1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TI Camera Access Layer (CAL) - CAMERARX 4 * 5 * Copyright (c) 2015-2020 Texas Instruments Inc. 6 * 7 * Authors: 8 * Benoit Parrot <bparrot@ti.com> 9 * Laurent Pinchart <laurent.pinchart@ideasonboard.com> 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/delay.h> 14 #include <linux/mfd/syscon.h> 15 #include <linux/module.h> 16 #include <linux/of_graph.h> 17 #include <linux/platform_device.h> 18 #include <linux/regmap.h> 19 #include <linux/slab.h> 20 21 #include <media/v4l2-ctrls.h> 22 #include <media/v4l2-fwnode.h> 23 #include <media/v4l2-subdev.h> 24 25 #include "cal.h" 26 #include "cal_regs.h" 27 28 /* ------------------------------------------------------------------ 29 * I/O Register Accessors 30 * ------------------------------------------------------------------ 31 */ 32 33 static inline u32 camerarx_read(struct cal_camerarx *phy, u32 offset) 34 { 35 return ioread32(phy->base + offset); 36 } 37 38 static inline void camerarx_write(struct cal_camerarx *phy, u32 offset, u32 val) 39 { 40 iowrite32(val, phy->base + offset); 41 } 42 43 /* ------------------------------------------------------------------ 44 * CAMERARX Management 45 * ------------------------------------------------------------------ 46 */ 47 48 static s64 cal_camerarx_get_ext_link_freq(struct cal_camerarx *phy) 49 { 50 struct v4l2_mbus_config_mipi_csi2 *mipi_csi2 = &phy->endpoint.bus.mipi_csi2; 51 u32 num_lanes = mipi_csi2->num_data_lanes; 52 const struct cal_format_info *fmtinfo; 53 struct v4l2_subdev_state *state; 54 struct v4l2_mbus_framefmt *fmt; 55 u32 bpp; 56 s64 freq; 57 58 state = v4l2_subdev_get_locked_active_state(&phy->subdev); 59 60 fmt = v4l2_subdev_state_get_format(state, CAL_CAMERARX_PAD_SINK); 61 62 fmtinfo = cal_format_by_code(fmt->code); 63 if (!fmtinfo) 64 return -EINVAL; 65 66 bpp = fmtinfo->bpp; 67 68 freq = v4l2_get_link_freq(phy->source->ctrl_handler, bpp, 2 * num_lanes); 69 if (freq < 0) { 70 phy_err(phy, "failed to get link freq for subdev '%s'\n", 71 phy->source->name); 72 return freq; 73 } 74 75 phy_dbg(3, phy, "Source Link Freq: %llu\n", freq); 76 77 return freq; 78 } 79 80 static void cal_camerarx_lane_config(struct cal_camerarx *phy) 81 { 82 u32 val = cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance)); 83 u32 lane_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POSITION_MASK; 84 u32 polarity_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POL_MASK; 85 struct v4l2_mbus_config_mipi_csi2 *mipi_csi2 = 86 &phy->endpoint.bus.mipi_csi2; 87 int lane; 88 89 cal_set_field(&val, mipi_csi2->clock_lane + 1, lane_mask); 90 cal_set_field(&val, mipi_csi2->lane_polarities[0], polarity_mask); 91 for (lane = 0; lane < mipi_csi2->num_data_lanes; lane++) { 92 /* 93 * Every lane are one nibble apart starting with the 94 * clock followed by the data lanes so shift masks by 4. 95 */ 96 lane_mask <<= 4; 97 polarity_mask <<= 4; 98 cal_set_field(&val, mipi_csi2->data_lanes[lane] + 1, lane_mask); 99 cal_set_field(&val, mipi_csi2->lane_polarities[lane + 1], 100 polarity_mask); 101 } 102 103 cal_write(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), val); 104 phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x\n", 105 phy->instance, val); 106 } 107 108 static void cal_camerarx_enable(struct cal_camerarx *phy) 109 { 110 u32 num_lanes = phy->cal->data->camerarx[phy->instance].num_lanes; 111 112 regmap_field_write(phy->fields[F_CAMMODE], 0); 113 /* Always enable all lanes at the phy control level */ 114 regmap_field_write(phy->fields[F_LANEENABLE], (1 << num_lanes) - 1); 115 /* F_CSI_MODE is not present on every architecture */ 116 if (phy->fields[F_CSI_MODE]) 117 regmap_field_write(phy->fields[F_CSI_MODE], 1); 118 regmap_field_write(phy->fields[F_CTRLCLKEN], 1); 119 } 120 121 void cal_camerarx_disable(struct cal_camerarx *phy) 122 { 123 regmap_field_write(phy->fields[F_CTRLCLKEN], 0); 124 } 125 126 /* 127 * TCLK values are OK at their reset values 128 */ 129 #define TCLK_TERM 0 130 #define TCLK_MISS 1 131 #define TCLK_SETTLE 14 132 133 static void cal_camerarx_config(struct cal_camerarx *phy, s64 link_freq) 134 { 135 unsigned int reg0, reg1; 136 unsigned int ths_term, ths_settle; 137 138 /* DPHY timing configuration */ 139 140 /* THS_TERM: Programmed value = floor(20 ns/DDRClk period) */ 141 ths_term = div_s64(20 * link_freq, 1000 * 1000 * 1000); 142 phy_dbg(1, phy, "ths_term: %d (0x%02x)\n", ths_term, ths_term); 143 144 /* THS_SETTLE: Programmed value = floor(105 ns/DDRClk period) + 4 */ 145 ths_settle = div_s64(105 * link_freq, 1000 * 1000 * 1000) + 4; 146 phy_dbg(1, phy, "ths_settle: %d (0x%02x)\n", ths_settle, ths_settle); 147 148 reg0 = camerarx_read(phy, CAL_CSI2_PHY_REG0); 149 cal_set_field(®0, CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_DISABLE, 150 CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_MASK); 151 cal_set_field(®0, ths_term, CAL_CSI2_PHY_REG0_THS_TERM_MASK); 152 cal_set_field(®0, ths_settle, CAL_CSI2_PHY_REG0_THS_SETTLE_MASK); 153 154 phy_dbg(1, phy, "CSI2_%d_REG0 = 0x%08x\n", phy->instance, reg0); 155 camerarx_write(phy, CAL_CSI2_PHY_REG0, reg0); 156 157 reg1 = camerarx_read(phy, CAL_CSI2_PHY_REG1); 158 cal_set_field(®1, TCLK_TERM, CAL_CSI2_PHY_REG1_TCLK_TERM_MASK); 159 cal_set_field(®1, 0xb8, CAL_CSI2_PHY_REG1_DPHY_HS_SYNC_PATTERN_MASK); 160 cal_set_field(®1, TCLK_MISS, 161 CAL_CSI2_PHY_REG1_CTRLCLK_DIV_FACTOR_MASK); 162 cal_set_field(®1, TCLK_SETTLE, CAL_CSI2_PHY_REG1_TCLK_SETTLE_MASK); 163 164 phy_dbg(1, phy, "CSI2_%d_REG1 = 0x%08x\n", phy->instance, reg1); 165 camerarx_write(phy, CAL_CSI2_PHY_REG1, reg1); 166 } 167 168 static void cal_camerarx_power(struct cal_camerarx *phy, bool enable) 169 { 170 u32 target_state; 171 unsigned int i; 172 173 target_state = enable ? CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_ON : 174 CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_OFF; 175 176 cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), 177 target_state, CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_MASK); 178 179 for (i = 0; i < 10; i++) { 180 u32 current_state; 181 182 current_state = cal_read_field(phy->cal, 183 CAL_CSI2_COMPLEXIO_CFG(phy->instance), 184 CAL_CSI2_COMPLEXIO_CFG_PWR_STATUS_MASK); 185 186 if (current_state == target_state) 187 break; 188 189 usleep_range(1000, 1100); 190 } 191 192 if (i == 10) 193 phy_err(phy, "Failed to power %s complexio\n", 194 enable ? "up" : "down"); 195 } 196 197 static void cal_camerarx_wait_reset(struct cal_camerarx *phy) 198 { 199 unsigned long timeout; 200 201 timeout = jiffies + msecs_to_jiffies(750); 202 while (time_before(jiffies, timeout)) { 203 if (cal_read_field(phy->cal, 204 CAL_CSI2_COMPLEXIO_CFG(phy->instance), 205 CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) == 206 CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED) 207 break; 208 usleep_range(500, 5000); 209 } 210 211 if (cal_read_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), 212 CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) != 213 CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED) 214 phy_err(phy, "Timeout waiting for Complex IO reset done\n"); 215 } 216 217 static void cal_camerarx_wait_stop_state(struct cal_camerarx *phy) 218 { 219 unsigned long timeout; 220 221 timeout = jiffies + msecs_to_jiffies(750); 222 while (time_before(jiffies, timeout)) { 223 if (cal_read_field(phy->cal, 224 CAL_CSI2_TIMING(phy->instance), 225 CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) == 0) 226 break; 227 usleep_range(500, 5000); 228 } 229 230 if (cal_read_field(phy->cal, CAL_CSI2_TIMING(phy->instance), 231 CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) != 0) 232 phy_err(phy, "Timeout waiting for stop state\n"); 233 } 234 235 static void cal_camerarx_enable_irqs(struct cal_camerarx *phy) 236 { 237 const u32 cio_err_mask = 238 CAL_CSI2_COMPLEXIO_IRQ_LANE_ERRORS_MASK | 239 CAL_CSI2_COMPLEXIO_IRQ_FIFO_OVR_MASK | 240 CAL_CSI2_COMPLEXIO_IRQ_SHORT_PACKET_MASK | 241 CAL_CSI2_COMPLEXIO_IRQ_ECC_NO_CORRECTION_MASK; 242 const u32 vc_err_mask = 243 CAL_CSI2_VC_IRQ_CS_IRQ_MASK(0) | 244 CAL_CSI2_VC_IRQ_CS_IRQ_MASK(1) | 245 CAL_CSI2_VC_IRQ_CS_IRQ_MASK(2) | 246 CAL_CSI2_VC_IRQ_CS_IRQ_MASK(3) | 247 CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(0) | 248 CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(1) | 249 CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(2) | 250 CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(3); 251 252 /* Enable CIO & VC error IRQs. */ 253 cal_write(phy->cal, CAL_HL_IRQENABLE_SET(0), 254 CAL_HL_IRQ_CIO_MASK(phy->instance) | 255 CAL_HL_IRQ_VC_MASK(phy->instance)); 256 cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance), 257 cio_err_mask); 258 cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(phy->instance), 259 vc_err_mask); 260 } 261 262 static void cal_camerarx_disable_irqs(struct cal_camerarx *phy) 263 { 264 /* Disable CIO error irqs */ 265 cal_write(phy->cal, CAL_HL_IRQENABLE_CLR(0), 266 CAL_HL_IRQ_CIO_MASK(phy->instance) | 267 CAL_HL_IRQ_VC_MASK(phy->instance)); 268 cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance), 0); 269 cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(phy->instance), 0); 270 } 271 272 static void cal_camerarx_ppi_enable(struct cal_camerarx *phy) 273 { 274 cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance), 275 1, CAL_CSI2_PPI_CTRL_ECC_EN_MASK); 276 277 cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance), 278 1, CAL_CSI2_PPI_CTRL_IF_EN_MASK); 279 } 280 281 static void cal_camerarx_ppi_disable(struct cal_camerarx *phy) 282 { 283 cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance), 284 0, CAL_CSI2_PPI_CTRL_IF_EN_MASK); 285 } 286 287 static int cal_camerarx_start(struct cal_camerarx *phy) 288 { 289 s64 link_freq; 290 u32 sscounter; 291 u32 val; 292 int ret; 293 294 if (phy->enable_count > 0) { 295 phy->enable_count++; 296 return 0; 297 } 298 299 link_freq = cal_camerarx_get_ext_link_freq(phy); 300 if (link_freq < 0) 301 return link_freq; 302 303 ret = v4l2_subdev_call(phy->source, core, s_power, 1); 304 if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV) { 305 phy_err(phy, "power on failed in subdev\n"); 306 return ret; 307 } 308 309 cal_camerarx_enable_irqs(phy); 310 311 /* 312 * CSI-2 PHY Link Initialization Sequence, according to the DRA74xP / 313 * DRA75xP / DRA76xP / DRA77xP TRM. The DRA71x / DRA72x and the AM65x / 314 * DRA80xM TRMs have a slightly simplified sequence. 315 */ 316 317 /* 318 * 1. Configure all CSI-2 low level protocol registers to be ready to 319 * receive signals/data from the CSI-2 PHY. 320 * 321 * i.