1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TI Camera Access Layer (CAL) - Driver 4 * 5 * Copyright (c) 2015-2020 Texas Instruments Inc. 6 * 7 * Authors: 8 * Benoit Parrot <bparrot@ti.com> 9 * Laurent Pinchart <laurent.pinchart@ideasonboard.com> 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/interrupt.h> 14 #include <linux/mfd/syscon.h> 15 #include <linux/module.h> 16 #include <linux/of.h> 17 #include <linux/platform_device.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/regmap.h> 20 #include <linux/slab.h> 21 #include <linux/videodev2.h> 22 23 #include <media/media-device.h> 24 #include <media/v4l2-async.h> 25 #include <media/v4l2-common.h> 26 #include <media/v4l2-device.h> 27 #include <media/videobuf2-core.h> 28 #include <media/videobuf2-dma-contig.h> 29 30 #include "cal.h" 31 #include "cal_regs.h" 32 33 MODULE_DESCRIPTION("TI CAL driver"); 34 MODULE_AUTHOR("Benoit Parrot, <bparrot@ti.com>"); 35 MODULE_LICENSE("GPL v2"); 36 MODULE_VERSION("0.1.0"); 37 38 int cal_video_nr = -1; 39 module_param_named(video_nr, cal_video_nr, uint, 0644); 40 MODULE_PARM_DESC(video_nr, "videoX start number, -1 is autodetect"); 41 42 unsigned int cal_debug; 43 module_param_named(debug, cal_debug, uint, 0644); 44 MODULE_PARM_DESC(debug, "activates debug info"); 45 46 #ifdef CONFIG_VIDEO_TI_CAL_MC 47 #define CAL_MC_API_DEFAULT 1 48 #else 49 #define CAL_MC_API_DEFAULT 0 50 #endif 51 52 bool cal_mc_api = CAL_MC_API_DEFAULT; 53 module_param_named(mc_api, cal_mc_api, bool, 0444); 54 MODULE_PARM_DESC(mc_api, "activates the MC API"); 55 56 /* ------------------------------------------------------------------ 57 * Format Handling 58 * ------------------------------------------------------------------ 59 */ 60 61 const struct cal_format_info cal_formats[] = { 62 { 63 .fourcc = V4L2_PIX_FMT_YUYV, 64 .code = MEDIA_BUS_FMT_YUYV8_1X16, 65 .bpp = 16, 66 }, { 67 .fourcc = V4L2_PIX_FMT_UYVY, 68 .code = MEDIA_BUS_FMT_UYVY8_1X16, 69 .bpp = 16, 70 }, { 71 .fourcc = V4L2_PIX_FMT_YVYU, 72 .code = MEDIA_BUS_FMT_YVYU8_1X16, 73 .bpp = 16, 74 }, { 75 .fourcc = V4L2_PIX_FMT_VYUY, 76 .code = MEDIA_BUS_FMT_VYUY8_1X16, 77 .bpp = 16, 78 }, { 79 .fourcc = V4L2_PIX_FMT_RGB565, 80 .code = MEDIA_BUS_FMT_RGB565_1X16, 81 .bpp = 16, 82 }, { 83 .fourcc = V4L2_PIX_FMT_SBGGR8, 84 .code = MEDIA_BUS_FMT_SBGGR8_1X8, 85 .bpp = 8, 86 }, { 87 .fourcc = V4L2_PIX_FMT_SGBRG8, 88 .code = MEDIA_BUS_FMT_SGBRG8_1X8, 89 .bpp = 8, 90 }, { 91 .fourcc = V4L2_PIX_FMT_SGRBG8, 92 .code = MEDIA_BUS_FMT_SGRBG8_1X8, 93 .bpp = 8, 94 }, { 95 .fourcc = V4L2_PIX_FMT_SRGGB8, 96 .code = MEDIA_BUS_FMT_SRGGB8_1X8, 97 .bpp = 8, 98 }, { 99 .fourcc = V4L2_PIX_FMT_SBGGR10, 100 .code = MEDIA_BUS_FMT_SBGGR10_1X10, 101 .bpp = 10, 102 }, { 103 .fourcc = V4L2_PIX_FMT_SGBRG10, 104 .code = MEDIA_BUS_FMT_SGBRG10_1X10, 105 .bpp = 10, 106 }, { 107 .fourcc = V4L2_PIX_FMT_SGRBG10, 108 .code = MEDIA_BUS_FMT_SGRBG10_1X10, 109 .bpp = 10, 110 }, { 111 .fourcc = V4L2_PIX_FMT_SRGGB10, 112 .code = MEDIA_BUS_FMT_SRGGB10_1X10, 113 .bpp = 10, 114 }, { 115 .fourcc = V4L2_PIX_FMT_SBGGR12, 116 .code = MEDIA_BUS_FMT_SBGGR12_1X12, 117 .bpp = 12, 118 }, { 119 .fourcc = V4L2_PIX_FMT_SGBRG12, 120 .code = MEDIA_BUS_FMT_SGBRG12_1X12, 121 .bpp = 12, 122 }, { 123 .fourcc = V4L2_PIX_FMT_SGRBG12, 124 .code = MEDIA_BUS_FMT_SGRBG12_1X12, 125 .bpp = 12, 126 }, { 127 .fourcc = V4L2_PIX_FMT_SRGGB12, 128 .code = MEDIA_BUS_FMT_SRGGB12_1X12, 129 .bpp = 12, 130 }, 131 }; 132 133 const unsigned int cal_num_formats = ARRAY_SIZE(cal_formats); 134 135 const struct cal_format_info *cal_format_by_fourcc(u32 fourcc) 136 { 137 unsigned int i; 138 139 for (i = 0; i < ARRAY_SIZE(cal_formats); ++i) { 140 if (cal_formats[i].fourcc == fourcc) 141 return &cal_formats[i]; 142 } 143 144 return NULL; 145 } 146 147 const struct cal_format_info *cal_format_by_code(u32 code) 148 { 149 unsigned int i; 150 151 for (i = 0; i < ARRAY_SIZE(cal_formats); ++i) { 152 if (cal_formats[i].code == code) 153 return &cal_formats[i]; 154 } 155 156 return NULL; 157 } 158 159 /* ------------------------------------------------------------------ 160 * Platform Data 161 * ------------------------------------------------------------------ 162 */ 163 164 static const struct cal_camerarx_data dra72x_cal_camerarx[] = { 165 { 166 .fields = { 167 [F_CTRLCLKEN] = { 10, 10 }, 168 [F_CAMMODE] = { 11, 12 }, 169 [F_LANEENABLE] = { 13, 16 }, 170 [F_CSI_MODE] = { 17, 17 }, 171 }, 172 .num_lanes = 4, 173 }, 174 { 175 .fields = { 176 [F_CTRLCLKEN] = { 0, 0 }, 177 [F_CAMMODE] = { 1, 2 }, 178 [F_LANEENABLE] = { 3, 4 }, 179 [F_CSI_MODE] = { 5, 5 }, 180 }, 181 .num_lanes = 2, 182 }, 183 }; 184 185 static const struct cal_data dra72x_cal_data = { 186 .camerarx = dra72x_cal_camerarx, 