xref: /linux/drivers/media/platform/rockchip/rkisp1/rkisp1-capture.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: (GPL-2.0+ OR MIT)
2 /*
3  * Rockchip ISP1 Driver - V4l capture device
4  *
5  * Copyright (C) 2019 Collabora, Ltd.
6  *
7  * Based on Rockchip ISP1 driver by Rockchip Electronics Co., Ltd.
8  * Copyright (C) 2017 Rockchip Electronics Co., Ltd.
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/pm_runtime.h>
13 #include <media/v4l2-common.h>
14 #include <media/v4l2-event.h>
15 #include <media/v4l2-fh.h>
16 #include <media/v4l2-ioctl.h>
17 #include <media/v4l2-mc.h>
18 #include <media/v4l2-subdev.h>
19 #include <media/videobuf2-dma-contig.h>
20 
21 #include "rkisp1-common.h"
22 
23 /*
24  * NOTE: There are two capture video devices in rkisp1, selfpath and mainpath.
25  *
26  * differences between selfpath and mainpath
27  * available mp sink input: isp
28  * available sp sink input : isp, dma(TODO)
29  * available mp sink pad fmts: yuv422, raw
30  * available sp sink pad fmts: yuv422, yuv420......
31  * available mp source fmts: yuv, raw, jpeg(TODO)
32  * available sp source fmts: yuv, rgb
33  */
34 
35 #define RKISP1_SP_DEV_NAME	RKISP1_DRIVER_NAME "_selfpath"
36 #define RKISP1_MP_DEV_NAME	RKISP1_DRIVER_NAME "_mainpath"
37 
38 #define RKISP1_MIN_BUFFERS_NEEDED 3
39 
40 enum rkisp1_plane {
41 	RKISP1_PLANE_Y	= 0,
42 	RKISP1_PLANE_CB	= 1,
43 	RKISP1_PLANE_CR	= 2
44 };
45 
46 /*
47  * @fourcc: pixel format
48  * @fmt_type: helper filed for pixel format
49  * @uv_swap: if cb cr swapped, for yuv
50  * @yc_swap: if y and cb/cr swapped, for yuv
51  * @byte_swap: if byte pairs are swapped, for raw
52  * @write_format: defines how YCbCr self picture data is written to memory
53  * @output_format: defines the output format (RKISP1_CIF_MI_INIT_MP_OUTPUT_* for
54  *	the main path and RKISP1_MI_CTRL_SP_OUTPUT_* for the self path)
55  * @mbus: the mbus code on the src resizer pad that matches the pixel format
56  */
57 struct rkisp1_capture_fmt_cfg {
58 	u32 fourcc;
59 	u32 uv_swap : 1;
60 	u32 yc_swap : 1;
61 	u32 byte_swap : 1;
62 	u32 write_format;
63 	u32 output_format;
64 	u32 mbus;
65 };
66 
67 struct rkisp1_capture_ops {
68 	void (*config)(struct rkisp1_capture *cap);
69 	void (*stop)(struct rkisp1_capture *cap);
70 	void (*enable)(struct rkisp1_capture *cap);
71 	void (*disable)(struct rkisp1_capture *cap);
72 	void (*set_data_path)(struct rkisp1_capture *cap);
73 	bool (*is_stopped)(struct rkisp1_capture *cap);
74 };
75 
76 struct rkisp1_capture_config {
77 	const struct rkisp1_capture_fmt_cfg *fmts;
78 	int fmt_size;
79 	struct {
80 		u32 y_size_init;
81 		u32 cb_size_init;
82 		u32 cr_size_init;
83 		u32 y_base_ad_init;
84 		u32 cb_base_ad_init;
85 		u32 cr_base_ad_init;
86 		u32 y_offs_cnt_init;
87 		u32 cb_offs_cnt_init;
88 		u32 cr_offs_cnt_init;
89 	} mi;
90 };
91 
92 /*
93  * The supported pixel formats for mainpath. NOTE, pixel formats with identical 'mbus'
94  * are grouped together. This is assumed and used by the function rkisp1_cap_enum_mbus_codes
95  */
96 static const struct rkisp1_capture_fmt_cfg rkisp1_mp_fmts[] = {
97 	/* yuv422 */
98 	{
99 		.fourcc = V4L2_PIX_FMT_YUYV,
100 		.uv_swap = 0,
101 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUVINT,
102 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_YUV422,
103 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
104 	}, {
105 		.fourcc = V4L2_PIX_FMT_UYVY,
106 		.uv_swap = 0,
107 		.yc_swap = 1,
108 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUVINT,
109 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_YUV422,
110 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
111 	}, {
112 		.fourcc = V4L2_PIX_FMT_YUV422P,
113 		.uv_swap = 0,
114 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
115 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_YUV422,
116 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
117 	}, {
118 		.fourcc = V4L2_PIX_FMT_NV16,
119 		.uv_swap = 0,
120 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
121 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_YUV422,
122 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
123 	}, {
124 		.fourcc = V4L2_PIX_FMT_NV61,
125 		.uv_swap = 1,
126 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
127 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_YUV422,
128 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
129 	}, {
130 		.fourcc = V4L2_PIX_FMT_NV16M,
131 		.uv_swap = 0,
132 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
133 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_YUV422,
134 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
135 	}, {
136 		.fourcc = V4L2_PIX_FMT_NV61M,
137 		.uv_swap = 1,
138 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
139 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_YUV422,
140 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
141 	}, {
142 		.fourcc = V4L2_PIX_FMT_YVU422M,
143 		.uv_swap = 1,
144 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
145 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_YUV422,
146 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
147 	},
148 	/* yuv400 */
149 	{
150 		.fourcc = V4L2_PIX_FMT_GREY,
151 		.uv_swap = 0,
152 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
153 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_YUV400,
154 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
155 	},
156 	/* yuv420 */
157 	{
158 		.fourcc = V4L2_PIX_FMT_NV21,
159 		.uv_swap = 1,
160 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
161 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_YUV420,
162 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
163 	}, {
164 		.fourcc = V4L2_PIX_FMT_NV12,
165 		.uv_swap = 0,
166 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
167 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_YUV420,
168 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
169 	}, {
170 		.fourcc = V4L2_PIX_FMT_NV21M,
171 		.uv_swap = 1,
172 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
173 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_YUV420,
174 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
175 	}, {
176 		.fourcc = V4L2_PIX_FMT_NV12M,
177 		.uv_swap = 0,
178 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
179 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_YUV420,
180 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
181 	}, {
182 		.fourcc = V4L2_PIX_FMT_YUV420,
183 		.uv_swap = 0,
184 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
185 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_YUV420,
186 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
187 	}, {
188 		.fourcc = V4L2_PIX_FMT_YVU420,
189 		.uv_swap = 1,
190 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
191 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_YUV420,
192 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
193 	},
194 	/* raw */
195 	{
196 		.fourcc = V4L2_PIX_FMT_SRGGB8,
197 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
198 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_RAW8,
199 		.mbus = MEDIA_BUS_FMT_SRGGB8_1X8,
200 	}, {
201 		.fourcc = V4L2_PIX_FMT_SGRBG8,
202 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
203 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_RAW8,
204 		.mbus = MEDIA_BUS_FMT_SGRBG8_1X8,
205 	}, {
206 		.fourcc = V4L2_PIX_FMT_SGBRG8,
207 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
208 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_RAW8,
209 		.mbus = MEDIA_BUS_FMT_SGBRG8_1X8,
210 	}, {
211 		.fourcc = V4L2_PIX_FMT_SBGGR8,
212 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
213 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_RAW8,
214 		.mbus = MEDIA_BUS_FMT_SBGGR8_1X8,
215 	}, {
216 		.fourcc = V4L2_PIX_FMT_SRGGB10,
217 		.byte_swap = 1,
218 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
219 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_RAW10,
220 		.mbus = MEDIA_BUS_FMT_SRGGB10_1X10,
221 	}, {
222 		.fourcc = V4L2_PIX_FMT_SGRBG10,
223 		.byte_swap = 1,
224 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
225 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_RAW10,
226 		.mbus = MEDIA_BUS_FMT_SGRBG10_1X10,
227 	}, {
228 		.fourcc = V4L2_PIX_FMT_SGBRG10,
229 		.byte_swap = 1,
230 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
231 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_RAW10,
232 		.mbus = MEDIA_BUS_FMT_SGBRG10_1X10,
233 	}, {
234 		.fourcc = V4L2_PIX_FMT_SBGGR10,
235 		.byte_swap = 1,
236 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
237 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_RAW10,
