xref: /linux/drivers/media/platform/renesas/vsp1/vsp1_video.c (revision 0b0e9cdb3d1f8fda823b592b0667b4b0595e2ba7)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * vsp1_video.c  --  R-Car VSP1 Video Node
4  *
5  * Copyright (C) 2013-2015 Renesas Electronics Corporation
6  *
7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8  */
9 
10 #include <linux/list.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/slab.h>
14 #include <linux/v4l2-mediabus.h>
15 #include <linux/videodev2.h>
16 #include <linux/wait.h>
17 
18 #include <media/media-entity.h>
19 #include <media/v4l2-dev.h>
20 #include <media/v4l2-fh.h>
21 #include <media/v4l2-ioctl.h>
22 #include <media/v4l2-subdev.h>
23 #include <media/videobuf2-v4l2.h>
24 #include <media/videobuf2-dma-contig.h>
25 
26 #include "vsp1.h"
27 #include "vsp1_brx.h"
28 #include "vsp1_dl.h"
29 #include "vsp1_entity.h"
30 #include "vsp1_hgo.h"
31 #include "vsp1_hgt.h"
32 #include "vsp1_pipe.h"
33 #include "vsp1_rwpf.h"
34 #include "vsp1_uds.h"
35 #include "vsp1_video.h"
36 
37 #define VSP1_VIDEO_DEF_FORMAT		V4L2_PIX_FMT_YUYV
38 #define VSP1_VIDEO_DEF_WIDTH		1024
39 #define VSP1_VIDEO_DEF_HEIGHT		768
40 
41 #define VSP1_VIDEO_MAX_WIDTH		8190U
42 #define VSP1_VIDEO_MAX_HEIGHT		8190U
43 
44 /* -----------------------------------------------------------------------------
45  * Helper functions
46  */
47 
48 static struct v4l2_subdev *
49 vsp1_video_remote_subdev(struct media_pad *local, u32 *pad)
50 {
51 	struct media_pad *remote;
52 
53 	remote = media_pad_remote_pad_first(local);
54 	if (!remote || !is_media_entity_v4l2_subdev(remote->entity))
55 		return NULL;
56 
57 	if (pad)
58 		*pad = remote->index;
59 
60 	return media_entity_to_v4l2_subdev(remote->entity);
61 }
62 
63 static int vsp1_video_verify_format(struct vsp1_video *video)
64 {
65 	struct v4l2_subdev_format fmt = {
66 		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
67 	};
68 	struct v4l2_subdev *subdev;
69 	int ret;
70 
71 	subdev = vsp1_video_remote_subdev(&video->pad, &fmt.pad);
72 	if (subdev == NULL)
73 		return -EINVAL;
74 
75 	ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt);
76 	if (ret < 0)
77 		return ret == -ENOIOCTLCMD ? -EINVAL : ret;
78 
79 	if (video->rwpf->fmtinfo->mbus != fmt.format.code ||
80 	    video->rwpf->format.height != fmt.format.height ||
81 	    video->rwpf->format.width != fmt.format.width) {
82 		dev_dbg(video->vsp1->dev,
83 			"Format mismatch: 0x%04x/%ux%u != 0x%04x/%ux%u\n",
84 			video->rwpf->fmtinfo->mbus, video->rwpf->format.width,
85 			video->rwpf->format.height, fmt.format.code,
86 			fmt.format.width, fmt.format.height);
87 		return -EPIPE;
88 	}
89 
90 	return 0;
91 }
92 
93 static int __vsp1_video_try_format(struct vsp1_video *video,
94 				   struct v4l2_pix_format_mplane *pix,
95 				   const struct vsp1_format_info **fmtinfo)
96 {
97 	static const u32 xrgb_formats[][2] = {
98 		{ V4L2_PIX_FMT_RGB444, V4L2_PIX_FMT_XRGB444 },
99 		{ V4L2_PIX_FMT_RGB555, V4L2_PIX_FMT_XRGB555 },
100 		{ V4L2_PIX_FMT_BGR32, V4L2_PIX_FMT_XBGR32 },
101 		{ V4L2_PIX_FMT_RGB32, V4L2_PIX_FMT_XRGB32 },
102 	};
103 
104 	const struct vsp1_format_info *info;
105 	unsigned int width = pix->width;
106 	unsigned int height = pix->height;
107 	unsigned int i;
108 
109 	/*
110 	 * Backward compatibility: replace deprecated RGB formats by their XRGB
111 	 * equivalent. This selects the format older userspace applications want
112 	 * while still exposing the new format.
113 	 */
114 	for (i = 0; i < ARRAY_SIZE(xrgb_formats); ++i) {
115 		if (xrgb_formats[i][0] == pix->pixelformat) {
116 			pix->pixelformat = xrgb_formats[i][1];
117 			break;
118 		}
119 	}
120 
121 	/*
122 	 * Retrieve format information and select the default format if the
123 	 * requested format isn't supported.
124 	 */
125 	info = vsp1_get_format_info(video->vsp1, pix->pixelformat);
126 	if (info == NULL)
127 		info = vsp1_get_format_info(video->vsp1, VSP1_VIDEO_DEF_FORMAT);
128 
129 	pix->pixelformat = info->fourcc;
130 	pix->colorspace = V4L2_COLORSPACE_SRGB;
131 	pix->field = V4L2_FIELD_NONE;
132 
133 	if (info->fourcc == V4L2_PIX_FMT_HSV24 ||
134 	    info->fourcc == V4L2_PIX_FMT_HSV32)
135 		pix->hsv_enc = V4L2_HSV_ENC_256;
136 
137 	memset(pix->reserved, 0, sizeof(pix->reserved));
138 
139 	/* Align the width and height for YUV 4:2:2 and 4:2:0 formats. */
140 	width = round_down(width, info->hsub);
141 	height = round_down(height, info->vsub);
142 
143 	/* Clamp the width and height. */
144 	pix->width = clamp(width, info->hsub, VSP1_VIDEO_MAX_WIDTH);
145 	pix->height = clamp(height, info->vsub, VSP1_VIDEO_MAX_HEIGHT);
146 
147 	/*
148 	 * Compute and clamp the stride and image size. While not documented in
149 	 * the datasheet, strides not aligned to a multiple of 128 bytes result
150 	 * in image corruption.