187 .num_csi2_phy = ARRAY_SIZE(dra72x_cal_camerarx), 188 }; 189 190 static const struct cal_data dra72x_es1_cal_data = { 191 .camerarx = dra72x_cal_camerarx, 192 .num_csi2_phy = ARRAY_SIZE(dra72x_cal_camerarx), 193 .flags = DRA72_CAL_PRE_ES2_LDO_DISABLE, 194 }; 195 196 static const struct cal_camerarx_data dra76x_cal_csi_phy[] = { 197 { 198 .fields = { 199 [F_CTRLCLKEN] = { 8, 8 }, 200 [F_CAMMODE] = { 9, 10 }, 201 [F_CSI_MODE] = { 11, 11 }, 202 [F_LANEENABLE] = { 27, 31 }, 203 }, 204 .num_lanes = 5, 205 }, 206 { 207 .fields = { 208 [F_CTRLCLKEN] = { 0, 0 }, 209 [F_CAMMODE] = { 1, 2 }, 210 [F_CSI_MODE] = { 3, 3 }, 211 [F_LANEENABLE] = { 24, 26 }, 212 }, 213 .num_lanes = 3, 214 }, 215 }; 216 217 static const struct cal_data dra76x_cal_data = { 218 .camerarx = dra76x_cal_csi_phy, 219 .num_csi2_phy = ARRAY_SIZE(dra76x_cal_csi_phy), 220 }; 221 222 static const struct cal_camerarx_data am654_cal_csi_phy[] = { 223 { 224 .fields = { 225 [F_CTRLCLKEN] = { 15, 15 }, 226 [F_CAMMODE] = { 24, 25 }, 227 [F_LANEENABLE] = { 0, 4 }, 228 }, 229 .num_lanes = 5, 230 }, 231 }; 232 233 static const struct cal_data am654_cal_data = { 234 .camerarx = am654_cal_csi_phy, 235 .num_csi2_phy = ARRAY_SIZE(am654_cal_csi_phy), 236 }; 237 238 /* ------------------------------------------------------------------ 239 * I/O Register Accessors 240 * ------------------------------------------------------------------ 241 */ 242 243 void cal_quickdump_regs(struct cal_dev *cal) 244 { 245 unsigned int i; 246 247 cal_info(cal, "CAL Registers @ 0x%pa:\n", &cal->res->start); 248 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4, 249 (__force const void *)cal->base, 250 resource_size(cal->res), false); 251 252 for (i = 0; i < cal->data->num_csi2_phy; ++i) { 253 struct cal_camerarx *phy = cal->phy[i]; 254 255 cal_info(cal, "CSI2 Core %u Registers @ %pa:\n", i, 256 &phy->res->start); 257 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4, 258 (__force const void *)phy->base, 259 resource_size(phy->res), 260 false); 261 } 262 } 263 264 /* ------------------------------------------------------------------ 265 * Context Management 266 * ------------------------------------------------------------------ 267 */ 268 269 #define CAL_MAX_PIX_PROC 4 270 271 static int cal_reserve_pix_proc(struct cal_dev *cal) 272 { 273 unsigned long ret; 274 275 spin_lock(&cal->v4l2_dev.lock); 276 277 ret = find_first_zero_bit(&cal->reserved_pix_proc_mask, CAL_MAX_PIX_PROC); 278 279 if (ret == CAL_MAX_PIX_PROC) { 280 spin_unlock(&cal->v4l2_dev.lock); 281 return -ENOSPC; 282 } 283 284 cal->reserved_pix_proc_mask |= BIT(ret); 285 286 spin_unlock(&cal->v4l2_dev.lock); 287 288 return ret; 289 } 290 291 static void cal_release_pix_proc(struct cal_dev *cal, unsigned int pix_proc_num) 292 { 293 spin_lock(&cal->v4l2_dev.lock); 294 295 cal->reserved_pix_proc_mask &= ~BIT(pix_proc_num); 296 297 spin_unlock(&cal->v4l2_dev.lock); 298 } 299 300 static void cal_ctx_csi2_config(struct cal_ctx *ctx) 301 { 302 u32 val; 303 304 val = cal_read(ctx->cal, CAL_CSI2_CTX(ctx->phy->instance, ctx->csi2_ctx)); 305 cal_set_field(&val, ctx->cport, CAL_CSI2_CTX_CPORT_MASK); 306 /* 307 * DT type: MIPI CSI-2 Specs 308 * 0x1: All - DT filter is disabled 309 * 0x24: RGB888 1 pixel = 3 bytes 310 * 0x2B: RAW10 4 pixels = 5 bytes 311 * 0x2A: RAW8 1 pixel = 1 byte 312 * 0x1E: YUV422 2 pixels = 4 bytes 313 */ 314 cal_set_field(&val, ctx->datatype, CAL_CSI2_CTX_DT_MASK); 315 cal_set_field(&val, ctx->vc, CAL_CSI2_CTX_VC_MASK); 316 cal_set_field(&val, ctx->v_fmt.fmt.pix.height, CAL_CSI2_CTX_LINES_MASK); 317 cal_set_field(&val, CAL_CSI2_CTX_ATT_PIX, CAL_CSI2_CTX_ATT_MASK); 318 cal_set_field(&val, CAL_CSI2_CTX_PACK_MODE_LINE, 319 CAL_CSI2_CTX_PACK_MODE_MASK); 320 cal_write(ctx->cal, CAL_CSI2_CTX(ctx->phy->instance, ctx->csi2_ctx), val); 321 ctx_dbg(3, ctx, "CAL_CSI2_CTX(%u, %u) = 0x%08x\n", 322 ctx->phy->instance, ctx->csi2_ctx, 323 cal_read(ctx->cal, CAL_CSI2_CTX(ctx->phy->instance, ctx->csi2_ctx))); 324 } 325 326 static void cal_ctx_pix_proc_config(struct cal_ctx *ctx) 327 { 328 u32 val, extract, pack; 329 330 switch (ctx->fmtinfo->bpp) { 331 case 8: 332 extract = CAL_PIX_PROC_EXTRACT_B8; 333 pack = CAL_PIX_PROC_PACK_B8; 334 break; 335 case 10: 336 extract = CAL_PIX_PROC_EXTRACT_B10_MIPI; 337 pack = CAL_PIX_PROC_PACK_B16; 338 break; 339 case 12: 340 extract = CAL_PIX_PROC_EXTRACT_B12_MIPI; 341 pack = CAL_PIX_PROC_PACK_B16; 342 break; 343 case 16: 344 extract = CAL_PIX_PROC_EXTRACT_B16_LE; 345 pack = CAL_PIX_PROC_PACK_B16; 346 break; 347 default: 348 /* 349 * If you see this warning then it means that you added 350 * some new entry in the cal_formats[] array with a different 351 * bit per pixel values then the one supported below. 