xref: /linux/drivers/media/platform/renesas/vsp1/vsp1_video.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * vsp1_video.c  --  R-Car VSP1 Video Node
4  *
5  * Copyright (C) 2013-2015 Renesas Electronics Corporation
6  *
7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8  */
9 
10 #include <linux/list.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/slab.h>
14 #include <linux/v4l2-mediabus.h>
15 #include <linux/videodev2.h>
16 #include <linux/wait.h>
17 
18 #include <media/media-entity.h>
19 #include <media/v4l2-dev.h>
20 #include <media/v4l2-fh.h>
21 #include <media/v4l2-ioctl.h>
22 #include <media/v4l2-subdev.h>
23 #include <media/videobuf2-v4l2.h>
24 #include <media/videobuf2-dma-contig.h>
25 
26 #include "vsp1.h"
27 #include "vsp1_brx.h"
28 #include "vsp1_dl.h"
29 #include "vsp1_entity.h"
30 #include "vsp1_hgo.h"
31 #include "vsp1_hgt.h"
32 #include "vsp1_pipe.h"
33 #include "vsp1_rwpf.h"
34 #include "vsp1_uds.h"
35 #include "vsp1_video.h"
36 
37 #define VSP1_VIDEO_DEF_FORMAT		V4L2_PIX_FMT_YUYV
38 #define VSP1_VIDEO_DEF_WIDTH		1024
39 #define VSP1_VIDEO_DEF_HEIGHT		768
40 
41 #define VSP1_VIDEO_MAX_WIDTH		8190U
42 #define VSP1_VIDEO_MAX_HEIGHT		8190U
43 
44 /* -----------------------------------------------------------------------------
45  * Helper functions
46  */
47 
48 static struct v4l2_subdev *
49 vsp1_video_remote_subdev(struct media_pad *local, u32 *pad)
50 {
51 	struct media_pad *remote;
52 
53 	remote = media_entity_remote_pad(local);
54 	if (!remote || !is_media_entity_v4l2_subdev(remote->entity))
55 		return NULL;
56 
57 	if (pad)
58 		*pad = remote->index;
59 
60 	return media_entity_to_v4l2_subdev(remote->entity);
61 }
62 
63 static int vsp1_video_verify_format(struct vsp1_video *video)
64 {
65 	struct v4l2_subdev_format fmt;
66 	struct v4l2_subdev *subdev;
67 	int ret;
68 
69 	subdev = vsp1_video_remote_subdev(&video->pad, &fmt.pad);
70 	if (subdev == NULL)
71 		return -EINVAL;
72 
73 	fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
74 	ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt);
75 	if (ret < 0)
76 		return ret == -ENOIOCTLCMD ? -EINVAL : ret;
77 
78 	if (video->rwpf->fmtinfo->mbus != fmt.format.code ||
79 	    video->rwpf->format.height != fmt.format.height ||
80 	    video->rwpf->format.width != fmt.format.width)
81 		return -EINVAL;
82 
83 	return 0;
84 }
85 
86 static int __vsp1_video_try_format(struct vsp1_video *video,
87 				   struct v4l2_pix_format_mplane *pix,
88 				   const struct vsp1_format_info **fmtinfo)
89 {
90 	static const u32 xrgb_formats[][2] = {
91 		{ V4L2_PIX_FMT_RGB444, V4L2_PIX_FMT_XRGB444 },
92 		{ V4L2_PIX_FMT_RGB555, V4L2_PIX_FMT_XRGB555 },
93 		{ V4L2_PIX_FMT_BGR32, V4L2_PIX_FMT_XBGR32 },
94 		{ V4L2_PIX_FMT_RGB32, V4L2_PIX_FMT_XRGB32 },
95 	};
96 
97 	const struct vsp1_format_info *info;
98 	unsigned int width = pix->width;
99 	unsigned int height = pix->height;
100 	unsigned int i;
101 
102 	/*
103 	 * Backward compatibility: replace deprecated RGB formats by their XRGB
104 	 * equivalent. This selects the format older userspace applications want
105 	 * while still exposing the new format.
106 	 */
107 	for (i = 0; i < ARRAY_SIZE(xrgb_formats); ++i) {
108 		if (xrgb_formats[i][0] == pix->pixelformat) {
109 			pix->pixelformat = xrgb_formats[i][1];
110 			break;
111 		}
112 	}
113 
114 	/*
115 	 * Retrieve format information and select the default format if the
116 	 * requested format isn't supported.
117 	 */
118 	info = vsp1_get_format_info(video->vsp1, pix->pixelformat);
119 	if (info == NULL)
120 		info = vsp1_get_format_info(video->vsp1, VSP1_VIDEO_DEF_FORMAT);
121 
122 	pix->pixelformat = info->fourcc;
123 	pix->colorspace = V4L2_COLORSPACE_SRGB;
124 	pix->field = V4L2_FIELD_NONE;
125 
126 	if (info->fourcc == V4L2_PIX_FMT_HSV24 ||
127 	    info->fourcc == V4L2_PIX_FMT_HSV32)
128 		pix->hsv_enc = V4L2_HSV_ENC_256;
129 
130 	memset(pix->reserved, 0, sizeof(pix->reserved));
131 
132 	/* Align the width and height for YUV 4:2:2 and 4:2:0 formats. */
133 	width = round_down(width, info->hsub);
134 	height = round_down(height, info->vsub);
135 
136 	/* Clamp the width and height. */
137 	pix->width = clamp(width, info->hsub, VSP1_VIDEO_MAX_WIDTH);
138 	pix->height = clamp(height, info->vsub, VSP1_VIDEO_MAX_HEIGHT);
139 
140 	/*
141 	 * Compute and clamp the stride and image size. While not documented in
142 	 * the datasheet, strides not aligned to a multiple of 128 bytes result
143 	 * in image corruption.
