream - Enable/disable streaming on a pipeline
856  * @pipe: ISP pipeline
857  * @state: Stream state (stopped, single shot or continuous)
858  *
859  * Set the pipeline to the given stream state. Pipelines can be started in
860  * single-shot or continuous mode.
861  *
862  * Return 0 if successful, or the return value of the failed video::s_stream
863  * operation otherwise. The pipeline state is not updated when the operation
864  * fails, except when stopping the pipeline.
865  */
866 int omap3isp_pipeline_set_stream(struct isp_pipeline *pipe,
867 				 enum isp_pipeline_stream_state state)
868 {
869 	int ret;
870 
871 	if (state == ISP_PIPELINE_STREAM_STOPPED)
872 		ret = isp_pipeline_disable(pipe);
873 	else
874 		ret = isp_pipeline_enable(pipe, state);
875 
876 	if (ret == 0 || state == ISP_PIPELINE_STREAM_STOPPED)
877 		pipe->stream_state = state;
878 
879 	return ret;
880 }
881 
882 /*
883  * omap3isp_pipeline_cancel_stream - Cancel stream on a pipeline
884  * @pipe: ISP pipeline
885  *
886  * Cancelling a stream mark all buffers on all video nodes in the pipeline as
887  * erroneous and makes sure no new buffer can be queued. This function is called
888  * when a fatal error that prevents any further operation on the pipeline
889  * occurs.
890  */
891 void omap3isp_pipeline_cancel_stream(struct isp_pipeline *pipe)
892 {
893 	if (pipe->input)
894 		omap3isp_video_cancel_stream(pipe->input);
895 	if (pipe->output)
896 		omap3isp_video_cancel_stream(pipe->output);
897 }
898 
899 /*
900  * isp_pipeline_resume - Resume streaming on a pipeline
901  * @pipe: ISP pipeline
902  *
903  * Resume video output and input and re-enable pipeline.
904  */
905 static void isp_pipeline_resume(struct isp_pipeline *pipe)
906 {
907 	int singleshot = pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT;
908 
909 	omap3isp_video_resume(pipe->output, !singleshot);
910 	if (singleshot)
911 		omap3isp_video_resume(pipe->input, 0);
912 	isp_pipeline_enable(pipe, pipe->stream_state);
913 }
914 
915 /*
916  * isp_pipeline_suspend - Suspend streaming on a pipeline
917  * @pipe: ISP pipeline
918  *
919  * Suspend pipeline.
920  */
921 static void isp_pipeline_suspend(struct isp_pipeline *pipe)
922 {
923 	isp_pipeline_disable(pipe);
924 }
925 
926 /*
927  * isp_pipeline_is_last - Verify if entity has an enabled link to the output
928  *			  video node
929  * @me: ISP module's media entity
930  *
931  * Returns 1 if the entity has an enabled link to the output video node or 0
932  * otherwise. It's true only while pipeline can have no more than one output
933  * node.
934  */
935 static int isp_pipeline_is_last(struct media_entity *me)
936 {
937 	struct isp_pipeline *pipe;
938 	struct media_pad *pad;
939 
940 	if (!me->pipe)
941 		return 0;
942 	pipe = to_isp_pipeline(me);
943 	if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED)
944 		return 0;
945 	pad = media_pad_remote_pad_first(&pipe->output->pad);
946 	return pad->entity == me;
947 }
948 
949 /*
950  * isp_suspend_module_pipeline - Suspend pipeline to which belongs the module
951  * @me: ISP module's media entity
952  *
953  * Suspend the whole pipeline if module's entity has an enabled link to the
954  * output video node. It works only while pipeline can have no more than one
955  * output node.
956  */
957 static void isp_suspend_module_pipeline(struct media_entity *me)
958 {
959 	if (isp_pipeline_is_last(me))
960 		isp_pipeline_suspend(to_isp_pipeline(me));
961 }
962 
963 /*
964  * isp_resume_module_pipeline - Resume pipeline to which belongs the module
965  * @me: ISP module's media entity
966  *
967  * Resume the whole pipeline if module's entity has an enabled link to the
968  * output video node. It works only while pipeline can have no more than one
969  * output node.
970  */
971 static void isp_resume_module_pipeline(struct media_entity *me)
972 {
973 	if (isp_pipeline_is_last(me))
974 		isp_pipeline_resume(to_isp_pipeline(me));
975 }
976 
977 /*
978  * isp_suspend_modules - Suspend ISP submodules.
979  * @isp: OMAP3 ISP device
980  *
981  * Returns 0 if suspend left in idle state all the submodules properly,
982  * or returns 1 if a general Reset is required to suspend the submodules.
983  */
984 static int __maybe_unused isp_suspend_modules(struct isp_device *isp)
985 {
986 	unsigned long timeout;
987 
988 	omap3isp_stat_suspend(&isp->isp_aewb);
989 	omap3isp_stat_suspend(&isp->isp_af);
990 	omap3isp_stat_suspend(&isp->isp_hist);
991 	isp_suspend_module_pipeline(&isp->isp_res.subdev.entity);
992 	isp_suspend_module_pipeline(&isp->isp_prev.subdev.entity);
993 	isp_suspend_module_pipeline(&isp->isp_ccdc.subdev.entity);
994 	isp_suspend_module_pipeline(&isp->isp_csi2a.subdev.entity);
995 	isp_suspend_module_pipeline(&isp->isp_ccp2.subdev.entity);
996 
997 	timeout = jiffies + ISP_STOP_TIMEOUT;
998 	while (omap3isp_stat_busy(&isp->isp_af)
999 	    || omap3isp_stat_busy(&isp->isp_aewb)
1000 	    || omap3isp_stat_busy(&isp->isp_hist)
1001 	    || omap3isp_preview_busy(&isp->isp_prev)
1002 	    || omap3isp_resizer_busy(&isp->isp_res)
1003 	    || omap3isp_ccdc_busy(&isp->isp_ccdc)) {
1004 		if (time_after(jiffies, timeout)) {
1005 			dev_info(isp->dev, "can't stop modules.\n");
1006 			return 1;
1007 		}
1008 		msleep(1);
1009 	}
1010 
1011 	return 0;
1012 }
1013 
1014 /*
1015  * isp_resume_modules - Resume ISP submodules.
1016  * @isp: OMAP3 ISP device
1017  */
1018 static void __maybe_unused isp_resume_modules(struct isp_device *isp)
1019 {
1020 	omap3isp_stat_resume(&isp->isp_aewb);
1021 	omap3isp_stat_resume(&isp->isp_af);
1022 	omap3isp_stat_resume(&isp->isp_hist);
1023 	isp_resume_module_pipeline(&isp->isp_res.subdev.entity);
1024 	isp_resume_module_pipeline(&isp->isp_prev.subdev.entity);
1025 	isp_resume_module_pipeline(&isp->isp_ccdc.subdev.entity);
1026 	isp_resume_module_pipeline(&isp->isp_csi2a.subdev.entity);
1027 	isp_resume_module_pipeline(&isp->isp_ccp2.subdev.entity);
1028 }
1029 
1030 /*
1031  * isp_reset - Reset ISP with a timeout wait for idle.
1032  * @isp: OMAP3 ISP device
1033  */
1034 static int isp_reset(struct isp_device *isp)
1035 {
1036 	unsigned long timeout = 0;
1037 
1038 	isp_reg_writel(isp,
1039 		       isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG)
1040 		       | ISP_SYSCONFIG_SOFTRESET,
1041 		       OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
1042 	while (!(isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN,
1043 			       ISP_SYSSTATUS) & 0x1)) {
1044 		if (timeout++ > 10000) {
1045 			dev_alert(isp->dev, "cannot reset ISP\n");
1046 			return -ETIMEDOUT;
1047 		}
1048 		udelay(1);
1049 	}
1050 
1051 	isp->stop_failure = false;
1052 	media_entity_enum_zero(&isp->crashed);
1053 	return 0;
1054 }
1055 
1056 /*
1057  * isp_save_context - Saves the values of the ISP module registers.
