1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * vsp1_drm.c -- R-Car VSP1 DRM/KMS Interface 4 * 5 * Copyright (C) 2015 Renesas Electronics Corporation 6 * 7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com) 8 */ 9 10 #include <linux/device.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/slab.h> 13 14 #include <media/media-entity.h> 15 #include <media/v4l2-subdev.h> 16 #include <media/vsp1.h> 17 18 #include "vsp1.h" 19 #include "vsp1_brx.h" 20 #include "vsp1_dl.h" 21 #include "vsp1_drm.h" 22 #include "vsp1_lif.h" 23 #include "vsp1_pipe.h" 24 #include "vsp1_rwpf.h" 25 #include "vsp1_uif.h" 26 27 #define BRX_NAME(e) (e)->type == VSP1_ENTITY_BRU ? "BRU" : "BRS" 28 29 /* ----------------------------------------------------------------------------- 30 * Interrupt Handling 31 */ 32 33 static void vsp1_du_pipeline_frame_end(struct vsp1_pipeline *pipe, 34 unsigned int completion) 35 { 36 struct vsp1_drm_pipeline *drm_pipe = to_vsp1_drm_pipeline(pipe); 37 38 if (drm_pipe->du_complete) { 39 struct vsp1_entity *uif = drm_pipe->uif; 40 unsigned int status = completion 41 & (VSP1_DU_STATUS_COMPLETE | 42 VSP1_DU_STATUS_WRITEBACK); 43 u32 crc; 44 45 crc = uif ? vsp1_uif_get_crc(to_uif(&uif->subdev)) : 0; 46 drm_pipe->du_complete(drm_pipe->du_private, status, crc); 47 } 48 49 if (completion & VSP1_DL_FRAME_END_INTERNAL) { 50 drm_pipe->force_brx_release = false; 51 wake_up(&drm_pipe->wait_queue); 52 } 53 } 54 55 /* ----------------------------------------------------------------------------- 56 * Pipeline Configuration 57 */ 58 59 /* 60 * Insert the UIF in the pipeline between the prev and next entities. If no UIF 61 * is available connect the two entities directly. 62 */ 63 static int vsp1_du_insert_uif(struct vsp1_device *vsp1, 64 struct vsp1_pipeline *pipe, 65 struct vsp1_entity *uif, 66 struct vsp1_entity *prev, unsigned int prev_pad, 67 struct vsp1_entity *next, unsigned int next_pad) 68 { 69 struct v4l2_subdev_format format = { 70 .which = V4L2_SUBDEV_FORMAT_ACTIVE, 71 }; 72 int ret; 73 74 if (!uif) { 75 /* 76 * If there's no UIF to be inserted, connect the previous and 77 * next entities directly. 78 */ 79 prev->sink = next; 80 prev->sink_pad = next_pad; 81 return 0; 82 } 83 84 prev->sink = uif; 85 prev->sink_pad = UIF_PAD_SINK; 86 87 format.pad = prev_pad; 88 89 ret = v4l2_subdev_call(&prev->subdev, pad, get_fmt, NULL, &format); 90 if (ret < 0) 91 return ret; 92 93 format.pad = UIF_PAD_SINK; 94 95 ret = v4l2_subdev_call(&uif->subdev, pad, set_fmt, NULL, &format); 96 if (ret < 0) 97 return ret; 98 99 dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on UIF sink\n", 100 __func__, format.format.width, format.format.height, 101 format.format.code); 102 103 /* 104 * The UIF doesn't mangle the format between its sink and source pads, 105 * so there is no need to retrieve the format on its source pad. 106 */ 107 108 uif->sink = next; 109 uif->sink_pad = next_pad; 110 111 return 0; 112 } 113 114 /* Setup one RPF and the connected BRx sink pad. */ 115 static int vsp1_du_pipeline_setup_rpf(struct vsp1_device *vsp1, 116 struct vsp1_pipeline *pipe, 117 struct vsp1_rwpf *rpf, 118 struct vsp1_entity *uif, 119 unsigned int brx_input) 120 { 