144 	 */
145 	for (i = 0; i < min(info->planes, 2U); ++i) {
146 		unsigned int hsub = i > 0 ? info->hsub : 1;
147 		unsigned int vsub = i > 0 ? info->vsub : 1;
148 		unsigned int align = 128;
149 		unsigned int bpl;
150 
151 		bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
152 			      pix->width / hsub * info->bpp[i] / 8,
153 			      round_down(65535U, align));
154 
155 		pix->plane_fmt[i].bytesperline = round_up(bpl, align);
156 		pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
157 					    * pix->height / vsub;
158 	}
159 
160 	if (info->planes == 3) {
161 		/* The second and third planes must have the same stride. */
162 		pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
163 		pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
164 	}
165 
166 	pix->num_planes = info->planes;
167 
168 	if (fmtinfo)
169 		*fmtinfo = info;
170 
171 	return 0;
172 }
173 
174 /* -----------------------------------------------------------------------------
175  * VSP1 Partition Algorithm support
176  */
177 
178 /**
179  * vsp1_video_calculate_partition - Calculate the active partition output window
180  *
181  * @pipe: the pipeline
182  * @partition: partition that will hold the calculated values
183  * @div_size: pre-determined maximum partition division size
184  * @index: partition index
185  */
186 static void vsp1_video_calculate_partition(struct vsp1_pipeline *pipe,
187 					   struct vsp1_partition *partition,
188 					   unsigned int div_size,
189 					   unsigned int index)
190 {
191 	const struct v4l2_mbus_framefmt *format;
192 	struct vsp1_partition_window window;
193 	unsigned int modulus;
194 
195 	/*
196 	 * Partitions are computed on the size before rotation, use the format
197 	 * at the WPF sink.
198 	 */
199 	format = vsp1_entity_get_pad_format(&pipe->output->entity,
200 					    pipe->output->entity.config,
201 					    RWPF_PAD_SINK);
202 
203 	/* A single partition simply processes the output size in full. */
204 	if (pipe->partitions <= 1) {
205 		window.left = 0;
206 		window.width = format->width;
207 
208 		vsp1_pipeline_propagate_partition(pipe, partition, index,
209 						  &window);
210 		return;
211 	}
212 
213 	/* Initialise the partition with sane starting conditions. */
214 	window.left = index * div_size;
215 	window.width = div_size;
216 
217 	modulus = format->width % div_size;
218 
219 	/*
220 	 * We need to prevent the last partition from being smaller than the
221 	 * *minimum* width of the hardware capabilities.
222 	 *
223 	 * If the modulus is less than half of the partition size,
224 	 * the penultimate partition is reduced to half, which is added
225 	 * to the final partition: |1234|1234|1234|12|341|
226 	 * to prevent this:        |1234|1234|1234|1234|1|.
227 	 */
228 	if (modulus) {
229 		/*
230 		 * pipe->partitions is 1 based, whilst index is a 0 based index.
231 		 * Normalise this locally.
232 		 */
233 		unsigned int partitions = pipe->partitions - 1;
234 
235 		if (modulus < div_size / 2) {
236 			if (index == partitions - 1) {
237 				/* Halve the penultimate partition. */
238 				window.width = div_size / 2;
239 			} else if (index == partitions) {
240 				/* Increase the final partition. */
241 				window.width = (div_size / 2) + modulus;
242 				window.left -= div_size / 2;
243 			}
244 		} else if (index == partitions) {
245 			window.width = modulus;
246 		}
247 	}
248 
249 	vsp1_pipeline_propagate_partition(pipe, partition, index, &window);
250 }
251 
252 static int vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline *pipe)
253 {
254 	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
255 	const struct v4l2_mbus_framefmt *format;
256 	struct vsp1_entity *entity;
257 	unsigned int div_size;
258 	unsigned int i;
259 
260 	/*
261 	 * Partitions are computed on the size before rotation, use the format
262 	 * at the WPF sink.
263 	 */
264 	format = vsp1_entity_get_pad_format(&pipe->output->entity,
265 					    pipe->output->entity.config,
266 					    RWPF_PAD_SINK);
267 	div_size = format->width;
268 
269 	/*
270 	 * Only Gen3 hardware requires image partitioning, Gen2 will operate
271 	 * with a single partition that covers the whole output.
272 	 */
273 	if (vsp1->info->gen == 3) {
274 		list_for_each_entry(entity, &pipe->entities, list_pipe) {
275 			unsigned int entity_max;
276 
277 			if (!entity->ops->max_width)
278 				continue;
279 
280 			entity_max = entity->ops->max_width(entity, pipe);
281 			if (entity_max)
282 				div_size = min(div_size, entity_max);
283 		}
284 	}
285 
286 	pipe->partitions = DIV_ROUND_UP(format->width, div_size);
287 	pipe->part_table = kcalloc(pipe->partitions, sizeof(*pipe->part_table),
288 				   GFP_KERNEL);
289 	if (!pipe->part_table)
290 		return -ENOMEM;
291 
292 	for (i = 0; i < pipe->partitions; ++i)
293 		vsp1_video_calculate_partition(pipe, &pipe->part_table[i],
294 					       div_size, i);
295 
296 	return 0;
297 }
298 
299 /* -----------------------------------------------------------------------------
300  * Pipeline Management
301  */
302 
303 /*
304  * vsp1_video_complete_buffer - Complete the current buffer
305  * @video: the video node
306  *
307  * This function completes the current buffer by filling its sequence number,
308  * time stamp and payload size, and hands it back to the videobuf core.
309  *
310  * Return the next queued buffer or NULL if the queue is empty.