1058  * @isp: OMAP3 ISP device
1059  * @reg_list: Structure containing pairs of register address and value to
1060  *            modify on OMAP.
1061  */
1062 static void
1063 isp_save_context(struct isp_device *isp, struct isp_reg *reg_list)
1064 {
1065 	struct isp_reg *next = reg_list;
1066 
1067 	for (; next->reg != ISP_TOK_TERM; next++)
1068 		next->val = isp_reg_readl(isp, next->mmio_range, next->reg);
1069 }
1070 
1071 /*
1072  * isp_restore_context - Restores the values of the ISP module registers.
1073  * @isp: OMAP3 ISP device
1074  * @reg_list: Structure containing pairs of register address and value to
1075  *            modify on OMAP.
1076  */
1077 static void
1078 isp_restore_context(struct isp_device *isp, struct isp_reg *reg_list)
1079 {
1080 	struct isp_reg *next = reg_list;
1081 
1082 	for (; next->reg != ISP_TOK_TERM; next++)
1083 		isp_reg_writel(isp, next->val, next->mmio_range, next->reg);
1084 }
1085 
1086 /*
1087  * isp_save_ctx - Saves ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1088  * @isp: OMAP3 ISP device
1089  *
1090  * Routine for saving the context of each module in the ISP.
1091  * CCDC, HIST, H3A, PREV, RESZ and MMU.
1092  */
1093 static void isp_save_ctx(struct isp_device *isp)
1094 {
1095 	isp_save_context(isp, isp_reg_list);
1096 	omap_iommu_save_ctx(isp->dev);
1097 }
1098 
1099 /*
1100  * isp_restore_ctx - Restores ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1101  * @isp: OMAP3 ISP device
1102  *
1103  * Routine for restoring the context of each module in the ISP.
1104  * CCDC, HIST, H3A, PREV, RESZ and MMU.
1105  */
1106 static void isp_restore_ctx(struct isp_device *isp)
1107 {
1108 	isp_restore_context(isp, isp_reg_list);
1109 	omap_iommu_restore_ctx(isp->dev);
1110 	omap3isp_ccdc_restore_context(isp);
1111 	omap3isp_preview_restore_context(isp);
1112 }
1113 
1114 /* -----------------------------------------------------------------------------
1115  * SBL resources management
1116  */
1117 #define OMAP3_ISP_SBL_READ	(OMAP3_ISP_SBL_CSI1_READ | \
1118 				 OMAP3_ISP_SBL_CCDC_LSC_READ | \
1119 				 OMAP3_ISP_SBL_PREVIEW_READ | \
1120 				 OMAP3_ISP_SBL_RESIZER_READ)
1121 #define OMAP3_ISP_SBL_WRITE	(OMAP3_ISP_SBL_CSI1_WRITE | \
1122 				 OMAP3_ISP_SBL_CSI2A_WRITE | \
1123 				 OMAP3_ISP_SBL_CSI2C_WRITE | \
1124 				 OMAP3_ISP_SBL_CCDC_WRITE | \
1125 				 OMAP3_ISP_SBL_PREVIEW_WRITE)
1126 
1127 void omap3isp_sbl_enable(struct isp_device *isp, enum isp_sbl_resource res)
1128 {
1129 	u32 sbl = 0;
1130 
1131 	isp->sbl_resources |= res;
1132 
1133 	if (isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ)
1134 		sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1135 
1136 	if (isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ)
1137 		sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1138 
1139 	if (isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE)
1140 		sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1141 
1142 	if (isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE)
1143 		sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1144 
1145 	if (isp->sbl_resources & OMAP3_ISP_SBL_WRITE)
1146 		sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1147 
1148 	if (isp->sbl_resources & OMAP3_ISP_SBL_READ)
1149 		sbl |= ISPCTRL_SBL_RD_RAM_EN;
1150 
1151 	isp_reg_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1152 }
1153 
1154 void omap3isp_sbl_disable(struct isp_device *isp, enum isp_sbl_resource res)
1155 {
1156 	u32 sbl = 0;
1157 
1158 	isp->sbl_resources &= ~res;
1159 
1160 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ))
1161 		sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1162 
1163 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ))
1164 		sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1165 
1166 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE))
1167 		sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1168 
1169 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE))
1170 		sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1171 
1172 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_WRITE))
1173 		sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1174 
1175 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_READ))
1176 		sbl |= ISPCTRL_SBL_RD_RAM_EN;
1177 
1178 	isp_reg_clr(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1179 }
1180 
1181 /*
1182  * isp_module_sync_idle - Helper to sync module with its idle state
1183  * @me: ISP submodule's media entity
1184  * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1185  * @stopping: flag which tells module wants to stop
1186  *
1187  * This function checks if ISP submodule needs to wait for next interrupt. If
1188  * yes, makes the caller to sleep while waiting for such event.
1189  */
1190 int omap3isp_module_sync_idle(struct media_entity *me, wait_queue_head_t *wait,
1191 			      atomic_t *stopping)
1192 {
1193 	struct isp_pipeline *pipe = to_isp_pipeline(me);
1194 
1195 	if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED ||
1196 	    (pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT &&
1197 	     !isp_pipeline_ready(pipe)))
1198 		return 0;
1199 
1200 	/*
1201 	 * atomic_set() doesn't include memory barrier on ARM platform for SMP
1202 	 * scenario. We'll call it here to avoid race conditions.
1203 	 */
1204 	atomic_set(stopping, 1);
1205 	smp_mb();
1206 
1207 	/*
1208 	 * If module is the last one, it's writing to memory. In this case,
1209 	 * it's necessary to check if the module is already paused due to
1210 	 * DMA queue underrun or if it has to wait for next interrupt to be
1211 	 * idle.
1212 	 * If it isn't the last one, the function won't sleep but *stopping
1213 	 * will still be set to warn next submodule caller's interrupt the
1214 	 * module wants to be idle.
1215 	 */
1216 	if (isp_pipeline_is_last(me)) {
1217 		struct isp_video *video = pipe->output;
1218 		unsigned long flags;
1219 		spin_lock_irqsave(&video->irqlock, flags);
1220 		if (video->dmaqueue_flags & ISP_VIDEO_DMAQUEUE_UNDERRUN) {
1221 			spin_unlock_irqrestore(&video->irqlock, flags);
1222 			atomic_set(stopping, 0);
1223 			smp_mb();
1224 			return 0;
1225 		}
1226 		spin_unlock_irqrestore(&video->irqlock, flags);
1227 		if (!wait_event_timeout(*wait, !atomic_read(stopping),
1228 					msecs_to_jiffies(1000))) {
1229 			atomic_set(stopping, 0);
1230 			smp_mb();
1231 			return -ETIMEDOUT;
1232 		}
1233 	}
1234 
1235 	return 0;
1236 }
1237 
1238 /*
1239  * omap3isp_module_sync_is_stopping - Helper to verify if module was stopping
1240  * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1241  * @stopping: flag which tells module wants to stop
1242  *
1243  * This function checks if ISP submodule was stopping. In case of yes, it
1244  * notices the caller by setting stopping to 0 and waking up the wait queue.
1245  * Returns 1 if it was stopping or 0 otherwise.
1246  */
1247 int omap3isp_module_sync_is_stopping(wait_queue_head_t *wait,
1248 				     atomic_t *stopping)
1249 {
1250 	if (atomic_cmpxchg(stopping, 1, 0)) {
1251 		wake_up(wait);
1252 		return 1;
1253 	}
1254 
1255 	return 0;
1256 }
1257 
1258 /* --------------------------------------------------------------------------
1259  * Clock management
1260  */
1261 
1262 #define ISPCTRL_CLKS_MASK	(ISPCTRL_H3A_CLK_EN | \
1263 				 ISPCTRL_HIST_CLK_EN | \
1264 				 ISPCTRL_RSZ_CLK_EN | \
1265 				 (ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN) | \
1266 				 (ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN))
1267 
1268 static void __isp_subclk_update(struct isp_device *isp)
1269 {
1270 	u32 clk = 0;
1271 
1272 	/* AEWB and AF share the same clock. */
1273 	if (isp->subclk_resources &
1274 	    (OMAP3_ISP_SUBCLK_AEWB | OMAP3_ISP_SUBCLK_AF))
1275 		clk |= ISPCTRL_H3A_CLK_EN;
1276 
1277 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_HIST)
1278 		clk |= ISPCTRL_HIST_CLK_EN;
1279 
1280 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_RESIZER)
1281 		clk |= ISPCTRL_RSZ_CLK_EN;
1282 
1283 	/* NOTE: For CCDC & Preview submodules, we need to affect internal
1284 	 *       RAM as well.