121 struct v4l2_subdev_selection sel = { 122 .which = V4L2_SUBDEV_FORMAT_ACTIVE, 123 }; 124 struct v4l2_subdev_format format = { 125 .which = V4L2_SUBDEV_FORMAT_ACTIVE, 126 }; 127 const struct v4l2_rect *crop; 128 int ret; 129 130 /* 131 * Configure the format on the RPF sink pad and propagate it up to the 132 * BRx sink pad. 133 */ 134 crop = &vsp1->drm->inputs[rpf->entity.index].crop; 135 136 format.pad = RWPF_PAD_SINK; 137 format.format.width = crop->width + crop->left; 138 format.format.height = crop->height + crop->top; 139 format.format.code = rpf->fmtinfo->mbus; 140 format.format.field = V4L2_FIELD_NONE; 141 142 ret = v4l2_subdev_call(&rpf->entity.subdev, pad, set_fmt, NULL, 143 &format); 144 if (ret < 0) 145 return ret; 146 147 dev_dbg(vsp1->dev, 148 "%s: set format %ux%u (%x) on RPF%u sink\n", 149 __func__, format.format.width, format.format.height, 150 format.format.code, rpf->entity.index); 151 152 sel.pad = RWPF_PAD_SINK; 153 sel.target = V4L2_SEL_TGT_CROP; 154 sel.r = *crop; 155 156 ret = v4l2_subdev_call(&rpf->entity.subdev, pad, set_selection, NULL, 157 &sel); 158 if (ret < 0) 159 return ret; 160 161 dev_dbg(vsp1->dev, 162 "%s: set selection (%u,%u)/%ux%u on RPF%u sink\n", 163 __func__, sel.r.left, sel.r.top, sel.r.width, sel.r.height, 164 rpf->entity.index); 165 166 /* 167 * RPF source, hardcode the format to ARGB8888 to turn on format 168 * conversion if needed. 169 */ 170 format.pad = RWPF_PAD_SOURCE; 171 172 ret = v4l2_subdev_call(&rpf->entity.subdev, pad, get_fmt, NULL, 173 &format); 174 if (ret < 0) 175 return ret; 176 177 dev_dbg(vsp1->dev, 178 "%s: got format %ux%u (%x) on RPF%u source\n", 179 __func__, format.format.width, format.format.height, 180 format.format.code, rpf->entity.index); 181 182 format.format.code = MEDIA_BUS_FMT_ARGB8888_1X32; 183 184 ret = v4l2_subdev_call(&rpf->entity.subdev, pad, set_fmt, NULL, 185 &format); 186 if (ret < 0) 187 return ret; 188 189 /* Insert and configure the UIF if available. */ 190 ret = vsp1_du_insert_uif(vsp1, pipe, uif, &rpf->entity, RWPF_PAD_SOURCE, 191 pipe->brx, brx_input); 192 if (ret < 0) 193 return ret; 194 195 /* BRx sink, propagate the format from the RPF source. */ 196 format.pad = brx_input; 197 198 ret = v4l2_subdev_call(&pipe->brx->subdev, pad, set_fmt, NULL, 199 &format); 200 if (ret < 0) 201 return ret; 202 203 dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on %s pad %u\n", 204 __func__, format.format.width, format.format.height, 205 format.format.code, BRX_NAME(pipe->brx), format.pad); 206 207 sel.pad = brx_input; 208 sel.target = V4L2_SEL_TGT_COMPOSE; 209 sel.r = vsp1->drm->inputs[rpf->entity.index].compose; 210 211 ret = v4l2_subdev_call(&pipe->brx->subdev, pad, set_selection, NULL, 212 &sel); 213 if (ret < 0) 214 return ret; 215 216 dev_dbg(vsp1->dev, "%s: set selection (%u,%u)/%ux%u on %s pad %u\n", 217 __func__, sel.r.left, sel.r.top, sel.r.width, sel.r.height, 218 BRX_NAME(pipe->brx), sel.pad); 219 220 return 0; 221 } 222 223 /* Setup the BRx source pad. */ 224 static int vsp1_du_pipeline_setup_inputs(struct vsp1_device *vsp1, 225 struct vsp1_pipeline *pipe); 226 static void vsp1_du_pipeline_configure(struct vsp1_pipeline *pipe); 227 228 static int