-v. Configure the lanes position and polarity. 322 */ 323 cal_camerarx_lane_config(phy); 324 325 /* 326 * vi.-vii. Configure D-PHY mode, enable the required lanes and 327 * enable the CAMERARX clock. 328 */ 329 cal_camerarx_enable(phy); 330 331 /* 332 * 2. CSI PHY and link initialization sequence. 333 * 334 * a. Deassert the CSI-2 PHY reset. Do not wait for reset completion 335 * at this point, as it requires the external source to send the 336 * CSI-2 HS clock. 337 */ 338 cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), 339 CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_OPERATIONAL, 340 CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK); 341 phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x De-assert Complex IO Reset\n", 342 phy->instance, 343 cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance))); 344 345 /* Dummy read to allow SCP reset to complete. */ 346 camerarx_read(phy, CAL_CSI2_PHY_REG0); 347 348 /* Program the PHY timing parameters. */ 349 cal_camerarx_config(phy, link_freq); 350 351 /* 352 * b. Assert the FORCERXMODE signal. 353 * 354 * The stop-state-counter is based on fclk cycles, and we always use 355 * the x16 and x4 settings, so stop-state-timeout = 356 * fclk-cycle * 16 * 4 * counter. 357 * 358 * Stop-state-timeout must be more than 100us as per CSI-2 spec, so we 359 * calculate a timeout that's 100us (rounding up). 360 */ 361 sscounter = DIV_ROUND_UP(clk_get_rate(phy->cal->fclk), 10000 * 16 * 4); 362 363 val = cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance)); 364 cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X16_IO1_MASK); 365 cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X4_IO1_MASK); 366 cal_set_field(&val, sscounter, 367 CAL_CSI2_TIMING_STOP_STATE_COUNTER_IO1_MASK); 368 cal_write(phy->cal, CAL_CSI2_TIMING(phy->instance), val); 369 phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Stop States\n", 370 phy->instance, 371 cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance))); 372 373 /* Assert the FORCERXMODE signal. */ 374 cal_write_field(phy->cal, CAL_CSI2_TIMING(phy->instance), 375 1, CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK); 376 phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Force RXMODE\n", 377 phy->instance, 378 cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance))); 379 380 /* 381 * c. Connect pull-down on CSI-2 PHY link (using pad control). 382 * 383 * This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not 384 * implemented. 385 */ 386 387 /* 388 * d. Power up the CSI-2 PHY. 389 * e. Check whether the state status reaches the ON state. 390 */ 391 cal_camerarx_power(phy, true); 392 393 /* 394 * Start the source to enable the CSI-2 HS clock. We can now wait for 395 * CSI-2 PHY reset to complete. 396 */ 397 ret = v4l2_subdev_call(phy->source, video, s_stream, 1); 398 if (ret) { 399 v4l2_subdev_call(phy->source, core, s_power, 0); 400 cal_camerarx_disable_irqs(phy); 401 phy_err(phy, "stream on failed in subdev\n"); 402 return ret; 403 } 404 405 cal_camerarx_wait_reset(phy); 406 407 /* f. Wait for STOPSTATE=1 for all enabled lane modules. */ 408 cal_camerarx_wait_stop_state(phy); 409 410 phy_dbg(1, phy, "CSI2_%u_REG1 = 0x%08x (bits 31-28 should be set)\n", 411 phy->instance, camerarx_read(phy, CAL_CSI2_PHY_REG1)); 412 413 /* 414 * g. Disable pull-down on CSI-2 PHY link (using pad control). 415 * 416 * This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not 417 * implemented. 