238 		.mbus = MEDIA_BUS_FMT_SBGGR10_1X10,
239 	}, {
240 		.fourcc = V4L2_PIX_FMT_SRGGB12,
241 		.byte_swap = 1,
242 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
243 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_RAW12,
244 		.mbus = MEDIA_BUS_FMT_SRGGB12_1X12,
245 	}, {
246 		.fourcc = V4L2_PIX_FMT_SGRBG12,
247 		.byte_swap = 1,
248 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
249 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_RAW12,
250 		.mbus = MEDIA_BUS_FMT_SGRBG12_1X12,
251 	}, {
252 		.fourcc = V4L2_PIX_FMT_SGBRG12,
253 		.byte_swap = 1,
254 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
255 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_RAW12,
256 		.mbus = MEDIA_BUS_FMT_SGBRG12_1X12,
257 	}, {
258 		.fourcc = V4L2_PIX_FMT_SBGGR12,
259 		.byte_swap = 1,
260 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
261 		.output_format = RKISP1_CIF_MI_INIT_MP_OUTPUT_RAW12,
262 		.mbus = MEDIA_BUS_FMT_SBGGR12_1X12,
263 	},
264 };
265 
266 /*
267  * The supported pixel formats for selfpath. NOTE, pixel formats with identical 'mbus'
268  * are grouped together. This is assumed and used by the function rkisp1_cap_enum_mbus_codes
269  */
270 static const struct rkisp1_capture_fmt_cfg rkisp1_sp_fmts[] = {
271 	/* yuv422 */
272 	{
273 		.fourcc = V4L2_PIX_FMT_YUYV,
274 		.uv_swap = 0,
275 		.write_format = RKISP1_MI_CTRL_SP_WRITE_INT,
276 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
277 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
278 	}, {
279 		.fourcc = V4L2_PIX_FMT_UYVY,
280 		.uv_swap = 0,
281 		.yc_swap = 1,
282 		.write_format = RKISP1_MI_CTRL_SP_WRITE_INT,
283 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
284 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
285 	}, {
286 		.fourcc = V4L2_PIX_FMT_YUV422P,
287 		.uv_swap = 0,
288 		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
289 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
290 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
291 	}, {
292 		.fourcc = V4L2_PIX_FMT_NV16,
293 		.uv_swap = 0,
294 		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
295 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
296 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
297 	}, {
298 		.fourcc = V4L2_PIX_FMT_NV61,
299 		.uv_swap = 1,
300 		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
301 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
302 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
303 	}, {
304 		.fourcc = V4L2_PIX_FMT_NV16M,
305 		.uv_swap = 0,
306 		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
307 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
308 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
309 	}, {
310 		.fourcc = V4L2_PIX_FMT_NV61M,
311 		.uv_swap = 1,
312 		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
313 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
314 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
315 	}, {
316 		.fourcc = V4L2_PIX_FMT_YVU422M,
317 		.uv_swap = 1,
318 		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
319 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
320 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
321 	},
322 	/* yuv400 */
323 	{
324 		.fourcc = V4L2_PIX_FMT_GREY,
325 		.uv_swap = 0,
326 		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
327 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
328 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
329 	},
330 	/* rgb */
331 	{
332 		.fourcc = V4L2_PIX_FMT_XBGR32,
333 		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
334 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_RGB888,
335 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
336 	}, {
337 		.fourcc = V4L2_PIX_FMT_RGB565,
338 		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
339 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_RGB565,
340 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
341 	},
342 	/* yuv420 */
343 	{
344 		.fourcc = V4L2_PIX_FMT_NV21,
345 		.uv_swap = 1,
346 		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
347 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
348 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
349 	}, {
350 		.fourcc = V4L2_PIX_FMT_NV12,
351 		.uv_swap = 0,
352 		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
353 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
354 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
355 	}, {
356 		.fourcc = V4L2_PIX_FMT_NV21M,
357 		.uv_swap = 1,
358 		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
359 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
360 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
361 	}, {
362 		.fourcc = V4L2_PIX_FMT_NV12M,
363 		.uv_swap = 0,
364 		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
365 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
366 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
367 	}, {
368 		.fourcc = V4L2_PIX_FMT_YUV420,
369 		.uv_swap = 0,
370 		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
371 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
372 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
373 	}, {
374 		.fourcc = V4L2_PIX_FMT_YVU420,
375 		.uv_swap = 1,
376 		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
377 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
378 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
379 	},
380 };
381 
382 static const struct rkisp1_capture_config rkisp1_capture_config_mp = {
383 	.fmts = rkisp1_mp_fmts,
384 	.fmt_size = ARRAY_SIZE(rkisp1_mp_fmts),
385 	.mi = {
386 		.y_size_init =		RKISP1_CIF_MI_MP_Y_SIZE_INIT,
387 		.cb_size_init =		RKISP1_CIF_MI_MP_CB_SIZE_INIT,
388 		.cr_size_init =		RKISP1_CIF_MI_MP_CR_SIZE_INIT,
389 		.y_base_ad_init =	RKISP1_CIF_MI_MP_Y_BASE_AD_INIT,
390 		.cb_base_ad_init =	RKISP1_CIF_MI_MP_CB_BASE_AD_INIT,
391 		.cr_base_ad_init =	RKISP1_CIF_MI_MP_CR_BASE_AD_INIT,
392 		.y_offs_cnt_init =	RKISP1_CIF_MI_MP_Y_OFFS_CNT_INIT,
393 		.cb_offs_cnt_init =	RKISP1_CIF_MI_MP_CB_OFFS_CNT_INIT,
394 		.cr_offs_cnt_init =	RKISP1_CIF_MI_MP_CR_OFFS_CNT_INIT,
395 	},
396 };
397 
398 static const struct rkisp1_capture_config rkisp1_capture_config_sp = {
399 	.fmts = rkisp1_sp_fmts,
400 	.fmt_size = ARRAY_SIZE(rkisp1_sp_fmts),
401 	.mi = {
402 		.y_size_init =		RKISP1_CIF_MI_SP_Y_SIZE_INIT,
403 		.cb_size_init =		RKISP1_CIF_MI_SP_CB_SIZE_INIT,
404 		.cr_size_init =		RKISP1_CIF_MI_SP_CR_SIZE_INIT,
405 		.y_base_ad_init =	RKISP1_CIF_MI_SP_Y_BASE_AD_INIT,
406 		.cb_base_ad_init =	RKISP1_CIF_MI_SP_CB_BASE_AD_INIT,
407 		.cr_base_ad_init =	RKISP1_CIF_MI_SP_CR_BASE_AD_INIT,
408 		.y_offs_cnt_init =	RKISP1_CIF_MI_SP_Y_OFFS_CNT_INIT,
409 		.cb_offs_cnt_init =	RKISP1_CIF_MI_SP_CB_OFFS_CNT_INIT,
410 		.cr_offs_cnt_init =	RKISP1_CIF_MI_SP_CR_OFFS_CNT_INIT,
411 	},
412 };
413 
414 static inline struct rkisp1_vdev_node *
415 rkisp1_vdev_to_node(struct video_device *vdev)
416 {
417 	return container_of(vdev, struct rkisp1_vdev_node, vdev);
418 }
419 
420 int rkisp1_cap_enum_mbus_codes(struct rkisp1_capture *cap,
421 			       struct v4l2_subdev_mbus_code_enum *code)
422 {
423 	const struct rkisp1_capture_fmt_cfg *fmts = cap->config->fmts;
424 	/*
425 	 * initialize curr_mbus to non existing mbus code 0 to ensure it is
426 	 * different from fmts[0].mbus
427 	 */
428 	u32 curr_mbus = 0;
429 	int i, n = 0;
430 
431 	for (i = 0; i < cap->config->fmt_size; i++) {
432 		if (fmts[i].mbus == curr_mbus)
433 			continue;
434 
435 		curr_mbus = fmts[i].mbus;
436 		if (n++ == code->index) {
437 			code->code = curr_mbus;
438 			return 0;
439 		}
440 	}
441 	return -EINVAL;
442 }
443 
444 /* ----------------------------------------------------------------------------
445  * Stream operations for self-picture path (sp) and main-picture path (mp)
446  */
447 
448 static void rkisp1_mi_config_ctrl(struct rkisp1_capture *cap)
449 {
450 	u32 mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);
451 
452 	mi_ctrl &= ~GENMASK(17, 16);
453 	mi_ctrl |= RKISP1_CIF_MI_CTRL_BURST_LEN_LUM_64;
454 
455 	mi_ctrl &= ~GENMASK(19, 18);
456 	mi_ctrl |= RKISP1_CIF_MI_CTRL_BURST_LEN_CHROM_64;
457 
458 	mi_ctrl |= RKISP1_CIF_MI_CTRL_INIT_BASE_EN |
459 		   RKISP1_CIF_MI_CTRL_INIT_OFFSET_EN;
460 
461 	rkisp1_write(cap->rkisp1, RKISP1_CIF_MI_CTRL, mi_ctrl);
462 }
463 
464 static u32 rkisp1_pixfmt_comp_size(const struct v4l2_pix_format_mplane *pixm,
465 				   unsigned int component)
466 {
467 	/*
468 	 * If packed format, then plane_fmt[0].sizeimage is the sum of all
469 	 * components, so we need to calculate just the size of Y component.
470 	 * See rkisp1_fill_pixfmt().
