xref: /linux/drivers/media/platform/renesas/vsp1/vsp1_video.c (revision 47b60ec7ba22a6359379bce9643bfff7a1ffe9ed)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * vsp1_video.c  --  R-Car VSP1 Video Node
4  *
5  * Copyright (C) 2013-2015 Renesas Electronics Corporation
6  *
7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8  */
9 
10 #include <linux/list.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/slab.h>
14 #include <linux/v4l2-mediabus.h>
15 #include <linux/videodev2.h>
16 #include <linux/wait.h>
17 
18 #include <media/media-entity.h>
19 #include <media/v4l2-dev.h>
20 #include <media/v4l2-fh.h>
21 #include <media/v4l2-ioctl.h>
22 #include <media/v4l2-subdev.h>
23 #include <media/videobuf2-v4l2.h>
24 #include <media/videobuf2-dma-contig.h>
25 
26 #include "vsp1.h"
27 #include "vsp1_brx.h"
28 #include "vsp1_dl.h"
29 #include "vsp1_entity.h"
30 #include "vsp1_hgo.h"
31 #include "vsp1_hgt.h"
32 #include "vsp1_pipe.h"
33 #include "vsp1_rwpf.h"
34 #include "vsp1_uds.h"
35 #include "vsp1_video.h"
36 
37 #define VSP1_VIDEO_DEF_FORMAT		V4L2_PIX_FMT_YUYV
38 #define VSP1_VIDEO_DEF_WIDTH		1024
39 #define VSP1_VIDEO_DEF_HEIGHT		768
40 
41 #define VSP1_VIDEO_MAX_WIDTH		8190U
42 #define VSP1_VIDEO_MAX_HEIGHT		8190U
43 
44 /* -----------------------------------------------------------------------------
45  * Helper functions
46  */
47 
48 static struct v4l2_subdev *
49 vsp1_video_remote_subdev(struct media_pad *local, u32 *pad)
50 {
51 	struct media_pad *remote;
52 
53 	remote = media_pad_remote_pad_first(local);
54 	if (!remote || !is_media_entity_v4l2_subdev(remote->entity))
55 		return NULL;
56 
57 	if (pad)
58 		*pad = remote->index;
59 
60 	return media_entity_to_v4l2_subdev(remote->entity);
61 }
62 
63 static int vsp1_video_verify_format(struct vsp1_video *video)
64 {
65 	struct v4l2_subdev_format fmt = {
66 		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
67 	};
68 	struct v4l2_subdev *subdev;
69 	int ret;
70 
71 	subdev = vsp1_video_remote_subdev(&video->pad, &fmt.pad);
72 	if (subdev == NULL)
73 		return -EINVAL;
74 
75 	ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt);
76 	if (ret < 0)
77 		return ret == -ENOIOCTLCMD ? -EINVAL : ret;
78 
79 	if (video->rwpf->fmtinfo->mbus != fmt.format.code ||
80 	    video->rwpf->format.height != fmt.format.height ||
81 	    video->rwpf->format.width != fmt.format.width)
82 		return -EINVAL;
83 
84 	return 0;
85 }
86 
87 static int __vsp1_video_try_format(struct vsp1_video *video,
88 				   struct v4l2_pix_format_mplane *pix,
89 				   const struct vsp1_format_info **fmtinfo)
90 {
91 	static const u32 xrgb_formats[][2] = {
92 		{ V4L2_PIX_FMT_RGB444, V4L2_PIX_FMT_XRGB444 },
93 		{ V4L2_PIX_FMT_RGB555, V4L2_PIX_FMT_XRGB555 },
94 		{ V4L2_PIX_FMT_BGR32, V4L2_PIX_FMT_XBGR32 },
95 		{ V4L2_PIX_FMT_RGB32, V4L2_PIX_FMT_XRGB32 },
96 	};
97 
98 	const struct vsp1_format_info *info;
99 	unsigned int width = pix->width;
100 	unsigned int height = pix->height;
101 	unsigned int i;
102 
103 	/*
104 	 * Backward compatibility: replace deprecated RGB formats by their XRGB
105 	 * equivalent. This selects the format older userspace applications want
106 	 * while still exposing the new format.
107 	 */
108 	for (i = 0; i < ARRAY_SIZE(xrgb_formats); ++i) {
109 		if (xrgb_formats[i][0] == pix->pixelformat) {
110 			pix->pixelformat = xrgb_formats[i][1];
111 			break;
112 		}
113 	}
114 
115 	/*
116 	 * Retrieve format information and select the default format if the
117 	 * requested format isn't supported.
118 	 */
119 	info = vsp1_get_format_info(video->vsp1, pix->pixelformat);
120 	if (info == NULL)
121 		info = vsp1_get_format_info(video->vsp1, VSP1_VIDEO_DEF_FORMAT);
122 
123 	pix->pixelformat = info->fourcc;
124 	pix->colorspace = V4L2_COLORSPACE_SRGB;
125 	pix->field = V4L2_FIELD_NONE;
126 
127 	if (info->fourcc == V4L2_PIX_FMT_HSV24 ||
128 	    info->fourcc == V4L2_PIX_FMT_HSV32)
129 		pix->hsv_enc = V4L2_HSV_ENC_256;
130 
131 	memset(pix->reserved, 0, sizeof(pix->reserved));
132 
133 	/* Align the width and height for YUV 4:2:2 and 4:2:0 formats. */
134 	width = round_down(width, info->hsub);
135 	height = round_down(height, info->vsub);
136 
137 	/* Clamp the width and height. */
138 	pix->width = clamp(width, info->hsub, VSP1_VIDEO_MAX_WIDTH);
139 	pix->height = clamp(height, info->vsub, VSP1_VIDEO_MAX_HEIGHT);
140 
141 	/*
142 	 * Compute and clamp the stride and image size. While not documented in
143 	 * the datasheet, strides not aligned to a multiple of 128 bytes result
144 	 * in image corruption.