151 	 */
152 	for (i = 0; i < min(info->planes, 2U); ++i) {
153 		unsigned int hsub = i > 0 ? info->hsub : 1;
154 		unsigned int vsub = i > 0 ? info->vsub : 1;
155 		unsigned int align = 128;
156 		unsigned int bpl;
157 
158 		bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
159 			      pix->width / hsub * info->bpp[i] / 8,
160 			      round_down(65535U, align));
161 
162 		pix->plane_fmt[i].bytesperline = round_up(bpl, align);
163 		pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
164 					    * pix->height / vsub;
165 	}
166 
167 	if (info->planes == 3) {
168 		/* The second and third planes must have the same stride. */
169 		pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
170 		pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
171 	}
172 
173 	pix->num_planes = info->planes;
174 
175 	if (fmtinfo)
176 		*fmtinfo = info;
177 
178 	return 0;
179 }
180 
181 /* -----------------------------------------------------------------------------
182  * Pipeline Management
183  */
184 
185 /*
186  * vsp1_video_complete_buffer - Complete the current buffer
187  * @video: the video node
188  *
189  * This function completes the current buffer by filling its sequence number,
190  * time stamp and payload size, and hands it back to the vb2 core.
191  *
192  * Return the next queued buffer or NULL if the queue is empty.
193  */
194 static struct vsp1_vb2_buffer *
195 vsp1_video_complete_buffer(struct vsp1_video *video)
196 {
197 	struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
198 	struct vsp1_vb2_buffer *next = NULL;
199 	struct vsp1_vb2_buffer *done;
200 	unsigned long flags;
201 	unsigned int i;
202 
203 	spin_lock_irqsave(&video->irqlock, flags);
204 
205 	if (list_empty(&video->irqqueue)) {
206 		spin_unlock_irqrestore(&video->irqlock, flags);
207 		return NULL;
208 	}
209 
210 	done = list_first_entry(&video->irqqueue,
211 				struct vsp1_vb2_buffer, queue);
212 
213 	list_del(&done->queue);
214 
215 	if (!list_empty(&video->irqqueue))
216 		next = list_first_entry(&video->irqqueue,
217 					struct vsp1_vb2_buffer, queue);
218 
219 	spin_unlock_irqrestore(&video->irqlock, flags);
220 
221 	done->buf.sequence = pipe->sequence;
222 	done->buf.vb2_buf.timestamp = ktime_get_ns();
223 	for (i = 0; i < done->buf.vb2_buf.num_planes; ++i)
224 		vb2_set_plane_payload(&done->buf.vb2_buf, i,
225 				      vb2_plane_size(&done->buf.vb2_buf, i));
226 	vb2_buffer_done(&done->buf.vb2_buf, VB2_BUF_STATE_DONE);
227 
228 	return next;
229 }
230 
231 static void vsp1_video_frame_end(struct vsp1_pipeline *pipe,
232 				 struct vsp1_rwpf *rwpf)
233 {
234 	struct vsp1_video *video = rwpf->video;
235 	struct vsp1_vb2_buffer *buf;
236 
237 	buf = vsp1_video_complete_buffer(video);
238 	if (buf == NULL)
239 		return;
240 
241 	video->rwpf->mem = buf->mem;
242 	pipe->buffers_ready |= 1 << video->pipe_index;
243 }
244 
245 static void vsp1_video_pipeline_run_partition(struct vsp1_pipeline *pipe,
246 					      struct vsp1_dl_list *dl,
247 					      unsigned int partition)
248 {
249 	struct vsp1_partition *part = &pipe->part_table[partition];
250 	struct vsp1_dl_body *dlb = vsp1_dl_list_get_body0(dl);
251 	struct vsp1_entity *entity;
252 
253 	list_for_each_entry(entity, &pipe->entities, list_pipe)
254 		vsp1_entity_configure_partition(entity, pipe, part, dl, dlb);
255 }
256 
257 static void vsp1_video_pipeline_run(struct vsp1_pipeline *pipe)
258 {
259 	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
260 	struct vsp1_entity *entity;
261 	struct vsp1_dl_body *dlb;
262 	struct vsp1_dl_list *dl;
263 	unsigned int partition;
264 
265 	dl = vsp1_dl_list_get(pipe->output->dlm);
266 
267 	/*
268 	 * If the VSP hardware isn't configured yet (which occurs either when
269 	 * processing the first frame or after a system suspend/resume), add the
270 	 * cached stream configuration to the display list to perform a full
271 	 * initialisation.
272 	 */
273 	if (!pipe->configured)
274 		vsp1_dl_list_add_body(dl, pipe->stream_config);
275 
276 	dlb = vsp1_dl_list_get_body0(dl);
277 
278 	list_for_each_entry(entity, &pipe->entities, list_pipe)
279 		vsp1_entity_configure_frame(entity, pipe, dl, dlb);
280 
281 	/* Run the first partition. */
282 	vsp1_video_pipeline_run_partition(pipe, dl, 0);
283 
284 	/* Process consecutive partitions as necessary. */
285 	for (partition = 1; partition < pipe->partitions; ++partition) {
286 		struct vsp1_dl_list *dl_next;
287 
288 		dl_next = vsp1_dl_list_get(pipe->output->dlm);
289 
290 		/*
291 		 * An incomplete chain will still function, but output only
292 		 * the partitions that had a dl available. The frame end
293 		 * interrupt will be marked on the last dl in the chain.