471 	 */
472 	if (!component && pixm->num_planes == 1)
473 		return pixm->plane_fmt[0].bytesperline * pixm->height;
474 	return pixm->plane_fmt[component].sizeimage;
475 }
476 
477 static void rkisp1_irq_frame_end_enable(struct rkisp1_capture *cap)
478 {
479 	u32 mi_imsc = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_IMSC);
480 
481 	mi_imsc |= RKISP1_CIF_MI_FRAME(cap);
482 	rkisp1_write(cap->rkisp1, RKISP1_CIF_MI_IMSC, mi_imsc);
483 }
484 
485 static void rkisp1_mp_config(struct rkisp1_capture *cap)
486 {
487 	const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
488 	struct rkisp1_device *rkisp1 = cap->rkisp1;
489 	u32 reg;
490 
491 	rkisp1_write(rkisp1, cap->config->mi.y_size_init,
492 		     rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_Y));
493 	rkisp1_write(rkisp1, cap->config->mi.cb_size_init,
494 		     rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CB));
495 	rkisp1_write(rkisp1, cap->config->mi.cr_size_init,
496 		     rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CR));
497 
498 	if (rkisp1_has_feature(rkisp1, MAIN_STRIDE)) {
499 		rkisp1_write(rkisp1, RKISP1_CIF_MI_MP_Y_LLENGTH, cap->stride);
500 		rkisp1_write(rkisp1, RKISP1_CIF_MI_MP_Y_PIC_WIDTH, pixm->width);
501 		rkisp1_write(rkisp1, RKISP1_CIF_MI_MP_Y_PIC_HEIGHT, pixm->height);
502 		rkisp1_write(rkisp1, RKISP1_CIF_MI_MP_Y_PIC_SIZE,
503 			     cap->stride * pixm->height);
504 	}
505 
506 	rkisp1_irq_frame_end_enable(cap);
507 
508 	/* set uv swapping for semiplanar formats */
509 	if (cap->pix.info->comp_planes == 2) {
510 		reg = rkisp1_read(rkisp1, RKISP1_CIF_MI_XTD_FORMAT_CTRL);
511 		if (cap->pix.cfg->uv_swap)
512 			reg |= RKISP1_CIF_MI_XTD_FMT_CTRL_MP_CB_CR_SWAP;
513 		else
514 			reg &= ~RKISP1_CIF_MI_XTD_FMT_CTRL_MP_CB_CR_SWAP;
515 		rkisp1_write(rkisp1, RKISP1_CIF_MI_XTD_FORMAT_CTRL, reg);
516 	}
517 
518 	/*
519 	 * U/V swapping with the MI_XTD_FORMAT_CTRL register only works for
520 	 * NV12/NV21 and NV16/NV61, so instead use byte swap to support UYVY.
521 	 * YVYU and VYUY cannot be supported with this method.
522 	 */
523 	if (rkisp1_has_feature(rkisp1, MAIN_STRIDE)) {
524 		reg = rkisp1_read(rkisp1, RKISP1_CIF_MI_OUTPUT_ALIGN_FORMAT);
525 		if (cap->pix.cfg->yc_swap || cap->pix.cfg->byte_swap)
526 			reg |= RKISP1_CIF_OUTPUT_ALIGN_FORMAT_MP_BYTE_SWAP_BYTES;
527 		else
528 			reg &= ~RKISP1_CIF_OUTPUT_ALIGN_FORMAT_MP_BYTE_SWAP_BYTES;
529 
530 		reg |= RKISP1_CIF_OUTPUT_ALIGN_FORMAT_MP_LSB_ALIGNMENT;
531 		rkisp1_write(rkisp1, RKISP1_CIF_MI_OUTPUT_ALIGN_FORMAT, reg);
532 
533 		rkisp1_write(rkisp1, RKISP1_CIF_MI_INIT,
534 			     cap->pix.cfg->output_format);
535 	}
536 
537 	rkisp1_mi_config_ctrl(cap);
538 
539 	reg = rkisp1_read(rkisp1, RKISP1_CIF_MI_CTRL);
540 	reg &= ~RKISP1_MI_CTRL_MP_FMT_MASK;
541 	reg |= cap->pix.cfg->write_format;
542 	rkisp1_write(rkisp1, RKISP1_CIF_MI_CTRL, reg);
543 
544 	reg = rkisp1_read(rkisp1, RKISP1_CIF_MI_CTRL);
545 	reg |= RKISP1_CIF_MI_MP_AUTOUPDATE_ENABLE;
546 	rkisp1_write(rkisp1, RKISP1_CIF_MI_CTRL, reg);
547 }
548 
549 static void rkisp1_sp_config(struct rkisp1_capture *cap)
550 {
551 	const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
552 	struct rkisp1_device *rkisp1 = cap->rkisp1;
553 	u32 mi_ctrl, reg;
554 
555 	rkisp1_write(rkisp1, cap->config->mi.y_size_init,
556 		     rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_Y));
557 	rkisp1_write(rkisp1, cap->config->mi.cb_size_init,
558 		     rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CB));
559 	rkisp1_write(rkisp1, cap->config->mi.cr_size_init,
560 		     rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CR));
561 
562 	rkisp1_write(rkisp1, RKISP1_CIF_MI_SP_Y_LLENGTH, cap->stride);
563 	rkisp1_write(rkisp1, RKISP1_CIF_MI_SP_Y_PIC_WIDTH, pixm->width);
564 	rkisp1_write(rkisp1, RKISP1_CIF_MI_SP_Y_PIC_HEIGHT, pixm->height);
565 	rkisp1_write(rkisp1, RKISP1_CIF_MI_SP_Y_PIC_SIZE,
566 		     cap->stride * pixm->height);
567 
568 	rkisp1_irq_frame_end_enable(cap);
569 
570 	/* set uv swapping for semiplanar formats */
571 	if (cap->pix.info->comp_planes == 2) {
572 		reg = rkisp1_read(rkisp1, RKISP1_CIF_MI_XTD_FORMAT_CTRL);
573 		if (cap->pix.cfg->uv_swap)
574 			reg |= RKISP1_CIF_MI_XTD_FMT_CTRL_SP_CB_CR_SWAP;
575 		else
576 			reg &= ~RKISP1_CIF_MI_XTD_FMT_CTRL_SP_CB_CR_SWAP;
577 		rkisp1_write(rkisp1, RKISP1_CIF_MI_XTD_FORMAT_CTRL, reg);
578 	}
579 
580 	/*
581 	 * U/V swapping with the MI_XTD_FORMAT_CTRL register only works for
582 	 * NV12/NV21 and NV16/NV61, so instead use byte swap to support UYVY.
583 	 * YVYU and VYUY cannot be supported with this method.