418 */ 419 420 /* Finally, enable the PHY Protocol Interface (PPI). */ 421 cal_camerarx_ppi_enable(phy); 422 423 phy->enable_count++; 424 425 return 0; 426 } 427 428 static void cal_camerarx_stop(struct cal_camerarx *phy) 429 { 430 int ret; 431 432 if (--phy->enable_count > 0) 433 return; 434 435 cal_camerarx_ppi_disable(phy); 436 437 cal_camerarx_disable_irqs(phy); 438 439 cal_camerarx_power(phy, false); 440 441 /* Assert Complex IO Reset */ 442 cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), 443 CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL, 444 CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK); 445 446 phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x Complex IO in Reset\n", 447 phy->instance, 448 cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance))); 449 450 /* Disable the phy */ 451 cal_camerarx_disable(phy); 452 453 if (v4l2_subdev_call(phy->source, video, s_stream, 0)) 454 phy_err(phy, "stream off failed in subdev\n"); 455 456 ret = v4l2_subdev_call(phy->source, core, s_power, 0); 457 if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV) 458 phy_err(phy, "power off failed in subdev\n"); 459 } 460 461 /* 462 * Errata i913: CSI2 LDO Needs to be disabled when module is powered on 463 * 464 * Enabling CSI2 LDO shorts it to core supply. It is crucial the 2 CSI2 465 * LDOs on the device are disabled if CSI-2 module is powered on 466 * (0x4845 B304 | 0x4845 B384 [28:27] = 0x1) or in ULPS (0x4845 B304 467 * | 0x4845 B384 [28:27] = 0x2) mode. Common concerns include: high 468 * current draw on the module supply in active mode. 469 * 470 * Errata does not apply when CSI-2 module is powered off 471 * (0x4845 B304 | 0x4845 B384 [28:27] = 0x0). 472 * 473 * SW Workaround: 474 * Set the following register bits to disable the LDO, 475 * which is essentially CSI2 REG10 bit 6: 476 * 477 * Core 0: 0x4845 B828 = 0x0000 0040 478 * Core 1: 0x4845 B928 = 0x0000 0040 479 */ 480 void cal_camerarx_i913_errata(struct cal_camerarx *phy) 481 { 482 u32 reg10 = camerarx_read(phy, CAL_CSI2_PHY_REG10); 483 484 cal_set_field(®10, 1, CAL_CSI2_PHY_REG10_I933_LDO_DISABLE_MASK); 485 486 phy_dbg(1, phy, "CSI2_%d_REG10 = 0x%08x\n", phy->instance, reg10); 487 camerarx_write(phy, CAL_CSI2_PHY_REG10, reg10); 488 } 489 490 static int cal_camerarx_regmap_init(struct cal_dev *cal, 491 struct cal_camerarx *phy) 492 { 493 const struct cal_camerarx_data *phy_data; 494 unsigned int i; 495 496 if (!cal->data) 497 return -EINVAL; 498 499 phy_data = &cal->data->camerarx[phy->instance]; 500 501 for (i = 0; i < F_MAX_FIELDS; i++) { 502 struct reg_field field = { 503 .reg = cal->syscon_camerrx_offset, 504 .lsb = phy_data->fields[i].lsb, 505 .msb = phy_data->fields[i].msb, 506 }; 507 508 /* 509 * Here we update the reg offset with the 510 * value found in DT 511 */ 512 phy->fields[i] = devm_regmap_field_alloc(cal->dev, 513 cal->syscon_camerrx, 514 field); 515 if (IS_ERR(phy->fields[i])) { 516 cal_err(cal, "Unable to allocate regmap fields\n"); 517 return PTR_ERR(phy->fields[i]); 518 } 519 } 520 521 return 0; 522 } 523 524 static int cal_camerarx_parse_dt(struct cal_camerarx *phy) 525 { 526 struct v4l2_fwnode_endpoint *endpoint = &phy->endpoint; 527 char data_lanes[V4L2_MBUS_CSI2_MAX_DATA_LANES * 2]; 528 struct device_node *ep_node; 529 unsigned int i; 530 int ret; 531 532 /* 533 * Find the endpoint node for the port corresponding to the PHY 534 * instance, and parse its CSI-2-related properties. 