311  */
312 static struct vsp1_vb2_buffer *
313 vsp1_video_complete_buffer(struct vsp1_video *video)
314 {
315 	struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
316 	struct vsp1_vb2_buffer *next = NULL;
317 	struct vsp1_vb2_buffer *done;
318 	unsigned long flags;
319 	unsigned int i;
320 
321 	spin_lock_irqsave(&video->irqlock, flags);
322 
323 	if (list_empty(&video->irqqueue)) {
324 		spin_unlock_irqrestore(&video->irqlock, flags);
325 		return NULL;
326 	}
327 
328 	done = list_first_entry(&video->irqqueue,
329 				struct vsp1_vb2_buffer, queue);
330 
331 	list_del(&done->queue);
332 
333 	if (!list_empty(&video->irqqueue))
334 		next = list_first_entry(&video->irqqueue,
335 					struct vsp1_vb2_buffer, queue);
336 
337 	spin_unlock_irqrestore(&video->irqlock, flags);
338 
339 	done->buf.sequence = pipe->sequence;
340 	done->buf.vb2_buf.timestamp = ktime_get_ns();
341 	for (i = 0; i < done->buf.vb2_buf.num_planes; ++i)
342 		vb2_set_plane_payload(&done->buf.vb2_buf, i,
343 				      vb2_plane_size(&done->buf.vb2_buf, i));
344 	vb2_buffer_done(&done->buf.vb2_buf, VB2_BUF_STATE_DONE);
345 
346 	return next;
347 }
348 
349 static void vsp1_video_frame_end(struct vsp1_pipeline *pipe,
350 				 struct vsp1_rwpf *rwpf)
351 {
352 	struct vsp1_video *video = rwpf->video;
353 	struct vsp1_vb2_buffer *buf;
354 
355 	buf = vsp1_video_complete_buffer(video);
356 	if (buf == NULL)
357 		return;
358 
359 	video->rwpf->mem = buf->mem;
360 	pipe->buffers_ready |= 1 << video->pipe_index;
361 }
362 
363 static void vsp1_video_pipeline_run_partition(struct vsp1_pipeline *pipe,
364 					      struct vsp1_dl_list *dl,
365 					      unsigned int partition)
366 {
367 	struct vsp1_dl_body *dlb = vsp1_dl_list_get_body0(dl);
368 	struct vsp1_entity *entity;
369 
370 	pipe->partition = &pipe->part_table[partition];
371 
372 	list_for_each_entry(entity, &pipe->entities, list_pipe)
373 		vsp1_entity_configure_partition(entity, pipe, dl, dlb);
374 }
375 
376 static void vsp1_video_pipeline_run(struct vsp1_pipeline *pipe)
377 {
378 	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
379 	struct vsp1_entity *entity;
380 	struct vsp1_dl_body *dlb;
381 	struct vsp1_dl_list *dl;
382 	unsigned int partition;
383 
384 	dl = vsp1_dl_list_get(pipe->output->dlm);
385 
386 	/*
387 	 * If the VSP hardware isn't configured yet (which occurs either when
388 	 * processing the first frame or after a system suspend/resume), add the
389 	 * cached stream configuration to the display list to perform a full
390 	 * initialisation.
391 	 */
392 	if (!pipe->configured)
393 		vsp1_dl_list_add_body(dl, pipe->stream_config);
394 
395 	dlb = vsp1_dl_list_get_body0(dl);
396 
397 	list_for_each_entry(entity, &pipe->entities, list_pipe)
398 		vsp1_entity_configure_frame(entity, pipe, dl, dlb);
399 
400 	/* Run the first partition. */
401 	vsp1_video_pipeline_run_partition(pipe, dl, 0);
402 
403 	/* Process consecutive partitions as necessary. */
404 	for (partition = 1; partition < pipe->partitions; ++partition) {
405 		struct vsp1_dl_list *dl_next;
406 
407 		dl_next = vsp1_dl_list_get(pipe->output->dlm);
408 
409 		/*
410 		 * An incomplete chain will still function, but output only
411 		 * the partitions that had a dl available. The frame end
412 		 * interrupt will be marked on the last dl in the chain.
413 		 */
414 		if (!dl_next) {
415 			dev_err(vsp1->dev, "Failed to obtain a dl list. Frame will be incomplete\n");
416 			break;
417 		}
418 
419 		vsp1_video_pipeline_run_partition(pipe, dl_next, partition);
420 		vsp1_dl_list_add_chain(dl, dl_next);
421 	}
422 
423 	/* Complete, and commit the head display list. */
424 	vsp1_dl_list_commit(dl, 0);
425 	pipe->configured = true;
426 
427 	vsp1_pipeline_run(pipe);
428 }
429 
430 static void vsp1_video_pipeline_frame_end(struct vsp1_pipeline *pipe,
431 					  unsigned int completion)
432 {
433 	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
434 	enum vsp1_pipeline_state state;
435 	unsigned long flags;
436 	unsigned int i;
437 
438 	/* M2M Pipelines should never call here with an incomplete frame. */
439 	WARN_ON_ONCE(!(completion & VSP1_DL_FRAME_END_COMPLETED));
440 
441 	spin_lock_irqsave(&pipe->irqlock, flags);
442 
443 	/* Complete buffers on all video nodes. */
444 	for (i = 0; i < vsp1->info->rpf_count; ++i) {
445 		if (!pipe->inputs[i])
446 			continue;
447 
448 		vsp1_video_frame_end(pipe, pipe->inputs[i]);
449 	}
450 
451 	vsp1_video_frame_end(pipe, pipe->output);
452 
453 	state = pipe->state;
454 	pipe->state = VSP1_PIPELINE_STOPPED;
455 
456 	/*
457 	 * If a stop has been requested, mark the pipeline as stopped and
458 	 * return. Otherwise restart the pipeline if ready.
459 	 */
460 	if (state == VSP1_PIPELINE_STOPPING)
461 		wake_up(&pipe->wq);
462 	else if (vsp1_pipeline_ready(pipe))
463 		vsp1_video_pipeline_run(pipe);
464 
465 	spin_unlock_irqrestore(&pipe->irqlock, flags);
466 }
467 
468 static int vsp1_video_pipeline_build_branch(struct vsp1_pipeline *pipe,
469 					    struct vsp1_rwpf *input,
470 					    struct vsp1_rwpf *output)
471 {
472 	struct media_entity_enum ent_enum;
473 	struct vsp1_entity *entity;
474 	struct media_pad *pad;
475 	struct vsp1_brx *brx = NULL;
476 	int ret;
477 
478 	ret = media_entity_enum_init(&ent_enum, &input->entity.vsp1->media_dev);
479 	if (ret < 0)
480 		return ret;
481 
482 	/*
483 	 * The main data path doesn't include the HGO or HGT, use
484 	 * vsp1_entity_remote_pad() to traverse the graph.
485 	 */
486 
487 	pad = vsp1_entity_remote_pad(&input->entity.pads[RWPF_PAD_SOURCE]);
488 
489 	while (1) {
490 		if (pad == NULL) {
491 			ret = -EPIPE;
492 			goto out;
493 		}
494 
495 		/* We've reached a video node, that shouldn't have happened. */
496 		if (!is_media_entity_v4l2_subdev(pad->entity)) {
497 			ret = -EPIPE;
498 			goto out;
499 		}
500 
501 		entity = to_vsp1_entity(
502 			media_entity_to_v4l2_subdev(pad->entity));
503 
504 		/*
505 		 * A BRU or BRS is present in the pipeline, store its input pad
506 		 * number in the input RPF for use when configuring the RPF.