584 	 */
585 	if (rkisp1_has_feature(rkisp1, MAIN_STRIDE)) {
586 		reg = rkisp1_read(rkisp1, RKISP1_CIF_MI_OUTPUT_ALIGN_FORMAT);
587 		if (cap->pix.cfg->yc_swap)
588 			reg |= RKISP1_CIF_OUTPUT_ALIGN_FORMAT_SP_BYTE_SWAP_BYTES;
589 		else
590 			reg &= ~RKISP1_CIF_OUTPUT_ALIGN_FORMAT_SP_BYTE_SWAP_BYTES;
591 		rkisp1_write(rkisp1, RKISP1_CIF_MI_OUTPUT_ALIGN_FORMAT, reg);
592 	}
593 
594 	rkisp1_mi_config_ctrl(cap);
595 
596 	mi_ctrl = rkisp1_read(rkisp1, RKISP1_CIF_MI_CTRL);
597 	mi_ctrl &= ~RKISP1_MI_CTRL_SP_FMT_MASK;
598 	mi_ctrl |= cap->pix.cfg->write_format |
599 		   RKISP1_MI_CTRL_SP_INPUT_YUV422 |
600 		   cap->pix.cfg->output_format |
601 		   RKISP1_CIF_MI_SP_AUTOUPDATE_ENABLE;
602 	rkisp1_write(rkisp1, RKISP1_CIF_MI_CTRL, mi_ctrl);
603 }
604 
605 static void rkisp1_mp_disable(struct rkisp1_capture *cap)
606 {
607 	u32 mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);
608 
609 	mi_ctrl &= ~(RKISP1_CIF_MI_CTRL_MP_ENABLE |
610 		     RKISP1_CIF_MI_CTRL_RAW_ENABLE);
611 	rkisp1_write(cap->rkisp1, RKISP1_CIF_MI_CTRL, mi_ctrl);
612 }
613 
614 static void rkisp1_sp_disable(struct rkisp1_capture *cap)
615 {
616 	u32 mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);
617 
618 	mi_ctrl &= ~RKISP1_CIF_MI_CTRL_SP_ENABLE;
619 	rkisp1_write(cap->rkisp1, RKISP1_CIF_MI_CTRL, mi_ctrl);
620 }
621 
622 static void rkisp1_mp_enable(struct rkisp1_capture *cap)
623 {
624 	u32 mi_ctrl;
625 
626 	rkisp1_mp_disable(cap);
627 
628 	mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);
629 	if (v4l2_is_format_bayer(cap->pix.info))
630 		mi_ctrl |= RKISP1_CIF_MI_CTRL_RAW_ENABLE;
631 	/* YUV */
632 	else
633 		mi_ctrl |= RKISP1_CIF_MI_CTRL_MP_ENABLE;
634 
635 	rkisp1_write(cap->rkisp1, RKISP1_CIF_MI_CTRL, mi_ctrl);
636 }
637 
638 static void rkisp1_sp_enable(struct rkisp1_capture *cap)
639 {
640 	u32 mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);
641 
642 	mi_ctrl |= RKISP1_CIF_MI_CTRL_SP_ENABLE;
643 	rkisp1_write(cap->rkisp1, RKISP1_CIF_MI_CTRL, mi_ctrl);
644 }
645 
646 static void rkisp1_mp_sp_stop(struct rkisp1_capture *cap)
647 {
648 	if (!cap->is_streaming)
649 		return;
650 	rkisp1_write(cap->rkisp1, RKISP1_CIF_MI_ICR, RKISP1_CIF_MI_FRAME(cap));
651 	cap->ops->disable(cap);
652 }
653 
654 static bool rkisp1_mp_is_stopped(struct rkisp1_capture *cap)
655 {
656 	u32 en = RKISP1_CIF_MI_CTRL_SHD_MP_IN_ENABLED |
657 		 RKISP1_CIF_MI_CTRL_SHD_RAW_OUT_ENABLED;
658 
659 	return !(rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL_SHD) & en);
660 }
661 
662 static bool rkisp1_sp_is_stopped(struct rkisp1_capture *cap)
663 {
664 	return !(rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL_SHD) &
665 		 RKISP1_CIF_MI_CTRL_SHD_SP_IN_ENABLED);
666 }
667 
668 static void rkisp1_mp_set_data_path(struct rkisp1_capture *cap)
669 {
670 	u32 dpcl = rkisp1_read(cap->rkisp1, RKISP1_CIF_VI_DPCL);
671 
672 	dpcl = dpcl | RKISP1_CIF_VI_DPCL_CHAN_MODE_MP |
673 	       RKISP1_CIF_VI_DPCL_MP_MUX_MRSZ_MI;
674 	rkisp1_write(cap->rkisp1, RKISP1_CIF_VI_DPCL, dpcl);
675 }
676 
677 static void rkisp1_sp_set_data_path(struct rkisp1_capture *cap)
678 {
679 	u32 dpcl = rkisp1_read(cap->rkisp1, RKISP1_CIF_VI_DPCL);
680 
681 	dpcl |= RKISP1_CIF_VI_DPCL_CHAN_MODE_SP;
682 	rkisp1_write(cap->rkisp1, RKISP1_CIF_VI_DPCL, dpcl);
683 }
684 
685 static const struct rkisp1_capture_ops rkisp1_capture_ops_mp = {
686 	.config = rkisp1_mp_config,
687 	.enable = rkisp1_mp_enable,
688 	.disable = rkisp1_mp_disable,
689 	.stop = rkisp1_mp_sp_stop,
690 	.set_data_path = rkisp1_mp_set_data_path,
691 	.is_stopped = rkisp1_mp_is_stopped,
692 };
693 
694 static const struct rkisp1_capture_ops rkisp1_capture_ops_sp = {
695 	.config = rkisp1_sp_config,
696 	.enable = rkisp1_sp_enable,
697 	.disable = rkisp1_sp_disable,
698 	.stop = rkisp1_mp_sp_stop,
699 	.set_data_path = rkisp1_sp_set_data_path,
700 	.is_stopped = rkisp1_sp_is_stopped,
701 };
702 
703 /* ----------------------------------------------------------------------------
704  * Frame buffer operations
705  */
706 
707 static int rkisp1_dummy_buf_create(struct rkisp1_capture *cap)
708 {
709 	const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
710 	struct rkisp1_dummy_buffer *dummy_buf = &cap->buf.dummy;
711 
712 	dummy_buf->size = max3(rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_Y),
713 			       rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CB),
714 			       rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CR));
715 
716 	/* The driver never access vaddr, no mapping is required */
717 	dummy_buf->vaddr = dma_alloc_attrs(cap->rkisp1->dev,
718 					   dummy_buf->size,
719 					   &dummy_buf->dma_addr,
720 					   GFP_KERNEL,
721 					   DMA_ATTR_NO_KERNEL_MAPPING);
722 	if (!dummy_buf->vaddr)
723 		return -ENOMEM;
724 
725 	return 0;
726 }
727 
728 static void rkisp1_dummy_buf_destroy(struct rkisp1_capture *cap)
729 {
730 	dma_free_attrs(cap->rkisp1->dev,
731 		       cap->buf.dummy.size, cap->buf.dummy.vaddr,
732 		       cap->buf.dummy.dma_addr, DMA_ATTR_NO_KERNEL_MAPPING);
733 }
734 
735 static void rkisp1_set_next_buf(struct rkisp1_capture *cap)
736 {
737 	u8 shift = rkisp1_has_feature(cap->rkisp1, DMA_34BIT) ? 2 : 0;
738 
739 	cap->buf.curr = cap->buf.next;
740 	cap->buf.next = NULL;
741 
742 	if (!list_empty(&cap->buf.queue)) {
743 		dma_addr_t *buff_addr;
744 
745 		cap->buf.next = list_first_entry(&cap->buf.queue, struct rkisp1_buffer, queue);
746 		list_del(&cap->buf.next->queue);
747 
748 		buff_addr = cap->buf.next->buff_addr;
749 
750 		rkisp1_write(cap->rkisp1, cap->config->mi.y_base_ad_init,
751 			     buff_addr[RKISP1_PLANE_Y] >> shift);
752 		/*
753 		 * In order to support grey format we capture
754 		 * YUV422 planar format from the camera and
755 		 * set the U and V planes to the dummy buffer
756 		 */
757 		if (cap->pix.cfg->fourcc == V4L2_PIX_FMT_GREY) {
758 			rkisp1_write(cap->rkisp1,
759 				     cap->config->mi.cb_base_ad_init,
760 				     cap->buf.dummy.dma_addr >> shift);
761 			rkisp1_write(cap->rkisp1,
762 				     cap->config->mi.cr_base_ad_init,
763 				     cap->buf.dummy.dma_addr >> shift);
764 		} else {
765 			rkisp1_write(cap->rkisp1,
766 				     cap->config->mi.cb_base_ad_init,
767 				     buff_addr[RKISP1_PLANE_CB] >> shift);
768 			rkisp1_write(cap->rkisp1,
769 				     cap->config->mi.cr_base_ad_init,
770 				     buff_addr[RKISP1_PLANE_CR] >> shift);
771 		}
772 	} else {
773 		/*
774 		 * Use the dummy space allocated by dma_alloc_coherent to
775 		 * throw data if there is no available buffer.
776 		 */
777 		rkisp1_write(cap->rkisp1, cap->config->mi.y_base_ad_init,
778 			     cap->buf.dummy.dma_addr >> shift);
779 		rkisp1_write(cap->rkisp1, cap->config->mi.cb_base_ad_init,
780 			     cap->buf.dummy.dma_addr >> shift);
781 		rkisp1_write(cap->rkisp1, cap->config->mi.cr_base_ad_init,
782 			     cap->buf.dummy.dma_addr >> shift);
783 	}
784 
785 	/* Set plane offsets */
786 	rkisp1_write(cap->rkisp1, cap->config->mi.y_offs_cnt_init, 0);
787 	rkisp1_write(cap->rkisp1, cap->config->mi.cb_offs_cnt_init, 0);
788 	rkisp1_write(cap->rkisp1, cap->config->mi.cr_offs_cnt_init, 0);
789 }
790 
791 /*
792  * This function is called when a frame end comes. The next frame
793  * is processing and we should set up buffer for next-next frame,
794  * otherwise it will overflow.
795  */
796 static void rkisp1_handle_buffer(struct rkisp1_capture *cap)
797 {
798 	struct rkisp1_isp *isp = &cap->rkisp1->isp;
799 	struct rkisp1_buffer *curr_buf;
800 
801 	spin_lock(&cap->buf.lock);
802 	curr_buf = cap->buf.curr;
803 
804 	if (curr_buf) {
805 		curr_buf->vb.sequence = isp->frame_sequence;
806 		curr_buf->vb.vb2_buf.timestamp = ktime_get_boottime_ns();
807 		curr_buf->vb.field = V4L2_FIELD_NONE;
808 		vb2_buffer_done(&curr_buf->vb.vb2_buf, VB2_BUF_STATE_DONE);
809 	} else {
810 		cap->rkisp1->debug.frame_drop[cap->id]++;
811 	}
812 
813 	rkisp1_set_next_buf(cap);
814 	spin_unlock(&cap->buf.lock);
815 }
816 
817 irqreturn_t rkisp1_capture_isr(int irq, void *ctx)
818 {
819 	struct device *dev = ctx;
820 	struct rkisp1_device *rkisp1 = dev_get_drvdata(dev);
821 	unsigned int dev_count = rkisp1_path_count(rkisp1);
822 	unsigned int i;
823 	u32 status;
824 
825 	if (!rkisp1->irqs_enabled)
826 		return IRQ_NONE;
827 
828 	status = rkisp1_read(rkisp1, RKISP1_CIF_MI_MIS);
829 	if (!status)
830 		return IRQ_NONE;
831 
832 	rkisp1_write(rkisp1, RKISP1_CIF_MI_ICR, status);
833 
834 	for (i = 0; i < dev_count; ++i) {
835 		struct rkisp1_capture *cap = &rkisp1->capture_devs[i];
836 
837 		if (!(status & RKISP1_CIF_MI_FRAME(cap)))
838 			continue;
839 		if (!cap->is_stopping) {
840 			rkisp1_handle_buffer(cap);
841 			continue;
842 		}
843 		/*
844 		 * Make sure stream is actually stopped, whose state
845 		 * can be read from the shadow register, before
846 		 * wake_up() thread which would immediately free all
847 		 * frame buffers. stop() takes effect at the next
848 		 * frame end that sync the configurations to shadow
849 		 * regs.