1285 	 */
1286 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_CCDC)
1287 		clk |= ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN;
1288 
1289 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_PREVIEW)
1290 		clk |= ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN;
1291 
1292 	isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL,
1293 			ISPCTRL_CLKS_MASK, clk);
1294 }
1295 
1296 void omap3isp_subclk_enable(struct isp_device *isp,
1297 			    enum isp_subclk_resource res)
1298 {
1299 	isp->subclk_resources |= res;
1300 
1301 	__isp_subclk_update(isp);
1302 }
1303 
1304 void omap3isp_subclk_disable(struct isp_device *isp,
1305 			     enum isp_subclk_resource res)
1306 {
1307 	isp->subclk_resources &= ~res;
1308 
1309 	__isp_subclk_update(isp);
1310 }
1311 
1312 /*
1313  * isp_enable_clocks - Enable ISP clocks
1314  * @isp: OMAP3 ISP device
1315  *
1316  * Return 0 if successful, or clk_prepare_enable return value if any of them
1317  * fails.
1318  */
1319 static int isp_enable_clocks(struct isp_device *isp)
1320 {
1321 	int r;
1322 	unsigned long rate;
1323 
1324 	r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_ICK]);
1325 	if (r) {
1326 		dev_err(isp->dev, "failed to enable cam_ick clock\n");
1327 		goto out_clk_enable_ick;
1328 	}
1329 	r = clk_set_rate(isp->clock[ISP_CLK_CAM_MCLK], CM_CAM_MCLK_HZ);
1330 	if (r) {
1331 		dev_err(isp->dev, "clk_set_rate for cam_mclk failed\n");
1332 		goto out_clk_enable_mclk;
1333 	}
1334 	r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_MCLK]);
1335 	if (r) {
1336 		dev_err(isp->dev, "failed to enable cam_mclk clock\n");
1337 		goto out_clk_enable_mclk;
1338 	}
1339 	rate = clk_get_rate(isp->clock[ISP_CLK_CAM_MCLK]);
1340 	if (rate != CM_CAM_MCLK_HZ)
1341 		dev_warn(isp->dev, "unexpected cam_mclk rate:\n"
1342 				   " expected : %d\n"
1343 				   " actual   : %ld\n", CM_CAM_MCLK_HZ, rate);
1344 	r = clk_prepare_enable(isp->clock[ISP_CLK_CSI2_FCK]);
1345 	if (r) {
1346 		dev_err(isp->dev, "failed to enable csi2_fck clock\n");
1347 		goto out_clk_enable_csi2_fclk;
1348 	}
1349 	return 0;
1350 
1351 out_clk_enable_csi2_fclk:
1352 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1353 out_clk_enable_mclk:
1354 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1355 out_clk_enable_ick:
1356 	return r;
1357 }
1358 
1359 /*
1360  * isp_disable_clocks - Disable ISP clocks
1361  * @isp: OMAP3 ISP device
1362  */
1363 static void isp_disable_clocks(struct isp_device *isp)
1364 {
1365 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1366 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1367 	clk_disable_unprepare(isp->clock[ISP_CLK_CSI2_FCK]);
1368 }
1369 
1370 static const char *isp_clocks[] = {
1371 	"cam_ick",
1372 	"cam_mclk",
1373 	"csi2_96m_fck",
1374 	"l3_ick",
1375 };
1376 
1377 static int isp_get_clocks(struct isp_device *isp)
1378 {
1379 	struct clk *clk;
1380 	unsigned int i;
1381 
1382 	for (i = 0; i < ARRAY_SIZE(isp_clocks); ++i) {
1383 		clk = devm_clk_get(isp->dev, isp_clocks[i]);
1384 		if (IS_ERR(clk)) {
1385 			dev_err(isp->dev, "clk_get %s failed\n", isp_clocks[i]);
1386 			return PTR_ERR(clk);
1387 		}
1388 
1389 		isp->clock[i] = clk;
1390 	}
1391 
1392 	return 0;
1393 }
1394 
1395 /*
1396  * omap3isp_get - Acquire the ISP resource.
1397  *
1398  * Initializes the clocks for the first acquire.
1399  *
1400  * Increment the reference count on the ISP. If the first reference is taken,
1401  * enable clocks and power-up all submodules.
1402  *
1403  * Return a pointer to the ISP device structure, or NULL if an error occurred.
1404  */
1405 static struct isp_device *__omap3isp_get(struct isp_device *isp, bool irq)
1406 {
1407 	struct isp_device *__isp = isp;
1408 
1409 	if (isp == NULL)
1410 		return NULL;
1411 
1412 	mutex_lock(&isp->isp_mutex);
1413 	if (isp->ref_count > 0)
1414 		goto out;
1415 
1416 	if (isp_enable_clocks(isp) < 0) {
1417 		__isp = NULL;
1418 		goto out;
1419 	}
1420 
1421 	/* We don't want to restore context before saving it! */
1422 	if (isp->has_context)
1423 		isp_restore_ctx(isp);
1424 
1425 	if (irq)
1426 		isp_enable_interrupts(isp);
1427 
1428 out:
1429 	if (__isp != NULL)
1430 		isp->ref_count++;
1431 	mutex_unlock(&isp->isp_mutex);
1432 
1433 	return __isp;
1434 }
1435 
1436 struct isp_device *omap3isp_get(struct isp_device *isp)
1437 {
1438 	return __omap3isp_get(isp, true);
1439 }
1440 
1441 /*
1442  * omap3isp_put - Release the ISP
1443  *
1444  * Decrement the reference count on the ISP. If the last reference is released,
1445  * power-down all submodules, disable clocks and free temporary buffers.
1446  */
1447 static void __omap3isp_put(struct isp_device *isp, bool save_ctx)
1448 {
1449 	if (isp == NULL)
1450 		return;
1451 
1452 	mutex_lock(&isp->isp_mutex);
1453 	BUG_ON(isp->ref_count == 0);
1454 	if (--isp->ref_count == 0) {
1455 		isp_disable_interrupts(isp);
1456 		if (save_ctx) {
1457 			isp_save_ctx(isp);
1458 			isp->has_context = 1;
1459 		}
1460 		/* Reset the ISP if an entity has failed to stop. This is the
1461 		 * only way to recover from such conditions.