294 		 */
295 		if (!dl_next) {
296 			dev_err(vsp1->dev, "Failed to obtain a dl list. Frame will be incomplete\n");
297 			break;
298 		}
299 
300 		vsp1_video_pipeline_run_partition(pipe, dl_next, partition);
301 		vsp1_dl_list_add_chain(dl, dl_next);
302 	}
303 
304 	/* Complete, and commit the head display list. */
305 	vsp1_dl_list_commit(dl, 0);
306 	pipe->configured = true;
307 
308 	vsp1_pipeline_run(pipe);
309 }
310 
311 static void vsp1_video_pipeline_frame_end(struct vsp1_pipeline *pipe,
312 					  unsigned int completion)
313 {
314 	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
315 	enum vsp1_pipeline_state state;
316 	unsigned long flags;
317 	unsigned int i;
318 
319 	/* M2M Pipelines should never call here with an incomplete frame. */
320 	WARN_ON_ONCE(!(completion & VSP1_DL_FRAME_END_COMPLETED));
321 
322 	spin_lock_irqsave(&pipe->irqlock, flags);
323 
324 	/* Complete buffers on all video nodes. */
325 	for (i = 0; i < vsp1->info->rpf_count; ++i) {
326 		if (!pipe->inputs[i])
327 			continue;
328 
329 		vsp1_video_frame_end(pipe, pipe->inputs[i]);
330 	}
331 
332 	vsp1_video_frame_end(pipe, pipe->output);
333 
334 	state = pipe->state;
335 	pipe->state = VSP1_PIPELINE_STOPPED;
336 
337 	/*
338 	 * If a stop has been requested, mark the pipeline as stopped and
339 	 * return. Otherwise restart the pipeline if ready.
340 	 */
341 	if (state == VSP1_PIPELINE_STOPPING)
342 		wake_up(&pipe->wq);
343 	else if (vsp1_pipeline_ready(pipe))
344 		vsp1_video_pipeline_run(pipe);
345 
346 	spin_unlock_irqrestore(&pipe->irqlock, flags);
347 }
348 
349 static int vsp1_video_pipeline_build_branch(struct vsp1_pipeline *pipe,
350 					    struct vsp1_rwpf *input,
351 					    struct vsp1_rwpf *output)
352 {
353 	struct media_entity_enum ent_enum;
354 	struct vsp1_entity *entity;
355 	struct media_pad *pad;
356 	struct vsp1_brx *brx = NULL;
357 	int ret;
358 
359 	ret = media_entity_enum_init(&ent_enum, &input->entity.vsp1->media_dev);
360 	if (ret < 0)
361 		return ret;
362 
363 	/*
364 	 * The main data path doesn't include the HGO or HGT, use
365 	 * vsp1_entity_remote_pad() to traverse the graph.
366 	 */
367 
368 	pad = vsp1_entity_remote_pad(&input->entity.pads[RWPF_PAD_SOURCE]);
369 
370 	while (1) {
371 		if (pad == NULL) {
372 			ret = -EPIPE;
373 			goto out;
374 		}
375 
376 		/* We've reached a video node, that shouldn't have happened. */
377 		if (!is_media_entity_v4l2_subdev(pad->entity)) {
378 			ret = -EPIPE;
379 			goto out;
380 		}
381 
382 		entity = to_vsp1_entity(
383 			media_entity_to_v4l2_subdev(pad->entity));
384 
385 		/*
386 		 * A BRU or BRS is present in the pipeline, store its input pad
387 		 * number in the input RPF for use when configuring the RPF.
388 		 */
389 		if (entity->type == VSP1_ENTITY_BRU ||
390 		    entity->type == VSP1_ENTITY_BRS) {
391 			/* BRU and BRS can't be chained. */
392 			if (brx) {
393 				ret = -EPIPE;
394 				goto out;
395 			}
396 
397 			brx = to_brx(&entity->subdev);
398 			brx->inputs[pad->index].rpf = input;
399 			input->brx_input = pad->index;
400 		}
401 
402 		/* We've reached the WPF, we're done. */
403 		if (entity->type == VSP1_ENTITY_WPF)
404 			break;
405 
406 		/* Ensure the branch has no loop. */
407 		if (media_entity_enum_test_and_set(&ent_enum,
408 						   &entity->subdev.entity)) {
409 			ret = -EPIPE;
410 			goto out;
411 		}
412 
413 		/* UDS can't be chained. */
414 		if (entity->type == VSP1_ENTITY_UDS) {
415 			if (pipe->uds) {
416 				ret = -EPIPE;
417 				goto out;
418 			}
419 
420 			pipe->uds = entity;
421 			pipe->uds_input = brx ? &brx->entity : &input->entity;
422 		}
423 
424 		/* Follow the source link, ignoring any HGO or HGT. */
425 		pad = &entity->pads[entity->source_pad];
426 		pad = vsp1_entity_remote_pad(pad);
427 	}
428 
429 	/* The last entity must be the output WPF. */
430 	if (entity != &output->entity)
431 		ret = -EPIPE;
432 
433 out:
434 	media_entity_enum_cleanup(&ent_enum);
435 
436 	return ret;
437 }
438 
439 static int vsp1_video_pipeline_build(struct vsp1_pipeline *pipe,
440 				     struct vsp1_video *video)
441 {
442 	struct media_graph graph;
443 	struct media_entity *entity = &video->video.entity;
444 	struct media_device *mdev = entity->graph_obj.mdev;
445 	unsigned int i;
446 	int ret;
447 
448 	/* Walk the graph to locate the entities and video nodes. */
449 	ret = media_graph_walk_init(&graph, mdev);
450 	if (ret)
451 		return ret;
452 
453 	media_graph_walk_start(&graph, entity);
454 
455 	while ((entity = media_graph_walk_next(&graph))) {
456 		struct v4l2_subdev *subdev;
457 		struct vsp1_rwpf *rwpf;
458 		struct vsp1_entity *e;
459 
460 		if (!is_media_entity_v4l2_subdev(entity))
461 			continue;
462 
463 		subdev = media_entity_to_v4l2_subdev(entity);
464 		e = to_vsp1_entity(subdev);
465 		list_add_tail(&e->list_pipe, &pipe->entities);
466 		e->pipe = pipe;
467 
468 		switch (e->type) {
469 		case VSP1_ENTITY_RPF:
470 			rwpf = to_rwpf(subdev);
471 			pipe->inputs[rwpf->entity.index] = rwpf;
472 			rwpf->video->pipe_index = ++pipe->num_inputs;
473 			break;
474 
475 		case VSP1_ENTITY_WPF:
476 			rwpf = to_rwpf(subdev);
477 			pipe->output = rwpf;
478 			rwpf->video->pipe_index = 0;
479 			break;
480 
481 		case VSP1_ENTITY_LIF:
482 			pipe->lif = e;
483 			break;
484 
485 		case VSP1_ENTITY_BRU:
486 		case VSP1_ENTITY_BRS:
487 			pipe->brx = e;
488 			break;
489 
490 		case VSP1_ENTITY_HGO:
491 			pipe->hgo = e;
492 			break;
493 
494 		case VSP1_ENTITY_HGT:
495 			pipe->hgt = e;
496 			break;
497 
498 		default:
499 			break;
500 		}
501 	}
502 
503 	media_graph_walk_cleanup(&graph);
504 
505 	/* We need one output and at least one input. */
506 	if (pipe->num_inputs == 0 || !pipe->output)
507 		return -EPIPE;
508 
509 	/*
510 	 * Follow links downstream for each input and make sure the graph
511 	 * contains no loop and that all branches end at the output WPF.