vsp1_du_pipeline_setup_brx(struct vsp1_device *vsp1, 229 struct vsp1_pipeline *pipe) 230 { 231 struct vsp1_drm_pipeline *drm_pipe = to_vsp1_drm_pipeline(pipe); 232 struct v4l2_subdev_format format = { 233 .which = V4L2_SUBDEV_FORMAT_ACTIVE, 234 }; 235 struct vsp1_entity *brx; 236 int ret; 237 238 /* 239 * Pick a BRx: 240 * - If we need more than two inputs, use the BRU. 241 * - Otherwise, if we are not forced to release our BRx, keep it. 242 * - Else, use any free BRx (randomly starting with the BRU). 243 */ 244 if (pipe->num_inputs > 2) 245 brx = &vsp1->bru->entity; 246 else if (pipe->brx && !drm_pipe->force_brx_release) 247 brx = pipe->brx; 248 else if (vsp1_feature(vsp1, VSP1_HAS_BRU) && !vsp1->bru->entity.pipe) 249 brx = &vsp1->bru->entity; 250 else 251 brx = &vsp1->brs->entity; 252 253 /* Switch BRx if needed. */ 254 if (brx != pipe->brx) { 255 struct vsp1_entity *released_brx = NULL; 256 257 /* Release our BRx if we have one. */ 258 if (pipe->brx) { 259 dev_dbg(vsp1->dev, "%s: pipe %u: releasing %s\n", 260 __func__, pipe->lif->index, 261 BRX_NAME(pipe->brx)); 262 263 /* 264 * The BRx might be acquired by the other pipeline in 265 * the next step. We must thus remove it from the list 266 * of entities for this pipeline. The other pipeline's 267 * hardware configuration will reconfigure the BRx 268 * routing. 269 * 270 * However, if the other pipeline doesn't acquire our 271 * BRx, we need to keep it in the list, otherwise the 272 * hardware configuration step won't disconnect it from 273 * the pipeline. To solve this, store the released BRx 274 * pointer to add it back to the list of entities later 275 * if it isn't acquired by the other pipeline. 276 */ 277 released_brx = pipe->brx; 278 279 list_del(&pipe->brx->list_pipe); 280 pipe->brx->sink = NULL; 281 pipe->brx->pipe = NULL; 282 pipe->brx = NULL; 283 } 284 285 /* 286 * If the BRx we need is in use, force the owner pipeline to 287 * switch to the other BRx and wait until the switch completes. 288 */ 289 if (brx->pipe) { 290 struct vsp1_drm_pipeline *owner_pipe; 291 292 dev_dbg(vsp1->dev, "%s: pipe %u: waiting for %s\n", 293 __func__, pipe->lif->index, BRX_NAME(brx)); 294 295 owner_pipe = to_vsp1_drm_pipeline(brx->pipe); 296 owner_pipe->force_brx_release = true; 297 298 vsp1_du_pipeline_setup_inputs(vsp1, &owner_pipe->pipe); 299 vsp1_du_pipeline_configure(&owner_pipe->pipe); 300 301 ret = wait_event_timeout(owner_pipe->wait_queue, 302 !owner_pipe->force_brx_release, 303 msecs_to_jiffies(500)); 304 if (ret == 0) 305 dev_warn(vsp1->dev, 306 "DRM pipeline %u reconfiguration timeout\n", 307 owner_pipe->pipe.lif->index); 308 } 309 310 /* 311 * If the BRx we have released previously hasn't been acquired 312 * by the other pipeline, add it back to the entities list (with 313 * the pipe pointer NULL) to let vsp1_du_pipeline_configure() 314 * disconnect it from the hardware pipeline. 