850 		 */
851 		if (!cap->ops->is_stopped(cap)) {
852 			cap->ops->stop(cap);
853 			continue;
854 		}
855 		cap->is_stopping = false;
856 		cap->is_streaming = false;
857 		wake_up(&cap->done);
858 	}
859 
860 	return IRQ_HANDLED;
861 }
862 
863 /* ----------------------------------------------------------------------------
864  * Vb2 operations
865  */
866 
867 static int rkisp1_vb2_queue_setup(struct vb2_queue *queue,
868 				  unsigned int *num_buffers,
869 				  unsigned int *num_planes,
870 				  unsigned int sizes[],
871 				  struct device *alloc_devs[])
872 {
873 	struct rkisp1_capture *cap = queue->drv_priv;
874 	const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
875 	unsigned int i;
876 
877 	if (*num_planes) {
878 		if (*num_planes != pixm->num_planes)
879 			return -EINVAL;
880 
881 		for (i = 0; i < pixm->num_planes; i++)
882 			if (sizes[i] < pixm->plane_fmt[i].sizeimage)
883 				return -EINVAL;
884 	} else {
885 		*num_planes = pixm->num_planes;
886 		for (i = 0; i < pixm->num_planes; i++)
887 			sizes[i] = pixm->plane_fmt[i].sizeimage;
888 	}
889 
890 	return 0;
891 }
892 
893 static int rkisp1_vb2_buf_init(struct vb2_buffer *vb)
894 {
895 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
896 	struct rkisp1_buffer *ispbuf =
897 		container_of(vbuf, struct rkisp1_buffer, vb);
898 	struct rkisp1_capture *cap = vb->vb2_queue->drv_priv;
899 	const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
900 	unsigned int i;
901 
902 	memset(ispbuf->buff_addr, 0, sizeof(ispbuf->buff_addr));
903 	for (i = 0; i < pixm->num_planes; i++)
904 		ispbuf->buff_addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
905 
906 	/* Convert to non-MPLANE */
907 	if (pixm->num_planes == 1) {
908 		ispbuf->buff_addr[RKISP1_PLANE_CB] =
909 			ispbuf->buff_addr[RKISP1_PLANE_Y] +
910 			rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_Y);
911 		ispbuf->buff_addr[RKISP1_PLANE_CR] =
912 			ispbuf->buff_addr[RKISP1_PLANE_CB] +
913 			rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CB);
914 	}
915 
916 	/*
917 	 * uv swap can be supported for planar formats by switching
918 	 * the address of cb and cr
919 	 */
920 	if (cap->pix.info->comp_planes == 3 && cap->pix.cfg->uv_swap)
921 		swap(ispbuf->buff_addr[RKISP1_PLANE_CR],
922 		     ispbuf->buff_addr[RKISP1_PLANE_CB]);
923 	return 0;
924 }
925 
926 static void rkisp1_vb2_buf_queue(struct vb2_buffer *vb)
927 {
928 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
929 	struct rkisp1_buffer *ispbuf =
930 		container_of(vbuf, struct rkisp1_buffer, vb);
931 	struct rkisp1_capture *cap = vb->vb2_queue->drv_priv;
932 
933 	spin_lock_irq(&cap->buf.lock);
934 	list_add_tail(&ispbuf->queue, &cap->buf.queue);
935 	spin_unlock_irq(&cap->buf.lock);
936 }
937 
938 static int rkisp1_vb2_buf_prepare(struct vb2_buffer *vb)
939 {
940 	struct rkisp1_capture *cap = vb->vb2_queue->drv_priv;
941 	unsigned int i;
942 
943 	for (i = 0; i < cap->pix.fmt.num_planes; i++) {
944 		unsigned long size = cap->pix.fmt.plane_fmt[i].sizeimage;
945 
946 		if (vb2_plane_size(vb, i) < size) {
947 			dev_err(cap->rkisp1->dev,
948 				"User buffer too small (%ld < %ld)\n",
949 				vb2_plane_size(vb, i), size);
950 			return -EINVAL;
951 		}
952 		vb2_set_plane_payload(vb, i, size);
953 	}
954 
955 	return 0;
956 }
957 
958 static void rkisp1_return_all_buffers(struct rkisp1_capture *cap,
959 				      enum vb2_buffer_state state)
960 {
961 	struct rkisp1_buffer *buf;
962 
963 	spin_lock_irq(&cap->buf.lock);
964 	if (cap->buf.curr) {
965 		vb2_buffer_done(&cap->buf.curr->vb.vb2_buf, state);
966 		cap->buf.curr = NULL;
967 	}
968 	if (cap->buf.next) {
969 		vb2_buffer_done(&cap->buf.next->vb.vb2_buf, state);
970 		cap->buf.next = NULL;
971 	}
972 	while (!list_empty(&cap->buf.queue)) {
973 		buf = list_first_entry(&cap->buf.queue,
974 				       struct rkisp1_buffer, queue);
975 		list_del(&buf->queue);
976 		vb2_buffer_done(&buf->vb.vb2_buf, state);
977 	}
978 	spin_unlock_irq(&cap->buf.lock);
979 }
980 
981 /*
982  * Most registers inside the rockchip ISP1 have shadow register since
983  * they must not be changed while processing a frame.
984  * Usually, each sub-module updates its shadow register after
985  * processing the last pixel of a frame.
986  */
987 static void rkisp1_cap_stream_enable(struct rkisp1_capture *cap)
988 {
989 	struct rkisp1_device *rkisp1 = cap->rkisp1;
990 	struct rkisp1_capture *other = &rkisp1->capture_devs[cap->id ^ 1];
991 	bool has_self_path = rkisp1_has_feature(rkisp1, SELF_PATH);
992 
993 	cap->ops->set_data_path(cap);
994 	cap->ops->config(cap);
995 
996 	/* Setup a buffer for the next frame */
997 	spin_lock_irq(&cap->buf.lock);
998 	rkisp1_set_next_buf(cap);
999 	cap->ops->enable(cap);
1000 
1001 	/*
1002 	 * It's safe to configure ACTIVE and SHADOW registers for the first
1003 	 * stream. While when the second is starting, do NOT force update
1004 	 * because it also updates the first one.
1005 	 *
1006 	 * The latter case would drop one more buffer(that is 2) since there's
1007 	 * no buffer in a shadow register when the second FE received. This's
1008 	 * also required because the second FE maybe corrupt especially when
1009 	 * run at 120fps.
1010 	 */
1011 	if (!has_self_path || !other->is_streaming) {
1012 		u32 reg;
1013 
1014 		/*
1015 		 * Force cfg update.
1016 		 *
1017 		 * The ISP8000 (implementing the MAIN_STRIDE feature) as a
1018 		 * mp_output_format field in the CIF_MI_INIT register that must
1019 		 * be preserved. It can be read back, but it is not clear what
1020 		 * other register bits will return. Mask them out.
1021 		 *
1022 		 * On Rockchip platforms, the CIF_MI_INIT register is marked as
1023 		 * write-only and reads as zeros. We can skip reading it.
1024 		 */
1025 		if (rkisp1_has_feature(rkisp1, MAIN_STRIDE))
1026 			reg = rkisp1_read(rkisp1, RKISP1_CIF_MI_INIT)
1027 			    & RKISP1_CIF_MI_INIT_MP_OUTPUT_MASK;
1028 		else
1029 			reg = 0;
1030 
1031 		reg |= RKISP1_CIF_MI_INIT_SOFT_UPD;
1032 		rkisp1_write(rkisp1, RKISP1_CIF_MI_INIT, reg);
1033 
1034 		rkisp1_set_next_buf(cap);
1035 	}
1036 	spin_unlock_irq(&cap->buf.lock);
1037 	cap->is_streaming = true;
1038 }
1039 
1040 static void rkisp1_cap_stream_disable(struct rkisp1_capture *cap)
1041 {
1042 	int ret;
1043 
1044 	/* Stream should stop in interrupt. If it doesn't, stop it by force. */
1045 	cap->is_stopping = true;
1046 	ret = wait_event_timeout(cap->done,
1047 				 !cap->is_streaming,
1048 				 msecs_to_jiffies(1000));
1049 	if (!ret) {
1050 		cap->rkisp1->debug.stop_timeout[cap->id]++;
1051 		cap->ops->stop(cap);
1052 		cap->is_stopping = false;
1053 		cap->is_streaming = false;
1054 	}
1055 }
1056 
1057 /*
1058  * rkisp1_pipeline_stream_disable - disable nodes in the pipeline
1059  *
1060  * Call s_stream(false) in the reverse order from
1061  * rkisp1_pipeline_stream_enable() and disable the DMA engine.