352 * Either add support for the new bpp value below or adjust 353 * the new entry to use one of the value below. 354 * 355 * Instead of failing here just use 8 bpp as a default. 356 */ 357 dev_warn_once(ctx->cal->dev, 358 "%s:%d:%s: bpp:%d unsupported! Overwritten with 8.\n", 359 __FILE__, __LINE__, __func__, ctx->fmtinfo->bpp); 360 extract = CAL_PIX_PROC_EXTRACT_B8; 361 pack = CAL_PIX_PROC_PACK_B8; 362 break; 363 } 364 365 val = cal_read(ctx->cal, CAL_PIX_PROC(ctx->pix_proc)); 366 cal_set_field(&val, extract, CAL_PIX_PROC_EXTRACT_MASK); 367 cal_set_field(&val, CAL_PIX_PROC_DPCMD_BYPASS, CAL_PIX_PROC_DPCMD_MASK); 368 cal_set_field(&val, CAL_PIX_PROC_DPCME_BYPASS, CAL_PIX_PROC_DPCME_MASK); 369 cal_set_field(&val, pack, CAL_PIX_PROC_PACK_MASK); 370 cal_set_field(&val, ctx->cport, CAL_PIX_PROC_CPORT_MASK); 371 cal_set_field(&val, 1, CAL_PIX_PROC_EN_MASK); 372 cal_write(ctx->cal, CAL_PIX_PROC(ctx->pix_proc), val); 373 ctx_dbg(3, ctx, "CAL_PIX_PROC(%u) = 0x%08x\n", ctx->pix_proc, 374 cal_read(ctx->cal, CAL_PIX_PROC(ctx->pix_proc))); 375 } 376 377 static void cal_ctx_wr_dma_config(struct cal_ctx *ctx) 378 { 379 unsigned int stride = ctx->v_fmt.fmt.pix.bytesperline; 380 u32 val; 381 382 val = cal_read(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx)); 383 cal_set_field(&val, ctx->cport, CAL_WR_DMA_CTRL_CPORT_MASK); 384 cal_set_field(&val, ctx->v_fmt.fmt.pix.height, 385 CAL_WR_DMA_CTRL_YSIZE_MASK); 386 cal_set_field(&val, CAL_WR_DMA_CTRL_DTAG_PIX_DAT, 387 CAL_WR_DMA_CTRL_DTAG_MASK); 388 cal_set_field(&val, CAL_WR_DMA_CTRL_PATTERN_LINEAR, 389 CAL_WR_DMA_CTRL_PATTERN_MASK); 390 cal_set_field(&val, 1, CAL_WR_DMA_CTRL_STALL_RD_MASK); 391 cal_write(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx), val); 392 ctx_dbg(3, ctx, "CAL_WR_DMA_CTRL(%d) = 0x%08x\n", ctx->dma_ctx, 393 cal_read(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx))); 394 395 cal_write_field(ctx->cal, CAL_WR_DMA_OFST(ctx->dma_ctx), 396 stride / 16, CAL_WR_DMA_OFST_MASK); 397 ctx_dbg(3, ctx, "CAL_WR_DMA_OFST(%d) = 0x%08x\n", ctx->dma_ctx, 398 cal_read(ctx->cal, CAL_WR_DMA_OFST(ctx->dma_ctx))); 399 400 val = cal_read(ctx->cal, CAL_WR_DMA_XSIZE(ctx->dma_ctx)); 401 /* 64 bit word means no skipping */ 402 cal_set_field(&val, 0, CAL_WR_DMA_XSIZE_XSKIP_MASK); 403 /* 404 * The XSIZE field is expressed in 64-bit units and prevents overflows 405 * in case of synchronization issues by limiting the number of bytes 406 * written per line. 407 */ 408 cal_set_field(&val, stride / 8, CAL_WR_DMA_XSIZE_MASK); 409 cal_write(ctx->cal, CAL_WR_DMA_XSIZE(ctx->dma_ctx), val); 410 ctx_dbg(3, ctx, "CAL_WR_DMA_XSIZE(%d) = 0x%08x\n", ctx->dma_ctx, 411 cal_read(ctx->cal, CAL_WR_DMA_XSIZE(ctx->dma_ctx))); 412 } 413 414 void cal_ctx_set_dma_addr(struct cal_ctx *ctx, dma_addr_t addr) 415 { 416 cal_write(ctx->cal, CAL_WR_DMA_ADDR(ctx->dma_ctx), addr); 417 } 418 419 static void cal_ctx_wr_dma_enable(struct cal_ctx *ctx) 420 { 421 u32 val = cal_read(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx)); 422 423 cal_set_field(&val, CAL_WR_DMA_CTRL_MODE_CONST, 424 CAL_WR_DMA_CTRL_MODE_MASK); 425 cal_write(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx), val); 426 } 427 428 static void cal_ctx_wr_dma_disable(struct cal_ctx *ctx) 429 { 430 u32 val = cal_read(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx)); 431 432 cal_set_field(&val, CAL_WR_DMA_CTRL_MODE_DIS, 433 CAL_WR_DMA_CTRL_MODE_MASK); 434 cal_write(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx), val); 435 } 436 437 static bool cal_ctx_wr_dma_stopped(struct cal_ctx *ctx) 438 { 439 bool stopped; 440 441 spin_lock_irq(&ctx->dma.lock); 442 stopped = ctx->dma.state == CAL_DMA_STOPPED; 443 spin_unlock_irq(&ctx->dma.lock); 444 445 return stopped; 446 } 447 448 static int 449 cal_get_remote_frame_desc_entry(struct cal_ctx *ctx, 450 struct v4l2_mbus_frame_desc_entry *entry) 451 { 452 struct v4l2_mbus_frame_desc fd; 453 struct media_pad *phy_source_pad; 454 int ret; 455 456 phy_source_pad = media_pad_remote_pad_first(&ctx->pad); 457 if (!phy_source_pad) 458 return -ENODEV; 459 460 ret = v4l2_subdev_call(&ctx->phy->subdev, pad, get_frame_desc, 461 phy_source_pad->index, &fd); 462 if (ret) 463 return ret; 464 465 if (fd.num_entries != 1) 466 return -EINVAL; 467 468 *entry = fd.entry[0]; 469 470 return 0; 471 } 472 473 int cal_ctx_prepare(struct cal_ctx *ctx) 474 { 475 struct v4l2_mbus_frame_desc_entry entry; 476 int ret; 477 478 ret = cal_get_remote_frame_desc_entry(ctx, &entry); 479 480 if (ret == -ENOIOCTLCMD) { 481 ctx->vc = 0; 482 ctx->datatype = CAL_CSI2_CTX_DT_ANY; 483 } else if (!ret) { 484 ctx_dbg(2, ctx, "Framedesc: len %u, vc %u, dt %#x\n", 485 