145 	 */
146 	for (i = 0; i < min(info->planes, 2U); ++i) {
147 		unsigned int hsub = i > 0 ? info->hsub : 1;
148 		unsigned int vsub = i > 0 ? info->vsub : 1;
149 		unsigned int align = 128;
150 		unsigned int bpl;
151 
152 		bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
153 			      pix->width / hsub * info->bpp[i] / 8,
154 			      round_down(65535U, align));
155 
156 		pix->plane_fmt[i].bytesperline = round_up(bpl, align);
157 		pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
158 					    * pix->height / vsub;
159 	}
160 
161 	if (info->planes == 3) {
162 		/* The second and third planes must have the same stride. */
163 		pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
164 		pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
165 	}
166 
167 	pix->num_planes = info->planes;
168 
169 	if (fmtinfo)
170 		*fmtinfo = info;
171 
172 	return 0;
173 }
174 
175 /* -----------------------------------------------------------------------------
176  * VSP1 Partition Algorithm support
177  */
178 
179 /**
180  * vsp1_video_calculate_partition - Calculate the active partition output window
181  *
182  * @pipe: the pipeline
183  * @partition: partition that will hold the calculated values
184  * @div_size: pre-determined maximum partition division size
185  * @index: partition index
186  */
187 static void vsp1_video_calculate_partition(struct vsp1_pipeline *pipe,
188 					   struct vsp1_partition *partition,
189 					   unsigned int div_size,
190 					   unsigned int index)
191 {
192 	const struct v4l2_mbus_framefmt *format;
193 	struct vsp1_partition_window window;
194 	unsigned int modulus;
195 
196 	/*
197 	 * Partitions are computed on the size before rotation, use the format
198 	 * at the WPF sink.
199 	 */
200 	format = vsp1_entity_get_pad_format(&pipe->output->entity,
201 					    pipe->output->entity.config,
202 					    RWPF_PAD_SINK);
203 
204 	/* A single partition simply processes the output size in full. */
205 	if (pipe->partitions <= 1) {
206 		window.left = 0;
207 		window.width = format->width;
208 
209 		vsp1_pipeline_propagate_partition(pipe, partition, index,
210 						  &window);
211 		return;
212 	}
213 
214 	/* Initialise the partition with sane starting conditions. */
215 	window.left = index * div_size;
216 	window.width = div_size;
217 
218 	modulus = format->width % div_size;
219 
220 	/*
221 	 * We need to prevent the last partition from being smaller than the
222 	 * *minimum* width of the hardware capabilities.
223 	 *
224 	 * If the modulus is less than half of the partition size,
225 	 * the penultimate partition is reduced to half, which is added
226 	 * to the final partition: |1234|1234|1234|12|341|
227 	 * to prevent this:        |1234|1234|1234|1234|1|.
228 	 */
229 	if (modulus) {
230 		/*
231 		 * pipe->partitions is 1 based, whilst index is a 0 based index.
232 		 * Normalise this locally.
233 		 */
234 		unsigned int partitions = pipe->partitions - 1;
235 
236 		if (modulus < div_size / 2) {
237 			if (index == partitions - 1) {
238 				/* Halve the penultimate partition. */
239 				window.width = div_size / 2;
240 			} else if (index == partitions) {
241 				/* Increase the final partition. */
242 				window.width = (div_size / 2) + modulus;
243 				window.left -= div_size / 2;
244 			}
245 		} else if (index == partitions) {
246 			window.width = modulus;
247 		}
248 	}
249 
250 	vsp1_pipeline_propagate_partition(pipe, partition, index, &window);
251 }
252 
253 static int vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline *pipe)
254 {
255 	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
256 	const struct v4l2_mbus_framefmt *format;
257 	struct vsp1_entity *entity;
258 	unsigned int div_size;
259 	unsigned int i;
260 
261 	/*
262 	 * Partitions are computed on the size before rotation, use the format
263 	 * at the WPF sink.
264 	 */
265 	format = vsp1_entity_get_pad_format(&pipe->output->entity,
266 					    pipe->output->entity.config,
267 					    RWPF_PAD_SINK);
268 	div_size = format->width;
269 
270 	/*
271 	 * Only Gen3+ hardware requires image partitioning, Gen2 will operate
272 	 * with a single partition that covers the whole output.
273 	 */
274 	if (vsp1->info->gen >= 3) {
275 		list_for_each_entry(entity, &pipe->entities, list_pipe) {
276 			unsigned int entity_max;
277 
278 			if (!entity->ops->max_width)
279 				continue;
280 
281 			entity_max = entity->ops->max_width(entity, pipe);
282 			if (entity_max)
283 				div_size = min(div_size, entity_max);
284 		}
285 	}
286 
287 	pipe->partitions = DIV_ROUND_UP(format->width, div_size);
288 	pipe->part_table = kcalloc(pipe->partitions, sizeof(*pipe->part_table),
289 				   GFP_KERNEL);
290 	if (!pipe->part_table)
291 		return -ENOMEM;
292 
293 	for (i = 0; i < pipe->partitions; ++i)
294 		vsp1_video_calculate_partition(pipe, &pipe->part_table[i],
295 					       div_size, i);
296 
297 	return 0;
298 }
299 
300 /* -----------------------------------------------------------------------------
301  * Pipeline Management
302  */
303 
304 /*
305  * vsp1_video_complete_buffer - Complete the current buffer
306  * @video: the video node
307  *
308  * This function completes the current buffer by filling its sequence number,
309  * time stamp and payload size, and hands it back to the vb2 core.
310  *
311  * Return the next queued buffer or NULL if the queue is empty.