1062  * Should be called before video_device_pipeline_stop()
1063  */
1064 static void rkisp1_pipeline_stream_disable(struct rkisp1_capture *cap)
1065 	__must_hold(&cap->rkisp1->stream_lock)
1066 {
1067 	struct rkisp1_device *rkisp1 = cap->rkisp1;
1068 
1069 	rkisp1_cap_stream_disable(cap);
1070 
1071 	/*
1072 	 * If the other capture is streaming, isp and sensor nodes shouldn't
1073 	 * be disabled, skip them.
1074 	 */
1075 	if (rkisp1->pipe.start_count < 2)
1076 		v4l2_subdev_call(&rkisp1->isp.sd, video, s_stream, false);
1077 
1078 	v4l2_subdev_call(&rkisp1->resizer_devs[cap->id].sd, video, s_stream,
1079 			 false);
1080 }
1081 
1082 /*
1083  * rkisp1_pipeline_stream_enable - enable nodes in the pipeline
1084  *
1085  * Enable the DMA Engine and call s_stream(true) through the pipeline.
1086  * Should be called after video_device_pipeline_start()
1087  */
1088 static int rkisp1_pipeline_stream_enable(struct rkisp1_capture *cap)
1089 	__must_hold(&cap->rkisp1->stream_lock)
1090 {
1091 	struct rkisp1_device *rkisp1 = cap->rkisp1;
1092 	int ret;
1093 
1094 	rkisp1_cap_stream_enable(cap);
1095 
1096 	ret = v4l2_subdev_call(&rkisp1->resizer_devs[cap->id].sd, video,
1097 			       s_stream, true);
1098 	if (ret)
1099 		goto err_disable_cap;
1100 
1101 	/*
1102 	 * If the other capture is streaming, isp and sensor nodes are already
1103 	 * enabled, skip them.
1104 	 */
1105 	if (rkisp1->pipe.start_count > 1)
1106 		return 0;
1107 
1108 	ret = v4l2_subdev_call(&rkisp1->isp.sd, video, s_stream, true);
1109 	if (ret)
1110 		goto err_disable_rsz;
1111 
1112 	return 0;
1113 
1114 err_disable_rsz:
1115 	v4l2_subdev_call(&rkisp1->resizer_devs[cap->id].sd, video, s_stream,
1116 			 false);
1117 err_disable_cap:
1118 	rkisp1_cap_stream_disable(cap);
1119 
1120 	return ret;
1121 }
1122 
1123 static void rkisp1_vb2_stop_streaming(struct vb2_queue *queue)
1124 {
1125 	struct rkisp1_capture *cap = queue->drv_priv;
1126 	struct rkisp1_vdev_node *node = &cap->vnode;
1127 	struct rkisp1_device *rkisp1 = cap->rkisp1;
1128 	int ret;
1129 
1130 	mutex_lock(&cap->rkisp1->stream_lock);
1131 
1132 	rkisp1_pipeline_stream_disable(cap);
1133 
1134 	rkisp1_return_all_buffers(cap, VB2_BUF_STATE_ERROR);
1135 
1136 	v4l2_pipeline_pm_put(&node->vdev.entity);
1137 	ret = pm_runtime_put(rkisp1->dev);
1138 	if (ret < 0)
1139 		dev_err(rkisp1->dev, "power down failed error:%d\n", ret);
1140 
1141 	rkisp1_dummy_buf_destroy(cap);
1142 
1143 	video_device_pipeline_stop(&node->vdev);
1144 
1145 	mutex_unlock(&cap->rkisp1->stream_lock);
1146 }
1147 
1148 static int
1149 rkisp1_vb2_start_streaming(struct vb2_queue *queue, unsigned int count)
1150 {
1151 	struct rkisp1_capture *cap = queue->drv_priv;
1152 	struct media_entity *entity = &cap->vnode.vdev.entity;
1153 	int ret;
1154 
1155 	mutex_lock(&cap->rkisp1->stream_lock);
1156 
1157 	ret = video_device_pipeline_start(&cap->vnode.vdev, &cap->rkisp1->pipe);
1158 	if (ret) {
1159 		dev_err(cap->rkisp1->dev, "start pipeline failed %d\n", ret);
1160 		goto err_ret_buffers;
1161 	}
1162 
1163 	ret = rkisp1_dummy_buf_create(cap);
1164 	if (ret)
1165 		goto err_pipeline_stop;
1166 
1167 	ret = pm_runtime_resume_and_get(cap->rkisp1->dev);
1168 	if (ret < 0) {
1169 		dev_err(cap->rkisp1->dev, "power up failed %d\n", ret);
1170 		goto err_destroy_dummy;
1171 	}
1172 	ret = v4l2_pipeline_pm_get(entity);
1173 	if (ret) {
1174 		dev_err(cap->rkisp1->dev, "open cif pipeline failed %d\n", ret);
1175 		goto err_pipe_pm_put;
1176 	}
1177 
1178 	ret = rkisp1_pipeline_stream_enable(cap);
1179 	if (ret)
1180 		goto err_v4l2_pm_put;
1181 
1182 	mutex_unlock(&cap->rkisp1->stream_lock);
1183 
1184 	return 0;
1185 
1186 err_v4l2_pm_put:
1187 	v4l2_pipeline_pm_put(entity);
1188 err_pipe_pm_put:
1189 	pm_runtime_put(cap->rkisp1->dev);
1190 err_destroy_dummy:
1191 	rkisp1_dummy_buf_destroy(cap);
1192 err_pipeline_stop:
1193 	video_device_pipeline_stop(&cap->vnode.vdev);
1194 err_ret_buffers:
1195 	rkisp1_return_all_buffers(cap, VB2_BUF_STATE_QUEUED);
1196 	mutex_unlock(&cap->rkisp1->stream_lock);
1197 
1198 	return ret;
1199 }
1200 
1201 static const struct vb2_ops rkisp1_vb2_ops = {
1202 	.queue_setup = rkisp1_vb2_queue_setup,
1203 	.buf_init = rkisp1_vb2_buf_init,
1204 	.buf_queue = rkisp1_vb2_buf_queue,
1205 	.buf_prepare = rkisp1_vb2_buf_prepare,
1206 	.wait_prepare = vb2_ops_wait_prepare,
1207 	.wait_finish = vb2_ops_wait_finish,
1208 	.stop_streaming = rkisp1_vb2_stop_streaming,
1209 	.start_streaming = rkisp1_vb2_start_streaming,
1210 };
1211 
1212 /* ----------------------------------------------------------------------------
1213  * IOCTLs operations
1214  */
1215 
1216 static const struct v4l2_format_info *
1217 rkisp1_fill_pixfmt(const struct rkisp1_capture *cap,
1218 		   struct v4l2_pix_format_mplane *pixm)
1219 {
1220 	struct v4l2_plane_pix_format *plane_y = &pixm->plane_fmt[0];
1221 	const struct v4l2_format_info *info;
1222 	unsigned int i;
1223 	u32 stride;
1224 
1225 	memset(pixm->plane_fmt, 0, sizeof(pixm->plane_fmt));
1226 	info = v4l2_format_info(pixm->pixelformat);
1227 	pixm->num_planes = info->mem_planes;
1228 
1229 	/*
1230 	 * The SP supports custom strides, expressed as a number of pixels for
1231 	 * the Y plane, and so does the MP in ISP versions that have the
1232 	 * MAIN_STRIDE feature. Clamp the stride to a reasonable value to avoid
1233 	 * integer overflows when calculating the bytesperline and sizeimage
1234 	 * values.
1235 	 */
1236 	if (cap->id == RKISP1_SELFPATH ||
1237 	    rkisp1_has_feature(cap->rkisp1, MAIN_STRIDE))
1238 		stride = clamp(DIV_ROUND_UP(plane_y->bytesperline, info->bpp[0]),
1239 			       pixm->width, 65536U);
1240 	else
1241 		stride = pixm->width;
1242 
1243 	plane_y->bytesperline = stride * info->bpp[0];
1244 	plane_y->sizeimage = plane_y->bytesperline * pixm->height;
1245 
1246 	for (i = 1; i < info->comp_planes; i++) {
1247 		struct v4l2_plane_pix_format *plane = &pixm->plane_fmt[i];
1248 
1249 		/* bytesperline for other components derive from Y component */
1250 		plane->bytesperline = DIV_ROUND_UP(stride, info->hdiv) *
1251 				      info->bpp[i];
1252 		plane->sizeimage = plane->bytesperline *
1253 				   DIV_ROUND_UP(pixm->height, info->vdiv);
1254 	}
1255 
1256 	/*
1257 	 * If pixfmt is packed, then plane_fmt[0] should contain the total size
1258 	 * considering all components. plane_fmt[i] for i > 0 should be ignored
1259 	 * by userspace as mem_planes == 1, but we are keeping information there
1260 	 * for convenience.