entry.length, entry.bus.csi2.vc, entry.bus.csi2.dt); 486 487 ctx->vc = entry.bus.csi2.vc; 488 ctx->datatype = entry.bus.csi2.dt; 489 } else { 490 return ret; 491 } 492 493 ctx->use_pix_proc = !ctx->fmtinfo->meta; 494 495 if (ctx->use_pix_proc) { 496 ret = cal_reserve_pix_proc(ctx->cal); 497 if (ret < 0) { 498 ctx_err(ctx, "Failed to reserve pix proc: %d\n", ret); 499 return ret; 500 } 501 502 ctx->pix_proc = ret; 503 } 504 505 return 0; 506 } 507 508 void cal_ctx_unprepare(struct cal_ctx *ctx) 509 { 510 if (ctx->use_pix_proc) 511 cal_release_pix_proc(ctx->cal, ctx->pix_proc); 512 } 513 514 void cal_ctx_start(struct cal_ctx *ctx) 515 { 516 struct cal_camerarx *phy = ctx->phy; 517 518 /* 519 * Reset the frame number & sequence number, but only if the 520 * virtual channel is not already in use. 521 */ 522 523 spin_lock(&phy->vc_lock); 524 525 if (phy->vc_enable_count[ctx->vc]++ == 0) { 526 phy->vc_frame_number[ctx->vc] = 0; 527 phy->vc_sequence[ctx->vc] = 0; 528 } 529 530 spin_unlock(&phy->vc_lock); 531 532 ctx->dma.state = CAL_DMA_RUNNING; 533 534 /* Configure the CSI-2, pixel processing and write DMA contexts. */ 535 cal_ctx_csi2_config(ctx); 536 if (ctx->use_pix_proc) 537 cal_ctx_pix_proc_config(ctx); 538 cal_ctx_wr_dma_config(ctx); 539 540 /* Enable IRQ_WDMA_END and IRQ_WDMA_START. */ 541 cal_write(ctx->cal, CAL_HL_IRQENABLE_SET(1), 542 CAL_HL_IRQ_WDMA_END_MASK(ctx->dma_ctx)); 543 cal_write(ctx->cal, CAL_HL_IRQENABLE_SET(2), 544 CAL_HL_IRQ_WDMA_START_MASK(ctx->dma_ctx)); 545 546 cal_ctx_wr_dma_enable(ctx); 547 } 548 549 void cal_ctx_stop(struct cal_ctx *ctx) 550 { 551 struct cal_camerarx *phy = ctx->phy; 552 long time_left; 553 554 WARN_ON(phy->vc_enable_count[ctx->vc] == 0); 555 556 spin_lock(&phy->vc_lock); 557 phy->vc_enable_count[ctx->vc]--; 558 spin_unlock(&phy->vc_lock); 559 560 /* 561 * Request DMA stop and wait until it completes. If completion times 562 * out, forcefully disable the DMA. 563 */ 564 spin_lock_irq(&ctx->dma.lock); 565 ctx->dma.state = CAL_DMA_STOP_REQUESTED; 566 spin_unlock_irq(&ctx->dma.lock); 567 568 time_left = wait_event_timeout(ctx->dma.wait, cal_ctx_wr_dma_stopped(ctx), 569 msecs_to_jiffies(500)); 570 if (!time_left) { 571 ctx_err(ctx, "failed to disable dma cleanly\n"); 572 cal_ctx_wr_dma_disable(ctx); 573 } 574 575 /* Disable IRQ_WDMA_END and IRQ_WDMA_START. */ 576 cal_write(ctx->cal, CAL_HL_IRQENABLE_CLR(1), 577 CAL_HL_IRQ_WDMA_END_MASK(ctx->dma_ctx)); 578 cal_write(ctx->cal, CAL_HL_IRQENABLE_CLR(2), 579 CAL_HL_IRQ_WDMA_START_MASK(ctx->dma_ctx)); 580 581 ctx->dma.state = CAL_DMA_STOPPED; 582 583 /* Disable CSI2 context */ 584 cal_write(ctx->cal, CAL_CSI2_CTX(ctx->phy->instance, ctx->csi2_ctx), 0); 585 586 /* Disable pix proc */ 587 if (ctx->use_pix_proc) 588 cal_write(ctx->cal, CAL_PIX_PROC(ctx->pix_proc), 0); 589 } 590 591 /* ------------------------------------------------------------------ 592 * IRQ Handling 593 * ------------------------------------------------------------------ 594 */ 595 596 /* 597 * Track a sequence number for each virtual channel, which is shared by 598 * all contexts using the same virtual channel. This is done using the 599 * CSI-2 frame number as a base. 600 */ 601 static void cal_update_seq_number(struct cal_ctx *ctx) 602 { 603 struct cal_dev *cal = ctx->cal; 604 struct cal_camerarx *phy = ctx->phy; 605 u16 prev_frame_num, frame_num; 606 u8 vc = ctx->vc; 607 608 frame_num = 609 cal_read(cal, CAL_CSI2_STATUS(phy->instance, ctx->csi2_ctx)) & 610 0xffff; 611 612 if (phy->vc_frame_number[vc] != frame_num) { 613 prev_frame_num = phy->vc_frame_number[vc]; 614 615 if (prev_frame_num >= frame_num) 616 phy->vc_sequence[vc] += 1; 617 else 618 phy->vc_sequence[vc] += frame_num - prev_frame_num; 619 620 phy->vc_frame_number[vc] = frame_num; 621 } 622 } 623 624 static inline void cal_irq_wdma_start(struct cal_ctx *ctx) 625 { 626 spin_lock(&ctx->dma.lock); 627 628 if (ctx->dma.state == CAL_DMA_STOP_REQUESTED) { 629 /* 630 * If a stop is requested, disable the write DMA context 631 * immediately. The CAL_WR_DMA_CTRL_j.MODE field is shadowed, 632 * the current frame will complete and the DMA will then stop. 633 */ 634 cal_ctx_wr_dma_disable(ctx); 635 ctx->dma.state = CAL_DMA_STOP_PENDING; 636 } else if (!list_empty(&ctx->dma.queue) && !ctx->dma.pending) { 637 /* 638 * Otherwise, if a new buffer is available, queue it to the 639 * hardware. 