1462 		 */
1463 		if (!media_entity_enum_empty(&isp->crashed) ||
1464 		    isp->stop_failure)
1465 			isp_reset(isp);
1466 		isp_disable_clocks(isp);
1467 	}
1468 	mutex_unlock(&isp->isp_mutex);
1469 }
1470 
1471 void omap3isp_put(struct isp_device *isp)
1472 {
1473 	__omap3isp_put(isp, true);
1474 }
1475 
1476 /* --------------------------------------------------------------------------
1477  * Platform device driver
1478  */
1479 
1480 /*
1481  * omap3isp_print_status - Prints the values of the ISP Control Module registers
1482  * @isp: OMAP3 ISP device
1483  */
1484 #define ISP_PRINT_REGISTER(isp, name)\
1485 	dev_dbg(isp->dev, "###ISP " #name "=0x%08x\n", \
1486 		isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_##name))
1487 #define SBL_PRINT_REGISTER(isp, name)\
1488 	dev_dbg(isp->dev, "###SBL " #name "=0x%08x\n", \
1489 		isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_##name))
1490 
1491 void omap3isp_print_status(struct isp_device *isp)
1492 {
1493 	dev_dbg(isp->dev, "-------------ISP Register dump--------------\n");
1494 
1495 	ISP_PRINT_REGISTER(isp, SYSCONFIG);
1496 	ISP_PRINT_REGISTER(isp, SYSSTATUS);
1497 	ISP_PRINT_REGISTER(isp, IRQ0ENABLE);
1498 	ISP_PRINT_REGISTER(isp, IRQ0STATUS);
1499 	ISP_PRINT_REGISTER(isp, TCTRL_GRESET_LENGTH);
1500 	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_REPLAY);
1501 	ISP_PRINT_REGISTER(isp, CTRL);
1502 	ISP_PRINT_REGISTER(isp, TCTRL_CTRL);
1503 	ISP_PRINT_REGISTER(isp, TCTRL_FRAME);
1504 	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_DELAY);
1505 	ISP_PRINT_REGISTER(isp, TCTRL_STRB_DELAY);
1506 	ISP_PRINT_REGISTER(isp, TCTRL_SHUT_DELAY);
1507 	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_LENGTH);
1508 	ISP_PRINT_REGISTER(isp, TCTRL_STRB_LENGTH);
1509 	ISP_PRINT_REGISTER(isp, TCTRL_SHUT_LENGTH);
1510 
1511 	SBL_PRINT_REGISTER(isp, PCR);
1512 	SBL_PRINT_REGISTER(isp, SDR_REQ_EXP);
1513 
1514 	dev_dbg(isp->dev, "--------------------------------------------\n");
1515 }
1516 
1517 #ifdef CONFIG_PM
1518 
1519 /*
1520  * Power management support.
1521  *
1522  * As the ISP can't properly handle an input video stream interruption on a non
1523  * frame boundary, the ISP pipelines need to be stopped before sensors get
1524  * suspended. However, as suspending the sensors can require a running clock,
1525  * which can be provided by the ISP, the ISP can't be completely suspended
1526  * before the sensor.
1527  *
1528  * To solve this problem power management support is split into prepare/complete
1529  * and suspend/resume operations. The pipelines are stopped in prepare() and the
1530  * ISP clocks get disabled in suspend(). Similarly, the clocks are re-enabled in
1531  * resume(), and the the pipelines are restarted in complete().
1532  *
1533  * TODO: PM dependencies between the ISP and sensors are not modelled explicitly
1534  * yet.
1535  */
1536 static int isp_pm_prepare(struct device *dev)
1537 {
1538 	struct isp_device *isp = dev_get_drvdata(dev);
1539 	int reset;
1540 
1541 	WARN_ON(mutex_is_locked(&isp->isp_mutex));
1542 
1543 	if (isp->ref_count == 0)
1544 		return 0;
1545 
1546 	reset = isp_suspend_modules(isp);
1547 	isp_disable_interrupts(isp);
1548 	isp_save_ctx(isp);
1549 	if (reset)
1550 		isp_reset(isp);
1551 
1552 	return 0;
1553 }
1554 
1555 static int isp_pm_suspend(struct device *dev)
1556 {
1557 	struct isp_device *isp = dev_get_drvdata(dev);
1558 
1559 	WARN_ON(mutex_is_locked(&isp->isp_mutex));
1560 
1561 	if (isp->ref_count)
1562 		isp_disable_clocks(isp);
1563 
1564 	return 0;
1565 }
1566 
1567 static int isp_pm_resume(struct device *dev)
1568 {
1569 	struct isp_device *isp = dev_get_drvdata(dev);
1570 
1571 	if (isp->ref_count == 0)
1572 		return 0;
1573 
1574 	return isp_enable_clocks(isp);
1575 }
1576 
1577 static void isp_pm_complete(struct device *dev)
1578 {
1579 	struct isp_device *isp = dev_get_drvdata(dev);
1580 
1581 	if (isp->ref_count == 0)
1582 		return;
1583 
1584 	isp_restore_ctx(isp);
1585 	isp_enable_interrupts(isp);
1586 	isp_resume_modules(isp);
1587 }
1588 
1589 #else
1590 
1591 #define isp_pm_prepare	NULL
1592 #define isp_pm_suspend	NULL
1593 #define isp_pm_resume	NULL
1594 #define isp_pm_complete	NULL
1595 
1596 #endif /* CONFIG_PM */
1597 
1598 static void isp_unregister_entities(struct isp_device *isp)
1599 {
1600 	media_device_unregister(&isp->media_dev);
1601 
1602 	omap3isp_csi2_unregister_entities(&isp->isp_csi2a);
1603 	omap3isp_ccp2_unregister_entities(&isp->isp_ccp2);
1604 	omap3isp_ccdc_unregister_entities(&isp->isp_ccdc);
1605 	omap3isp_preview_unregister_entities(&isp->isp_prev);
1606 	omap3isp_resizer_unregister_entities(&isp->isp_res);
1607 	omap3isp_stat_unregister_entities(&isp->isp_aewb);
1608 	omap3isp_stat_unregister_entities(&isp->isp_af);
1609 	omap3isp_stat_unregister_entities(&isp->isp_hist);
1610 
1611 	v4l2_device_unregister(&isp->v4l2_dev);
1612 	media_device_cleanup(&isp->media_dev);
1613 }
1614 
1615 static int isp_link_entity(
1616 	struct isp_device *isp, struct media_entity *entity,
1617 	enum isp_interface_type interface)
1618 {
1619 	struct media_entity *input;
1620 	unsigned int flags;
1621 	unsigned int pad;
1622 	unsigned int i;
1623 
1624 	/* Connect the sensor to the correct interface module.
1625 	 * Parallel sensors are connected directly to the CCDC, while
1626 	 * serial sensors are connected to the CSI2a, CCP2b or CSI2c
1627 	 * receiver through CSIPHY1 or CSIPHY2.
1628 	 */
1629 	switch (interface) {
1630 	case ISP_INTERFACE_PARALLEL:
1631 		input = &isp->isp_ccdc.subdev.entity;
1632 		pad = CCDC_PAD_SINK;
1633 		flags = 0;
1634 		break;
1635 
1636 	case ISP_INTERFACE_CSI2A_PHY2:
1637 		input = &isp->isp_csi2a.subdev.entity;
1638 		pad = CSI2_PAD_SINK;
1639 		flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1640 		break;
1641 
1642 	case ISP_INTERFACE_CCP2B_PHY1:
1643 	case ISP_INTERFACE_CCP2B_PHY2:
1644 		input = &isp->isp_ccp2.subdev.entity;
1645 		pad = CCP2_PAD_SINK;
1646 		flags = 0;
1647 		break;
1648 
1649 	case ISP_INTERFACE_CSI2C_PHY1:
1650 		input = &isp->isp_csi2c.subdev.entity;
1651 		pad = CSI2_PAD_SINK;
1652 		flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1653 		break;
1654 
1655 	default:
1656 		dev_err(isp->dev, "%s: invalid interface type %u\n", __func__,
1657 			interface);
1658 		return -EINVAL;
1659 	}
1660 
1661 	/*
1662 	 * Not all interfaces are available on all revisions of the
1663 	 * ISP. The sub-devices of those interfaces aren't initialised
1664 	 * in such a case. Check this by ensuring the num_pads is
1665 	 * non-zero.