1261 	 */
1262 	if (info->mem_planes == 1)
1263 		for (i = 1; i < info->comp_planes; i++)
1264 			plane_y->sizeimage += pixm->plane_fmt[i].sizeimage;
1265 
1266 	return info;
1267 }
1268 
1269 static const struct rkisp1_capture_fmt_cfg *
1270 rkisp1_find_fmt_cfg(const struct rkisp1_capture *cap, const u32 pixelfmt)
1271 {
1272 	bool yc_swap_support = rkisp1_has_feature(cap->rkisp1, MAIN_STRIDE);
1273 	unsigned int i;
1274 
1275 	for (i = 0; i < cap->config->fmt_size; i++) {
1276 		const struct rkisp1_capture_fmt_cfg *fmt = &cap->config->fmts[i];
1277 
1278 		if (fmt->fourcc == pixelfmt &&
1279 		    (!fmt->yc_swap || yc_swap_support))
1280 			return &cap->config->fmts[i];
1281 	}
1282 	return NULL;
1283 }
1284 
1285 static void rkisp1_try_fmt(const struct rkisp1_capture *cap,
1286 			   struct v4l2_pix_format_mplane *pixm,
1287 			   const struct rkisp1_capture_fmt_cfg **fmt_cfg,
1288 			   const struct v4l2_format_info **fmt_info)
1289 {
1290 	const struct rkisp1_capture_config *config = cap->config;
1291 	const struct rkisp1_capture_fmt_cfg *fmt;
1292 	const struct v4l2_format_info *info;
1293 	static const unsigned int max_widths[] = {
1294 		RKISP1_RSZ_MP_SRC_MAX_WIDTH, RKISP1_RSZ_SP_SRC_MAX_WIDTH
1295 	};
1296 	static const unsigned int max_heights[] = {
1297 		RKISP1_RSZ_MP_SRC_MAX_HEIGHT, RKISP1_RSZ_SP_SRC_MAX_HEIGHT
1298 	};
1299 
1300 	fmt = rkisp1_find_fmt_cfg(cap, pixm->pixelformat);
1301 	if (!fmt) {
1302 		fmt = config->fmts;
1303 		pixm->pixelformat = fmt->fourcc;
1304 	}
1305 
1306 	pixm->width = clamp_t(u32, pixm->width,
1307 			      RKISP1_RSZ_SRC_MIN_WIDTH, max_widths[cap->id]);
1308 	pixm->height = clamp_t(u32, pixm->height,
1309 			       RKISP1_RSZ_SRC_MIN_HEIGHT, max_heights[cap->id]);
1310 
1311 	pixm->field = V4L2_FIELD_NONE;
1312 	pixm->colorspace = V4L2_COLORSPACE_DEFAULT;
1313 	pixm->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
1314 	pixm->quantization = V4L2_QUANTIZATION_DEFAULT;
1315 
1316 	info = rkisp1_fill_pixfmt(cap, pixm);
1317 
1318 	if (fmt_cfg)
1319 		*fmt_cfg = fmt;
1320 	if (fmt_info)
1321 		*fmt_info = info;
1322 }
1323 
1324 static void rkisp1_set_fmt(struct rkisp1_capture *cap,
1325 			   struct v4l2_pix_format_mplane *pixm)
1326 {
1327 	rkisp1_try_fmt(cap, pixm, &cap->pix.cfg, &cap->pix.info);
1328 
1329 	cap->pix.fmt = *pixm;
1330 	cap->stride = pixm->plane_fmt[0].bytesperline / cap->pix.info->bpp[0];
1331 }
1332 
1333 static int rkisp1_try_fmt_vid_cap_mplane(struct file *file, void *fh,
1334 					 struct v4l2_format *f)
1335 {
1336 	struct rkisp1_capture *cap = video_drvdata(file);
1337 
1338 	rkisp1_try_fmt(cap, &f->fmt.pix_mp, NULL, NULL);
1339 
1340 	return 0;
1341 }
1342 
1343 static int rkisp1_enum_fmt_vid_cap_mplane(struct file *file, void *priv,
1344 					  struct v4l2_fmtdesc *f)
1345 {
1346 	struct rkisp1_capture *cap = video_drvdata(file);
1347 	const struct rkisp1_capture_fmt_cfg *fmt = NULL;
1348 	bool yc_swap_support = rkisp1_has_feature(cap->rkisp1, MAIN_STRIDE);
1349 	unsigned int i, n = 0;
1350 
1351 	if (f->index >= cap->config->fmt_size)
1352 		return -EINVAL;
1353 
1354 	if (!f->mbus_code && yc_swap_support) {
1355 		fmt = &cap->config->fmts[f->index];
1356 		f->pixelformat = fmt->fourcc;
1357 		return 0;
1358 	}
1359 
1360 	for (i = 0; i < cap->config->fmt_size; i++) {
1361 		fmt = &cap->config->fmts[i];
1362 
1363 		if (f->mbus_code && fmt->mbus != f->mbus_code)
1364 			continue;
1365 
1366 		if (!yc_swap_support && fmt->yc_swap)
1367 			continue;
1368 
1369 		if (n++ == f->index) {
1370 			f->pixelformat = fmt->fourcc;
1371 			return 0;
1372 		}
1373 	}
1374 	return -EINVAL;
1375 }
1376 
1377 static int rkisp1_enum_framesizes(struct file *file, void *fh,
1378 				  struct v4l2_frmsizeenum *fsize)
1379 {
1380 	static const unsigned int max_widths[] = {
1381 		RKISP1_RSZ_MP_SRC_MAX_WIDTH,
1382 		RKISP1_RSZ_SP_SRC_MAX_WIDTH,
1383 	};
1384 	static const unsigned int max_heights[] = {
1385 		RKISP1_RSZ_MP_SRC_MAX_HEIGHT,
1386 		RKISP1_RSZ_SP_SRC_MAX_HEIGHT,
1387 	};
1388 	struct rkisp1_capture *cap = video_drvdata(file);
1389 
1390 	if (fsize->index != 0)
1391 		return -EINVAL;
1392 
1393 	fsize->type = V4L2_FRMSIZE_TYPE_STEPWISE;
1394 
1395 	fsize->stepwise.min_width = RKISP1_RSZ_SRC_MIN_WIDTH;
1396 	fsize->stepwise.max_width = max_widths[cap->id];
1397 	fsize->stepwise.step_width = 2;
1398 
1399 	fsize->stepwise.min_height = RKISP1_RSZ_SRC_MIN_HEIGHT;
1400 	fsize->stepwise.max_height = max_heights[cap->id];
1401 	fsize->stepwise.step_height = 2;
1402 
1403 	return 0;
1404 }
1405 
1406 static int rkisp1_s_fmt_vid_cap_mplane(struct file *file,
1407 				       void *priv, struct v4l2_format *f)
1408 {
1409 	struct rkisp1_capture *cap = video_drvdata(file);
1410 	struct rkisp1_vdev_node *node =
1411 				rkisp1_vdev_to_node(&cap->vnode.vdev);
1412 
1413 	if (vb2_is_busy(&node->buf_queue))
1414 		return -EBUSY;
1415 
1416 	rkisp1_set_fmt(cap, &f->fmt.pix_mp);
1417 
1418 	return 0;
1419 }
1420 
1421 static int rkisp1_g_fmt_vid_cap_mplane(struct file *file, void *fh,
1422 				       struct v4l2_format *f)
1423 {
1424 	struct rkisp1_capture *cap = video_drvdata(file);
1425 
1426 	f->fmt.pix_mp = cap->pix.fmt;
1427 
1428 	return 0;
1429 }
1430 
1431 static int
1432 rkisp1_querycap(struct file *file, void *priv, struct v4l2_capability *cap)
1433 {
1434 	strscpy(cap->driver, RKISP1_DRIVER_NAME, sizeof(cap->driver));
1435 	strscpy(cap->card, RKISP1_DRIVER_NAME, sizeof(cap->card));
1436 	strscpy(cap->bus_info, RKISP1_BUS_INFO, sizeof(cap->bus_info));
1437 
1438 	return 0;
1439 }
1440 
1441 static const struct v4l2_ioctl_ops rkisp1_v4l2_ioctl_ops = {
1442 	.vidioc_reqbufs = vb2_ioctl_reqbufs,
1443 	.vidioc_querybuf = vb2_ioctl_querybuf,
1444 	.vidioc_create_bufs = vb2_ioctl_create_bufs,
1445 	.vidioc_qbuf = vb2_ioctl_qbuf,
1446 	.vidioc_expbuf = vb2_ioctl_expbuf,
1447 	.vidioc_dqbuf = vb2_ioctl_dqbuf,
1448 	.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
1449 	.vidioc_streamon = vb2_ioctl_streamon,
1450 	.vidioc_streamoff = vb2_ioctl_streamoff,
1451 	.vidioc_try_fmt_vid_cap_mplane = rkisp1_try_fmt_vid_cap_mplane,
1452 	.vidioc_s_fmt_vid_cap_mplane = rkisp1_s_fmt_vid_cap_mplane,
1453 	.vidioc_g_fmt_vid_cap_mplane = rkisp1_g_fmt_vid_cap_mplane,
1454 	.vidioc_enum_fmt_vid_cap = rkisp1_enum_fmt_vid_cap_mplane,