640 */ 641 struct cal_buffer *buf; 642 dma_addr_t addr; 643 644 buf = list_first_entry(&ctx->dma.queue, struct cal_buffer, 645 list); 646 addr = vb2_dma_contig_plane_dma_addr(&buf->vb.vb2_buf, 0); 647 cal_ctx_set_dma_addr(ctx, addr); 648 649 ctx->dma.pending = buf; 650 list_del(&buf->list); 651 } 652 653 spin_unlock(&ctx->dma.lock); 654 655 cal_update_seq_number(ctx); 656 } 657 658 static inline void cal_irq_wdma_end(struct cal_ctx *ctx) 659 { 660 struct cal_buffer *buf = NULL; 661 662 spin_lock(&ctx->dma.lock); 663 664 /* If the DMA context was stopping, it is now stopped. */ 665 if (ctx->dma.state == CAL_DMA_STOP_PENDING) { 666 ctx->dma.state = CAL_DMA_STOPPED; 667 wake_up(&ctx->dma.wait); 668 } 669 670 /* If a new buffer was queued, complete the current buffer. */ 671 if (ctx->dma.pending) { 672 buf = ctx->dma.active; 673 ctx->dma.active = ctx->dma.pending; 674 ctx->dma.pending = NULL; 675 } 676 677 spin_unlock(&ctx->dma.lock); 678 679 if (buf) { 680 buf->vb.vb2_buf.timestamp = ktime_get_ns(); 681 buf->vb.field = ctx->v_fmt.fmt.pix.field; 682 buf->vb.sequence = ctx->phy->vc_sequence[ctx->vc]; 683 684 vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_DONE); 685 } 686 } 687 688 static void cal_irq_handle_wdma(struct cal_ctx *ctx, bool start, bool end) 689 { 690 /* 691 * CAL HW interrupts are inherently racy. If we get both start and end 692 * interrupts, we don't know what has happened: did the DMA for a single 693 * frame start and end, or did one frame end and a new frame start? 694 * 695 * Usually for normal pixel frames we get the interrupts separately. If 696 * we do get both, we have to guess. The assumption in the code below is 697 * that the active vertical area is larger than the blanking vertical 698 * area, and thus it is more likely that we get the end of the old frame 699 * and the start of a new frame. 700 * 701 * However, for embedded data, which is only a few lines high, we always 702 * get both interrupts. Here the assumption is that we get both for the 703 * same frame. 704 */ 705 if (ctx->v_fmt.fmt.pix.height < 10) { 706 if (start) 707 cal_irq_wdma_start(ctx); 708 709 if (end) 710 cal_irq_wdma_end(ctx); 711 } else { 712 if (end) 713 cal_irq_wdma_end(ctx); 714 715 if (start) 716 cal_irq_wdma_start(ctx); 717 } 718 } 719 720 static irqreturn_t cal_irq(int irq_cal, void *data) 721 { 722 struct cal_dev *cal = data; 723 u32 status[3]; 724 unsigned int i; 725 726 for (i = 0; i < 3; ++i) { 727 status[i] = cal_read(cal, CAL_HL_IRQSTATUS(i)); 728 if (status[i]) 729 cal_write(cal, CAL_HL_IRQSTATUS(i), status[i]); 730 } 731 732 if (status[0]) { 733 if (status[0] & CAL_HL_IRQ_OCPO_ERR_MASK) 734 dev_err_ratelimited(cal->dev, "OCPO ERROR\n"); 735 736 for (i = 0; i < cal->data->num_csi2_phy; ++i) { 737 if (status[0] & CAL_HL_IRQ_CIO_MASK(i)) { 738 u32 cio_stat = cal_read(cal, 739 CAL_CSI2_COMPLEXIO_IRQSTATUS(i)); 740 741 dev_err_ratelimited(cal->dev, 742 "CIO%u error: %#08x\n", i, cio_stat); 743 744 cal_write(cal, CAL_CSI2_COMPLEXIO_IRQSTATUS(i), 745 cio_stat); 746 } 747 748 if (status[0] & CAL_HL_IRQ_VC_MASK(i)) { 749 u32 vc_stat = cal_read(cal, CAL_CSI2_VC_IRQSTATUS(i)); 750 751 dev_err_ratelimited(cal->dev, 752 "CIO%u VC error: %#08x\n", 753 i, vc_stat); 754 755 cal_write(cal, CAL_CSI2_VC_IRQSTATUS(i), vc_stat); 756 } 757 } 758 } 759 760 for (i = 0; i < cal->num_contexts; ++i) { 761 bool end = !!(status[1] & CAL_HL_IRQ_WDMA_END_MASK(i)); 762 bool start = !!(status[2] & CAL_HL_IRQ_WDMA_START_MASK(i)); 763 764 if (start || end) 765 cal_irq_handle_wdma(cal->ctx[i], start, end); 766 } 767 768 return IRQ_HANDLED; 769 } 770 771 /* ------------------------------------------------------------------ 772 * Asynchronous V4L2 subdev binding 773 * ------------------------------------------------------------------ 774 */ 775 776 struct cal_v4l2_async_subdev { 777 struct v4l2_async_connection asd; /* Must be first */ 778 struct cal_camerarx *phy; 779 }; 780 781 static inline struct cal_v4l2_async_subdev * 782 to_cal_asd(struct v4l2_async_connection *asd) 783 { 784 return container_of(asd, struct cal_v4l2_async_subdev, asd); 785 } 786 787 static int cal_async_notifier_bound(struct v4l2_async_notifier *notifier, 788 struct v4l2_subdev *subdev, 789 struct v4l2_async_connection *asd) 790 { 791 struct cal_camerarx *phy = to_cal_asd(asd)->phy; 792 int pad; 793 int ret; 794 795 if (phy->source) { 796 phy_info(phy, "Rejecting subdev %s (Already set!!)", 797 subdev->name); 798 return 0; 799 } 800 801 phy->source = subdev; 802 phy_dbg(1, phy, "Using source %s for capture\n", subdev->name); 803 804 pad = media_entity_get_fwnode_pad(&subdev->entity, 805 of_fwnode_handle(phy->source_ep_node), 806 MEDIA_PAD_FL_SOURCE); 807 if (pad < 0) { 808 phy_err(phy, "Source %s has no connected source pad\n", 809 subdev->name); 810 return pad; 811 } 812 813 ret = media_create_pad_link(&subdev->entity, pad, 814 &phy->subdev.entity, CAL_CAMERARX_PAD_SINK, 815 MEDIA_LNK_FL_IMMUTABLE | 816 MEDIA_LNK_FL_ENABLED); 817 if (ret) { 818 phy_err(phy, "Failed