1666 	 */
1667 	if (!input->num_pads) {
1668 		dev_err(isp->dev, "%s: invalid input %u\n", entity->name,
1669 			interface);
1670 		return -EINVAL;
1671 	}
1672 
1673 	for (i = 0; i < entity->num_pads; i++) {
1674 		if (entity->pads[i].flags & MEDIA_PAD_FL_SOURCE)
1675 			break;
1676 	}
1677 	if (i == entity->num_pads) {
1678 		dev_err(isp->dev, "%s: no source pad in external entity %s\n",
1679 			__func__, entity->name);
1680 		return -EINVAL;
1681 	}
1682 
1683 	return media_create_pad_link(entity, i, input, pad, flags);
1684 }
1685 
1686 static int isp_register_entities(struct isp_device *isp)
1687 {
1688 	int ret;
1689 
1690 	isp->media_dev.dev = isp->dev;
1691 	strscpy(isp->media_dev.model, "TI OMAP3 ISP",
1692 		sizeof(isp->media_dev.model));
1693 	isp->media_dev.hw_revision = isp->revision;
1694 	isp->media_dev.ops = &isp_media_ops;
1695 	media_device_init(&isp->media_dev);
1696 
1697 	isp->v4l2_dev.mdev = &isp->media_dev;
1698 	ret = v4l2_device_register(isp->dev, &isp->v4l2_dev);
1699 	if (ret < 0) {
1700 		dev_err(isp->dev, "%s: V4L2 device registration failed (%d)\n",
1701 			__func__, ret);
1702 		goto done;
1703 	}
1704 
1705 	/* Register internal entities */
1706 	ret = omap3isp_ccp2_register_entities(&isp->isp_ccp2, &isp->v4l2_dev);
1707 	if (ret < 0)
1708 		goto done;
1709 
1710 	ret = omap3isp_csi2_register_entities(&isp->isp_csi2a, &isp->v4l2_dev);
1711 	if (ret < 0)
1712 		goto done;
1713 
1714 	ret = omap3isp_ccdc_register_entities(&isp->isp_ccdc, &isp->v4l2_dev);
1715 	if (ret < 0)
1716 		goto done;
1717 
1718 	ret = omap3isp_preview_register_entities(&isp->isp_prev,
1719 						 &isp->v4l2_dev);
1720 	if (ret < 0)
1721 		goto done;
1722 
1723 	ret = omap3isp_resizer_register_entities(&isp->isp_res, &isp->v4l2_dev);
1724 	if (ret < 0)
1725 		goto done;
1726 
1727 	ret = omap3isp_stat_register_entities(&isp->isp_aewb, &isp->v4l2_dev);
1728 	if (ret < 0)
1729 		goto done;
1730 
1731 	ret = omap3isp_stat_register_entities(&isp->isp_af, &isp->v4l2_dev);
1732 	if (ret < 0)
1733 		goto done;
1734 
1735 	ret = omap3isp_stat_register_entities(&isp->isp_hist, &isp->v4l2_dev);
1736 	if (ret < 0)
1737 		goto done;
1738 
1739 done:
1740 	if (ret < 0)
1741 		isp_unregister_entities(isp);
1742 
1743 	return ret;
1744 }
1745 
1746 /*
1747  * isp_create_links() - Create links for internal and external ISP entities
1748  * @isp : Pointer to ISP device
1749  *
1750  * This function creates all links between ISP internal and external entities.
1751  *
1752  * Return: A negative error code on failure or zero on success. Possible error
1753  * codes are those returned by media_create_pad_link().
1754  */
1755 static int isp_create_links(struct isp_device *isp)
1756 {
1757 	int ret;
1758 
1759 	/* Create links between entities and video nodes. */
1760 	ret = media_create_pad_link(
1761 			&isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
1762 			&isp->isp_csi2a.video_out.video.entity, 0, 0);
1763 	if (ret < 0)
1764 		return ret;
1765 
1766 	ret = media_create_pad_link(
1767 			&isp->isp_ccp2.video_in.video.entity, 0,
1768 			&isp->isp_ccp2.subdev.entity, CCP2_PAD_SINK, 0);
1769 	if (ret < 0)
1770 		return ret;
1771 
1772 	ret = media_create_pad_link(
1773 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
1774 			&isp->isp_ccdc.video_out.video.entity, 0, 0);
1775 	if (ret < 0)
1776 		return ret;
1777 
1778 	ret = media_create_pad_link(
1779 			&isp->isp_prev.video_in.video.entity, 0,
1780 			&isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
1781 	if (ret < 0)
1782 		return ret;
1783 
1784 	ret = media_create_pad_link(
1785 			&isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
1786 			&isp->isp_prev.video_out.video.entity, 0, 0);
1787 	if (ret < 0)
1788 		return ret;
1789 
1790 	ret = media_create_pad_link(
1791 			&isp->isp_res.video_in.video.entity, 0,
1792 			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1793 	if (ret < 0)
1794 		return ret;
1795 
1796 	ret = media_create_pad_link(
1797 			&isp->isp_res.subdev.entity, RESZ_PAD_SOURCE,
1798 			&isp->isp_res.video_out.video.entity, 0, 0);
1799 
1800 	if (ret < 0)
1801 		return ret;
1802 
1803 	/* Create links between entities. */
1804 	ret = media_create_pad_link(
1805 			&isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
1806 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
1807 	if (ret < 0)
1808 		return ret;
1809 
1810 	ret = media_create_pad_link(
1811 			&isp->isp_ccp2.subdev.entity, CCP2_PAD_SOURCE,
1812 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
1813 	if (ret < 0)
1814 		return ret;
1815 
1816 	ret = media_create_pad_link(
1817 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1818 			&isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
1819 	if (ret < 0)
1820 		return ret;
1821 
1822 	ret = media_create_pad_link(
1823 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
1824 			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1825 	if (ret < 0)
1826 		return ret;
1827 
1828 	ret = media_create_pad_link(
1829 			&isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
1830 			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1831 	if (ret < 0)
1832 		return ret;
1833 
1834 	ret = media_create_pad_link(
1835 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1836 			&isp->isp_aewb.subdev.entity, 0,
1837 			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1838 	if (ret < 0)
1839 		return ret;
1840 
1841 	ret = media_create_pad_link(
1842 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1843 			&isp->isp_af.subdev.entity, 0,
1844 			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1845 	if (ret < 0)
1846 		return ret;
1847 
1848 	ret = media_create_pad_link(
1849 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1850 			&isp->isp_hist.subdev.entity, 0,
1851 			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1852 	if (ret < 0)
1853 		return ret;
1854 
1855 	return 0;
1856 }
1857 
1858 static void isp_cleanup_modules(struct isp_device *isp)
1859 {
1860 	omap3isp_h3a_aewb_cleanup(isp);
1861 	omap3isp_h3a_af_cleanup(isp);
1862 	omap3isp_hist_cleanup(isp);
1863 	omap3isp_resizer_cleanup(isp);
1864 	omap3isp_preview_cleanup(isp);
1865 	omap3isp_ccdc_cleanup(isp);
1866 	omap3isp_ccp2_cleanup(isp);
1867 	omap3isp_csi2_cleanup(isp);
1868 	omap3isp_csiphy_cleanup(isp);
1869 }
1870 
1871 static int isp_initialize_modules(struct isp_device *isp)
1872 {
1873 	int ret;
1874 
1875 	ret = omap3isp_csiphy_init(isp);
1876 	if (ret < 0) {
1877 		dev_err(isp->dev, "CSI PHY initialization failed\n");
1878 		return ret;
1879 	}
1880 
1881 	ret = omap3isp_csi2_init(isp);
1882 	if (ret < 0) {
1883 		dev_err(isp->dev, "CSI2 initialization failed\n");
1884 		goto error_csi2;
1885 	}
1886 
1887 	ret = omap3isp_ccp2_init(isp);
1888 	if (ret < 0) {
1889 		if (ret != -EPROBE_DEFER)
1890 			dev_err(isp->dev, "CCP2 initialization failed\n");
1891 		goto error_ccp2;
1892 	}
1893 
1894 	ret = omap3isp_ccdc_init(isp);
1895 	if (ret < 0) {
1896 		dev_err(isp->dev, "CCDC initialization failed\n");
1897 		goto error_ccdc;
1898 	}
1899 
1900 	ret = omap3isp_preview_init(isp);
1901 	if (ret < 0) {
1902 		dev_err(isp->dev, "Preview initialization failed\n");
1903 		goto error_preview;
1904 	}
1905 
1906 	ret = omap3isp_resizer_init(isp);
1907 	if (ret < 0) {
1908 		dev_err(isp->dev, "Resizer initialization failed\n");
1909 		goto error_resizer;
1910 	}
1911 
1912 	ret = omap3isp_hist_init(isp);
1913 	if (ret < 0) {
1914 		dev_err(isp->dev, "Histogram initialization failed\n");
1915 		goto error_hist;
1916 	}
1917 
1918 	ret = omap3isp_h3a_aewb_init(isp);
1919 	if (ret < 0) {
1920 		dev_err(isp->dev, "H3A AEWB initialization failed\n");
1921 		goto error_h3a_aewb;
1922 	}
1923 
1924 	ret = omap3isp_h3a_af_init(isp);
1925 	if (ret < 0) {
1926 		dev_err(isp->dev, "H3A AF initialization failed\n");
1927 		goto error_h3a_af;
1928 	}
1929 
1930 	return 0;
1931 
1932 error_h3a_af:
1933 	omap3isp_h3a_aewb_cleanup(isp);
1934 error_h3a_aewb:
1935 	omap3isp_hist_cleanup(isp);
1936 error_hist:
1937 	omap3isp_resizer_cleanup(isp);
1938 error_resizer:
1939 	omap3isp_preview_cleanup(isp);
1940 error_preview:
1941 	omap3isp_ccdc_cleanup(isp);
1942 error_ccdc:
1943 	omap3isp_ccp2_cleanup(isp);
1944 error_ccp2:
1945 	omap3isp_csi2_cleanup(isp);
1946 error_csi2:
1947 	omap3isp_csiphy_cleanup(isp);
1948 
1949 	return ret;
1950 }
1951 
1952 static void isp_detach_iommu(struct isp_device *isp)
1953 {
1954 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1955 	arm_iommu_detach_device(isp->dev);
1956 	arm_iommu_release_mapping(isp->mapping);
1957 	isp->mapping = NULL;
1958 #endif
1959 }
1960 
1961 static int isp_attach_iommu(struct isp_device *isp)
1962 {
1963 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1964 	struct dma_iommu_mapping *mapping;
1965 	int ret;
1966 
1967 	/*
1968 	 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
1969 	 * VAs. This will allocate a corresponding IOMMU domain.
