xref: /linux/drivers/media/platform/renesas/vsp1/vsp1_rpf.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * vsp1_rpf.c  --  R-Car VSP1 Read Pixel Formatter
4  *
5  * Copyright (C) 2013-2014 Renesas Electronics Corporation
6  *
7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8  */
9 
10 #include <linux/device.h>
11 
12 #include <media/v4l2-subdev.h>
13 
14 #include "vsp1.h"
15 #include "vsp1_dl.h"
16 #include "vsp1_pipe.h"
17 #include "vsp1_rwpf.h"
18 #include "vsp1_video.h"
19 
20 #define RPF_MAX_WIDTH				8190
21 #define RPF_MAX_HEIGHT				8190
22 
23 /* Pre extended display list command data structure. */
24 struct vsp1_extcmd_auto_fld_body {
25 	u32 top_y0;
26 	u32 bottom_y0;
27 	u32 top_c0;
28 	u32 bottom_c0;
29 	u32 top_c1;
30 	u32 bottom_c1;
31 	u32 reserved0;
32 	u32 reserved1;
33 } __packed;
34 
35 /* -----------------------------------------------------------------------------
36  * Device Access
37  */
38 
39 static inline void vsp1_rpf_write(struct vsp1_rwpf *rpf,
40 				  struct vsp1_dl_body *dlb, u32 reg, u32 data)
41 {
42 	vsp1_dl_body_write(dlb, reg + rpf->entity.index * VI6_RPF_OFFSET,
43 			       data);
44 }
45 
46 /* -----------------------------------------------------------------------------
47  * VSP1 Entity Operations
48  */
49 
50 static void rpf_configure_stream(struct vsp1_entity *entity,
51 				 struct v4l2_subdev_state *state,
52 				 struct vsp1_pipeline *pipe,
53 				 struct vsp1_dl_list *dl,
54 				 struct vsp1_dl_body *dlb)
55 {
56 	struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
57 	const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
58 	const struct v4l2_pix_format_mplane *format = &rpf->format;
59 	const struct v4l2_mbus_framefmt *source_format;
60 	const struct v4l2_mbus_framefmt *sink_format;
61 	unsigned int left = 0;
62 	unsigned int top = 0;
63 	u32 pstride;
64 	u32 infmt;
65 
66 	/* Stride */
67 	pstride = format->plane_fmt[0].bytesperline
68 		<< VI6_RPF_SRCM_PSTRIDE_Y_SHIFT;
69 	if (format->num_planes > 1)
70 		pstride |= format->plane_fmt[1].bytesperline
71 			<< VI6_RPF_SRCM_PSTRIDE_C_SHIFT;
72 
73 	/*
74 	 * pstride has both STRIDE_Y and STRIDE_C, but multiplying the whole
75 	 * of pstride by 2 is conveniently OK here as we are multiplying both
76 	 * values.
77 	 */
78 	if (pipe->interlaced)
79 		pstride *= 2;
80 
81 	vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_PSTRIDE, pstride);
82 
83 	/* Format */
84 	sink_format = v4l2_subdev_state_get_format(state, RWPF_PAD_SINK);
85 	source_format = v4l2_subdev_state_get_format(state, RWPF_PAD_SOURCE);
86 
87 	infmt = VI6_RPF_INFMT_CIPM
88 	      | (fmtinfo->hwfmt << VI6_RPF_INFMT_RDFMT_SHIFT);
89 
90 	if (fmtinfo->swap_yc)
91 		infmt |= VI6_RPF_INFMT_SPYCS;
92 	if (fmtinfo->swap_uv)
93 		infmt |= VI6_RPF_INFMT_SPUVS;
94 
95 	if (sink_format->code != source_format->code)
96 		infmt |= VI6_RPF_INFMT_CSC;
97 
98 	vsp1_rpf_write(rpf, dlb, VI6_RPF_INFMT, infmt);
99 	vsp1_rpf_write(rpf, dlb, VI6_RPF_DSWAP, fmtinfo->swap);
100 
101 	if (entity->vsp1->info->gen == 4) {
102 		u32 ext_infmt0;
103 		u32 ext_infmt1;
104 		u32 ext_infmt2;
105 
106 		switch (fmtinfo->fourcc) {
107 		case V4L2_PIX_FMT_RGBX1010102:
108 			ext_infmt0 = VI6_RPF_EXT_INFMT0_BYPP_M1_RGB10;
109 			ext_infmt1 = VI6_RPF_EXT_INFMT1_PACK_CPOS(0, 10, 20, 0);
110 			ext_infmt2 = VI6_RPF_EXT_INFMT2_PACK_CLEN(10, 10, 10, 0);
111 			break;
112 
113 		case V4L2_PIX_FMT_RGBA1010102:
114 			ext_infmt0 = VI6_RPF_EXT_INFMT0_BYPP_M1_RGB10;
115 			ext_infmt1 = VI6_RPF_EXT_INFMT1_PACK_CPOS(0, 10, 20, 30);
116 			ext_infmt2 = VI6_RPF_EXT_INFMT2_PACK_CLEN(10, 10, 10, 2);
117 			break;
118 
119 		case V4L2_PIX_FMT_ARGB2101010:
120 			ext_infmt0 = VI6_RPF_EXT_INFMT0_BYPP_M1_RGB10;
121 			ext_infmt1 = VI6_RPF_EXT_INFMT1_PACK_CPOS(2, 12, 22, 0);
122 			ext_infmt2 = VI6_RPF_EXT_INFMT2_PACK_CLEN(10, 10, 10, 2);
123 			break;
124 
125 		case V4L2_PIX_FMT_Y210:
126 			ext_infmt0 = VI6_RPF_EXT_INFMT0_F2B |
127 				     VI6_RPF_EXT_INFMT0_IPBD_Y_10 |
128 				     VI6_RPF_EXT_INFMT0_IPBD_C_10;
129 			ext_infmt1 = 0x0;
130 			ext_infmt2 = 0x0;
131 			break;
132 
133 		case V4L2_PIX_FMT_Y212:
134 			ext_infmt0 = VI6_RPF_EXT_INFMT0_F2B |
135 				     VI6_RPF_EXT_INFMT0_IPBD_Y_12 |
136 				     VI6_RPF_EXT_INFMT0_IPBD_C_12;
137 			ext_infmt1 = 0x0;
138 			ext_infmt2 = 0x0;
139 			break;
140 
141 		default:
142 			ext_infmt0 = 0;
143 			ext_infmt1 = 0;
144 			ext_infmt2 = 0;
145 			break;
146 		}
147 
148 		vsp1_rpf_write(rpf, dlb, VI6_RPF_EXT_INFMT0, ext_infmt0);
149 		vsp1_rpf_write(rpf, dlb, VI6_RPF_EXT_INFMT1, ext_infmt1);
150 		vsp1_rpf_write(rpf, dlb, VI6_RPF_EXT_INFMT2, ext_infmt2);
151 	}
152 
153 	/* Output location. */
154 	if (pipe->brx) {
155 		const struct v4l2_rect *compose;
156 
157 		compose = v4l2_subdev_state_get_compose(pipe->brx->state,
158 							rpf->brx_input);
159 		left = compose->left;
160 		top = compose->top;
161 	}
162 
163 	if (pipe->interlaced)
164 		top /= 2;
165 
166 	vsp1_rpf_write(rpf, dlb, VI6_RPF_LOC,
167 		       (left << VI6_RPF_LOC_HCOORD_SHIFT) |
168 		       (top << VI6_RPF_LOC_VCOORD_SHIFT));
169 
170 	/*
171 	 * On Gen2 use the alpha channel (extended to 8 bits) when available or
172 	 * a fixed alpha value set through the V4L2_CID_ALPHA_COMPONENT control
173 	 * otherwise.
174 	 *
175 	 * The Gen3+ RPF has extended alpha capability and can both multiply the
176 	 * alpha channel by a fixed global alpha value, and multiply the pixel
177 	 * components to convert the input to premultiplied alpha.
178 	 *
179 	 * As alpha premultiplication is available in the BRx for both Gen2 and
180 	 * Gen3+ we handle it there and use the Gen3 alpha multiplier for global
181 	 * alpha multiplication only. This however prevents conversion to
182 	 * premultiplied alpha if no BRx is present in the pipeline. If that use
183 	 * case turns out to be useful we will revisit the implementation (for
184 	 * Gen3 only).
185 	 *
186 	 * We enable alpha multiplication on Gen3+ using the fixed alpha value
187 	 * set through the V4L2_CID_ALPHA_COMPONENT control when the input
188 	 * contains an alpha channel. On Gen2 the global alpha is ignored in
189 	 * that case.
190 	 *
191 	 * In all cases, disable color keying.
192 	 */
193 	vsp1_rpf_write(rpf, dlb, VI6_RPF_ALPH_SEL, VI6_RPF_ALPH_SEL_AEXT_EXT |
194 		       (fmtinfo->alpha ? VI6_RPF_ALPH_SEL_ASEL_PACKED
195 				       : VI6_RPF_ALPH_SEL_ASEL_FIXED));
196 
197 	if (entity->vsp1->info->gen >= 3) {
198 		u32 mult;
199 
200 		if (fmtinfo->alpha) {
201 			/*
202 			 * When the input contains an alpha channel enable the
203 			 * alpha multiplier. If the input is premultiplied we
204 			 * need to multiply both the alpha channel and the pixel
205 			 * components by the global alpha value to keep them
206 			 * premultiplied. Otherwise multiply the alpha channel
207 			 * only.