to create media link for source %s\n", 819 subdev->name); 820 return ret; 821 } 822 823 return 0; 824 } 825 826 static int cal_async_notifier_complete(struct v4l2_async_notifier *notifier) 827 { 828 struct cal_dev *cal = container_of(notifier, struct cal_dev, notifier); 829 unsigned int i; 830 int ret; 831 832 for (i = 0; i < cal->num_contexts; ++i) { 833 ret = cal_ctx_v4l2_register(cal->ctx[i]); 834 if (ret) 835 goto err_ctx_unreg; 836 } 837 838 if (!cal_mc_api) 839 return 0; 840 841 ret = v4l2_device_register_subdev_nodes(&cal->v4l2_dev); 842 if (ret) 843 goto err_ctx_unreg; 844 845 return 0; 846 847 err_ctx_unreg: 848 for (; i > 0; --i) { 849 if (!cal->ctx[i - 1]) 850 continue; 851 852 cal_ctx_v4l2_unregister(cal->ctx[i - 1]); 853 } 854 855 return ret; 856 } 857 858 static const struct v4l2_async_notifier_operations cal_async_notifier_ops = { 859 .bound = cal_async_notifier_bound, 860 .complete = cal_async_notifier_complete, 861 }; 862 863 static int cal_async_notifier_register(struct cal_dev *cal) 864 { 865 unsigned int i; 866 int ret; 867 868 v4l2_async_nf_init(&cal->notifier, &cal->v4l2_dev); 869 cal->notifier.ops = &cal_async_notifier_ops; 870 871 for (i = 0; i < cal->data->num_csi2_phy; ++i) { 872 struct cal_camerarx *phy = cal->phy[i]; 873 struct cal_v4l2_async_subdev *casd; 874 struct fwnode_handle *fwnode; 875 876 if (!phy->source_node) 877 continue; 878 879 fwnode = of_fwnode_handle(phy->source_node); 880 casd = v4l2_async_nf_add_fwnode(&cal->notifier, 881 fwnode, 882 struct cal_v4l2_async_subdev); 883 if (IS_ERR(casd)) { 884 phy_err(phy, "Failed to add subdev to notifier\n"); 885 ret = PTR_ERR(casd); 886 goto error; 887 } 888 889 casd->phy = phy; 890 } 891 892 ret = v4l2_async_nf_register(&cal->notifier); 893 if (ret) { 894 cal_err(cal, "Error registering async notifier\n"); 895 goto error; 896 } 897 898 return 0; 899 900 error: 901 v4l2_async_nf_cleanup(&cal->notifier); 902 return ret; 903 } 904 905 static void cal_async_notifier_unregister(struct cal_dev *cal) 906 { 907 v4l2_async_nf_unregister(&cal->notifier); 908 v4l2_async_nf_cleanup(&cal->notifier); 909 } 910 911 /* ------------------------------------------------------------------ 912 * Media and V4L2 device handling 913 * ------------------------------------------------------------------ 914 */ 915 916 /* 917 * Register user-facing devices. To be called at the end of the probe function 918 * when all resources are initialized and ready. 919 */ 920 static int cal_media_register(struct cal_dev *cal) 921 { 922 int ret; 923 924 ret = media_device_register(&cal->mdev); 925 if (ret) { 926 cal_err(cal, "Failed to register media device\n"); 927 return ret; 928 } 929 930 /* 931 * Register the async notifier. This may trigger registration of the 932 * V4L2 video devices if all subdevs are ready. 933 */ 934 ret = cal_async_notifier_register(cal); 935 if (ret) { 936 media_device_unregister(&cal->mdev); 937 return ret; 938 } 939 940 return 0; 941 } 942 943 /* 944 * Unregister the user-facing devices, but don't free memory yet. To be called 945 * at the beginning of the remove function, to disallow access from userspace. 946 */ 947 static void cal_media_unregister(struct cal_dev *cal) 948 { 949 unsigned int i; 950 951 /* Unregister all the V4L2 video devices. */ 952 for (i = 0; i < cal->num_contexts; i++) 953 cal_ctx_v4l2_unregister(cal->ctx[i]); 954 955 cal_async_notifier_unregister(cal); 956 media_device_unregister(&cal->mdev); 957 } 958 959 /* 960 * Initialize the in-kernel objects. To be called at the beginning of the probe 961 * function, before the V4L2 device is used by the driver. 962 */ 963 static int cal_media_init(struct cal_dev *cal) 964 { 965 struct media_device *mdev = &cal->mdev; 966 int ret; 967 968 mdev->dev = cal->dev; 969 mdev->hw_revision = cal->revision; 970 strscpy(mdev->model, "CAL", sizeof(mdev->model)); 971 media_device_init(mdev); 972 973 /* 974 * Initialize the V4L2 device (despite the function name, this performs 975 * initialization, not registration). 976 */ 977 cal->v4l2_dev.mdev = mdev; 978 ret = v4l2_device_register(cal->dev, &cal->v4l2_dev); 979 if (ret) { 980 cal_err(cal, "Failed to register V4L2 device\n"); 981 return ret; 982 } 983 984 vb2_dma_contig_set_max_seg_size(cal->dev, DMA_BIT_MASK(32)); 985 986 return 0; 987 } 988 989 /* 990 * Cleanup the in-kernel objects, freeing memory. To be called at the very end 991 * of the remove sequence, when nothing (including userspace) can access the 992 * objects anymore. 