512 	 */
513 	for (i = 0; i < video->vsp1->info->rpf_count; ++i) {
514 		if (!pipe->inputs[i])
515 			continue;
516 
517 		ret = vsp1_video_pipeline_build_branch(pipe, pipe->inputs[i],
518 						       pipe->output);
519 		if (ret < 0)
520 			return ret;
521 	}
522 
523 	return 0;
524 }
525 
526 static int vsp1_video_pipeline_init(struct vsp1_pipeline *pipe,
527 				    struct vsp1_video *video)
528 {
529 	int ret;
530 
531 	vsp1_pipeline_init(pipe);
532 
533 	pipe->frame_end = vsp1_video_pipeline_frame_end;
534 
535 	ret = vsp1_video_pipeline_build(pipe, video);
536 	if (ret)
537 		return ret;
538 
539 	vsp1_pipeline_dump(pipe, "video");
540 
541 	return 0;
542 }
543 
544 static struct vsp1_pipeline *vsp1_video_pipeline_get(struct vsp1_video *video)
545 {
546 	struct vsp1_pipeline *pipe;
547 	int ret;
548 
549 	/*
550 	 * Get a pipeline object for the video node. If a pipeline has already
551 	 * been allocated just increment its reference count and return it.
552 	 * Otherwise allocate a new pipeline and initialize it, it will be freed
553 	 * when the last reference is released.
554 	 */
555 	if (!video->rwpf->entity.pipe) {
556 		pipe = kzalloc(sizeof(*pipe), GFP_KERNEL);
557 		if (!pipe)
558 			return ERR_PTR(-ENOMEM);
559 
560 		ret = vsp1_video_pipeline_init(pipe, video);
561 		if (ret < 0) {
562 			vsp1_pipeline_reset(pipe);
563 			kfree(pipe);
564 			return ERR_PTR(ret);
565 		}
566 	} else {
567 		pipe = video->rwpf->entity.pipe;
568 		kref_get(&pipe->kref);
569 	}
570 
571 	return pipe;
572 }
573 
574 static void vsp1_video_pipeline_release(struct kref *kref)
575 {
576 	struct vsp1_pipeline *pipe = container_of(kref, typeof(*pipe), kref);
577 
578 	vsp1_pipeline_reset(pipe);
579 	kfree(pipe);
580 }
581 
582 static void vsp1_video_pipeline_put(struct vsp1_pipeline *pipe)
583 {
584 	struct media_device *mdev = &pipe->output->entity.vsp1->media_dev;
585 
586 	mutex_lock(&mdev->graph_mutex);
587 	kref_put(&pipe->kref, vsp1_video_pipeline_release);
588 	mutex_unlock(&mdev->graph_mutex);
589 }
590 
591 /* -----------------------------------------------------------------------------
592  * videobuf2 Queue Operations
593  */
594 
595 static int
596 vsp1_video_queue_setup(struct vb2_queue *vq,
597 		       unsigned int *nbuffers, unsigned int *nplanes,
598 		       unsigned int sizes[], struct device *alloc_devs[])
599 {
600 	struct vsp1_video *video = vb2_get_drv_priv(vq);
601 	const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
602 	unsigned int i;
603 
604 	if (*nplanes) {
605 		if (*nplanes != format->num_planes)
606 			return -EINVAL;
607 
608 		for (i = 0; i < *nplanes; i++)
609 			if (sizes[i] < format->plane_fmt[i].sizeimage)
610 				return -EINVAL;
611 		return 0;
612 	}
613 
614 	*nplanes = format->num_planes;
615 
616 	for (i = 0; i < format->num_planes; ++i)
617 		sizes[i] = format->plane_fmt[i].sizeimage;
618 
619 	return 0;
620 }
621 
622 static int vsp1_video_buffer_prepare(struct vb2_buffer *vb)
623 {
624 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
625 	struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
626 	struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
627 	const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
628 	unsigned int i;
629 
630 	if (vb->num_planes < format->num_planes)
631 		return -EINVAL;
632 
633 	for (i = 0; i < vb->num_planes; ++i) {
634 		buf->mem.addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
635 
636 		if (vb2_plane_size(vb, i) < format->plane_fmt[i].sizeimage)
637 			return -EINVAL;
638 	}
639 
640 	for ( ; i < 3; ++i)
641 		buf->mem.addr[i] = 0;
642 
643 	return 0;
644 }
645 
646 static void vsp1_video_buffer_queue(struct vb2_buffer *vb)
647 {
648 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
649 	struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
650 	struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
651 	struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
652 	unsigned long flags;
653 	bool empty;
654 
655 	spin_lock_irqsave(&video->irqlock, flags);
656 	empty = list_empty(&video->irqqueue);
657 	list_add_tail(&buf->queue, &video->irqqueue);
658 	spin_unlock_irqrestore(&video->irqlock, flags);
659 
660 	if (!empty)
661 		return;
662 
663 	spin_lock_irqsave(&pipe->irqlock, flags);
664 
665 	video->rwpf->mem = buf->mem;
666 	pipe->buffers_ready |= 1 << video->pipe_index;
667 
668 	if (vb2_start_streaming_called(&video->queue) &&
669 	    vsp1_pipeline_ready(pipe))
670 		vsp1_video_pipeline_run(pipe);
671 
672 	spin_unlock_irqrestore(&pipe->irqlock, flags);
673 }
674 
675 static int vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline *pipe)
676 {
677 	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
678 	const struct v4l2_mbus_framefmt *format;
679 	struct vsp1_entity *entity;
680 	unsigned int div_size;
681 	unsigned int i;
682 
683 	/*
684 	 * Partitions are computed on the size before rotation, use the format
685 	 * at the WPF sink.