208 			 */
209 			bool premultiplied = format->flags
210 					   & V4L2_PIX_FMT_FLAG_PREMUL_ALPHA;
211 
212 			mult = VI6_RPF_MULT_ALPHA_A_MMD_RATIO
213 			     | (premultiplied ?
214 				VI6_RPF_MULT_ALPHA_P_MMD_RATIO :
215 				VI6_RPF_MULT_ALPHA_P_MMD_NONE);
216 		} else {
217 			/*
218 			 * When the input doesn't contain an alpha channel the
219 			 * global alpha value is applied in the unpacking unit,
220 			 * the alpha multiplier isn't needed and must be
221 			 * disabled.
222 			 */
223 			mult = VI6_RPF_MULT_ALPHA_A_MMD_NONE
224 			     | VI6_RPF_MULT_ALPHA_P_MMD_NONE;
225 		}
226 
227 		rpf->mult_alpha = mult;
228 	}
229 
230 	vsp1_rpf_write(rpf, dlb, VI6_RPF_MSK_CTRL, 0);
231 	vsp1_rpf_write(rpf, dlb, VI6_RPF_CKEY_CTRL, 0);
232 
233 }
234 
235 static void vsp1_rpf_configure_autofld(struct vsp1_rwpf *rpf,
236 				       struct vsp1_dl_list *dl)
237 {
238 	const struct v4l2_pix_format_mplane *format = &rpf->format;
239 	struct vsp1_dl_ext_cmd *cmd;
240 	struct vsp1_extcmd_auto_fld_body *auto_fld;
241 	u32 offset_y, offset_c;
242 
243 	cmd = vsp1_dl_get_pre_cmd(dl);
244 	if (WARN_ONCE(!cmd, "Failed to obtain an autofld cmd"))
245 		return;
246 
247 	/* Re-index our auto_fld to match the current RPF. */
248 	auto_fld = cmd->data;
249 	auto_fld = &auto_fld[rpf->entity.index];
250 
251 	auto_fld->top_y0 = rpf->mem.addr[0];
252 	auto_fld->top_c0 = rpf->mem.addr[1];
253 	auto_fld->top_c1 = rpf->mem.addr[2];
254 
255 	offset_y = format->plane_fmt[0].bytesperline;
256 	offset_c = format->plane_fmt[1].bytesperline;
257 
258 	auto_fld->bottom_y0 = rpf->mem.addr[0] + offset_y;
259 	auto_fld->bottom_c0 = rpf->mem.addr[1] + offset_c;
260 	auto_fld->bottom_c1 = rpf->mem.addr[2] + offset_c;
261 
262 	cmd->flags |= VI6_DL_EXT_AUTOFLD_INT | BIT(16 + rpf->entity.index);
263 }
264 
265 static void rpf_configure_frame(struct vsp1_entity *entity,
266 				struct vsp1_pipeline *pipe,
267 				struct vsp1_dl_list *dl,
268 				struct vsp1_dl_body *dlb)
269 {
270 	struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
271 
272 	vsp1_rpf_write(rpf, dlb, VI6_RPF_VRTCOL_SET,
273 		       rpf->alpha << VI6_RPF_VRTCOL_SET_LAYA_SHIFT);
274 	vsp1_rpf_write(rpf, dlb, VI6_RPF_MULT_ALPHA, rpf->mult_alpha |
275 		       (rpf->alpha << VI6_RPF_MULT_ALPHA_RATIO_SHIFT));
276 
277 	vsp1_pipeline_propagate_alpha(pipe, dlb, rpf->alpha);
278 }
279 
280 static void rpf_configure_partition(struct vsp1_entity *entity,
281 				    struct vsp1_pipeline *pipe,
282 				    const struct vsp1_partition *partition,
283 				    struct vsp1_dl_list *dl,
284 				    struct vsp1_dl_body *dlb)
285 {
286 	struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
287 	struct vsp1_rwpf_memory mem = rpf->mem;
288 	struct vsp1_device *vsp1 = rpf->entity.vsp1;
289 	const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
290 	const struct v4l2_pix_format_mplane *format = &rpf->format;
291 	struct v4l2_rect crop = partition->rpf[rpf->entity.index];
292 
293 	/*
294 	 * Source size and crop offsets.
295 	 *
296 	 * The crop offsets correspond to the location of the crop
297 	 * rectangle top left corner in the plane buffer. Only two
298 	 * offsets are needed, as planes 2 and 3 always have identical
299 	 * strides.