1970 	 */
1971 	mapping = arm_iommu_create_mapping(&platform_bus_type, SZ_1G, SZ_2G);
1972 	if (IS_ERR(mapping)) {
1973 		dev_err(isp->dev, "failed to create ARM IOMMU mapping\n");
1974 		return PTR_ERR(mapping);
1975 	}
1976 
1977 	isp->mapping = mapping;
1978 
1979 	/* Attach the ARM VA mapping to the device. */
1980 	ret = arm_iommu_attach_device(isp->dev, mapping);
1981 	if (ret < 0) {
1982 		dev_err(isp->dev, "failed to attach device to VA mapping\n");
1983 		goto error;
1984 	}
1985 
1986 	return 0;
1987 
1988 error:
1989 	arm_iommu_release_mapping(isp->mapping);
1990 	isp->mapping = NULL;
1991 	return ret;
1992 #else
1993 	return -ENODEV;
1994 #endif
1995 }
1996 
1997 /*
1998  * isp_remove - Remove ISP platform device
1999  * @pdev: Pointer to ISP platform device
2000  *
2001  * Always returns 0.
2002  */
2003 static int isp_remove(struct platform_device *pdev)
2004 {
2005 	struct isp_device *isp = platform_get_drvdata(pdev);
2006 
2007 	v4l2_async_nf_unregister(&isp->notifier);
2008 	isp_unregister_entities(isp);
2009 	isp_cleanup_modules(isp);
2010 	isp_xclk_cleanup(isp);
2011 
2012 	__omap3isp_get(isp, false);
2013 	isp_detach_iommu(isp);
2014 	__omap3isp_put(isp, false);
2015 
2016 	media_entity_enum_cleanup(&isp->crashed);
2017 	v4l2_async_nf_cleanup(&isp->notifier);
2018 
2019 	kfree(isp);
2020 
2021 	return 0;
2022 }
2023 
2024 enum isp_of_phy {
2025 	ISP_OF_PHY_PARALLEL = 0,
2026 	ISP_OF_PHY_CSIPHY1,
2027 	ISP_OF_PHY_CSIPHY2,
2028 };
2029 
2030 static int isp_subdev_notifier_complete(struct v4l2_async_notifier *async)
2031 {
2032 	struct isp_device *isp = container_of(async, struct isp_device,
2033 					      notifier);
2034 	struct v4l2_device *v4l2_dev = &isp->v4l2_dev;
2035 	struct v4l2_subdev *sd;
2036 	int ret;
2037 
2038 	mutex_lock(&isp->media_dev.graph_mutex);
2039 
2040 	ret = media_entity_enum_init(&isp->crashed, &isp->media_dev);
2041 	if (ret) {
2042 		mutex_unlock(&isp->media_dev.graph_mutex);
2043 		return ret;
2044 	}
2045 
2046 	list_for_each_entry(sd, &v4l2_dev->subdevs, list) {
2047 		if (sd->notifier != &isp->notifier)
2048 			continue;
2049 
2050 		ret = isp_link_entity(isp, &sd->entity,
2051 				      v4l2_subdev_to_bus_cfg(sd)->interface);
2052 		if (ret < 0) {
2053 			mutex_unlock(&isp->media_dev.graph_mutex);
2054 			return ret;
2055 		}
2056 	}
2057 
2058 	mutex_unlock(&isp->media_dev.graph_mutex);
2059 
2060 	ret = v4l2_device_register_subdev_nodes(&isp->v4l2_dev);
2061 	if (ret < 0)
2062 		return ret;
2063 
2064 	return media_device_register(&isp->media_dev);
2065 }
2066 
2067 static void isp_parse_of_parallel_endpoint(struct device *dev,
2068 					   struct v4l2_fwnode_endpoint *vep,
2069 					   struct isp_bus_cfg *buscfg)
2070 {
2071 	buscfg->interface = ISP_INTERFACE_PARALLEL;
2072 	buscfg->bus.parallel.data_lane_shift = vep->bus.parallel.data_shift;
2073 	buscfg->bus.parallel.clk_pol =
2074 		!!(vep->bus.parallel.flags & V4L2_MBUS_PCLK_SAMPLE_FALLING);
2075 	buscfg->bus.parallel.hs_pol =
2076 		!!(vep->bus.parallel.flags & V4L2_MBUS_VSYNC_ACTIVE_LOW);
2077 	buscfg->bus.parallel.vs_pol =
2078 		!!(vep->bus.parallel.flags & V4L2_MBUS_HSYNC_ACTIVE_LOW);
2079 	buscfg->bus.parallel.fld_pol =
2080 		!!(vep->bus.parallel.flags & V4L2_MBUS_FIELD_EVEN_LOW);
2081 	buscfg->bus.parallel.data_pol =
2082 		!!(vep->bus.parallel.flags & V4L2_MBUS_DATA_ACTIVE_LOW);
2083 	buscfg->bus.parallel.bt656 = vep->bus_type == V4L2_MBUS_BT656;
2084 }
2085 
2086 static void isp_parse_of_csi2_endpoint(struct device *dev,
2087 				       struct v4l2_fwnode_endpoint *vep,
2088 				       struct isp_bus_cfg *buscfg)
2089 {
2090 	unsigned int i;
2091 
2092 	buscfg->bus.csi2.lanecfg.clk.pos = vep->bus.mipi_csi2.clock_lane;
2093 	buscfg->bus.csi2.lanecfg.clk.pol =
2094 		vep->bus.mipi_csi2.lane_polarities[0];
2095 	dev_dbg(dev, "clock lane polarity %u, pos %u\n",
2096 		buscfg->bus.csi2.lanecfg.clk.pol,
2097 		buscfg->bus.csi2.lanecfg.clk.pos);
2098 
2099 	buscfg->bus.csi2.num_data_lanes = vep->bus.mipi_csi2.num_data_lanes;
2100 
2101 	for (i = 0; i < buscfg->bus.csi2.num_data_lanes; i++) {
2102 		buscfg->bus.csi2.lanecfg.data[i].pos =
2103 			vep->bus.mipi_csi2.data_lanes[i];
2104 		buscfg->bus.csi2.lanecfg.data[i].pol =
2105 			vep->bus.mipi_csi2.lane_polarities[i + 1];
2106 		dev_dbg(dev,
2107 			"data lane %u polarity %u, pos %u\n", i,
2108 			buscfg->bus.csi2.lanecfg.data[i].pol,
2109 			buscfg->bus.csi2.lanecfg.data[i].pos);
2110 	}
2111 	/*
2112 	 * FIXME: now we assume the CRC is always there. Implement a way to
2113 	 * obtain this information from the sensor. Frame descriptors, perhaps?