1455 	.vidioc_enum_framesizes = rkisp1_enum_framesizes,
1456 	.vidioc_querycap = rkisp1_querycap,
1457 	.vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
1458 	.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
1459 };
1460 
1461 static int rkisp1_capture_link_validate(struct media_link *link)
1462 {
1463 	struct video_device *vdev =
1464 		media_entity_to_video_device(link->sink->entity);
1465 	struct v4l2_subdev *sd =
1466 		media_entity_to_v4l2_subdev(link->source->entity);
1467 	struct rkisp1_capture *cap = video_get_drvdata(vdev);
1468 	const struct rkisp1_capture_fmt_cfg *fmt =
1469 		rkisp1_find_fmt_cfg(cap, cap->pix.fmt.pixelformat);
1470 	struct v4l2_subdev_format sd_fmt = {
1471 		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
1472 		.pad = link->source->index,
1473 	};
1474 	int ret;
1475 
1476 	ret = v4l2_subdev_call(sd, pad, get_fmt, NULL, &sd_fmt);
1477 	if (ret)
1478 		return ret;
1479 
1480 	if (sd_fmt.format.height != cap->pix.fmt.height ||
1481 	    sd_fmt.format.width != cap->pix.fmt.width ||
1482 	    sd_fmt.format.code != fmt->mbus) {
1483 		dev_dbg(cap->rkisp1->dev,
1484 			"link '%s':%u -> '%s':%u not valid: 0x%04x/%ux%u != 0x%04x/%ux%u\n",
1485 			link->source->entity->name, link->source->index,
1486 			link->sink->entity->name, link->sink->index,
1487 			sd_fmt.format.code, sd_fmt.format.width,
1488 			sd_fmt.format.height, fmt->mbus, cap->pix.fmt.width,
1489 			cap->pix.fmt.height);
1490 		return -EPIPE;
1491 	}
1492 
1493 	return 0;
1494 }
1495 
1496 /* ----------------------------------------------------------------------------
1497  * core functions
1498  */
1499 
1500 static const struct media_entity_operations rkisp1_media_ops = {
1501 	.link_validate = rkisp1_capture_link_validate,
1502 };
1503 
1504 static const struct v4l2_file_operations rkisp1_fops = {
1505 	.open = v4l2_fh_open,
1506 	.release = vb2_fop_release,
1507 	.unlocked_ioctl = video_ioctl2,
1508 	.poll = vb2_fop_poll,
1509 	.mmap = vb2_fop_mmap,
1510 };
1511 
1512 static void rkisp1_unregister_capture(struct rkisp1_capture *cap)
1513 {
1514 	if (!video_is_registered(&cap->vnode.vdev))
1515 		return;
1516 
1517 	media_entity_cleanup(&cap->vnode.vdev.entity);
1518 	vb2_video_unregister_device(&cap->vnode.vdev);
1519 	mutex_destroy(&cap->vnode.vlock);
1520 }
1521 
1522 void rkisp1_capture_devs_unregister(struct rkisp1_device *rkisp1)
1523 {
1524 	struct rkisp1_capture *mp = &rkisp1->capture_devs[RKISP1_MAINPATH];
1525 	struct rkisp1_capture *sp = &rkisp1->capture_devs[RKISP1_SELFPATH];
1526 
1527 	rkisp1_unregister_capture(mp);
1528 	rkisp1_unregister_capture(sp);
1529 }
1530 
1531 static int rkisp1_register_capture(struct rkisp1_capture *cap)
1532 {
1533 	static const char * const dev_names[] = {
1534 		RKISP1_MP_DEV_NAME, RKISP1_SP_DEV_NAME
1535 	};
1536 	struct v4l2_device *v4l2_dev = &cap->rkisp1->v4l2_dev;
1537 	struct video_device *vdev = &cap->vnode.vdev;
1538 	struct rkisp1_vdev_node *node;
1539 	struct vb2_queue *q;
1540 	int ret;
1541 
1542 	strscpy(vdev->name, dev_names[cap->id], sizeof(vdev->name));
1543 	node = rkisp1_vdev_to_node(vdev);
1544 	mutex_init(&node->vlock);
1545 
1546 	vdev->ioctl_ops = &rkisp1_v4l2_ioctl_ops;
1547 	vdev->release = video_device_release_empty;
1548 	vdev->fops = &rkisp1_fops;
1549 	vdev->minor = -1;
1550 	vdev->v4l2_dev = v4l2_dev;
1551 	vdev->lock = &node->vlock;
1552 	vdev->device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE |
1553 			    V4L2_CAP_STREAMING | V4L2_CAP_IO_MC;
1554 	vdev->entity.ops = &rkisp1_media_ops;
1555 	video_set_drvdata(vdev, cap);
1556 	vdev->vfl_dir = VFL_DIR_RX;
1557 	node->pad.flags = MEDIA_PAD_FL_SINK;
1558 
1559 	q = &node->buf_queue;
1560 	q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1561 	q->io_modes = VB2_MMAP | VB2_DMABUF;
1562 	q->drv_priv = cap;
1563 	q->ops = &rkisp1_vb2_ops;
1564 	q->mem_ops = &vb2_dma_contig_memops;
1565 	q->buf_struct_size = sizeof(struct rkisp1_buffer);
1566 	q->min_queued_buffers = RKISP1_MIN_BUFFERS_NEEDED;
1567 	q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
1568 	q->lock = &node->vlock;
1569 	q->dev = cap->rkisp1->dev;
1570 	ret = vb2_queue_init(q);
1571 	if (ret) {
1572 		dev_err(cap->rkisp1->dev,
1573 			"vb2 queue init failed (err=%d)\n", ret);
1574 		goto error;
1575 	}
1576 
1577 	vdev->queue = q;
1578 
1579 	ret = media_entity_pads_init(&vdev->entity, 1, &node->pad);
1580 	if (ret)
1581 		goto error;
1582 
1583 	ret = video_register_device(vdev, VFL_TYPE_VIDEO, -1);
1584 	if (ret) {
1585 		dev_err(cap->rkisp1->dev,
1586 			"failed to register %s, ret=%d\n", vdev->name, ret);
1587 		goto error;
1588 	}
1589 
1590 	v4l2_info(v4l2_dev, "registered %s as /dev/video%d\n", vdev->name,
1591 		  vdev->num);
1592 
1593 	return 0;
1594 
1595 error:
1596 	media_entity_cleanup(&vdev->entity);
1597 	mutex_destroy(&node->vlock);
1598 	return ret;
1599 }
1600 
1601 static void
1602 rkisp1_capture_init(struct rkisp1_device *rkisp1, enum rkisp1_stream_id id)
1603 {
1604 	struct rkisp1_capture *cap = &rkisp1->capture_devs[id];
1605 	struct v4l2_pix_format_mplane pixm;
1606 
1607 	memset(cap, 0, sizeof(*cap));
1608 	cap->id = id;
1609 	cap->rkisp1 = rkisp1;
1610 
1611 	INIT_LIST_HEAD(&cap->buf.queue);
1612 	init_waitqueue_head(&cap->done);
1613 	spin_lock_init(&cap->buf.lock);
1614 	if (cap->id == RKISP1_SELFPATH) {
1615 		cap->ops = &rkisp1_capture_ops_sp;
1616 		cap->config = &rkisp1_capture_config_sp;
1617 	} else {
1618 		cap->ops = &rkisp1_capture_ops_mp;
1619 		cap->config = &rkisp1_capture_config_mp;
1620 	}
1621 
1622 	cap->is_streaming = false;
1623 
1624 	memset(&pixm, 0, sizeof(pixm));
1625 	pixm.pixelformat = V4L2_PIX_FMT_YUYV;
1626 	pixm.width = RKISP1_DEFAULT_WIDTH;
1627 	pixm.height = RKISP1_DEFAULT_HEIGHT;
1628 	rkisp1_set_fmt(cap, &pixm);
1629 }
1630 
1631 int rkisp1_capture_devs_register(struct rkisp1_device *rkisp1)
1632 {
1633 	unsigned int dev_count = rkisp1_path_count(rkisp1);
1634 	unsigned int i;
1635 	int ret;
1636 
1637 	for (i = 0; i < dev_count; i++) {
1638 		struct rkisp1_capture *cap = &rkisp1->capture_devs[i];
1639 
1640 		rkisp1_capture_init(rkisp1, i);
1641 
1642 		ret = rkisp1_register_capture(cap);
1643 		if (ret) {
1644 			rkisp1_capture_devs_unregister(rkisp1);
1645 			return ret;
1646 		}
1647 	}
1648 
1649 	return 0;
1650 
1651 }
1652