686 	 */
687 	format = v4l2_subdev_state_get_format(pipe->output->entity.state,
688 					      RWPF_PAD_SINK);
689 	div_size = format->width;
690 
691 	/*
692 	 * Only Gen3+ hardware requires image partitioning, Gen2 will operate
693 	 * with a single partition that covers the whole output.
694 	 */
695 	if (vsp1->info->gen >= 3) {
696 		list_for_each_entry(entity, &pipe->entities, list_pipe) {
697 			unsigned int entity_max;
698 
699 			if (!entity->ops->max_width)
700 				continue;
701 
702 			entity_max = entity->ops->max_width(entity,
703 							    entity->state,
704 							    pipe);
705 			if (entity_max)
706 				div_size = min(div_size, entity_max);
707 		}
708 	}
709 
710 	pipe->partitions = DIV_ROUND_UP(format->width, div_size);
711 	pipe->part_table = kcalloc(pipe->partitions, sizeof(*pipe->part_table),
712 				   GFP_KERNEL);
713 	if (!pipe->part_table)
714 		return -ENOMEM;
715 
716 	for (i = 0; i < pipe->partitions; ++i)
717 		vsp1_pipeline_calculate_partition(pipe, &pipe->part_table[i],
718 						  div_size, i);
719 
720 	return 0;
721 }
722 
723 static int vsp1_video_setup_pipeline(struct vsp1_pipeline *pipe)
724 {
725 	struct vsp1_entity *entity;
726 	int ret;
727 
728 	/* Determine this pipelines sizes for image partitioning support. */
729 	ret = vsp1_video_pipeline_setup_partitions(pipe);
730 	if (ret < 0)
731 		return ret;
732 
733 	if (pipe->uds) {
734 		struct vsp1_uds *uds = to_uds(&pipe->uds->subdev);
735 
736 		/*
737 		 * If a BRU or BRS is present in the pipeline before the UDS,
738 		 * the alpha component doesn't need to be scaled as the BRU and
739 		 * BRS output alpha value is fixed to 255. Otherwise we need to
740 		 * scale the alpha component only when available at the input
741 		 * RPF.
742 		 */
743 		if (pipe->uds_input->type == VSP1_ENTITY_BRU ||
744 		    pipe->uds_input->type == VSP1_ENTITY_BRS) {
745 			uds->scale_alpha = false;
746 		} else {
747 			struct vsp1_rwpf *rpf =
748 				to_rwpf(&pipe->uds_input->subdev);
749 
750 			uds->scale_alpha = rpf->fmtinfo->alpha;
751 		}
752 	}
753 
754 	/*
755 	 * Compute and cache the stream configuration into a body. The cached
756 	 * body will be added to the display list by vsp1_video_pipeline_run()
757 	 * whenever the pipeline needs to be fully reconfigured.
758 	 */
759 	pipe->stream_config = vsp1_dlm_dl_body_get(pipe->output->dlm);
760 	if (!pipe->stream_config)
761 		return -ENOMEM;
762 
763 	list_for_each_entry(entity, &pipe->entities, list_pipe) {
764 		vsp1_entity_route_setup(entity, pipe, pipe->stream_config);
765 		vsp1_entity_configure_stream(entity, entity->state, pipe, NULL,
766 					     pipe->stream_config);
767 	}
768 
769 	return 0;
770 }
771 
772 static void vsp1_video_release_buffers(struct vsp1_video *video)
773 {
774 	struct vsp1_vb2_buffer *buffer;
775 	unsigned long flags;
776 
777 	/* Remove all buffers from the IRQ queue. */
778 	spin_lock_irqsave(&video->irqlock, flags);
779 	list_for_each_entry(buffer, &video->irqqueue, queue)
780 		vb2_buffer_done(&buffer->buf.vb2_buf, VB2_BUF_STATE_ERROR);
781 	INIT_LIST_HEAD(&video->irqqueue);
782 	spin_unlock_irqrestore(&video->irqlock, flags);
783 }
784 
785 static void vsp1_video_cleanup_pipeline(struct vsp1_pipeline *pipe)
786 {
787 	lockdep_assert_held(&pipe->lock);
788 
789 	/* Release any cached configuration from our output video. */
790 	vsp1_dl_body_put(pipe->stream_config);
791 	pipe->stream_config = NULL;
792 	pipe->configured = false;
793 
794 	/* Release our partition table allocation. */
795 	kfree(pipe->part_table);
796 	pipe->part_table = NULL;
797 }
798 
799 static int vsp1_video_start_streaming(struct vb2_queue *vq, unsigned int count)
800 {
801 	struct vsp1_video *video = vb2_get_drv_priv(vq);
802 	struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
803 	bool start_pipeline = false;
804 	unsigned long flags;
805 	int ret;
806 
807 	mutex_lock(&pipe->lock);
808 	if (pipe->stream_count == pipe->num_inputs) {
809 		ret = vsp1_video_setup_pipeline(pipe);
810 		if (ret < 0) {
811 			vsp1_video_release_buffers(video);
812 			vsp1_video_cleanup_pipeline(pipe);
813 			mutex_unlock(&pipe->lock);
814 			return ret;
815 		}
816 
817 		start_pipeline = true;
818 	}
819 
820 	pipe->stream_count++;
821 	mutex_unlock(&pipe->lock);
822 
823 	/*
824 	 * vsp1_pipeline_ready() is not sufficient to establish that all streams
825 	 * are prepared and the pipeline is configured, as multiple streams
826 	 * can race through streamon with buffers already queued; Therefore we
827 	 * don't even attempt to start the pipeline until the last stream has
828 	 * called through here.