315 */ 316 if (released_brx && !released_brx->pipe) 317 list_add_tail(&released_brx->list_pipe, 318 &pipe->entities); 319 320 /* 321 * Add the BRx to the pipeline, inserting it just before the 322 * WPF. 323 */ 324 dev_dbg(vsp1->dev, "%s: pipe %u: acquired %s\n", 325 __func__, pipe->lif->index, BRX_NAME(brx)); 326 327 pipe->brx = brx; 328 pipe->brx->pipe = pipe; 329 pipe->brx->sink = &pipe->output->entity; 330 pipe->brx->sink_pad = 0; 331 332 list_add_tail(&pipe->brx->list_pipe, 333 &pipe->output->entity.list_pipe); 334 } 335 336 /* 337 * Configure the format on the BRx source and verify that it matches the 338 * requested format. We don't set the media bus code as it is configured 339 * on the BRx sink pad 0 and propagated inside the entity, not on the 340 * source pad. 341 */ 342 format.pad = brx->source_pad; 343 format.format.width = drm_pipe->width; 344 format.format.height = drm_pipe->height; 345 format.format.field = V4L2_FIELD_NONE; 346 347 ret = v4l2_subdev_call(&brx->subdev, pad, set_fmt, NULL, 348 &format); 349 if (ret < 0) 350 return ret; 351 352 dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on %s pad %u\n", 353 __func__, format.format.width, format.format.height, 354 format.format.code, BRX_NAME(brx), brx->source_pad); 355 356 if (format.format.width != drm_pipe->width || 357 format.format.height != drm_pipe->height) { 358 dev_dbg(vsp1->dev, "%s: format mismatch\n", __func__); 359 return -EPIPE; 360 } 361 362 return 0; 363 } 364 365 static unsigned int rpf_zpos(struct vsp1_device *vsp1, struct vsp1_rwpf *rpf) 366 { 367 return vsp1->drm->inputs[rpf->entity.index].zpos; 368 } 369 370 /* Setup the input side of the pipeline (RPFs and BRx). */ 371 static int vsp1_du_pipeline_setup_inputs(struct vsp1_device *vsp1, 372 struct vsp1_pipeline *pipe) 373 { 374 struct vsp1_drm_pipeline *drm_pipe = to_vsp1_drm_pipeline(pipe); 375 struct vsp1_rwpf *inputs[VSP1_MAX_RPF] = { NULL, }; 376 struct vsp1_entity *uif; 377 bool use_uif = false; 378 struct vsp1_brx *brx; 379 unsigned int i; 380 int ret; 381 382 /* Count the number of enabled inputs and sort them by Z-order. */ 383 pipe->num_inputs = 0; 384 385 for (i = 0; i < vsp1->info->rpf_count; ++i) { 386 struct vsp1_rwpf *rpf = vsp1->rpf[i]; 387 unsigned int j; 388 389 if (!pipe->inputs[i]) 390 continue; 391 392 /* Insert the RPF in the sorted RPFs array. */ 393 for (j = pipe->num_inputs++; j > 0; --j) { 394 if (rpf_zpos(vsp1, inputs[j-1]) <= rpf_zpos(vsp1, rpf)) 395 break; 396 inputs[j] = inputs[j-1]; 397 } 398 399 inputs[j] = rpf; 400 } 401 402 /* 403 * Setup the BRx. This must be done before setting up the RPF input 404 * pipelines as the BRx sink compose rectangles depend on the BRx source 405 * format. 406 */ 407 ret = vsp1_du_pipeline_setup_brx(vsp1, pipe); 408 if (ret < 0) { 409 dev_err(vsp1->dev, "%s: failed to setup %s source\n", __func__, 410 BRX_NAME(pipe->brx)); 411 return ret; 412 } 413 414 brx = to_brx(&pipe->brx->subdev); 415 416 /* Setup the RPF input pipeline for every enabled input. */ 417 for (i = 0; i < pipe->brx->source_pad; ++i) { 418 struct vsp1_rwpf *rpf = inputs[i]; 419 420 if (!rpf) { 421 brx->inputs[i].rpf = NULL; 422 continue; 423 } 424 425 if (!rpf->entity.pipe) { 426 rpf->entity.pipe = pipe; 427 list_add(&rpf->entity.list_pipe, &pipe->entities); 428 } 429 430 brx->inputs[i].rpf = rpf; 431 rpf->brx_input = i; 432 rpf->entity.sink = pipe->brx; 433 rpf->entity.sink_pad = i; 434 435 dev_dbg(vsp1->dev, "%s: connecting RPF.