2114 	 */
2115 	buscfg->bus.csi2.crc = 1;
2116 }
2117 
2118 static void isp_parse_of_csi1_endpoint(struct device *dev,
2119 				       struct v4l2_fwnode_endpoint *vep,
2120 				       struct isp_bus_cfg *buscfg)
2121 {
2122 	buscfg->bus.ccp2.lanecfg.clk.pos = vep->bus.mipi_csi1.clock_lane;
2123 	buscfg->bus.ccp2.lanecfg.clk.pol = vep->bus.mipi_csi1.lane_polarity[0];
2124 	dev_dbg(dev, "clock lane polarity %u, pos %u\n",
2125 		buscfg->bus.ccp2.lanecfg.clk.pol,
2126 	buscfg->bus.ccp2.lanecfg.clk.pos);
2127 
2128 	buscfg->bus.ccp2.lanecfg.data[0].pos = vep->bus.mipi_csi1.data_lane;
2129 	buscfg->bus.ccp2.lanecfg.data[0].pol =
2130 		vep->bus.mipi_csi1.lane_polarity[1];
2131 
2132 	dev_dbg(dev, "data lane polarity %u, pos %u\n",
2133 		buscfg->bus.ccp2.lanecfg.data[0].pol,
2134 		buscfg->bus.ccp2.lanecfg.data[0].pos);
2135 
2136 	buscfg->bus.ccp2.strobe_clk_pol = vep->bus.mipi_csi1.clock_inv;
2137 	buscfg->bus.ccp2.phy_layer = vep->bus.mipi_csi1.strobe;
2138 	buscfg->bus.ccp2.ccp2_mode = vep->bus_type == V4L2_MBUS_CCP2;
2139 	buscfg->bus.ccp2.vp_clk_pol = 1;
2140 
2141 	buscfg->bus.ccp2.crc = 1;
2142 }
2143 
2144 static struct {
2145 	u32 phy;
2146 	u32 csi2_if;
2147 	u32 csi1_if;
2148 } isp_bus_interfaces[2] = {
2149 	{ ISP_OF_PHY_CSIPHY1,
2150 	  ISP_INTERFACE_CSI2C_PHY1, ISP_INTERFACE_CCP2B_PHY1 },
2151 	{ ISP_OF_PHY_CSIPHY2,
2152 	  ISP_INTERFACE_CSI2A_PHY2, ISP_INTERFACE_CCP2B_PHY2 },
2153 };
2154 
2155 static int isp_parse_of_endpoints(struct isp_device *isp)
2156 {
2157 	struct fwnode_handle *ep;
2158 	struct isp_async_subdev *isd = NULL;
2159 	unsigned int i;
2160 
2161 	ep = fwnode_graph_get_endpoint_by_id(
2162 		dev_fwnode(isp->dev), ISP_OF_PHY_PARALLEL, 0,
2163 		FWNODE_GRAPH_ENDPOINT_NEXT);
2164 
2165 	if (ep) {
2166 		struct v4l2_fwnode_endpoint vep = {
2167 			.bus_type = V4L2_MBUS_PARALLEL
2168 		};
2169 		int ret;
2170 
2171 		dev_dbg(isp->dev, "parsing parallel interface\n");
2172 
2173 		ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2174 
2175 		if (!ret) {
2176 			isd = v4l2_async_nf_add_fwnode_remote(&isp->notifier,
2177 							      ep, struct
2178 							      isp_async_subdev);
2179 			if (!IS_ERR(isd))
2180 				isp_parse_of_parallel_endpoint(isp->dev, &vep, &isd->bus);
2181 		}
2182 
2183 		fwnode_handle_put(ep);
2184 	}
2185 
2186 	for (i = 0; i < ARRAY_SIZE(isp_bus_interfaces); i++) {
2187 		struct v4l2_fwnode_endpoint vep = {
2188 			.bus_type = V4L2_MBUS_CSI2_DPHY
2189 		};
2190 		int ret;
2191 
2192 		ep = fwnode_graph_get_endpoint_by_id(
2193 			dev_fwnode(isp->dev), isp_bus_interfaces[i].phy, 0,
2194 			FWNODE_GRAPH_ENDPOINT_NEXT);
2195 
2196 		if (!ep)
2197 			continue;
2198 
2199 		dev_dbg(isp->dev, "parsing serial interface %u, node %pOF\n", i,
2200 			to_of_node(ep));
2201 
2202 		ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2203 		if (ret == -ENXIO) {
2204 			vep = (struct v4l2_fwnode_endpoint)
2205 				{ .bus_type = V4L2_MBUS_CSI1 };
2206 			ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2207 
2208 			if (ret == -ENXIO) {
2209 				vep = (struct v4l2_fwnode_endpoint)
2210 					{ .bus_type = V4L2_MBUS_CCP2 };
2211 				ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2212 			}
2213 		}
2214 
2215 		if (!ret) {
2216 			isd = v4l2_async_nf_add_fwnode_remote(&isp->notifier,
2217 							      ep,
2218 							      struct
2219 							      isp_async_subdev);
2220 
2221 			if (!IS_ERR(isd)) {
2222 				switch (vep.bus_type) {
2223 				case V4L2_MBUS_CSI2_DPHY:
2224 					isd->bus.interface =
2225 						isp_bus_interfaces[i].csi2_if;
2226 					isp_parse_of_csi2_endpoint(isp->dev, &vep, &isd->bus);
2227 					break;
2228 				case V4L2_MBUS_CSI1:
2229 				case V4L2_MBUS_CCP2:
2230 					isd->bus.interface =
2231 						isp_bus_interfaces[i].csi1_if;
2232 					isp_parse_of_csi1_endpoint(isp->dev, &vep,
2233 								   &isd->bus);
2234 					break;
2235 				default:
2236 					break;
2237 				}
2238 			}
2239 		}
2240 
2241 		fwnode_handle_put(ep);
2242 	}
2243 
2244 	return 0;
2245 }
2246 
2247 static const struct v4l2_async_notifier_operations isp_subdev_notifier_ops = {
2248 	.complete = isp_subdev_notifier_complete,
2249 };
2250 
2251 /*
2252  * isp_probe - Probe ISP platform device
2253  * @pdev: Pointer to ISP platform device
2254  *
2255  * Returns 0 if successful,
2256  *   -ENOMEM if no memory available,
2257  *   -ENODEV if no platform device resources found
2258  *     or no space for remapping registers,
2259  *   -EINVAL if couldn't install ISR,
2260  *   or clk_get return error value.