312  */
313 static struct vsp1_vb2_buffer *
314 vsp1_video_complete_buffer(struct vsp1_video *video)
315 {
316 	struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
317 	struct vsp1_vb2_buffer *next = NULL;
318 	struct vsp1_vb2_buffer *done;
319 	unsigned long flags;
320 	unsigned int i;
321 
322 	spin_lock_irqsave(&video->irqlock, flags);
323 
324 	if (list_empty(&video->irqqueue)) {
325 		spin_unlock_irqrestore(&video->irqlock, flags);
326 		return NULL;
327 	}
328 
329 	done = list_first_entry(&video->irqqueue,
330 				struct vsp1_vb2_buffer, queue);
331 
332 	list_del(&done->queue);
333 
334 	if (!list_empty(&video->irqqueue))
335 		next = list_first_entry(&video->irqqueue,
336 					struct vsp1_vb2_buffer, queue);
337 
338 	spin_unlock_irqrestore(&video->irqlock, flags);
339 
340 	done->buf.sequence = pipe->sequence;
341 	done->buf.vb2_buf.timestamp = ktime_get_ns();
342 	for (i = 0; i < done->buf.vb2_buf.num_planes; ++i)
343 		vb2_set_plane_payload(&done->buf.vb2_buf, i,
344 				      vb2_plane_size(&done->buf.vb2_buf, i));
345 	vb2_buffer_done(&done->buf.vb2_buf, VB2_BUF_STATE_DONE);
346 
347 	return next;
348 }
349 
350 static void vsp1_video_frame_end(struct vsp1_pipeline *pipe,
351 				 struct vsp1_rwpf *rwpf)
352 {
353 	struct vsp1_video *video = rwpf->video;
354 	struct vsp1_vb2_buffer *buf;
355 
356 	buf = vsp1_video_complete_buffer(video);
357 	if (buf == NULL)
358 		return;
359 
360 	video->rwpf->mem = buf->mem;
361 	pipe->buffers_ready |= 1 << video->pipe_index;
362 }
363 
364 static void vsp1_video_pipeline_run_partition(struct vsp1_pipeline *pipe,
365 					      struct vsp1_dl_list *dl,
366 					      unsigned int partition)
367 {
368 	struct vsp1_dl_body *dlb = vsp1_dl_list_get_body0(dl);
369 	struct vsp1_entity *entity;
370 
371 	pipe->partition = &pipe->part_table[partition];
372 
373 	list_for_each_entry(entity, &pipe->entities, list_pipe)
374 		vsp1_entity_configure_partition(entity, pipe, dl, dlb);
375 }
376 
377 static void vsp1_video_pipeline_run(struct vsp1_pipeline *pipe)
378 {
379 	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
380 	struct vsp1_entity *entity;
381 	struct vsp1_dl_body *dlb;
382 	struct vsp1_dl_list *dl;
383 	unsigned int partition;
384 
385 	dl = vsp1_dl_list_get(pipe->output->dlm);
386 
387 	/*
388 	 * If the VSP hardware isn't configured yet (which occurs either when
389 	 * processing the first frame or after a system suspend/resume), add the
390 	 * cached stream configuration to the display list to perform a full
391 	 * initialisation.
392 	 */
393 	if (!pipe->configured)
394 		vsp1_dl_list_add_body(dl, pipe->stream_config);
395 
396 	dlb = vsp1_dl_list_get_body0(dl);
397 
398 	list_for_each_entry(entity, &pipe->entities, list_pipe)
399 		vsp1_entity_configure_frame(entity, pipe, dl, dlb);
400 
401 	/* Run the first partition. */
402 	vsp1_video_pipeline_run_partition(pipe, dl, 0);
403 
404 	/* Process consecutive partitions as necessary. */
405 	for (partition = 1; partition < pipe->partitions; ++partition) {
406 		struct vsp1_dl_list *dl_next;
407 
408 		dl_next = vsp1_dl_list_get(pipe->output->dlm);
409 
410 		/*
411 		 * An incomplete chain will still function, but output only
412 		 * the partitions that had a dl available. The frame end
413 		 * interrupt will be marked on the last dl in the chain.
414 		 */
415 		if (!dl_next) {
416 			dev_err(vsp1->dev, "Failed to obtain a dl list. Frame will be incomplete\n");
417 			break;
418 		}
419 
420 		vsp1_video_pipeline_run_partition(pipe, dl_next, partition);
421 		vsp1_dl_list_add_chain(dl, dl_next);
422 	}
423 
424 	/* Complete, and commit the head display list. */
425 	vsp1_dl_list_commit(dl, 0);
426 	pipe->configured = true;
427 
428 	vsp1_pipeline_run(pipe);
429 }
430 
431 static void vsp1_video_pipeline_frame_end(struct vsp1_pipeline *pipe,
432 					  unsigned int completion)
433 {
434 	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
435 	enum vsp1_pipeline_state state;
436 	unsigned long flags;
437 	unsigned int i;
438 
439 	/* M2M Pipelines should never call here with an incomplete frame. */
440 	WARN_ON_ONCE(!(completion & VSP1_DL_FRAME_END_COMPLETED));
441 
442 	spin_lock_irqsave(&pipe->irqlock, flags);
443 
444 	/* Complete buffers on all video nodes. */
445 	for (i = 0; i < vsp1->info->rpf_count; ++i) {
446 		if (!pipe->inputs[i])
447 			continue;
448 
449 		vsp1_video_frame_end(pipe, pipe->inputs[i]);
450 	}
451 
452 	vsp1_video_frame_end(pipe, pipe->output);
453 
454 	state = pipe->state;
455 	pipe->state = VSP1_PIPELINE_STOPPED;
456 
457 	/*
458 	 * If a stop has been requested, mark the pipeline as stopped and
459 	 * return. Otherwise restart the pipeline if ready.
460 	 */
461 	if (state == VSP1_PIPELINE_STOPPING)
462 		wake_up(&pipe->wq);
463 	else if (vsp1_pipeline_ready(pipe))
464 		vsp1_video_pipeline_run(pipe);
465 
466 	spin_unlock_irqrestore(&pipe->irqlock, flags);
467 }
468 
469 static int vsp1_video_pipeline_build_branch(struct vsp1_pipeline *pipe,
470 					    struct vsp1_rwpf *input,
471 					    struct vsp1_rwpf *output)
472 {
473 	struct media_entity_enum ent_enum;
474 	struct vsp1_entity *entity;
475 	struct media_pad *pad;
476 	struct vsp1_brx *brx = NULL;
477 	int ret;
478 
479 	ret = media_entity_enum_init(&ent_enum, &input->entity.vsp1->media_dev);
480 	if (ret < 0)
481 		return ret;
482 
483 	/*
484 	 * The main data path doesn't include the HGO or HGT, use
485 	 * vsp1_entity_remote_pad() to traverse the graph.