993 */ 994 static void cal_media_cleanup(struct cal_dev *cal) 995 { 996 v4l2_device_unregister(&cal->v4l2_dev); 997 media_device_cleanup(&cal->mdev); 998 999 vb2_dma_contig_clear_max_seg_size(cal->dev); 1000 } 1001 1002 /* ------------------------------------------------------------------ 1003 * Initialization and module stuff 1004 * ------------------------------------------------------------------ 1005 */ 1006 1007 static struct cal_ctx *cal_ctx_create(struct cal_dev *cal, int inst) 1008 { 1009 struct cal_ctx *ctx; 1010 int ret; 1011 1012 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1013 if (!ctx) 1014 return NULL; 1015 1016 ctx->cal = cal; 1017 ctx->phy = cal->phy[inst]; 1018 ctx->dma_ctx = inst; 1019 ctx->csi2_ctx = inst; 1020 ctx->cport = inst; 1021 1022 ret = cal_ctx_v4l2_init(ctx); 1023 if (ret) { 1024 kfree(ctx); 1025 return NULL; 1026 } 1027 1028 return ctx; 1029 } 1030 1031 static void cal_ctx_destroy(struct cal_ctx *ctx) 1032 { 1033 cal_ctx_v4l2_cleanup(ctx); 1034 1035 kfree(ctx); 1036 } 1037 1038 static const struct of_device_id cal_of_match[] = { 1039 { 1040 .compatible = "ti,dra72-cal", 1041 .data = (void *)&dra72x_cal_data, 1042 }, 1043 { 1044 .compatible = "ti,dra72-pre-es2-cal", 1045 .data = (void *)&dra72x_es1_cal_data, 1046 }, 1047 { 1048 .compatible = "ti,dra76-cal", 1049 .data = (void *)&dra76x_cal_data, 1050 }, 1051 { 1052 .compatible = "ti,am654-cal", 1053 .data = (void *)&am654_cal_data, 1054 }, 1055 {}, 1056 }; 1057 MODULE_DEVICE_TABLE(of, cal_of_match); 1058 1059 /* Get hardware revision and info. */ 1060 1061 #define CAL_HL_HWINFO_VALUE 0xa3c90469 1062 1063 static void cal_get_hwinfo(struct cal_dev *cal) 1064 { 1065 u32 hwinfo; 1066 1067 cal->revision = cal_read(cal, CAL_HL_REVISION); 1068 switch (FIELD_GET(CAL_HL_REVISION_SCHEME_MASK, cal->revision)) { 1069 case CAL_HL_REVISION_SCHEME_H08: 1070 cal_dbg(3, cal, "CAL HW revision %lu.%lu.%lu (0x%08x)\n", 1071 FIELD_GET(CAL_HL_REVISION_MAJOR_MASK, cal->revision), 1072 FIELD_GET(CAL_HL_REVISION_MINOR_MASK, cal->revision), 1073 FIELD_GET(CAL_HL_REVISION_RTL_MASK, cal->revision), 1074 cal->revision); 1075 break; 1076 1077 case CAL_HL_REVISION_SCHEME_LEGACY: 1078 default: 1079 cal_info(cal, "Unexpected CAL HW revision 0x%08x\n", 1080 cal->revision); 1081 break; 1082 } 1083 1084 hwinfo = cal_read(cal, CAL_HL_HWINFO); 1085 if (hwinfo != CAL_HL_HWINFO_VALUE) 1086 cal_info(cal, "CAL_HL_HWINFO = 0x%08x, expected 0x%08x\n", 1087 hwinfo, CAL_HL_HWINFO_VALUE); 1088 } 1089 1090 static int cal_init_camerarx_regmap(struct cal_dev *cal) 1091 { 1092 struct platform_device *pdev = to_platform_device(cal->dev); 1093 struct device_node *np = cal->dev->of_node; 1094 struct regmap_config config = { }; 1095 struct regmap *syscon; 1096 struct resource *res; 1097 unsigned int offset; 1098 void __iomem *base; 1099 1100 syscon = syscon_regmap_lookup_by_phandle_args(np, "ti,camerrx-control", 1101 1, &offset); 1102 if (!IS_ERR(syscon)) { 1103 cal->syscon_camerrx = syscon; 1104 cal->syscon_camerrx_offset = offset; 1105 return 0; 1106 } 1107 1108 dev_warn(cal->dev, "failed to get ti,camerrx-control: %ld\n", 1109 PTR_ERR(syscon)); 1110 1111 /* 1112 * Backward DTS compatibility. If syscon entry is not present then 1113 * check if the camerrx_control resource is present. 1114 */ 1115 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 1116 "camerrx_control"); 1117 base = devm_ioremap_resource(cal->dev, res); 1118 if (IS_ERR(base)) { 1119 cal_err(cal, "failed to ioremap camerrx_control\n"); 1120 return PTR_ERR(base); 1121 } 1122 1123 cal_dbg(1, cal, "ioresource %s at %pa - %pa\n", 1124 res->name, &res->start, &res->end); 1125 1126 config.reg_bits = 32; 1127 config.reg_stride = 4; 1128 config.val_bits = 32; 1129 config.max_register = resource_size(res) - 4; 1130 1131 syscon = regmap_init_mmio(NULL, base, &config); 1132 if (IS_ERR(syscon)) { 1133 pr_err("regmap init failed\n"); 1134 return PTR_ERR(syscon); 1135 } 1136 1137 /* 1138 * In this case the base already point to the direct CM register so no 1139 * need for an offset. 1140 */ 1141 cal->syscon_camerrx = syscon; 1142 cal->syscon_camerrx_offset = 0; 1143 1144 return 0; 1145 } 1146 1147 static int cal_probe(struct platform_device *pdev) 1148 { 1149 struct cal_dev *cal; 1150 bool connected = false; 1151 unsigned int i; 1152 int ret; 1153 int irq; 1154 1155 cal = devm_kzalloc(&pdev->dev, sizeof(*cal), GFP_KERNEL); 1156 if (!cal) 1157 return -ENOMEM; 1158 1159 cal->data = of_device_get_match_data(&pdev->dev); 1160 if (!cal->data) { 1161 dev_err(&pdev->dev, "Could not get feature data based on compatible version\n"); 1162 return -ENODEV; 1163 } 1164 1165 cal->dev = &pdev->dev; 1166 platform_set_drvdata(pdev, cal); 1167 1168 /* Acquire resources: clocks, CAMERARX regmap, I/O memory and IRQ. */ 1169 cal->fclk = devm_clk_get(&pdev->dev, "fck"); 1170 if (IS_ERR(cal->fclk)) { 1171 dev_err(&pdev->dev, "cannot