%u to %s:%u\n", 436 __func__, rpf->entity.index, BRX_NAME(pipe->brx), i); 437 438 uif = drm_pipe->crc.source == VSP1_DU_CRC_PLANE && 439 drm_pipe->crc.index == i ? drm_pipe->uif : NULL; 440 if (uif) 441 use_uif = true; 442 ret = vsp1_du_pipeline_setup_rpf(vsp1, pipe, rpf, uif, i); 443 if (ret < 0) { 444 dev_err(vsp1->dev, 445 "%s: failed to setup RPF.%u\n", 446 __func__, rpf->entity.index); 447 return ret; 448 } 449 } 450 451 /* Insert and configure the UIF at the BRx output if available. */ 452 uif = drm_pipe->crc.source == VSP1_DU_CRC_OUTPUT ? drm_pipe->uif : NULL; 453 if (uif) 454 use_uif = true; 455 ret = vsp1_du_insert_uif(vsp1, pipe, uif, 456 pipe->brx, pipe->brx->source_pad, 457 &pipe->output->entity, 0); 458 if (ret < 0) 459 dev_err(vsp1->dev, "%s: failed to setup UIF after %s\n", 460 __func__, BRX_NAME(pipe->brx)); 461 462 /* If the DRM pipe does not have a UIF there is nothing we can update. */ 463 if (!drm_pipe->uif) 464 return 0; 465 466 /* 467 * If the UIF is not in use schedule it for removal by setting its pipe 468 * pointer to NULL, vsp1_du_pipeline_configure() will remove it from the 469 * hardware pipeline and from the pipeline's list of entities. Otherwise 470 * make sure it is present in the pipeline's list of entities if it 471 * wasn't already. 472 */ 473 if (!use_uif) { 474 drm_pipe->uif->pipe = NULL; 475 } else if (!drm_pipe->uif->pipe) { 476 drm_pipe->uif->pipe = pipe; 477 list_add_tail(&drm_pipe->uif->list_pipe, &pipe->entities); 478 } 479 480 return 0; 481 } 482 483 /* Setup the output side of the pipeline (WPF and LIF). */ 484 static int vsp1_du_pipeline_setup_output(struct vsp1_device *vsp1, 485 struct vsp1_pipeline *pipe) 486 { 487 struct vsp1_drm_pipeline *drm_pipe = to_vsp1_drm_pipeline(pipe); 488 struct v4l2_subdev_format format = { 489 .which = V4L2_SUBDEV_FORMAT_ACTIVE, 490 }; 491 int ret; 492 493 format.pad = RWPF_PAD_SINK; 494 format.format.width = drm_pipe->width; 495 format.format.height = drm_pipe->height; 496 format.format.code = MEDIA_BUS_FMT_ARGB8888_1X32; 497 format.format.field = V4L2_FIELD_NONE; 498 499 ret = v4l2_subdev_call(&pipe->output->entity.subdev, pad, set_fmt, NULL, 500 &format); 501 if (ret < 0) 502 return ret; 503 504 dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on WPF%u sink\n", 505 __func__, format.format.width, format.format.height, 506 format.format.code, pipe->output->entity.index); 507 508 format.pad = RWPF_PAD_SOURCE; 509 ret = v4l2_subdev_call(&pipe->output->entity.subdev, pad, get_fmt, NULL, 510 &format); 511 if (ret < 0) 512 return ret; 513 514 dev_dbg(vsp1->dev, "%s: got format %ux%u (%x) on WPF%u source\n", 515 __func__, format.format.width, format.format.height, 516 format.format.code, pipe->output->entity.index); 517 518 format.pad = LIF_PAD_SINK; 519 ret = v4l2_subdev_call(&pipe->lif->subdev, pad, set_fmt, NULL, 520 &format); 521 if (ret < 0) 522 return ret; 523 524 dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on LIF%u sink\n", 525 __func__, format.format.width, format.format.height, 526 format.format.code, pipe->lif->index); 527 528 /* 529 * Verify that the format at the output of the pipeline matches the 530 * requested frame size and media bus code. 531 */ 532 if (format.format.width != drm_pipe->width || 533 format.format.height != drm_pipe->height || 534 format.format.code != MEDIA_BUS_FMT_ARGB8888_1X32) { 535 dev_dbg(vsp1->dev, "%s: format mismatch on LIF%u\n", __func__, 536 pipe->lif->index); 537 return -EPIPE; 538 } 539 540 return 0; 541 } 542 543 /* Configure all entities in the pipeline. */ 544 static void vsp1_du_pipeline_configure(struct vsp1_pipeline *pipe) 545 { 546 struct vsp1_drm_pipeline *drm_pipe = to_vsp1_drm_pipeline(pipe); 547 struct vsp1_entity *entity; 548 struct vsp1_entity *next; 549 struct vsp1_dl_list *dl; 550 struct vsp1_dl_body *dlb; 551 unsigned int dl_flags = 0; 552 553 vsp1_pipeline_calculate_partition(pipe, &pipe->part_table[0], 554 drm_pipe->width, 0); 555 556 if (drm_pipe->force_brx_release) 557 dl_flags |= VSP1_DL_FRAME_END_INTERNAL; 558 if (pipe->output->writeback) 559 dl_flags |= VSP1_DL_FRAME_END_WRITEBACK; 560 561 dl = vsp1_dl_list_get(pipe->output->dlm); 562 dlb = vsp1_dl_list_get_body0(dl); 563 564 list_for_each_entry_safe(entity, next, &pipe->entities, list_pipe) { 565 /* Disconnect unused entities from the pipeline. */ 566 if (!entity->pipe) { 567 vsp1_dl_body_write(dlb, entity->route->reg, 568 VI6_DPR_NODE_UNUSED); 569 570 entity->sink = NULL; 571 list_del(&entity->list_pipe); 572 573 continue; 574 } 575 576 vsp1_entity_route_setup(entity, pipe, dlb); 577 vsp1_entity_configure_stream(entity, entity->state, pipe, 578 dl, dlb); 579 vsp1_entity_configure_frame(entity, pipe, dl, dlb); 580 vsp1_entity_configure_partition(entity, pipe, 581 &pipe->part_table[0], dl, dlb); 582 } 583 584 vsp1_dl_list_commit(dl, dl_flags); 585 } 586 587 static int vsp1_du_pipeline_set_rwpf_format(struct vsp1_device *vsp1, 588 struct vsp1_rwpf *rwpf, 589 u32 pixelformat, unsigned int pitch) 590 { 591 const struct vsp1_format_info *fmtinfo; 592 unsigned int chroma_hsub; 593 594 fmtinfo = vsp1_get_format_info(vsp1, pixelformat); 595 if (!fmtinfo) { 596 dev_dbg(vsp1->dev, "Unsupported pixel format %08x\n", 597 pixelformat); 598 return -EINVAL; 599 } 600 601 /* 602 * Only formats with three planes can affect the chroma planes pitch. 603 * All formats with two planes have a horizontal subsampling value of 2, 604 * but combine U and V in a single chroma plane, which thus results in 605 * the luma plane and chroma plane having the same pitch. 606 */ 607 chroma_hsub = (fmtinfo->planes == 3) ? fmtinfo->hsub : 1; 608 609 rwpf->fmtinfo = fmtinfo; 610 rwpf->format.num_planes = fmtinfo->planes; 611 rwpf->format.plane_fmt[0].bytesperline = pitch; 612 rwpf->format.plane_fmt[1].bytesperline = pitch / chroma_hsub; 613 614 return 0; 615 } 616 617 /* ----------------------------------------------------------------------------- 618 * DU Driver API 619 */ 620 621 int vsp1_du_init(struct device *dev) 622 { 623 struct vsp1_device *vsp1 = dev_get_drvdata(dev); 624 625 if (!vsp1) 626 return -EPROBE_DEFER; 627 628 return 0; 629 } 630 EXPORT_SYMBOL_GPL(vsp1_du_init); 631 632 /** 633 * vsp1_du_setup_lif - Setup the output part of the VSP pipeline 634 * @dev: the VSP device 635 * @pipe_index: the DRM pipeline index 636 * @cfg: the LIF configuration 637 * 638 * Configure the output part of VSP DRM pipeline for the given frame @cfg.width 639 * and @cfg.height. This sets up formats on the BRx source pad, the WPF sink and 640 * source pads, and the LIF sink pad. 641 * 642 * The @pipe_index argument selects which DRM pipeline to setup. The number of 643 * available pipelines depend on the VSP instance. 