486 	 */
487 
488 	pad = vsp1_entity_remote_pad(&input->entity.pads[RWPF_PAD_SOURCE]);
489 
490 	while (1) {
491 		if (pad == NULL) {
492 			ret = -EPIPE;
493 			goto out;
494 		}
495 
496 		/* We've reached a video node, that shouldn't have happened. */
497 		if (!is_media_entity_v4l2_subdev(pad->entity)) {
498 			ret = -EPIPE;
499 			goto out;
500 		}
501 
502 		entity = to_vsp1_entity(
503 			media_entity_to_v4l2_subdev(pad->entity));
504 
505 		/*
506 		 * A BRU or BRS is present in the pipeline, store its input pad
507 		 * number in the input RPF for use when configuring the RPF.
508 		 */
509 		if (entity->type == VSP1_ENTITY_BRU ||
510 		    entity->type == VSP1_ENTITY_BRS) {
511 			/* BRU and BRS can't be chained. */
512 			if (brx) {
513 				ret = -EPIPE;
514 				goto out;
515 			}
516 
517 			brx = to_brx(&entity->subdev);
518 			brx->inputs[pad->index].rpf = input;
519 			input->brx_input = pad->index;
520 		}
521 
522 		/* We've reached the WPF, we're done. */
523 		if (entity->type == VSP1_ENTITY_WPF)
524 			break;
525 
526 		/* Ensure the branch has no loop. */
527 		if (media_entity_enum_test_and_set(&ent_enum,
528 						   &entity->subdev.entity)) {
529 			ret = -EPIPE;
530 			goto out;
531 		}
532 
533 		/* UDS can't be chained. */
534 		if (entity->type == VSP1_ENTITY_UDS) {
535 			if (pipe->uds) {
536 				ret = -EPIPE;
537 				goto out;
538 			}
539 
540 			pipe->uds = entity;
541 			pipe->uds_input = brx ? &brx->entity : &input->entity;
542 		}
543 
544 		/* Follow the source link, ignoring any HGO or HGT. */
545 		pad = &entity->pads[entity->source_pad];
546 		pad = vsp1_entity_remote_pad(pad);
547 	}
548 
549 	/* The last entity must be the output WPF. */
550 	if (entity != &output->entity)
551 		ret = -EPIPE;
552 
553 out:
554 	media_entity_enum_cleanup(&ent_enum);
555 
556 	return ret;
557 }
558 
559 static int vsp1_video_pipeline_build(struct vsp1_pipeline *pipe,
560 				     struct vsp1_video *video)
561 {
562 	struct media_graph graph;
563 	struct media_entity *entity = &video->video.entity;
564 	struct media_device *mdev = entity->graph_obj.mdev;
565 	unsigned int i;
566 	int ret;
567 
568 	/* Walk the graph to locate the entities and video nodes. */
569 	ret = media_graph_walk_init(&graph, mdev);
570 	if (ret)
571 		return ret;
572 
573 	media_graph_walk_start(&graph, entity);
574 
575 	while ((entity = media_graph_walk_next(&graph))) {
576 		struct v4l2_subdev *subdev;
577 		struct vsp1_rwpf *rwpf;
578 		struct vsp1_entity *e;
579 
580 		if (!is_media_entity_v4l2_subdev(entity))
581 			continue;
582 
583 		subdev = media_entity_to_v4l2_subdev(entity);
584 		e = to_vsp1_entity(subdev);
585 		list_add_tail(&e->list_pipe, &pipe->entities);
586 		e->pipe = pipe;
587 
588 		switch (e->type) {
589 		case VSP1_ENTITY_RPF:
590 			rwpf = to_rwpf(subdev);
591 			pipe->inputs[rwpf->entity.index] = rwpf;
592 			rwpf->video->pipe_index = ++pipe->num_inputs;
593 			break;
594 
595 		case VSP1_ENTITY_WPF:
596 			rwpf = to_rwpf(subdev);
597 			pipe->output = rwpf;
598 			rwpf->video->pipe_index = 0;
599 			break;
600 
601 		case VSP1_ENTITY_LIF:
602 			pipe->lif = e;
603 			break;
604 
605 		case VSP1_ENTITY_BRU:
606 		case VSP1_ENTITY_BRS:
607 			pipe->brx = e;
608 			break;
609 
610 		case VSP1_ENTITY_HGO:
611 			pipe->hgo = e;
612 			break;
613 
614 		case VSP1_ENTITY_HGT:
615 			pipe->hgt = e;
616 			break;
617 
618 		default:
619 			break;
620 		}
621 	}
622 
623 	media_graph_walk_cleanup(&graph);
624 
625 	/* We need one output and at least one input. */
626 	if (pipe->num_inputs == 0 || !pipe->output)
627 		return -EPIPE;
628 
629 	/*
630 	 * Follow links downstream for each input and make sure the graph
631 	 * contains no loop and that all branches end at the output WPF.
632 	 */
633 	for (i = 0; i < video->vsp1->info->rpf_count; ++i) {
634 		if (!pipe->inputs[i])
635 			continue;
636 
637 		ret = vsp1_video_pipeline_build_branch(pipe, pipe->inputs[i],
638 						       pipe->output);
639 		if (ret < 0)
640 			return ret;
641 	}
642 
643 	return 0;
644 }
645 
646 static int vsp1_video_pipeline_init(struct vsp1_pipeline *pipe,
647 				    struct vsp1_video *video)
648 {
649 	vsp1_pipeline_init(pipe);
650 
651 	pipe->frame_end = vsp1_video_pipeline_frame_end;
652 
653 	return vsp1_video_pipeline_build(pipe, video);
654 }
655 
656 static struct vsp1_pipeline *vsp1_video_pipeline_get(struct vsp1_video *video)
657 {
658 	struct vsp1_pipeline *pipe;
659 	int ret;
660 
661 	/*
662 	 * Get a pipeline object for the video node. If a pipeline has already
663 	 * been allocated just increment its reference count and return it.
664 	 * Otherwise allocate a new pipeline and initialize it, it will be freed
665 	 * when the last reference is released.