get CAL fclk\n"); 1172 return PTR_ERR(cal->fclk); 1173 } 1174 1175 ret = cal_init_camerarx_regmap(cal); 1176 if (ret < 0) 1177 return ret; 1178 1179 cal->res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 1180 "cal_top"); 1181 cal->base = devm_ioremap_resource(&pdev->dev, cal->res); 1182 if (IS_ERR(cal->base)) 1183 return PTR_ERR(cal->base); 1184 1185 cal_dbg(1, cal, "ioresource %s at %pa - %pa\n", 1186 cal->res->name, &cal->res->start, &cal->res->end); 1187 1188 irq = platform_get_irq(pdev, 0); 1189 cal_dbg(1, cal, "got irq# %d\n", irq); 1190 ret = devm_request_irq(&pdev->dev, irq, cal_irq, 0, CAL_MODULE_NAME, 1191 cal); 1192 if (ret) 1193 return ret; 1194 1195 /* Read the revision and hardware info to verify hardware access. */ 1196 pm_runtime_enable(&pdev->dev); 1197 ret = pm_runtime_resume_and_get(&pdev->dev); 1198 if (ret) 1199 goto error_pm_runtime; 1200 1201 cal_get_hwinfo(cal); 1202 pm_runtime_put_sync(&pdev->dev); 1203 1204 /* Initialize the media device. */ 1205 ret = cal_media_init(cal); 1206 if (ret < 0) 1207 goto error_pm_runtime; 1208 1209 /* Create CAMERARX PHYs. */ 1210 for (i = 0; i < cal->data->num_csi2_phy; ++i) { 1211 cal->phy[i] = cal_camerarx_create(cal, i); 1212 if (IS_ERR(cal->phy[i])) { 1213 ret = PTR_ERR(cal->phy[i]); 1214 cal->phy[i] = NULL; 1215 goto error_camerarx; 1216 } 1217 1218 if (cal->phy[i]->source_node) 1219 connected = true; 1220 } 1221 1222 if (!connected) { 1223 cal_err(cal, "Neither port is configured, no point in staying up\n"); 1224 ret = -ENODEV; 1225 goto error_camerarx; 1226 } 1227 1228 /* Create contexts. */ 1229 for (i = 0; i < cal->data->num_csi2_phy; ++i) { 1230 if (!cal->phy[i]->source_node) 1231 continue; 1232 1233 cal->ctx[cal->num_contexts] = cal_ctx_create(cal, i); 1234 if (!cal->ctx[cal->num_contexts]) { 1235 cal_err(cal, "Failed to create context %u\n", cal->num_contexts); 1236 ret = -ENODEV; 1237 goto error_context; 1238 } 1239 1240 cal->num_contexts++; 1241 } 1242 1243 /* Register the media device. */ 1244 ret = cal_media_register(cal); 1245 if (ret) 1246 goto error_context; 1247 1248 return 0; 1249 1250 error_context: 1251 for (i = 0; i < cal->num_contexts; i++) 1252 cal_ctx_destroy(cal->ctx[i]); 1253 1254 error_camerarx: 1255 for (i = 0; i < cal->data->num_csi2_phy; i++) 1256 cal_camerarx_destroy(cal->phy[i]); 1257 1258 cal_media_cleanup(cal); 1259 1260 error_pm_runtime: 1261 pm_runtime_disable(&pdev->dev); 1262 1263 return ret; 1264 } 1265 1266 static void cal_remove(struct platform_device *pdev) 1267 { 1268 struct cal_dev *cal = platform_get_drvdata(pdev); 1269 unsigned int i; 1270 int ret; 1271 1272 cal_dbg(1, cal, "Removing %s\n", CAL_MODULE_NAME); 1273 1274 ret = pm_runtime_resume_and_get(&pdev->dev); 1275 1276 cal_media_unregister(cal); 1277 1278 for (i = 0; i < cal->data->num_csi2_phy; i++) 1279 cal_camerarx_disable(cal->phy[i]); 1280 1281 for (i = 0; i < cal->num_contexts; i++) 1282 cal_ctx_destroy(cal->ctx[i]); 1283 1284 for (i = 0; i < cal->data->num_csi2_phy; i++) 1285 cal_camerarx_destroy(cal->phy[i]); 1286 1287 cal_media_cleanup(cal); 1288 1289 if (ret >= 0) 1290 pm_runtime_put_sync(&pdev->dev); 1291 pm_runtime_disable(&pdev->dev); 1292 } 1293 1294 static int cal_runtime_resume(struct device *dev) 1295 { 1296 struct cal_dev *cal = dev_get_drvdata(dev); 1297 unsigned int i; 1298 u32 val; 1299 1300 if (cal->data->flags & DRA72_CAL_PRE_ES2_LDO_DISABLE) { 1301 /* 1302 * Apply errata on both port everytime we (re-)enable 1303 * the clock 1304 */ 1305 for (i = 0; i < cal->data->num_csi2_phy; i++) 1306 cal_camerarx_i913_errata(cal->phy[i]); 1307 } 1308 1309 /* 1310 * Enable global interrupts that are not related to a particular 1311 * CAMERARAX or context. 1312 */ 1313 cal_write(cal, CAL_HL_IRQENABLE_SET(0), CAL_HL_IRQ_OCPO_ERR_MASK); 1314 1315 val = cal_read(cal, CAL_CTRL); 1316 cal_set_field(&val, CAL_CTRL_BURSTSIZE_BURST128, 1317 CAL_CTRL_BURSTSIZE_MASK); 1318 cal_set_field(&val, 0xf, CAL_CTRL_TAGCNT_MASK); 1319 cal_set_field(&val, CAL_CTRL_POSTED_WRITES_NONPOSTED, 1320 CAL_CTRL_POSTED_WRITES_MASK); 1321 cal_set_field(&val, 0xff, CAL_CTRL_MFLAGL_MASK); 1322 cal_set_field(&val, 0xff, CAL_CTRL_MFLAGH_MASK); 1323 cal_write(cal, CAL_CTRL, val); 1324 cal_dbg(3, cal, "CAL_CTRL = 0x%08x\n", cal_read(cal, CAL_CTRL)); 1325 1326 return 0; 1327 } 1328 1329 static const struct dev_pm_ops cal_pm_ops = { 1330 .runtime_resume = cal_runtime_resume, 1331 }; 1332 1333 static struct platform_driver cal_pdrv = { 1334 .probe = cal_probe, 1335 .remove = cal_remove, 1336 .driver = { 1337 .name = CAL_MODULE_NAME, 1338 .pm = &cal_pm_ops, 1339 .of_match_table = cal_of_match, 1340 }, 1341 }; 1342 1343 module_platform_driver(cal_pdrv); 1344