644 * 645 * As the media bus code on the blend unit source pad is conditioned by the 646 * configuration of its sink 0 pad, we also set up the formats on all blend unit 647 * sinks, even if the configuration will be overwritten later by 648 * vsp1_du_setup_rpf(). This ensures that the blend unit configuration is set to 649 * a well defined state. 650 * 651 * Return 0 on success or a negative error code on failure. 652 */ 653 int vsp1_du_setup_lif(struct device *dev, unsigned int pipe_index, 654 const struct vsp1_du_lif_config *cfg) 655 { 656 struct vsp1_device *vsp1 = dev_get_drvdata(dev); 657 struct vsp1_drm_pipeline *drm_pipe; 658 struct vsp1_pipeline *pipe; 659 unsigned long flags; 660 unsigned int i; 661 int ret; 662 663 if (pipe_index >= vsp1->info->lif_count) 664 return -EINVAL; 665 666 drm_pipe = &vsp1->drm->pipe[pipe_index]; 667 pipe = &drm_pipe->pipe; 668 669 if (!cfg) { 670 struct vsp1_brx *brx; 671 672 mutex_lock(&vsp1->drm->lock); 673 674 brx = to_brx(&pipe->brx->subdev); 675 676 /* 677 * NULL configuration means the CRTC is being disabled, stop 678 * the pipeline and turn the light off. 679 */ 680 ret = vsp1_pipeline_stop(pipe); 681 if (ret == -ETIMEDOUT) 682 dev_err(vsp1->dev, "DRM pipeline stop timeout\n"); 683 684 for (i = 0; i < ARRAY_SIZE(pipe->inputs); ++i) { 685 struct vsp1_rwpf *rpf = pipe->inputs[i]; 686 687 if (!rpf) 688 continue; 689 690 /* 691 * Remove the RPF from the pipe and the list of BRx 692 * inputs. 693 */ 694 WARN_ON(!rpf->entity.pipe); 695 rpf->entity.pipe = NULL; 696 list_del(&rpf->entity.list_pipe); 697 pipe->inputs[i] = NULL; 698 699 brx->inputs[rpf->brx_input].rpf = NULL; 700 } 701 702 drm_pipe->du_complete = NULL; 703 pipe->num_inputs = 0; 704 705 dev_dbg(vsp1->dev, "%s: pipe %u: releasing %s\n", 706 __func__, pipe->lif->index, 707 BRX_NAME(pipe->brx)); 708 709 list_del(&pipe->brx->list_pipe); 710 pipe->brx->pipe = NULL; 711 pipe->brx = NULL; 712 713 mutex_unlock(&vsp1->drm->lock); 714 715 vsp1_dlm_reset(pipe->output->dlm); 716 vsp1_device_put(vsp1); 717 718 dev_dbg(vsp1->dev, "%s: pipeline disabled\n", __func__); 719 720 return 0; 721 } 722 723 /* Reset the underrun counter */ 724 pipe->underrun_count = 0; 725 726 drm_pipe->width = cfg->width; 727 drm_pipe->height = cfg->height; 728 pipe->interlaced = cfg->interlaced; 729 730 dev_dbg(vsp1->dev, "%s: configuring LIF%u with format %ux%u%s\n", 731 __func__, pipe_index, cfg->width, cfg->height, 732 pipe->interlaced ? "i" : ""); 733 734 mutex_lock(&vsp1->drm->lock); 735 736 /* Setup formats through the pipeline. */ 737 ret = vsp1_du_pipeline_setup_inputs(vsp1, pipe); 738 if (ret < 0) 739 goto unlock; 740 741 ret = vsp1_du_pipeline_setup_output(vsp1, pipe); 742 if (ret < 0) 743 goto unlock; 744 745 vsp1_pipeline_dump(pipe, "LIF setup"); 746 747 /* Enable the VSP1. */ 748 ret = vsp1_device_get(vsp1); 749 if (ret < 0) 750 goto unlock; 751 752 /* 753 * Register a callback to allow us to notify the DRM driver of frame 754 * completion events. 