666 	 */
667 	if (!video->rwpf->entity.pipe) {
668 		pipe = kzalloc(sizeof(*pipe), GFP_KERNEL);
669 		if (!pipe)
670 			return ERR_PTR(-ENOMEM);
671 
672 		ret = vsp1_video_pipeline_init(pipe, video);
673 		if (ret < 0) {
674 			vsp1_pipeline_reset(pipe);
675 			kfree(pipe);
676 			return ERR_PTR(ret);
677 		}
678 	} else {
679 		pipe = video->rwpf->entity.pipe;
680 		kref_get(&pipe->kref);
681 	}
682 
683 	return pipe;
684 }
685 
686 static void vsp1_video_pipeline_release(struct kref *kref)
687 {
688 	struct vsp1_pipeline *pipe = container_of(kref, typeof(*pipe), kref);
689 
690 	vsp1_pipeline_reset(pipe);
691 	kfree(pipe);
692 }
693 
694 static void vsp1_video_pipeline_put(struct vsp1_pipeline *pipe)
695 {
696 	struct media_device *mdev = &pipe->output->entity.vsp1->media_dev;
697 
698 	mutex_lock(&mdev->graph_mutex);
699 	kref_put(&pipe->kref, vsp1_video_pipeline_release);
700 	mutex_unlock(&mdev->graph_mutex);
701 }
702 
703 /* -----------------------------------------------------------------------------
704  * videobuf2 Queue Operations
705  */
706 
707 static int
708 vsp1_video_queue_setup(struct vb2_queue *vq,
709 		       unsigned int *nbuffers, unsigned int *nplanes,
710 		       unsigned int sizes[], struct device *alloc_devs[])
711 {
712 	struct vsp1_video *video = vb2_get_drv_priv(vq);
713 	const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
714 	unsigned int i;
715 
716 	if (*nplanes) {
717 		if (*nplanes != format->num_planes)
718 			return -EINVAL;
719 
720 		for (i = 0; i < *nplanes; i++)
721 			if (sizes[i] < format->plane_fmt[i].sizeimage)
722 				return -EINVAL;
723 		return 0;
724 	}
725 
726 	*nplanes = format->num_planes;
727 
728 	for (i = 0; i < format->num_planes; ++i)
729 		sizes[i] = format->plane_fmt[i].sizeimage;
730 
731 	return 0;
732 }
733 
734 static int vsp1_video_buffer_prepare(struct vb2_buffer *vb)
735 {
736 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
737 	struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
738 	struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
739 	const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
740 	unsigned int i;
741 
742 	if (vb->num_planes < format->num_planes)
743 		return -EINVAL;
744 
745 	for (i = 0; i < vb->num_planes; ++i) {
746 		buf->mem.addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
747 
748 		if (vb2_plane_size(vb, i) < format->plane_fmt[i].sizeimage)
749 			return -EINVAL;
750 	}
751 
752 	for ( ; i < 3; ++i)
753 		buf->mem.addr[i] = 0;
754 
755 	return 0;
756 }
757 
758 static void vsp1_video_buffer_queue(struct vb2_buffer *vb)
759 {
760 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
761 	struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
762 	struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
763 	struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
764 	unsigned long flags;
765 	bool empty;
766 
767 	spin_lock_irqsave(&video->irqlock, flags);
768 	empty = list_empty(&video->irqqueue);
769 	list_add_tail(&buf->queue, &video->irqqueue);
770 	spin_unlock_irqrestore(&video->irqlock, flags);
771 
772 	if (!empty)
773 		return;
774 
775 	spin_lock_irqsave(&pipe->irqlock, flags);
776 
777 	video->rwpf->mem = buf->mem;
778 	pipe->buffers_ready |= 1 << video->pipe_index;
779 
780 	if (vb2_start_streaming_called(&video->queue) &&
781 	    vsp1_pipeline_ready(pipe))
782 		vsp1_video_pipeline_run(pipe);
783 
784 	spin_unlock_irqrestore(&pipe->irqlock, flags);
785 }
786 
787 static int vsp1_video_setup_pipeline(struct vsp1_pipeline *pipe)
788 {
789 	struct vsp1_entity *entity;
790 	int ret;
791 
792 	/* Determine this pipelines sizes for image partitioning support. */
793 	ret = vsp1_video_pipeline_setup_partitions(pipe);
794 	if (ret < 0)
795 		return ret;
796 
797 	if (pipe->uds) {
798 		struct vsp1_uds *uds = to_uds(&pipe->uds->subdev);
799 
800 		/*
801 		 * If a BRU or BRS is present in the pipeline before the UDS,
802 		 * the alpha component doesn't need to be scaled as the BRU and
803 		 * BRS output alpha value is fixed to 255. Otherwise we need to
804 		 * scale the alpha component only when available at the input
805 		 * RPF.
806 		 */
807 		if (pipe->uds_input->type == VSP1_ENTITY_BRU ||
808 		    pipe->uds_input->type == VSP1_ENTITY_BRS) {
809 			uds->scale_alpha = false;
810 		} else {
811 			struct vsp1_rwpf *rpf =
812 				to_rwpf(&pipe->uds_input->subdev);
813 
814 			uds->scale_alpha = rpf->fmtinfo->alpha;
815 		}
816 	}
817 
818 	/*
819 	 * Compute and cache the stream configuration into a body. The cached
820 	 * body will be added to the display list by vsp1_video_pipeline_run()
821 	 * whenever the pipeline needs to be fully reconfigured.