507 		 */
508 		if (entity->type == VSP1_ENTITY_BRU ||
509 		    entity->type == VSP1_ENTITY_BRS) {
510 			/* BRU and BRS can't be chained. */
511 			if (brx) {
512 				ret = -EPIPE;
513 				goto out;
514 			}
515 
516 			brx = to_brx(&entity->subdev);
517 			brx->inputs[pad->index].rpf = input;
518 			input->brx_input = pad->index;
519 		}
520 
521 		/* We've reached the WPF, we're done. */
522 		if (entity->type == VSP1_ENTITY_WPF)
523 			break;
524 
525 		/* Ensure the branch has no loop. */
526 		if (media_entity_enum_test_and_set(&ent_enum,
527 						   &entity->subdev.entity)) {
528 			ret = -EPIPE;
529 			goto out;
530 		}
531 
532 		/* UDS can't be chained. */
533 		if (entity->type == VSP1_ENTITY_UDS) {
534 			if (pipe->uds) {
535 				ret = -EPIPE;
536 				goto out;
537 			}
538 
539 			pipe->uds = entity;
540 			pipe->uds_input = brx ? &brx->entity : &input->entity;
541 		}
542 
543 		/* Follow the source link, ignoring any HGO or HGT. */
544 		pad = &entity->pads[entity->source_pad];
545 		pad = vsp1_entity_remote_pad(pad);
546 	}
547 
548 	/* The last entity must be the output WPF. */
549 	if (entity != &output->entity)
550 		ret = -EPIPE;
551 
552 out:
553 	media_entity_enum_cleanup(&ent_enum);
554 
555 	return ret;
556 }
557 
558 static int vsp1_video_pipeline_build(struct vsp1_pipeline *pipe,
559 				     struct vsp1_video *video)
560 {
561 	struct media_graph graph;
562 	struct media_entity *entity = &video->video.entity;
563 	struct media_device *mdev = entity->graph_obj.mdev;
564 	unsigned int i;
565 	int ret;
566 
567 	/* Walk the graph to locate the entities and video nodes. */
568 	ret = media_graph_walk_init(&graph, mdev);
569 	if (ret)
570 		return ret;
571 
572 	media_graph_walk_start(&graph, entity);
573 
574 	while ((entity = media_graph_walk_next(&graph))) {
575 		struct v4l2_subdev *subdev;
576 		struct vsp1_rwpf *rwpf;
577 		struct vsp1_entity *e;
578 
579 		if (!is_media_entity_v4l2_subdev(entity))
580 			continue;
581 
582 		subdev = media_entity_to_v4l2_subdev(entity);
583 		e = to_vsp1_entity(subdev);
584 		list_add_tail(&e->list_pipe, &pipe->entities);
585 		e->pipe = pipe;
586 
587 		switch (e->type) {
588 		case VSP1_ENTITY_RPF:
589 			rwpf = to_rwpf(subdev);
590 			pipe->inputs[rwpf->entity.index] = rwpf;
591 			rwpf->video->pipe_index = ++pipe->num_inputs;
592 			break;
593 
594 		case VSP1_ENTITY_WPF:
595 			rwpf = to_rwpf(subdev);
596 			pipe->output = rwpf;
597 			rwpf->video->pipe_index = 0;
598 			break;
599 
600 		case VSP1_ENTITY_LIF:
601 			pipe->lif = e;
602 			break;
603 
604 		case VSP1_ENTITY_BRU:
605 		case VSP1_ENTITY_BRS:
606 			pipe->brx = e;
607 			break;
608 
609 		case VSP1_ENTITY_HGO:
610 			pipe->hgo = e;
611 			break;
612 
613 		case VSP1_ENTITY_HGT:
614 			pipe->hgt = e;
615 			break;
616 
617 		default:
618 			break;
619 		}
620 	}
621 
622 	media_graph_walk_cleanup(&graph);
623 
624 	/* We need one output and at least one input. */
625 	if (pipe->num_inputs == 0 || !pipe->output)
626 		return -EPIPE;
627 
628 	/*
629 	 * Follow links downstream for each input and make sure the graph
630 	 * contains no loop and that all branches end at the output WPF.
631 	 */
632 	for (i = 0; i < video->vsp1->info->rpf_count; ++i) {
633 		if (!pipe->inputs[i])
634 			continue;
635 
636 		ret = vsp1_video_pipeline_build_branch(pipe, pipe->inputs[i],
637 						       pipe->output);
638 		if (ret < 0)
639 			return ret;
640 	}
641 
642 	return 0;
643 }
644 
645 static int vsp1_video_pipeline_init(struct vsp1_pipeline *pipe,
646 				    struct vsp1_video *video)
647 {
648 	vsp1_pipeline_init(pipe);
649 
650 	pipe->frame_end = vsp1_video_pipeline_frame_end;
651 
652 	return vsp1_video_pipeline_build(pipe, video);
653 }
654 
655 static struct vsp1_pipeline *vsp1_video_pipeline_get(struct vsp1_video *video)
656 {
657 	struct vsp1_pipeline *pipe;
658 	int ret;
659 
660 	/*
661 	 * Get a pipeline object for the video node. If a pipeline has already
662 	 * been allocated just increment its reference count and return it.
663 	 * Otherwise allocate a new pipeline and initialize it, it will be freed
664 	 * when the last reference is released.