535 */ 536 ep_node = of_graph_get_endpoint_by_regs(phy->cal->dev->of_node, 537 phy->instance, 0); 538 if (!ep_node) { 539 /* 540 * The endpoint is not mandatory, not all PHY instances need to 541 * be connected in DT. 542 */ 543 phy_dbg(3, phy, "Port has no endpoint\n"); 544 return 0; 545 } 546 547 endpoint->bus_type = V4L2_MBUS_CSI2_DPHY; 548 ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), endpoint); 549 if (ret < 0) { 550 phy_err(phy, "Failed to parse endpoint\n"); 551 goto done; 552 } 553 554 for (i = 0; i < endpoint->bus.mipi_csi2.num_data_lanes; i++) { 555 unsigned int lane = endpoint->bus.mipi_csi2.data_lanes[i]; 556 557 if (lane > 4) { 558 phy_err(phy, "Invalid position %u for data lane %u\n", 559 lane, i); 560 ret = -EINVAL; 561 goto done; 562 } 563 564 data_lanes[i*2] = '0' + lane; 565 data_lanes[i*2+1] = ' '; 566 } 567 568 data_lanes[i*2-1] = '\0'; 569 570 phy_dbg(3, phy, 571 "CSI-2 bus: clock lane <%u>, data lanes <%s>, flags 0x%08x\n", 572 endpoint->bus.mipi_csi2.clock_lane, data_lanes, 573 endpoint->bus.mipi_csi2.flags); 574 575 /* Retrieve the connected device and store it for later use. */ 576 phy->source_ep_node = of_graph_get_remote_endpoint(ep_node); 577 phy->source_node = of_graph_get_port_parent(phy->source_ep_node); 578 if (!phy->source_node) { 579 phy_dbg(3, phy, "Can't get remote parent\n"); 580 of_node_put(phy->source_ep_node); 581 ret = -EINVAL; 582 goto done; 583 } 584 585 phy_dbg(1, phy, "Found connected device %pOFn\n", phy->source_node); 586 587 done: 588 of_node_put(ep_node); 589 return ret; 590 } 591 592 /* ------------------------------------------------------------------ 593 * V4L2 Subdev Operations 594 * ------------------------------------------------------------------ 595 */ 596 597 static inline struct cal_camerarx *to_cal_camerarx(struct v4l2_subdev *sd) 598 { 599 return container_of(sd, struct cal_camerarx, subdev); 600 } 601 602 static int cal_camerarx_sd_s_stream(struct v4l2_subdev *sd, int enable) 603 { 604 struct cal_camerarx *phy = to_cal_camerarx(sd); 605 struct v4l2_subdev_state *state; 606 int ret = 0; 607 608 state = v4l2_subdev_lock_and_get_active_state(sd); 609 610 if (enable) 611 ret = cal_camerarx_start(phy); 612 else 613 cal_camerarx_stop(phy); 614 615 v4l2_subdev_unlock_state(state); 616 617 return ret; 618 } 619 620 static int cal_camerarx_sd_enum_mbus_code(struct v4l2_subdev *sd, 621 struct v4l2_subdev_state *state, 622 struct v4l2_subdev_mbus_code_enum *code) 623 { 624 /* No transcoding, source and sink codes must match. */ 625 if (cal_rx_pad_is_source(code->pad)) { 626 struct v4l2_mbus_framefmt *fmt; 627 628 if (code->index > 0) 629 return -EINVAL; 630 631 fmt = v4l2_subdev_state_get_format(state, 632 CAL_CAMERARX_PAD_SINK); 633 code->code = fmt->code; 634 } else { 635 if (code->index >= cal_num_formats) 636 return -EINVAL; 637 638 code->code = cal_formats[code->index].code; 639 } 640 641 return 0; 642 } 643 644 static int cal_camerarx_sd_enum_frame_size(struct v4l2_subdev *sd, 645 struct v4l2_subdev_state *state, 646 struct v4l2_subdev_frame_size_enum *fse) 647 { 648 const struct cal_format_info *fmtinfo; 649 650 if (fse->index > 0) 651 return -EINVAL; 652 653 /* No transcoding, source and sink formats must match. */ 654 if (cal_rx_pad_is_source(fse->pad)) { 655 struct v4l2_mbus_framefmt *fmt; 656 657 fmt = v4l2_subdev_state_get_format(state, 658 CAL_CAMERARX_PAD_SINK); 659 if (fse->code != fmt->code) 660 return -EINVAL; 661 662 fse->min_width = fmt->width; 663 fse->max_width = fmt->width; 664 fse->min_height = fmt->height; 665 fse->max_height = fmt->height; 666 } else { 667 fmtinfo = cal_format_by_code(fse->code); 668 if (!fmtinfo) 669 return -EINVAL; 670 671 fse->min_width = CAL_MIN_WIDTH_BYTES * 8 / ALIGN(fmtinfo->bpp, 8); 672 fse->max_width = CAL_MAX_WIDTH_BYTES * 8 / ALIGN(fmtinfo->bpp, 8); 673 fse->min_height = CAL_MIN_HEIGHT_LINES; 674 fse->max_height = CAL_MAX_HEIGHT_LINES; 675 } 676 677 return 0; 678 } 679 680 static int cal_camerarx_sd_set_fmt(struct v4l2_subdev *sd, 681 struct v4l2_subdev_state *state, 682 struct v4l2_subdev_format *format) 683 { 684 const struct cal_format_info *fmtinfo; 685 struct v4l2_mbus_framefmt *fmt; 686 unsigned int bpp; 687 688 /* No transcoding, source and sink formats must match. */ 689 if (cal_rx_pad_is_source(format->pad)) 690 return v4l2_subdev_get_fmt(sd, state, format); 691 692 /* 693 * Default to the first format if the requested media bus code isn't 694 * supported. 695 */ 696 fmtinfo = cal_format_by_code(format->format.code); 697 if (!fmtinfo) 698 fmtinfo = &cal_formats[0]; 699 700 /* Clamp the size, update the code. The colorspace is accepted as-is. */ 701 bpp = ALIGN(fmtinfo->bpp, 8); 702 703 format->format.width = clamp_t(unsigned int, format->format.width, 704 CAL_MIN_WIDTH_BYTES * 8 / bpp, 705 CAL_MAX_WIDTH_BYTES * 8 / bpp); 706 format->format.height = clamp_t(unsigned int, format->format.height, 707 CAL_MIN_HEIGHT_LINES, 708 CAL_MAX_HEIGHT_LINES); 709 format->format.code = fmtinfo->code; 710 format->format.field = V4L2_FIELD_NONE; 711 712 /* Store the format and propagate it to the source pad. */ 713 714 fmt = v4l2_subdev_state_get_format(state, CAL_CAMERARX_PAD_SINK); 715 *fmt = format->format; 716 717 fmt = v4l2_subdev_state_get_format(state, 718 CAL_CAMERARX_PAD_FIRST_SOURCE); 719 *fmt = format->format; 720 721 return 0; 722 } 723 724 static int cal_camerarx_sd_init_state(struct v4l2_subdev *sd, 725 struct v4l2_subdev_state *state) 726 { 727 struct v4l2_subdev_format format = { 728 .which = state ? V4L2_SUBDEV_FORMAT_TRY 729 : V4L2_SUBDEV_FORMAT_ACTIVE, 730 .pad = CAL_CAMERARX_PAD_SINK, 731 .format = { 732 .width = 640, 733 .height = 480, 734 .code = MEDIA_BUS_FMT_UYVY8_1X16, 735 .field = V4L2_FIELD_NONE, 736 .colorspace = V4L2_COLORSPACE_SRGB, 737 .ycbcr_enc = V4L2_YCBCR_ENC_601, 738 .quantization = V4L2_QUANTIZATION_LIM_RANGE, 739 .xfer_func = V4L2_XFER_FUNC_SRGB, 740 }, 741 }; 742 743 return cal_camerarx_sd_set_fmt(sd, state, &format); 744 } 745 746 static int cal_camerarx_get_frame_desc(struct v4l2_subdev *sd, unsigned int pad, 747 struct v4l2_mbus_frame_desc *fd) 748 { 749 struct cal_camerarx *phy = to_cal_camerarx(sd); 750 struct v4l2_mbus_frame_desc remote_desc; 751 const struct media_pad *remote_pad; 752 int ret; 753 754 remote_pad = media_pad_remote_pad_first(&phy->pads[CAL_CAMERARX_PAD_SINK]); 755 if (!remote_pad) 756 return -EPIPE; 757 758 ret = v4l2_subdev_call(phy->source, pad, get_frame_desc, 759 remote_pad->index, &remote_desc); 760 if (ret) 761 return ret; 762 763 if (remote_desc.type != V4L2_MBUS_FRAME_DESC_TYPE_CSI2) { 764 cal_err(phy->cal, 765 "Frame descriptor does not describe CSI-2 link"); 766 return -EINVAL; 767 } 768 769 if (remote_desc.num_entries > 1) 770 cal_err(phy->cal, 771 "Multiple streams not supported in remote frame descriptor, using the first one\n"); 772 773 fd->type = V4L2_MBUS_FRAME_DESC_TYPE_CSI2; 774 fd->num_entries = 1; 775 fd->entry[0] = remote_desc.entry[0]; 776 777 return 0; 778 } 779 780 static const struct v4l2_subdev_video_ops cal_camerarx_video_ops = { 781 .s_stream = cal_camerarx_sd_s_stream, 782 }; 783 784 static const struct v4l2_subdev_pad_ops cal_camerarx_pad_ops = { 785 .enum_mbus_code = cal_camerarx_sd_enum_mbus_code, 786 .enum_frame_size = cal_camerarx_sd_enum_frame_size, 787 .get_fmt = v4l2_subdev_get_fmt, 788 .set_fmt = cal_camerarx_sd_set_fmt, 789 .get_frame_desc = cal_camerarx_get_frame_desc, 790 }; 791 792 static const struct v4l2_subdev_ops cal_camerarx_subdev_ops = { 793 .video = &cal_camerarx_video_ops, 794 .pad = &cal_camerarx_pad_ops, 795 }; 796 797 static const struct v4l2_subdev_internal_ops cal_camerarx_internal_ops = { 798 .init_state = cal_camerarx_sd_init_state, 799 }; 800 801 static const struct media_entity_operations cal_camerarx_media_ops = { 802 .link_validate = v4l2_subdev_link_validate, 803 }; 804 805 /* ------------------------------------------------------------------ 806 * Create and Destroy 807 * ------------------------------------------------------------------ 808 */ 809 810 struct cal_camerarx *cal_camerarx_create(struct cal_dev *cal, 811 unsigned int instance) 812 { 813 struct platform_device *pdev = to_platform_device(cal->dev); 814 struct cal_camerarx *phy; 815 struct v4l2_subdev *sd; 816 unsigned int i; 817 int ret; 818 819 phy = devm_kzalloc(cal->dev, sizeof(*phy), GFP_KERNEL); 820 if (!phy) 821 return ERR_PTR(-ENOMEM); 822 823 phy->cal = cal; 824 phy->instance = instance; 825 826 spin_lock_init(&phy->vc_lock); 827 828 phy->res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 829 (instance == 0) ? 830 "cal_rx_core0" : 831 "cal_rx_core1"); 832 phy->base = devm_ioremap_resource(cal->dev, phy->res); 833 if (IS_ERR(phy->base)) { 834 cal_err(cal, "failed to ioremap\n"); 835 return ERR_CAST(phy->base); 836 } 837 838 cal_dbg(1, cal, "ioresource %s at %pa - %pa\n", 839 phy->res->name, &phy->res->start, &phy->res->end); 840 841 ret = cal_camerarx_regmap_init(cal, phy); 842 if (ret) 843 return ERR_PTR(ret); 844 845 ret = cal_camerarx_parse_dt(phy); 846 if (ret) 847 return ERR_PTR(ret); 848 849 /* Initialize the V4L2 subdev and media entity. */ 850 sd = &phy->subdev; 851 v4l2_subdev_init(sd, &cal_camerarx_subdev_ops); 852 sd->internal_ops = &cal_camerarx_internal_ops; 853 sd->entity.function = MEDIA_ENT_F_VID_IF_BRIDGE; 854 sd->flags = V4L2_SUBDEV_FL_HAS_DEVNODE; 855 snprintf(sd->name, sizeof(sd->name), "CAMERARX%u", instance); 856 sd->dev = cal->dev; 857 858 phy->pads[CAL_CAMERARX_PAD_SINK].flags = MEDIA_PAD_FL_SINK; 859 for (i = CAL_CAMERARX_PAD_FIRST_SOURCE; i < CAL_CAMERARX_NUM_PADS; ++i) 860 phy->pads[i].flags = MEDIA_PAD_FL_SOURCE; 861 sd->entity.ops = &cal_camerarx_media_ops; 862 ret = media_entity_pads_init(&sd->entity, ARRAY_SIZE(phy->pads), 863 phy->pads); 864 if (ret) 865 goto err_node_put; 866 867 ret = v4l2_subdev_init_finalize(sd); 868 if (ret) 869 goto err_entity_cleanup; 870 871 ret = v4l2_device_register_subdev(&cal->v4l2_dev, sd); 872 if (ret) 873 goto err_free_state; 874 875 return phy; 876 877 err_free_state: 878 v4l2_subdev_cleanup(sd); 879 err_entity_cleanup: 880 media_entity_cleanup(&phy->subdev.entity); 881 err_node_put: 882 of_node_put(phy->source_ep_node); 883 of_node_put(phy->source_node); 884 return ERR_PTR(ret); 885 } 886 887 void cal_camerarx_destroy(struct cal_camerarx *phy) 888 { 889 if (!phy) 890 return; 891 892 v4l2_device_unregister_subdev(&phy->subdev); 893 v4l2_subdev_cleanup(&phy->subdev); 894 media_entity_cleanup(&phy->subdev.entity); 895 of_node_put(phy->source_ep_node); 896 of_node_put(phy->source_node); 897 } 898