822 	 */
823 	pipe->stream_config = vsp1_dlm_dl_body_get(pipe->output->dlm);
824 	if (!pipe->stream_config)
825 		return -ENOMEM;
826 
827 	list_for_each_entry(entity, &pipe->entities, list_pipe) {
828 		vsp1_entity_route_setup(entity, pipe, pipe->stream_config);
829 		vsp1_entity_configure_stream(entity, pipe, NULL,
830 					     pipe->stream_config);
831 	}
832 
833 	return 0;
834 }
835 
836 static void vsp1_video_release_buffers(struct vsp1_video *video)
837 {
838 	struct vsp1_vb2_buffer *buffer;
839 	unsigned long flags;
840 
841 	/* Remove all buffers from the IRQ queue. */
842 	spin_lock_irqsave(&video->irqlock, flags);
843 	list_for_each_entry(buffer, &video->irqqueue, queue)
844 		vb2_buffer_done(&buffer->buf.vb2_buf, VB2_BUF_STATE_ERROR);
845 	INIT_LIST_HEAD(&video->irqqueue);
846 	spin_unlock_irqrestore(&video->irqlock, flags);
847 }
848 
849 static void vsp1_video_cleanup_pipeline(struct vsp1_pipeline *pipe)
850 {
851 	lockdep_assert_held(&pipe->lock);
852 
853 	/* Release any cached configuration from our output video. */
854 	vsp1_dl_body_put(pipe->stream_config);
855 	pipe->stream_config = NULL;
856 	pipe->configured = false;
857 
858 	/* Release our partition table allocation. */
859 	kfree(pipe->part_table);
860 	pipe->part_table = NULL;
861 }
862 
863 static int vsp1_video_start_streaming(struct vb2_queue *vq, unsigned int count)
864 {
865 	struct vsp1_video *video = vb2_get_drv_priv(vq);
866 	struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
867 	bool start_pipeline = false;
868 	unsigned long flags;
869 	int ret;
870 
871 	mutex_lock(&pipe->lock);
872 	if (pipe->stream_count == pipe->num_inputs) {
873 		ret = vsp1_video_setup_pipeline(pipe);
874 		if (ret < 0) {
875 			vsp1_video_release_buffers(video);
876 			vsp1_video_cleanup_pipeline(pipe);
877 			mutex_unlock(&pipe->lock);
878 			return ret;
879 		}
880 
881 		start_pipeline = true;
882 	}
883 
884 	pipe->stream_count++;
885 	mutex_unlock(&pipe->lock);
886 
887 	/*
888 	 * vsp1_pipeline_ready() is not sufficient to establish that all streams
889 	 * are prepared and the pipeline is configured, as multiple streams
890 	 * can race through streamon with buffers already queued; Therefore we
891 	 * don't even attempt to start the pipeline until the last stream has
892 	 * called through here.
893 	 */
894 	if (!start_pipeline)
895 		return 0;
896 
897 	spin_lock_irqsave(&pipe->irqlock, flags);
898 	if (vsp1_pipeline_ready(pipe))
899 		vsp1_video_pipeline_run(pipe);
900 	spin_unlock_irqrestore(&pipe->irqlock, flags);
901 
902 	return 0;
903 }
904 
905 static void vsp1_video_stop_streaming(struct vb2_queue *vq)
906 {
907 	struct vsp1_video *video = vb2_get_drv_priv(vq);
908 	struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
909 	unsigned long flags;
910 	int ret;
911 
912 	/*
913 	 * Clear the buffers ready flag to make sure the device won't be started
914 	 * by a QBUF on the video node on the other side of the pipeline.
915 	 */
916 	spin_lock_irqsave(&video->irqlock, flags);
917 	pipe->buffers_ready &= ~(1 << video->pipe_index);
918 	spin_unlock_irqrestore(&video->irqlock, flags);
919 
920 	mutex_lock(&pipe->lock);
921 	if (--pipe->stream_count == pipe->num_inputs) {
922 		/* Stop the pipeline. */
923 		ret = vsp1_pipeline_stop(pipe);
924 		if (ret == -ETIMEDOUT)
925 			dev_err(video->vsp1->dev, "pipeline stop timeout\n");
926 
927 		vsp1_video_cleanup_pipeline(pipe);
928 	}
929 	mutex_unlock(&pipe->lock);
930 
931 	video_device_pipeline_stop(&video->video);
932 	vsp1_video_release_buffers(video);
933 	vsp1_video_pipeline_put(pipe);
934 }
935 
936 static const struct vb2_ops vsp1_video_queue_qops = {
937 	.queue_setup = vsp1_video_queue_setup,
938 	.buf_prepare = vsp1_video_buffer_prepare,
939 	.buf_queue = vsp1_video_buffer_queue,
940 	.wait_prepare = vb2_ops_wait_prepare,
941 	.wait_finish = vb2_ops_wait_finish,
942 	.start_streaming = vsp1_video_start_streaming,
943 	.stop_streaming = vsp1_video_stop_streaming,
944 };
945 
946 /* -----------------------------------------------------------------------------
947  * V4L2 ioctls
948  */
949 
950 static int
951 vsp1_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap)
952 {
953 	struct v4l2_fh *vfh = file->private_data;
954 	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
955 
956 	cap->capabilities = V4L2_CAP_DEVICE_CAPS | V4L2_CAP_STREAMING
957 			  | V4L2_CAP_VIDEO_CAPTURE_MPLANE
958 			  | V4L2_CAP_VIDEO_OUTPUT_MPLANE;
959 
960 
961 	strscpy(cap->driver, "vsp1", sizeof(cap->driver));
962 	strscpy(cap->card, video->video.name, sizeof(cap->card));
963 
964 	return 0;
965 }
966 
967 static int
968 vsp1_video_get_format(struct file *file, void *fh, struct v4l2_format *format)
969 {
970 	struct v4l2_fh *vfh = file->private_data;
971 	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
972 
973 	if (format->type != video->queue.type)
974 		return -EINVAL;
975 
976 	mutex_lock(&video->lock);
977 	format->fmt.pix_mp = video->rwpf->format;
978 	mutex_unlock(&video->lock);
979 
980 	return 0;
981 }
982 
983 static int
984 vsp1_video_try_format(struct file *file, void *fh, struct v4l2_format *format)
985 {
986 	struct v4l2_fh *vfh = file->private_data;
987 	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
988 
989 	if (format->type != video->queue.type)
990 		return -EINVAL;
991 
992 	return __vsp1_video_try_format(video, &format->fmt.pix_mp, NULL);
993 }
994 
995 static int
996 vsp1_video_set_format(struct file *file, void *fh, struct v4l2_format *format)
997 {
998 	struct v4l2_fh *vfh = file->private_data;
999 	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
1000 	const struct vsp1_format_info *info;
1001 	int ret;
1002 
1003 	if (format->type != video->queue.type)
1004 		return -EINVAL;
1005 
1006 	ret = __vsp1_video_try_format(video, &format->fmt.pix_mp, &info);
1007 	if (ret < 0)
1008 		return ret;
1009 
1010 	mutex_lock(&video->lock);
1011 
1012 	if (vb2_is_busy(&video->queue)) {
1013 		ret = -EBUSY;
1014 		goto done;
1015 	}
1016 
1017 	video->rwpf->format = format->fmt.pix_mp;
1018 	video->rwpf->fmtinfo = info;
1019 
1020 done:
1021 	mutex_unlock(&video->lock);
1022 	return ret;
1023 }
1024 
1025 static int
1026 vsp1_video_streamon(struct file *file, void *fh, enum v4l2_buf_type type)
1027 {
1028 	struct v4l2_fh *vfh = file->private_data;
1029 	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
1030 	struct media_device *mdev = &video->vsp1->media_dev;
1031 	struct vsp1_pipeline *pipe;
1032 	int ret;
1033 
1034 	if (vb2_queue_is_busy(&video->queue, file))
1035 		return -EBUSY;
1036 
1037 	/*
1038 	 * Get a pipeline for the video node and start streaming on it. No link
1039 	 * touching an entity in the pipeline can be activated or deactivated
1040 	 * once streaming is started.