829 	 */
830 	if (!start_pipeline)
831 		return 0;
832 
833 	spin_lock_irqsave(&pipe->irqlock, flags);
834 	if (vsp1_pipeline_ready(pipe))
835 		vsp1_video_pipeline_run(pipe);
836 	spin_unlock_irqrestore(&pipe->irqlock, flags);
837 
838 	return 0;
839 }
840 
841 static void vsp1_video_stop_streaming(struct vb2_queue *vq)
842 {
843 	struct vsp1_video *video = vb2_get_drv_priv(vq);
844 	struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
845 	unsigned long flags;
846 	int ret;
847 
848 	/*
849 	 * Clear the buffers ready flag to make sure the device won't be started
850 	 * by a QBUF on the video node on the other side of the pipeline.
851 	 */
852 	spin_lock_irqsave(&video->irqlock, flags);
853 	pipe->buffers_ready &= ~(1 << video->pipe_index);
854 	spin_unlock_irqrestore(&video->irqlock, flags);
855 
856 	mutex_lock(&pipe->lock);
857 	if (--pipe->stream_count == pipe->num_inputs) {
858 		/* Stop the pipeline. */
859 		ret = vsp1_pipeline_stop(pipe);
860 		if (ret == -ETIMEDOUT)
861 			dev_err(video->vsp1->dev, "pipeline stop timeout\n");
862 
863 		vsp1_video_cleanup_pipeline(pipe);
864 	}
865 	mutex_unlock(&pipe->lock);
866 
867 	video_device_pipeline_stop(&video->video);
868 	vsp1_video_release_buffers(video);
869 	vsp1_video_pipeline_put(pipe);
870 }
871 
872 static const struct vb2_ops vsp1_video_queue_qops = {
873 	.queue_setup = vsp1_video_queue_setup,
874 	.buf_prepare = vsp1_video_buffer_prepare,
875 	.buf_queue = vsp1_video_buffer_queue,
876 	.wait_prepare = vb2_ops_wait_prepare,
877 	.wait_finish = vb2_ops_wait_finish,
878 	.start_streaming = vsp1_video_start_streaming,
879 	.stop_streaming = vsp1_video_stop_streaming,
880 };
881 
882 /* -----------------------------------------------------------------------------
883  * V4L2 ioctls
884  */
885 
886 static int
887 vsp1_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap)
888 {
889 	struct v4l2_fh *vfh = file->private_data;
890 	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
891 
892 	cap->capabilities = V4L2_CAP_DEVICE_CAPS | V4L2_CAP_STREAMING
893 			  | V4L2_CAP_VIDEO_CAPTURE_MPLANE
894 			  | V4L2_CAP_VIDEO_OUTPUT_MPLANE;
895 
896 
897 	strscpy(cap->driver, "vsp1", sizeof(cap->driver));
898 	strscpy(cap->card, video->video.name, sizeof(cap->card));
899 
900 	return 0;
901 }
902 
903 static int
904 vsp1_video_get_format(struct file *file, void *fh, struct v4l2_format *format)
905 {
906 	struct v4l2_fh *vfh = file->private_data;
907 	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
908 
909 	if (format->type != video->queue.type)
910 		return -EINVAL;
911 
912 	mutex_lock(&video->lock);
913 	format->fmt.pix_mp = video->rwpf->format;
914 	mutex_unlock(&video->lock);
915 
916 	return 0;
917 }
918 
919 static int
920 vsp1_video_try_format(struct file *file, void *fh, struct v4l2_format *format)
921 {
922 	struct v4l2_fh *vfh = file->private_data;
923 	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
924 
925 	if (format->type != video->queue.type)
926 		return -EINVAL;
927 
928 	return __vsp1_video_try_format(video, &format->fmt.pix_mp, NULL);
929 }
930 
931 static int
932 vsp1_video_set_format(struct file *file, void *fh, struct v4l2_format *format)
933 {
934 	struct v4l2_fh *vfh = file->private_data;
935 	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
936 	const struct vsp1_format_info *info;
937 	int ret;
938 
939 	if (format->type != video->queue.type)
940 		return -EINVAL;
941 
942 	ret = __vsp1_video_try_format(video, &format->fmt.pix_mp, &info);
943 	if (ret < 0)
944 		return ret;
945 
946 	mutex_lock(&video->lock);
947 
948 	if (vb2_is_busy(&video->queue)) {
949 		ret = -EBUSY;
950 		goto done;
951 	}
952 
953 	video->rwpf->format = format->fmt.pix_mp;
954 	video->rwpf->fmtinfo = info;
955 
956 done:
957 	mutex_unlock(&video->lock);
958 	return ret;
959 }
960 
961 static int
962 vsp1_video_streamon(struct file *file, void *fh, enum v4l2_buf_type type)
963 {
964 	struct v4l2_fh *vfh = file->private_data;
965 	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
966 	struct media_device *mdev = &video->vsp1->media_dev;
967 	struct vsp1_pipeline *pipe;
968 	int ret;
969 
970 	if (vb2_queue_is_busy(&video->queue, file))
971 		return -EBUSY;
972 
973 	/*
974 	 * Get a pipeline for the video node and start streaming on it. No link
975 	 * touching an entity in the pipeline can be activated or deactivated
976 	 * once streaming is started.