665 	 */
666 	if (!video->rwpf->entity.pipe) {
667 		pipe = kzalloc(sizeof(*pipe), GFP_KERNEL);
668 		if (!pipe)
669 			return ERR_PTR(-ENOMEM);
670 
671 		ret = vsp1_video_pipeline_init(pipe, video);
672 		if (ret < 0) {
673 			vsp1_pipeline_reset(pipe);
674 			kfree(pipe);
675 			return ERR_PTR(ret);
676 		}
677 	} else {
678 		pipe = video->rwpf->entity.pipe;
679 		kref_get(&pipe->kref);
680 	}
681 
682 	return pipe;
683 }
684 
685 static void vsp1_video_pipeline_release(struct kref *kref)
686 {
687 	struct vsp1_pipeline *pipe = container_of(kref, typeof(*pipe), kref);
688 
689 	vsp1_pipeline_reset(pipe);
690 	kfree(pipe);
691 }
692 
693 static void vsp1_video_pipeline_put(struct vsp1_pipeline *pipe)
694 {
695 	struct media_device *mdev = &pipe->output->entity.vsp1->media_dev;
696 
697 	mutex_lock(&mdev->graph_mutex);
698 	kref_put(&pipe->kref, vsp1_video_pipeline_release);
699 	mutex_unlock(&mdev->graph_mutex);
700 }
701 
702 /* -----------------------------------------------------------------------------
703  * videobuf2 Queue Operations
704  */
705 
706 static int
707 vsp1_video_queue_setup(struct vb2_queue *vq,
708 		       unsigned int *nbuffers, unsigned int *nplanes,
709 		       unsigned int sizes[], struct device *alloc_devs[])
710 {
711 	struct vsp1_video *video = vb2_get_drv_priv(vq);
712 	const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
713 	unsigned int i;
714 
715 	if (*nplanes) {
716 		if (*nplanes != format->num_planes)
717 			return -EINVAL;
718 
719 		for (i = 0; i < *nplanes; i++)
720 			if (sizes[i] < format->plane_fmt[i].sizeimage)
721 				return -EINVAL;
722 		return 0;
723 	}
724 
725 	*nplanes = format->num_planes;
726 
727 	for (i = 0; i < format->num_planes; ++i)
728 		sizes[i] = format->plane_fmt[i].sizeimage;
729 
730 	return 0;
731 }
732 
733 static int vsp1_video_buffer_prepare(struct vb2_buffer *vb)
734 {
735 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
736 	struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
737 	struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
738 	const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
739 	unsigned int i;
740 
741 	if (vb->num_planes < format->num_planes)
742 		return -EINVAL;
743 
744 	for (i = 0; i < vb->num_planes; ++i) {
745 		buf->mem.addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
746 
747 		if (vb2_plane_size(vb, i) < format->plane_fmt[i].sizeimage)
748 			return -EINVAL;
749 	}
750 
751 	for ( ; i < 3; ++i)
752 		buf->mem.addr[i] = 0;
753 
754 	return 0;
755 }
756 
757 static void vsp1_video_buffer_queue(struct vb2_buffer *vb)
758 {
759 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
760 	struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
761 	struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
762 	struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
763 	unsigned long flags;
764 	bool empty;
765 
766 	spin_lock_irqsave(&video->irqlock, flags);
767 	empty = list_empty(&video->irqqueue);
768 	list_add_tail(&buf->queue, &video->irqqueue);
769 	spin_unlock_irqrestore(&video->irqlock, flags);
770 
771 	if (!empty)
772 		return;
773 
774 	spin_lock_irqsave(&pipe->irqlock, flags);
775 
776 	video->rwpf->mem = buf->mem;
777 	pipe->buffers_ready |= 1 << video->pipe_index;
778 
779 	if (vb2_is_streaming(&video->queue) &&
780 	    vsp1_pipeline_ready(pipe))
781 		vsp1_video_pipeline_run(pipe);
782 
783 	spin_unlock_irqrestore(&pipe->irqlock, flags);
784 }
785 
786 static int vsp1_video_setup_pipeline(struct vsp1_pipeline *pipe)
787 {
788 	struct vsp1_entity *entity;
789 	int ret;
790 
791 	/* Determine this pipelines sizes for image partitioning support. */
792 	ret = vsp1_video_pipeline_setup_partitions(pipe);
793 	if (ret < 0)
794 		return ret;
795 
796 	if (pipe->uds) {
797 		struct vsp1_uds *uds = to_uds(&pipe->uds->subdev);
798 
799 		/*
800 		 * If a BRU or BRS is present in the pipeline before the UDS,
801 		 * the alpha component doesn't need to be scaled as the BRU and
802 		 * BRS output alpha value is fixed to 255. Otherwise we need to
803 		 * scale the alpha component only when available at the input
804 		 * RPF.
805 		 */
806 		if (pipe->uds_input->type == VSP1_ENTITY_BRU ||
807 		    pipe->uds_input->type == VSP1_ENTITY_BRS) {
808 			uds->scale_alpha = false;
809 		} else {
810 			struct vsp1_rwpf *rpf =
811 				to_rwpf(&pipe->uds_input->subdev);
812 
813 			uds->scale_alpha = rpf->fmtinfo->alpha;
814 		}
815 	}
816 
817 	/*
818 	 * Compute and cache the stream configuration into a body. The cached
819 	 * body will be added to the display list by vsp1_video_pipeline_run()
820 	 * whenever the pipeline needs to be fully reconfigured.