1041 	 */
1042 	mutex_lock(&mdev->graph_mutex);
1043 
1044 	pipe = vsp1_video_pipeline_get(video);
1045 	if (IS_ERR(pipe)) {
1046 		mutex_unlock(&mdev->graph_mutex);
1047 		return PTR_ERR(pipe);
1048 	}
1049 
1050 	ret = __video_device_pipeline_start(&video->video, &pipe->pipe);
1051 	if (ret < 0) {
1052 		mutex_unlock(&mdev->graph_mutex);
1053 		goto err_pipe;
1054 	}
1055 
1056 	mutex_unlock(&mdev->graph_mutex);
1057 
1058 	/*
1059 	 * Verify that the configured format matches the output of the connected
1060 	 * subdev.
1061 	 */
1062 	ret = vsp1_video_verify_format(video);
1063 	if (ret < 0)
1064 		goto err_stop;
1065 
1066 	/* Start the queue. */
1067 	ret = vb2_streamon(&video->queue, type);
1068 	if (ret < 0)
1069 		goto err_stop;
1070 
1071 	return 0;
1072 
1073 err_stop:
1074 	video_device_pipeline_stop(&video->video);
1075 err_pipe:
1076 	vsp1_video_pipeline_put(pipe);
1077 	return ret;
1078 }
1079 
1080 static const struct v4l2_ioctl_ops vsp1_video_ioctl_ops = {
1081 	.vidioc_querycap		= vsp1_video_querycap,
1082 	.vidioc_g_fmt_vid_cap_mplane	= vsp1_video_get_format,
1083 	.vidioc_s_fmt_vid_cap_mplane	= vsp1_video_set_format,
1084 	.vidioc_try_fmt_vid_cap_mplane	= vsp1_video_try_format,
1085 	.vidioc_g_fmt_vid_out_mplane	= vsp1_video_get_format,
1086 	.vidioc_s_fmt_vid_out_mplane	= vsp1_video_set_format,
1087 	.vidioc_try_fmt_vid_out_mplane	= vsp1_video_try_format,
1088 	.vidioc_reqbufs			= vb2_ioctl_reqbufs,
1089 	.vidioc_querybuf		= vb2_ioctl_querybuf,
1090 	.vidioc_qbuf			= vb2_ioctl_qbuf,
1091 	.vidioc_dqbuf			= vb2_ioctl_dqbuf,
1092 	.vidioc_expbuf			= vb2_ioctl_expbuf,
1093 	.vidioc_create_bufs		= vb2_ioctl_create_bufs,
1094 	.vidioc_prepare_buf		= vb2_ioctl_prepare_buf,
1095 	.vidioc_streamon		= vsp1_video_streamon,
1096 	.vidioc_streamoff		= vb2_ioctl_streamoff,
1097 };
1098 
1099 /* -----------------------------------------------------------------------------
1100  * V4L2 File Operations
1101  */
1102 
1103 static int vsp1_video_open(struct file *file)
1104 {
1105 	struct vsp1_video *video = video_drvdata(file);
1106 	struct v4l2_fh *vfh;
1107 	int ret = 0;
1108 
1109 	vfh = kzalloc(sizeof(*vfh), GFP_KERNEL);
1110 	if (vfh == NULL)
1111 		return -ENOMEM;
1112 
1113 	v4l2_fh_init(vfh, &video->video);
1114 	v4l2_fh_add(vfh);
1115 
1116 	file->private_data = vfh;
1117 
1118 	ret = vsp1_device_get(video->vsp1);
1119 	if (ret < 0) {
1120 		v4l2_fh_del(vfh);
1121 		v4l2_fh_exit(vfh);
1122 		kfree(vfh);
1123 	}
1124 
1125 	return ret;
1126 }
1127 
1128 static int vsp1_video_release(struct file *file)
1129 {
1130 	struct vsp1_video *video = video_drvdata(file);
1131 
1132 	vb2_fop_release(file);
1133 
1134 	vsp1_device_put(video->vsp1);
1135 
1136 	return 0;
1137 }
1138 
1139 static const struct v4l2_file_operations vsp1_video_fops = {
1140 	.owner = THIS_MODULE,
1141 	.unlocked_ioctl = video_ioctl2,
1142 	.open = vsp1_video_open,
1143 	.release = vsp1_video_release,
1144 	.poll = vb2_fop_poll,
1145 	.mmap = vb2_fop_mmap,
1146 };
1147 
1148 /* -----------------------------------------------------------------------------
1149  * Suspend and Resume
1150  */
1151 
1152 void vsp1_video_suspend(struct vsp1_device *vsp1)
1153 {
1154 	unsigned long flags;
1155 	unsigned int i;
1156 	int ret;
1157 
1158 	/*
1159 	 * To avoid increasing the system suspend time needlessly, loop over the
1160 	 * pipelines twice, first to set them all to the stopping state, and
1161 	 * then to wait for the stop to complete.