977 	 */
978 	mutex_lock(&mdev->graph_mutex);
979 
980 	pipe = vsp1_video_pipeline_get(video);
981 	if (IS_ERR(pipe)) {
982 		mutex_unlock(&mdev->graph_mutex);
983 		return PTR_ERR(pipe);
984 	}
985 
986 	ret = __video_device_pipeline_start(&video->video, &pipe->pipe);
987 	if (ret < 0) {
988 		mutex_unlock(&mdev->graph_mutex);
989 		goto err_pipe;
990 	}
991 
992 	mutex_unlock(&mdev->graph_mutex);
993 
994 	/*
995 	 * Verify that the configured format matches the output of the connected
996 	 * subdev.
997 	 */
998 	ret = vsp1_video_verify_format(video);
999 	if (ret < 0)
1000 		goto err_stop;
1001 
1002 	/* Start the queue. */
1003 	ret = vb2_streamon(&video->queue, type);
1004 	if (ret < 0)
1005 		goto err_stop;
1006 
1007 	return 0;
1008 
1009 err_stop:
1010 	video_device_pipeline_stop(&video->video);
1011 err_pipe:
1012 	vsp1_video_pipeline_put(pipe);
1013 	return ret;
1014 }
1015 
1016 static const struct v4l2_ioctl_ops vsp1_video_ioctl_ops = {
1017 	.vidioc_querycap		= vsp1_video_querycap,
1018 	.vidioc_g_fmt_vid_cap_mplane	= vsp1_video_get_format,
1019 	.vidioc_s_fmt_vid_cap_mplane	= vsp1_video_set_format,
1020 	.vidioc_try_fmt_vid_cap_mplane	= vsp1_video_try_format,
1021 	.vidioc_g_fmt_vid_out_mplane	= vsp1_video_get_format,
1022 	.vidioc_s_fmt_vid_out_mplane	= vsp1_video_set_format,
1023 	.vidioc_try_fmt_vid_out_mplane	= vsp1_video_try_format,
1024 	.vidioc_reqbufs			= vb2_ioctl_reqbufs,
1025 	.vidioc_querybuf		= vb2_ioctl_querybuf,
1026 	.vidioc_qbuf			= vb2_ioctl_qbuf,
1027 	.vidioc_dqbuf			= vb2_ioctl_dqbuf,
1028 	.vidioc_expbuf			= vb2_ioctl_expbuf,
1029 	.vidioc_create_bufs		= vb2_ioctl_create_bufs,
1030 	.vidioc_prepare_buf		= vb2_ioctl_prepare_buf,
1031 	.vidioc_streamon		= vsp1_video_streamon,
1032 	.vidioc_streamoff		= vb2_ioctl_streamoff,
1033 };
1034 
1035 /* -----------------------------------------------------------------------------
1036  * V4L2 File Operations
1037  */
1038 
1039 static int vsp1_video_open(struct file *file)
1040 {
1041 	struct vsp1_video *video = video_drvdata(file);
1042 	struct v4l2_fh *vfh;
1043 	int ret = 0;
1044 
1045 	vfh = kzalloc(sizeof(*vfh), GFP_KERNEL);
1046 	if (vfh == NULL)
1047 		return -ENOMEM;
1048 
1049 	v4l2_fh_init(vfh, &video->video);
1050 	v4l2_fh_add(vfh);
1051 
1052 	file->private_data = vfh;
1053 
1054 	ret = vsp1_device_get(video->vsp1);
1055 	if (ret < 0) {
1056 		v4l2_fh_del(vfh);
1057 		v4l2_fh_exit(vfh);
1058 		kfree(vfh);
1059 	}
1060 
1061 	return ret;
1062 }
1063 
1064 static int vsp1_video_release(struct file *file)
1065 {
1066 	struct vsp1_video *video = video_drvdata(file);
1067 
1068 	vb2_fop_release(file);
1069 
1070 	vsp1_device_put(video->vsp1);
1071 
1072 	return 0;
1073 }
1074 
1075 static const struct v4l2_file_operations vsp1_video_fops = {
1076 	.owner = THIS_MODULE,
1077 	.unlocked_ioctl = video_ioctl2,
1078 	.open = vsp1_video_open,
1079 	.release = vsp1_video_release,
1080 	.poll = vb2_fop_poll,
1081 	.mmap = vb2_fop_mmap,
1082 };
1083 
1084 /* -----------------------------------------------------------------------------
1085  * Suspend and Resume
1086  */
1087 
1088 void vsp1_video_suspend(struct vsp1_device *vsp1)
1089 {
1090 	unsigned long flags;
1091 	unsigned int i;
1092 	int ret;
1093 
1094 	/*
1095 	 * To avoid increasing the system suspend time needlessly, loop over the
1096 	 * pipelines twice, first to set them all to the stopping state, and
1097 	 * then to wait for the stop to complete.