821 	 */
822 	pipe->stream_config = vsp1_dlm_dl_body_get(pipe->output->dlm);
823 	if (!pipe->stream_config)
824 		return -ENOMEM;
825 
826 	list_for_each_entry(entity, &pipe->entities, list_pipe) {
827 		vsp1_entity_route_setup(entity, pipe, pipe->stream_config);
828 		vsp1_entity_configure_stream(entity, pipe, NULL,
829 					     pipe->stream_config);
830 	}
831 
832 	return 0;
833 }
834 
835 static void vsp1_video_release_buffers(struct vsp1_video *video)
836 {
837 	struct vsp1_vb2_buffer *buffer;
838 	unsigned long flags;
839 
840 	/* Remove all buffers from the IRQ queue. */
841 	spin_lock_irqsave(&video->irqlock, flags);
842 	list_for_each_entry(buffer, &video->irqqueue, queue)
843 		vb2_buffer_done(&buffer->buf.vb2_buf, VB2_BUF_STATE_ERROR);
844 	INIT_LIST_HEAD(&video->irqqueue);
845 	spin_unlock_irqrestore(&video->irqlock, flags);
846 }
847 
848 static void vsp1_video_cleanup_pipeline(struct vsp1_pipeline *pipe)
849 {
850 	lockdep_assert_held(&pipe->lock);
851 
852 	/* Release any cached configuration from our output video. */
853 	vsp1_dl_body_put(pipe->stream_config);
854 	pipe->stream_config = NULL;
855 	pipe->configured = false;
856 
857 	/* Release our partition table allocation. */
858 	kfree(pipe->part_table);
859 	pipe->part_table = NULL;
860 }
861 
862 static int vsp1_video_start_streaming(struct vb2_queue *vq, unsigned int count)
863 {
864 	struct vsp1_video *video = vb2_get_drv_priv(vq);
865 	struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
866 	bool start_pipeline = false;
867 	unsigned long flags;
868 	int ret;
869 
870 	mutex_lock(&pipe->lock);
871 	if (pipe->stream_count == pipe->num_inputs) {
872 		ret = vsp1_video_setup_pipeline(pipe);
873 		if (ret < 0) {
874 			vsp1_video_release_buffers(video);
875 			vsp1_video_cleanup_pipeline(pipe);
876 			mutex_unlock(&pipe->lock);
877 			return ret;
878 		}
879 
880 		start_pipeline = true;
881 	}
882 
883 	pipe->stream_count++;
884 	mutex_unlock(&pipe->lock);
885 
886 	/*
887 	 * vsp1_pipeline_ready() is not sufficient to establish that all streams
888 	 * are prepared and the pipeline is configured, as multiple streams
889 	 * can race through streamon with buffers already queued; Therefore we
890 	 * don't even attempt to start the pipeline until the last stream has
891 	 * called through here.
892 	 */
893 	if (!start_pipeline)
894 		return 0;
895 
896 	spin_lock_irqsave(&pipe->irqlock, flags);
897 	if (vsp1_pipeline_ready(pipe))
898 		vsp1_video_pipeline_run(pipe);
899 	spin_unlock_irqrestore(&pipe->irqlock, flags);
900 
901 	return 0;
902 }
903 
904 static void vsp1_video_stop_streaming(struct vb2_queue *vq)
905 {
906 	struct vsp1_video *video = vb2_get_drv_priv(vq);
907 	struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
908 	unsigned long flags;
909 	int ret;
910 
911 	/*
912 	 * Clear the buffers ready flag to make sure the device won't be started
913 	 * by a QBUF on the video node on the other side of the pipeline.
914 	 */
915 	spin_lock_irqsave(&video->irqlock, flags);
916 	pipe->buffers_ready &= ~(1 << video->pipe_index);
917 	spin_unlock_irqrestore(&video->irqlock, flags);
918 
919 	mutex_lock(&pipe->lock);
920 	if (--pipe->stream_count == pipe->num_inputs) {
921 		/* Stop the pipeline. */
922 		ret = vsp1_pipeline_stop(pipe);
923 		if (ret == -ETIMEDOUT)
924 			dev_err(video->vsp1->dev, "pipeline stop timeout\n");
925 
926 		vsp1_video_cleanup_pipeline(pipe);
927 	}
928 	mutex_unlock(&pipe->lock);
929 
930 	media_pipeline_stop(&video->video.entity);
931 	vsp1_video_release_buffers(video);
932 	vsp1_video_pipeline_put(pipe);
933 }
934 
935 static const struct vb2_ops vsp1_video_queue_qops = {
936 	.queue_setup = vsp1_video_queue_setup,
937 	.buf_prepare = vsp1_video_buffer_prepare,
938 	.buf_queue = vsp1_video_buffer_queue,
939 	.wait_prepare = vb2_ops_wait_prepare,
940 	.wait_finish = vb2_ops_wait_finish,
941 	.start_streaming = vsp1_video_start_streaming,
942 	.stop_streaming = vsp1_video_stop_streaming,
943 };
944 
945 /* -----------------------------------------------------------------------------
946  * V4L2 ioctls
947  */
948 
949 static int
950 vsp1_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap)
951 {
952 	struct v4l2_fh *vfh = file->private_data;
953 	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
954 
955 	cap->capabilities = V4L2_CAP_DEVICE_CAPS | V4L2_CAP_STREAMING
956 			  | V4L2_CAP_VIDEO_CAPTURE_MPLANE
957 			  | V4L2_CAP_VIDEO_OUTPUT_MPLANE;
958 
959 
960 	strscpy(cap->driver, "vsp1", sizeof(cap->driver));
961 	strscpy(cap->card, video->video.name, sizeof(cap->card));
962 
963 	return 0;
964 }
965 
966 static int
967 vsp1_video_get_format(struct file *file, void *fh, struct v4l2_format *format)
968 {
969 	struct v4l2_fh *vfh = file->private_data;
970 	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
971 
972 	if (format->type != video->queue.type)
973 		return -EINVAL;
974 
975 	mutex_lock(&video->lock);
976 	format->fmt.pix_mp = video->rwpf->format;
977 	mutex_unlock(&video->lock);
978 
979 	return 0;
980 }
981 
982 static int
983 vsp1_video_try_format(struct file *file, void *fh, struct v4l2_format *format)
984 {
985 	struct v4l2_fh *vfh = file->private_data;
986 	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
987 
988 	if (format->type != video->queue.type)
989 		return -EINVAL;
990 
991 	return __vsp1_video_try_format(video, &format->fmt.pix_mp, NULL);
992 }
993 
994 static int
995 vsp1_video_set_format(struct file *file, void *fh, struct v4l2_format *format)
996 {
997 	struct v4l2_fh *vfh = file->private_data;
998 	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
999 	const struct vsp1_format_info *info;
1000 	int ret;
1001 
1002 	if (format->type != video->queue.type)
1003 		return -EINVAL;
1004 
1005 	ret = __vsp1_video_try_format(video, &format->fmt.pix_mp, &info);
1006 	if (ret < 0)
1007 		return ret;
1008 
1009 	mutex_lock(&video->lock);
1010 
1011 	if (vb2_is_busy(&video->queue)) {
1012 		ret = -EBUSY;
1013 		goto done;
1014 	}
1015 
1016 	video->rwpf->format = format->fmt.pix_mp;
1017 	video->rwpf->fmtinfo = info;
1018 
1019 done:
1020 	mutex_unlock(&video->lock);
1021 	return ret;
1022 }
1023 
1024 static int
1025 vsp1_video_streamon(struct file *file, void *fh, enum v4l2_buf_type type)
1026 {
1027 	struct v4l2_fh *vfh = file->private_data;
1028 	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
1029 	struct media_device *mdev = &video->vsp1->media_dev;
1030 	struct vsp1_pipeline *pipe;
1031 	int ret;
1032 
1033 	if (vb2_queue_is_busy(&video->queue, file))
1034 		return -EBUSY;
1035 
1036 	/*
1037 	 * Get a pipeline for the video node and start streaming on it. No link
1038 	 * touching an entity in the pipeline can be activated or deactivated
1039 	 * once streaming is started.