1162 	 */
1163 	for (i = 0; i < vsp1->info->wpf_count; ++i) {
1164 		struct vsp1_rwpf *wpf = vsp1->wpf[i];
1165 		struct vsp1_pipeline *pipe;
1166 
1167 		if (wpf == NULL)
1168 			continue;
1169 
1170 		pipe = wpf->entity.pipe;
1171 		if (pipe == NULL)
1172 			continue;
1173 
1174 		spin_lock_irqsave(&pipe->irqlock, flags);
1175 		if (pipe->state == VSP1_PIPELINE_RUNNING)
1176 			pipe->state = VSP1_PIPELINE_STOPPING;
1177 		spin_unlock_irqrestore(&pipe->irqlock, flags);
1178 	}
1179 
1180 	for (i = 0; i < vsp1->info->wpf_count; ++i) {
1181 		struct vsp1_rwpf *wpf = vsp1->wpf[i];
1182 		struct vsp1_pipeline *pipe;
1183 
1184 		if (wpf == NULL)
1185 			continue;
1186 
1187 		pipe = wpf->entity.pipe;
1188 		if (pipe == NULL)
1189 			continue;
1190 
1191 		ret = wait_event_timeout(pipe->wq, vsp1_pipeline_stopped(pipe),
1192 					 msecs_to_jiffies(500));
1193 		if (ret == 0)
1194 			dev_warn(vsp1->dev, "pipeline %u stop timeout\n",
1195 				 wpf->entity.index);
1196 	}
1197 }
1198 
1199 void vsp1_video_resume(struct vsp1_device *vsp1)
1200 {
1201 	unsigned long flags;
1202 	unsigned int i;
1203 
1204 	/* Resume all running pipelines. */
1205 	for (i = 0; i < vsp1->info->wpf_count; ++i) {
1206 		struct vsp1_rwpf *wpf = vsp1->wpf[i];
1207 		struct vsp1_pipeline *pipe;
1208 
1209 		if (wpf == NULL)
1210 			continue;
1211 
1212 		pipe = wpf->entity.pipe;
1213 		if (pipe == NULL)
1214 			continue;
1215 
1216 		/*
1217 		 * The hardware may have been reset during a suspend and will
1218 		 * need a full reconfiguration.
1219 		 */
1220 		pipe->configured = false;
1221 
1222 		spin_lock_irqsave(&pipe->irqlock, flags);
1223 		if (vsp1_pipeline_ready(pipe))
1224 			vsp1_video_pipeline_run(pipe);
1225 		spin_unlock_irqrestore(&pipe->irqlock, flags);
1226 	}
1227 }
1228 
1229 /* -----------------------------------------------------------------------------
1230  * Initialization and Cleanup
1231  */
1232 
1233 struct vsp1_video *vsp1_video_create(struct vsp1_device *vsp1,
1234 				     struct vsp1_rwpf *rwpf)
1235 {
1236 	struct vsp1_video *video;
1237 	const char *direction;
1238 	int ret;
1239 
1240 	video = devm_kzalloc(vsp1->dev, sizeof(*video), GFP_KERNEL);
1241 	if (!video)
1242 		return ERR_PTR(-ENOMEM);
1243 
1244 	rwpf->video = video;
1245 
1246 	video->vsp1 = vsp1;
1247 	video->rwpf = rwpf;
1248 
1249 	if (rwpf->entity.type == VSP1_ENTITY_RPF) {
1250 		direction = "input";
1251 		video->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1252 		video->pad.flags = MEDIA_PAD_FL_SOURCE;
1253 		video->video.vfl_dir = VFL_DIR_TX;
1254 		video->video.device_caps = V4L2_CAP_VIDEO_OUTPUT_MPLANE |
1255 					   V4L2_CAP_STREAMING;
1256 	} else {
1257 		direction = "output";
1258 		video->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1259 		video->pad.flags = MEDIA_PAD_FL_SINK;
1260 		video->video.vfl_dir = VFL_DIR_RX;
1261 		video->video.device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE |
1262 					   V4L2_CAP_STREAMING;
1263 	}
1264 
1265 	mutex_init(&video->lock);
1266 	spin_lock_init(&video->irqlock);
1267 	INIT_LIST_HEAD(&video->irqqueue);
1268 
1269 	/* Initialize the media entity... */
1270 	ret = media_entity_pads_init(&video->video.entity, 1, &video->pad);
1271 	if (ret < 0)
1272 		return ERR_PTR(ret);
1273 
1274 	/* ... and the format ... */
1275 	rwpf->format.pixelformat = VSP1_VIDEO_DEF_FORMAT;
1276 	rwpf->format.width = VSP1_VIDEO_DEF_WIDTH;
1277 	rwpf->format.height = VSP1_VIDEO_DEF_HEIGHT;
1278 	__vsp1_video_try_format(video, &rwpf->format, &rwpf->fmtinfo);
1279 
1280 	/* ... and the video node... */
1281 	video->video.v4l2_dev = &video->vsp1->v4l2_dev;
1282 	video->video.fops = &vsp1_video_fops;
1283 	snprintf(video->video.name, sizeof(video->video.name), "%s %s",
1284 		 rwpf->entity.subdev.name, direction);
1285 	video->video.vfl_type = VFL_TYPE_VIDEO;
1286 	video->video.release = video_device_release_empty;
1287 	video->video.ioctl_ops = &vsp1_video_ioctl_ops;
1288 
1289 	video_set_drvdata(&video->video, video);
1290 
1291 	video->queue.type = video->type;
1292 	video->queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
1293 	video->queue.lock = &video->lock;
1294 	video->queue.drv_priv = video;
1295 	video->queue.buf_struct_size = sizeof(struct vsp1_vb2_buffer);
1296 	video->queue.ops = &vsp1_video_queue_qops;
1297 	video->queue.mem_ops = &vb2_dma_contig_memops;
1298 	video->queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1299 	video->queue.dev = video->vsp1->bus_master;
1300 	ret = vb2_queue_init(&video->queue);
1301 	if (ret < 0) {
1302 		dev_err(video->vsp1->dev, "failed to initialize vb2 queue\n");
1303 		goto error;
1304 	}
1305 
1306 	/* ... and register the video device. */
1307 	video->video.queue = &video->queue;
1308 	ret = video_register_device(&video->video, VFL_TYPE_VIDEO, -1);
1309 	if (ret < 0) {
1310 		dev_err(video->vsp1->dev, "failed to register video device\n");
1311 		goto error;
1312 	}
1313 
1314 	return video;
1315 
1316 error:
1317 	vsp1_video_cleanup(video);
1318 	return ERR_PTR(ret);
1319 }
1320 
1321 void vsp1_video_cleanup(struct vsp1_video *video)
1322 {
1323 	if (video_is_registered(&video->video))
1324 		video_unregister_device(&video->video);
1325 
1326 	media_entity_cleanup(&video->video.entity);
1327 }
1328