1098 	 */
1099 	for (i = 0; i < vsp1->info->wpf_count; ++i) {
1100 		struct vsp1_rwpf *wpf = vsp1->wpf[i];
1101 		struct vsp1_pipeline *pipe;
1102 
1103 		if (wpf == NULL)
1104 			continue;
1105 
1106 		pipe = wpf->entity.pipe;
1107 		if (pipe == NULL)
1108 			continue;
1109 
1110 		spin_lock_irqsave(&pipe->irqlock, flags);
1111 		if (pipe->state == VSP1_PIPELINE_RUNNING)
1112 			pipe->state = VSP1_PIPELINE_STOPPING;
1113 		spin_unlock_irqrestore(&pipe->irqlock, flags);
1114 	}
1115 
1116 	for (i = 0; i < vsp1->info->wpf_count; ++i) {
1117 		struct vsp1_rwpf *wpf = vsp1->wpf[i];
1118 		struct vsp1_pipeline *pipe;
1119 
1120 		if (wpf == NULL)
1121 			continue;
1122 
1123 		pipe = wpf->entity.pipe;
1124 		if (pipe == NULL)
1125 			continue;
1126 
1127 		ret = wait_event_timeout(pipe->wq, vsp1_pipeline_stopped(pipe),
1128 					 msecs_to_jiffies(500));
1129 		if (ret == 0)
1130 			dev_warn(vsp1->dev, "pipeline %u stop timeout\n",
1131 				 wpf->entity.index);
1132 	}
1133 }
1134 
1135 void vsp1_video_resume(struct vsp1_device *vsp1)
1136 {
1137 	unsigned long flags;
1138 	unsigned int i;
1139 
1140 	/* Resume all running pipelines. */
1141 	for (i = 0; i < vsp1->info->wpf_count; ++i) {
1142 		struct vsp1_rwpf *wpf = vsp1->wpf[i];
1143 		struct vsp1_pipeline *pipe;
1144 
1145 		if (wpf == NULL)
1146 			continue;
1147 
1148 		pipe = wpf->entity.pipe;
1149 		if (pipe == NULL)
1150 			continue;
1151 
1152 		/*
1153 		 * The hardware may have been reset during a suspend and will
1154 		 * need a full reconfiguration.
1155 		 */
1156 		pipe->configured = false;
1157 
1158 		spin_lock_irqsave(&pipe->irqlock, flags);
1159 		if (vsp1_pipeline_ready(pipe))
1160 			vsp1_video_pipeline_run(pipe);
1161 		spin_unlock_irqrestore(&pipe->irqlock, flags);
1162 	}
1163 }
1164 
1165 /* -----------------------------------------------------------------------------
1166  * Initialization and Cleanup
1167  */
1168 
1169 struct vsp1_video *vsp1_video_create(struct vsp1_device *vsp1,
1170 				     struct vsp1_rwpf *rwpf)
1171 {
1172 	struct vsp1_video *video;
1173 	const char *direction;
1174 	int ret;
1175 
1176 	video = devm_kzalloc(vsp1->dev, sizeof(*video), GFP_KERNEL);
1177 	if (!video)
1178 		return ERR_PTR(-ENOMEM);
1179 
1180 	rwpf->video = video;
1181 
1182 	video->vsp1 = vsp1;
1183 	video->rwpf = rwpf;
1184 
1185 	if (rwpf->entity.type == VSP1_ENTITY_RPF) {
1186 		direction = "input";
1187 		video->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1188 		video->pad.flags = MEDIA_PAD_FL_SOURCE;
1189 		video->video.vfl_dir = VFL_DIR_TX;
1190 		video->video.device_caps = V4L2_CAP_VIDEO_OUTPUT_MPLANE |
1191 					   V4L2_CAP_STREAMING;
1192 	} else {
1193 		direction = "output";
1194 		video->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1195 		video->pad.flags = MEDIA_PAD_FL_SINK;
1196 		video->video.vfl_dir = VFL_DIR_RX;
1197 		video->video.device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE |
1198 					   V4L2_CAP_STREAMING;
1199 	}
1200 
1201 	mutex_init(&video->lock);
1202 	spin_lock_init(&video->irqlock);
1203 	INIT_LIST_HEAD(&video->irqqueue);
1204 
1205 	/* Initialize the media entity... */
1206 	ret = media_entity_pads_init(&video->video.entity, 1, &video->pad);
1207 	if (ret < 0)
1208 		return ERR_PTR(ret);
1209 
1210 	/* ... and the format ... */
1211 	rwpf->format.pixelformat = VSP1_VIDEO_DEF_FORMAT;
1212 	rwpf->format.width = VSP1_VIDEO_DEF_WIDTH;
1213 	rwpf->format.height = VSP1_VIDEO_DEF_HEIGHT;
1214 	__vsp1_video_try_format(video, &rwpf->format, &rwpf->fmtinfo);
1215 
1216 	/* ... and the video node... */
1217 	video->video.v4l2_dev = &video->vsp1->v4l2_dev;
1218 	video->video.fops = &vsp1_video_fops;
1219 	snprintf(video->video.name, sizeof(video->video.name), "%s %s",
1220 		 rwpf->entity.subdev.name, direction);
1221 	video->video.vfl_type = VFL_TYPE_VIDEO;
1222 	video->video.release = video_device_release_empty;
1223 	video->video.ioctl_ops = &vsp1_video_ioctl_ops;
1224 
1225 	video_set_drvdata(&video->video, video);
1226 
1227 	video->queue.type = video->type;
1228 	video->queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
1229 	video->queue.lock = &video->lock;
1230 	video->queue.drv_priv = video;
1231 	video->queue.buf_struct_size = sizeof(struct vsp1_vb2_buffer);
1232 	video->queue.ops = &vsp1_video_queue_qops;
1233 	video->queue.mem_ops = &vb2_dma_contig_memops;
1234 	video->queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1235 	video->queue.dev = video->vsp1->bus_master;
1236 	ret = vb2_queue_init(&video->queue);
1237 	if (ret < 0) {
1238 		dev_err(video->vsp1->dev, "failed to initialize vb2 queue\n");
1239 		goto error;
1240 	}
1241 
1242 	/* ... and register the video device. */
1243 	video->video.queue = &video->queue;
1244 	ret = video_register_device(&video->video, VFL_TYPE_VIDEO, -1);
1245 	if (ret < 0) {
1246 		dev_err(video->vsp1->dev, "failed to register video device\n");
1247 		goto error;
1248 	}
1249 
1250 	return video;
1251 
1252 error:
1253 	vsp1_video_cleanup(video);
1254 	return ERR_PTR(ret);
1255 }
1256 
1257 void vsp1_video_cleanup(struct vsp1_video *video)
1258 {
1259 	if (video_is_registered(&video->video))
1260 		video_unregister_device(&video->video);
1261 
1262 	media_entity_cleanup(&video->video.entity);
1263 }
1264