1040 	 */
1041 	mutex_lock(&mdev->graph_mutex);
1042 
1043 	pipe = vsp1_video_pipeline_get(video);
1044 	if (IS_ERR(pipe)) {
1045 		mutex_unlock(&mdev->graph_mutex);
1046 		return PTR_ERR(pipe);
1047 	}
1048 
1049 	ret = __media_pipeline_start(&video->video.entity, &pipe->pipe);
1050 	if (ret < 0) {
1051 		mutex_unlock(&mdev->graph_mutex);
1052 		goto err_pipe;
1053 	}
1054 
1055 	mutex_unlock(&mdev->graph_mutex);
1056 
1057 	/*
1058 	 * Verify that the configured format matches the output of the connected
1059 	 * subdev.
1060 	 */
1061 	ret = vsp1_video_verify_format(video);
1062 	if (ret < 0)
1063 		goto err_stop;
1064 
1065 	/* Start the queue. */
1066 	ret = vb2_streamon(&video->queue, type);
1067 	if (ret < 0)
1068 		goto err_stop;
1069 
1070 	return 0;
1071 
1072 err_stop:
1073 	media_pipeline_stop(&video->video.entity);
1074 err_pipe:
1075 	vsp1_video_pipeline_put(pipe);
1076 	return ret;
1077 }
1078 
1079 static const struct v4l2_ioctl_ops vsp1_video_ioctl_ops = {
1080 	.vidioc_querycap		= vsp1_video_querycap,
1081 	.vidioc_g_fmt_vid_cap_mplane	= vsp1_video_get_format,
1082 	.vidioc_s_fmt_vid_cap_mplane	= vsp1_video_set_format,
1083 	.vidioc_try_fmt_vid_cap_mplane	= vsp1_video_try_format,
1084 	.vidioc_g_fmt_vid_out_mplane	= vsp1_video_get_format,
1085 	.vidioc_s_fmt_vid_out_mplane	= vsp1_video_set_format,
1086 	.vidioc_try_fmt_vid_out_mplane	= vsp1_video_try_format,
1087 	.vidioc_reqbufs			= vb2_ioctl_reqbufs,
1088 	.vidioc_querybuf		= vb2_ioctl_querybuf,
1089 	.vidioc_qbuf			= vb2_ioctl_qbuf,
1090 	.vidioc_dqbuf			= vb2_ioctl_dqbuf,
1091 	.vidioc_expbuf			= vb2_ioctl_expbuf,
1092 	.vidioc_create_bufs		= vb2_ioctl_create_bufs,
1093 	.vidioc_prepare_buf		= vb2_ioctl_prepare_buf,
1094 	.vidioc_streamon		= vsp1_video_streamon,
1095 	.vidioc_streamoff		= vb2_ioctl_streamoff,
1096 };
1097 
1098 /* -----------------------------------------------------------------------------
1099  * V4L2 File Operations
1100  */
1101 
1102 static int vsp1_video_open(struct file *file)
1103 {
1104 	struct vsp1_video *video = video_drvdata(file);
1105 	struct v4l2_fh *vfh;
1106 	int ret = 0;
1107 
1108 	vfh = kzalloc(sizeof(*vfh), GFP_KERNEL);
1109 	if (vfh == NULL)
1110 		return -ENOMEM;
1111 
1112 	v4l2_fh_init(vfh, &video->video);
1113 	v4l2_fh_add(vfh);
1114 
1115 	file->private_data = vfh;
1116 
1117 	ret = vsp1_device_get(video->vsp1);
1118 	if (ret < 0) {
1119 		v4l2_fh_del(vfh);
1120 		v4l2_fh_exit(vfh);
1121 		kfree(vfh);
1122 	}
1123 
1124 	return ret;
1125 }
1126 
1127 static int vsp1_video_release(struct file *file)
1128 {
1129 	struct vsp1_video *video = video_drvdata(file);
1130 
1131 	vb2_fop_release(file);
1132 
1133 	vsp1_device_put(video->vsp1);
1134 
1135 	return 0;
1136 }
1137 
1138 static const struct v4l2_file_operations vsp1_video_fops = {
1139 	.owner = THIS_MODULE,
1140 	.unlocked_ioctl = video_ioctl2,
1141 	.open = vsp1_video_open,
1142 	.release = vsp1_video_release,
1143 	.poll = vb2_fop_poll,
1144 	.mmap = vb2_fop_mmap,
1145 };
1146 
1147 /* -----------------------------------------------------------------------------
1148  * Suspend and Resume
1149  */
1150 
1151 void vsp1_video_suspend(struct vsp1_device *vsp1)
1152 {
1153 	unsigned long flags;
1154 	unsigned int i;
1155 	int ret;
1156 
1157 	/*
1158 	 * To avoid increasing the system suspend time needlessly, loop over the
1159 	 * pipelines twice, first to set them all to the stopping state, and
1160 	 * then to wait for the stop to complete.