300 	 */
301 
302 	if (pipe->interlaced) {
303 		crop.height = round_down(crop.height / 2, fmtinfo->vsub);
304 		crop.top = round_down(crop.top / 2, fmtinfo->vsub);
305 	}
306 
307 	vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_BSIZE,
308 		       (crop.width << VI6_RPF_SRC_BSIZE_BHSIZE_SHIFT) |
309 		       (crop.height << VI6_RPF_SRC_BSIZE_BVSIZE_SHIFT));
310 	vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_ESIZE,
311 		       (crop.width << VI6_RPF_SRC_ESIZE_EHSIZE_SHIFT) |
312 		       (crop.height << VI6_RPF_SRC_ESIZE_EVSIZE_SHIFT));
313 
314 	mem.addr[0] += crop.top * format->plane_fmt[0].bytesperline
315 		     + crop.left * fmtinfo->bpp[0] / 8;
316 
317 	if (format->num_planes > 1) {
318 		unsigned int bpl = format->plane_fmt[1].bytesperline;
319 		unsigned int offset;
320 
321 		offset = crop.top / fmtinfo->vsub * bpl
322 		       + crop.left / fmtinfo->hsub * fmtinfo->bpp[1] / 8;
323 		mem.addr[1] += offset;
324 		mem.addr[2] += offset;
325 	}
326 
327 	/*
328 	 * On Gen3+ hardware the SPUVS bit has no effect on 3-planar
329 	 * formats. Swap the U and V planes manually in that case.
330 	 */
331 	if (vsp1->info->gen >= 3 && format->num_planes == 3 &&
332 	    fmtinfo->swap_uv)
333 		swap(mem.addr[1], mem.addr[2]);
334 
335 	/*
336 	 * Interlaced pipelines will use the extended pre-cmd to process
337 	 * SRCM_ADDR_{Y,C0,C1}.
338 	 */
339 	if (pipe->interlaced) {
340 		vsp1_rpf_configure_autofld(rpf, dl);
341 	} else {
342 		vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_Y, mem.addr[0]);
343 		vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C0, mem.addr[1]);
344 		vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C1, mem.addr[2]);
345 	}
346 }
347 
348 static void rpf_partition(struct vsp1_entity *entity,
349 			  struct v4l2_subdev_state *state,
350 			  struct vsp1_pipeline *pipe,
351 			  struct vsp1_partition *partition,
352 			  unsigned int partition_idx,
353 			  struct v4l2_rect *window)
354 {
355 	struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
356 	struct v4l2_rect *rpf_rect = &partition->rpf[rpf->entity.index];
357 
358 	/*
359 	 * Partition Algorithm Control
360 	 *
361 	 * The partition algorithm can split this frame into multiple slices. We
362 	 * must adjust our partition window based on the pipe configuration to
363 	 * match the destination partition window. To achieve this, we adjust
364 	 * our crop to provide a 'sub-crop' matching the expected partition
365 	 * window.
366 	 */
367 	*rpf_rect = *v4l2_subdev_state_get_crop(state, RWPF_PAD_SINK);
368 
369 	if (pipe->partitions > 1) {
370 		rpf_rect->width = window->width;
371 		rpf_rect->left += window->left;
372 	}
373 }
374 
375 static const struct vsp1_entity_operations rpf_entity_ops = {
376 	.configure_stream = rpf_configure_stream,
377 	.configure_frame = rpf_configure_frame,
378 	.configure_partition = rpf_configure_partition,
379 	.partition = rpf_partition,
380 };
381 
382 /* -----------------------------------------------------------------------------
383  * Initialization and Cleanup
384  */
385 
386 struct vsp1_rwpf *vsp1_rpf_create(struct vsp1_device *vsp1, unsigned int index)
387 {
388 	struct vsp1_rwpf *rpf;
389 	char name[6];
390 	int ret;
391 
392 	rpf = devm_kzalloc(vsp1->dev, sizeof(*rpf), GFP_KERNEL);
393 	if (rpf == NULL)
394 		return ERR_PTR(-ENOMEM);
395 
396 	rpf->max_width = RPF_MAX_WIDTH;
397 	rpf->max_height = RPF_MAX_HEIGHT;
398 
399 	rpf->entity.ops = &rpf_entity_ops;
400 	rpf->entity.type = VSP1_ENTITY_RPF;
401 	rpf->entity.index = index;
402 
403 	sprintf(name, "rpf.%u", index);
404 	ret = vsp1_entity_init(vsp1, &rpf->entity, name, 2, &vsp1_rwpf_subdev_ops,
405 			       MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER);
406 	if (ret < 0)
407 		return ERR_PTR(ret);
408 
409 	/* Initialize the control handler. */
410 	ret = vsp1_rwpf_init_ctrls(rpf, 0);
411 	if (ret < 0) {
412 		dev_err(vsp1->dev, "rpf%u: failed to initialize controls\n",
413 			index);
414 		goto error;
415 	}
416 
417 	v4l2_ctrl_handler_setup(&rpf->ctrls);
418 
419 	return rpf;
420 
421 error:
422 	vsp1_entity_destroy(&rpf->entity);
423 	return ERR_PTR(ret);
424 }
425