2261  */
2262 static int isp_probe(struct platform_device *pdev)
2263 {
2264 	struct isp_device *isp;
2265 	struct resource *mem;
2266 	int ret;
2267 	int i, m;
2268 
2269 	isp = kzalloc(sizeof(*isp), GFP_KERNEL);
2270 	if (!isp) {
2271 		dev_err(&pdev->dev, "could not allocate memory\n");
2272 		return -ENOMEM;
2273 	}
2274 
2275 	ret = fwnode_property_read_u32(of_fwnode_handle(pdev->dev.of_node),
2276 				       "ti,phy-type", &isp->phy_type);
2277 	if (ret)
2278 		goto error_release_isp;
2279 
2280 	isp->syscon = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
2281 						      "syscon");
2282 	if (IS_ERR(isp->syscon)) {
2283 		ret = PTR_ERR(isp->syscon);
2284 		goto error_release_isp;
2285 	}
2286 
2287 	ret = of_property_read_u32_index(pdev->dev.of_node,
2288 					 "syscon", 1, &isp->syscon_offset);
2289 	if (ret)
2290 		goto error_release_isp;
2291 
2292 	isp->autoidle = autoidle;
2293 
2294 	mutex_init(&isp->isp_mutex);
2295 	spin_lock_init(&isp->stat_lock);
2296 	v4l2_async_nf_init(&isp->notifier);
2297 	isp->dev = &pdev->dev;
2298 
2299 	ret = isp_parse_of_endpoints(isp);
2300 	if (ret < 0)
2301 		goto error;
2302 
2303 	isp->ref_count = 0;
2304 
2305 	ret = dma_coerce_mask_and_coherent(isp->dev, DMA_BIT_MASK(32));
2306 	if (ret)
2307 		goto error;
2308 
2309 	platform_set_drvdata(pdev, isp);
2310 
2311 	/* Regulators */
2312 	isp->isp_csiphy1.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy1");
2313 	isp->isp_csiphy2.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy2");
2314 
2315 	/* Clocks
2316 	 *
2317 	 * The ISP clock tree is revision-dependent. We thus need to enable ICLK
2318 	 * manually to read the revision before calling __omap3isp_get().
2319 	 *
2320 	 * Start by mapping the ISP MMIO area, which is in two pieces.
2321 	 * The ISP IOMMU is in between. Map both now, and fill in the
2322 	 * ISP revision specific portions a little later in the
2323 	 * function.
2324 	 */
2325 	for (i = 0; i < 2; i++) {
2326 		unsigned int map_idx = i ? OMAP3_ISP_IOMEM_CSI2A_REGS1 : 0;
2327 
2328 		mem = platform_get_resource(pdev, IORESOURCE_MEM, i);
2329 		isp->mmio_base[map_idx] =
2330 			devm_ioremap_resource(isp->dev, mem);
2331 		if (IS_ERR(isp->mmio_base[map_idx])) {
2332 			ret = PTR_ERR(isp->mmio_base[map_idx]);
2333 			goto error;
2334 		}
2335 	}
2336 
2337 	ret = isp_get_clocks(isp);
2338 	if (ret < 0)
2339 		goto error;
2340 
2341 	ret = clk_enable(isp->clock[ISP_CLK_CAM_ICK]);
2342 	if (ret < 0)
2343 		goto error;
2344 
2345 	isp->revision = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
2346 	dev_info(isp->dev, "Revision %d.%d found\n",
2347 		 (isp->revision & 0xf0) >> 4, isp->revision & 0x0f);
2348 
2349 	clk_disable(isp->clock[ISP_CLK_CAM_ICK]);
2350 
2351 	if (__omap3isp_get(isp, false) == NULL) {
2352 		ret = -ENODEV;
2353 		goto error;
2354 	}
2355 
2356 	ret = isp_reset(isp);
2357 	if (ret < 0)
2358 		goto error_isp;
2359 
2360 	ret = isp_xclk_init(isp);
2361 	if (ret < 0)
2362 		goto error_isp;
2363 
2364 	/* Memory resources */
2365 	for (m = 0; m < ARRAY_SIZE(isp_res_maps); m++)
2366 		if (isp->revision == isp_res_maps[m].isp_rev)
2367 			break;
2368 
2369 	if (m == ARRAY_SIZE(isp_res_maps)) {
2370 		dev_err(isp->dev, "No resource map found for ISP rev %d.%d\n",
2371 			(isp->revision & 0xf0) >> 4, isp->revision & 0xf);
2372 		ret = -ENODEV;
2373 		goto error_isp;
2374 	}
2375 
2376 	for (i = 1; i < OMAP3_ISP_IOMEM_CSI2A_REGS1; i++)
2377 		isp->mmio_base[i] =
2378 			isp->mmio_base[0] + isp_res_maps[m].offset[i];
2379 
2380 	for (i = OMAP3_ISP_IOMEM_CSIPHY2; i < OMAP3_ISP_IOMEM_LAST; i++)
2381 		isp->mmio_base[i] =
2382 			isp->mmio_base[OMAP3_ISP_IOMEM_CSI2A_REGS1]
2383 			+ isp_res_maps[m].offset[i];
2384 
2385 	isp->mmio_hist_base_phys =
2386 		mem->start + isp_res_maps[m].offset[OMAP3_ISP_IOMEM_HIST];
2387 
2388 	/* IOMMU */
2389 	ret = isp_attach_iommu(isp);
2390 	if (ret < 0) {
2391 		dev_err(&pdev->dev, "unable to attach to IOMMU\n");
2392 		goto error_isp;
2393 	}
2394 
2395 	/* Interrupt */
2396 	ret = platform_get_irq(pdev, 0);
2397 	if (ret <= 0) {
2398 		ret = -ENODEV;
2399 		goto error_iommu;
2400 	}
2401 	isp->irq_num = ret;
2402 
2403 	if (devm_request_irq(isp->dev, isp->irq_num, isp_isr, IRQF_SHARED,
2404 			     "OMAP3 ISP", isp)) {
2405 		dev_err(isp->dev, "Unable to request IRQ\n");
2406 		ret = -EINVAL;
2407 		goto error_iommu;
2408 	}
2409 
2410 	/* Entities */
2411 	ret = isp_initialize_modules(isp);
2412 	if (ret < 0)
2413 		goto error_iommu;
2414 
2415 	ret = isp_register_entities(isp);
2416 	if (ret < 0)
2417 		goto error_modules;
2418 
2419 	ret = isp_create_links(isp);
2420 	if (ret < 0)
2421 		goto error_register_entities;
2422 
2423 	isp->notifier.ops = &isp_subdev_notifier_ops;
2424 
2425 	ret = v4l2_async_nf_register(&isp->v4l2_dev, &isp->notifier);
2426 	if (ret)
2427 		goto error_register_entities;
2428 
2429 	isp_core_init(isp, 1);
2430 	omap3isp_put(isp);
2431 
2432 	return 0;
2433 
2434 error_register_entities:
2435 	isp_unregister_entities(isp);
2436 error_modules:
2437 	isp_cleanup_modules(isp);
2438 error_iommu:
2439 	isp_detach_iommu(isp);
2440 error_isp:
2441 	isp_xclk_cleanup(isp);
2442 	__omap3isp_put(isp, false);
2443 error:
2444 	v4l2_async_nf_cleanup(&isp->notifier);
2445 	mutex_destroy(&isp->isp_mutex);
2446 error_release_isp:
2447 	kfree(isp);
2448 
2449 	return ret;
2450 }
2451 
2452 static const struct dev_pm_ops omap3isp_pm_ops = {
2453 	.prepare = isp_pm_prepare,
2454 	.suspend = isp_pm_suspend,
2455 	.resume = isp_pm_resume,
2456 	.complete = isp_pm_complete,
2457 };
2458 
2459 static const struct platform_device_id omap3isp_id_table[] = {
2460 	{ "omap3isp", 0 },
2461 	{ },
2462 };
2463 MODULE_DEVICE_TABLE(platform, omap3isp_id_table);
2464 
2465 static const struct of_device_id omap3isp_of_table[] = {
2466 	{ .compatible = "ti,omap3-isp" },
2467 	{ },
2468 };
2469 MODULE_DEVICE_TABLE(of, omap3isp_of_table);
2470 
2471 static struct platform_driver omap3isp_driver = {
2472 	.probe = isp_probe,
2473 	.remove = isp_remove,
2474 	.id_table = omap3isp_id_table,
2475 	.driver = {
2476 		.name = "omap3isp",
2477 		.pm	= &omap3isp_pm_ops,
2478 		.of_match_table = omap3isp_of_table,
2479 	},
2480 };
2481 
2482 module_platform_driver(omap3isp_driver);
2483 
2484 MODULE_AUTHOR("Nokia Corporation");
2485 MODULE_DESCRIPTION("TI OMAP3 ISP driver");
2486 MODULE_LICENSE("GPL");
2487 MODULE_VERSION(ISP_VIDEO_DRIVER_VERSION);
2488