1161 	 */
1162 	for (i = 0; i < vsp1->info->wpf_count; ++i) {
1163 		struct vsp1_rwpf *wpf = vsp1->wpf[i];
1164 		struct vsp1_pipeline *pipe;
1165 
1166 		if (wpf == NULL)
1167 			continue;
1168 
1169 		pipe = wpf->entity.pipe;
1170 		if (pipe == NULL)
1171 			continue;
1172 
1173 		spin_lock_irqsave(&pipe->irqlock, flags);
1174 		if (pipe->state == VSP1_PIPELINE_RUNNING)
1175 			pipe->state = VSP1_PIPELINE_STOPPING;
1176 		spin_unlock_irqrestore(&pipe->irqlock, flags);
1177 	}
1178 
1179 	for (i = 0; i < vsp1->info->wpf_count; ++i) {
1180 		struct vsp1_rwpf *wpf = vsp1->wpf[i];
1181 		struct vsp1_pipeline *pipe;
1182 
1183 		if (wpf == NULL)
1184 			continue;
1185 
1186 		pipe = wpf->entity.pipe;
1187 		if (pipe == NULL)
1188 			continue;
1189 
1190 		ret = wait_event_timeout(pipe->wq, vsp1_pipeline_stopped(pipe),
1191 					 msecs_to_jiffies(500));
1192 		if (ret == 0)
1193 			dev_warn(vsp1->dev, "pipeline %u stop timeout\n",
1194 				 wpf->entity.index);
1195 	}
1196 }
1197 
1198 void vsp1_video_resume(struct vsp1_device *vsp1)
1199 {
1200 	unsigned long flags;
1201 	unsigned int i;
1202 
1203 	/* Resume all running pipelines. */
1204 	for (i = 0; i < vsp1->info->wpf_count; ++i) {
1205 		struct vsp1_rwpf *wpf = vsp1->wpf[i];
1206 		struct vsp1_pipeline *pipe;
1207 
1208 		if (wpf == NULL)
1209 			continue;
1210 
1211 		pipe = wpf->entity.pipe;
1212 		if (pipe == NULL)
1213 			continue;
1214 
1215 		/*
1216 		 * The hardware may have been reset during a suspend and will
1217 		 * need a full reconfiguration.
1218 		 */
1219 		pipe->configured = false;
1220 
1221 		spin_lock_irqsave(&pipe->irqlock, flags);
1222 		if (vsp1_pipeline_ready(pipe))
1223 			vsp1_video_pipeline_run(pipe);
1224 		spin_unlock_irqrestore(&pipe->irqlock, flags);
1225 	}
1226 }
1227 
1228 /* -----------------------------------------------------------------------------
1229  * Initialization and Cleanup
1230  */
1231 
1232 struct vsp1_video *vsp1_video_create(struct vsp1_device *vsp1,
1233 				     struct vsp1_rwpf *rwpf)
1234 {
1235 	struct vsp1_video *video;
1236 	const char *direction;
1237 	int ret;
1238 
1239 	video = devm_kzalloc(vsp1->dev, sizeof(*video), GFP_KERNEL);
1240 	if (!video)
1241 		return ERR_PTR(-ENOMEM);
1242 
1243 	rwpf->video = video;
1244 
1245 	video->vsp1 = vsp1;
1246 	video->rwpf = rwpf;
1247 
1248 	if (rwpf->entity.type == VSP1_ENTITY_RPF) {
1249 		direction = "input";
1250 		video->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1251 		video->pad.flags = MEDIA_PAD_FL_SOURCE;
1252 		video->video.vfl_dir = VFL_DIR_TX;
1253 		video->video.device_caps = V4L2_CAP_VIDEO_OUTPUT_MPLANE |
1254 					   V4L2_CAP_STREAMING;
1255 	} else {
1256 		direction = "output";
1257 		video->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1258 		video->pad.flags = MEDIA_PAD_FL_SINK;
1259 		video->video.vfl_dir = VFL_DIR_RX;
1260 		video->video.device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE |
1261 					   V4L2_CAP_STREAMING;
1262 	}
1263 
1264 	mutex_init(&video->lock);
1265 	spin_lock_init(&video->irqlock);
1266 	INIT_LIST_HEAD(&video->irqqueue);
1267 
1268 	/* Initialize the media entity... */
1269 	ret = media_entity_pads_init(&video->video.entity, 1, &video->pad);
1270 	if (ret < 0)
1271 		return ERR_PTR(ret);
1272 
1273 	/* ... and the format ... */
1274 	rwpf->format.pixelformat = VSP1_VIDEO_DEF_FORMAT;
1275 	rwpf->format.width = VSP1_VIDEO_DEF_WIDTH;
1276 	rwpf->format.height = VSP1_VIDEO_DEF_HEIGHT;
1277 	__vsp1_video_try_format(video, &rwpf->format, &rwpf->fmtinfo);
1278 
1279 	/* ... and the video node... */
1280 	video->video.v4l2_dev = &video->vsp1->v4l2_dev;
1281 	video->video.fops = &vsp1_video_fops;
1282 	snprintf(video->video.name, sizeof(video->video.name), "%s %s",
1283 		 rwpf->entity.subdev.name, direction);
1284 	video->video.vfl_type = VFL_TYPE_VIDEO;
1285 	video->video.release = video_device_release_empty;
1286 	video->video.ioctl_ops = &vsp1_video_ioctl_ops;
1287 
1288 	video_set_drvdata(&video->video, video);
1289 
1290 	video->queue.type = video->type;
1291 	video->queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
1292 	video->queue.lock = &video->lock;
1293 	video->queue.drv_priv = video;
1294 	video->queue.buf_struct_size = sizeof(struct vsp1_vb2_buffer);
1295 	video->queue.ops = &vsp1_video_queue_qops;
1296 	video->queue.mem_ops = &vb2_dma_contig_memops;
1297 	video->queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1298 	video->queue.dev = video->vsp1->bus_master;
1299 	ret = vb2_queue_init(&video->queue);
1300 	if (ret < 0) {
1301 		dev_err(video->vsp1->dev, "failed to initialize vb2 queue\n");
1302 		goto error;
1303 	}
1304 
1305 	/* ... and register the video device. */
1306 	video->video.queue = &video->queue;
1307 	ret = video_register_device(&video->video, VFL_TYPE_VIDEO, -1);
1308 	if (ret < 0) {
1309 		dev_err(video->vsp1->dev, "failed to register video device\n");
1310 		goto error;
1311 	}
1312 
1313 	return video;
1314 
1315 error:
1316 	vsp1_video_cleanup(video);
1317 	return ERR_PTR(ret);
1318 }
1319 
1320 void vsp1_video_cleanup(struct vsp1_video *video)
1321 {
1322 	if (video_is_registered(&video->video))
1323 		video_unregister_device(&video->video);
1324 
1325 	media_entity_cleanup(&video->video.entity);
1326 }
1327