755 */ 756 drm_pipe->du_complete = cfg->callback; 757 drm_pipe->du_private = cfg->callback_data; 758 759 /* Disable the display interrupts. */ 760 vsp1_write(vsp1, VI6_DISP_IRQ_STA(pipe_index), 0); 761 vsp1_write(vsp1, VI6_DISP_IRQ_ENB(pipe_index), 0); 762 763 /* Configure all entities in the pipeline. */ 764 vsp1_du_pipeline_configure(pipe); 765 766 unlock: 767 mutex_unlock(&vsp1->drm->lock); 768 769 if (ret < 0) 770 return ret; 771 772 /* Start the pipeline. */ 773 spin_lock_irqsave(&pipe->irqlock, flags); 774 vsp1_pipeline_run(pipe); 775 spin_unlock_irqrestore(&pipe->irqlock, flags); 776 777 dev_dbg(vsp1->dev, "%s: pipeline enabled\n", __func__); 778 779 return 0; 780 } 781 EXPORT_SYMBOL_GPL(vsp1_du_setup_lif); 782 783 /** 784 * vsp1_du_atomic_begin - Prepare for an atomic update 785 * @dev: the VSP device 786 * @pipe_index: the DRM pipeline index 787 */ 788 void vsp1_du_atomic_begin(struct device *dev, unsigned int pipe_index) 789 { 790 } 791 EXPORT_SYMBOL_GPL(vsp1_du_atomic_begin); 792 793 /** 794 * vsp1_du_atomic_update - Setup one RPF input of the VSP pipeline 795 * @dev: the VSP device 796 * @pipe_index: the DRM pipeline index 797 * @rpf_index: index of the RPF to setup (0-based) 798 * @cfg: the RPF configuration 799 * 800 * Configure the VSP to perform image composition through RPF @rpf_index as 801 * described by the @cfg configuration. The image to compose is referenced by 802 * @cfg.mem and composed using the @cfg.src crop rectangle and the @cfg.dst 803 * composition rectangle. The Z-order is configurable with higher @zpos values 804 * displayed on top. 805 * 806 * If the @cfg configuration is NULL, the RPF will be disabled. Calling the 807 * function on a disabled RPF is allowed. 808 * 809 * Image format as stored in memory is expressed as a V4L2 @cfg.pixelformat 810 * value. The memory pitch is configurable to allow for padding at end of lines, 811 * or simply for images that extend beyond the crop rectangle boundaries. The 812 * @cfg.pitch value is expressed in bytes and applies to all planes for 813 * multiplanar formats. 814 * 815 * The source memory buffer is referenced by the DMA address of its planes in 816 * the @cfg.mem array. Up to two planes are supported. The second plane DMA 817 * address is ignored for formats using a single plane. 818 * 819 * This function isn't reentrant, the caller needs to serialize calls. 820 * 821 * Return 0 on success or a negative error code on failure. 822 */ 823 int vsp1_du_atomic_update(struct device *dev, unsigned int pipe_index, 824 unsigned int rpf_index, 825 const struct vsp1_du_atomic_config *cfg) 826 { 827 struct vsp1_device *vsp1 = dev_get_drvdata(dev); 828 struct vsp1_drm_pipeline *drm_pipe = &vsp1->drm->pipe[pipe_index]; 829 struct vsp1_rwpf *rpf; 830 int ret; 831 832 if (rpf_index >= vsp1->info->rpf_count) 833 return -EINVAL; 834 835 rpf = vsp1->rpf[rpf_index]; 836 837 if (!cfg) { 838 dev_dbg(vsp1->dev, "%s: RPF%u: disable requested\n", __func__, 839 rpf_index); 840 841 /* 842 * Remove the RPF from the pipeline's inputs. Keep it in the 843 * pipeline's entity list to let vsp1_du_pipeline_configure() 844 * remove it from the hardware pipeline. 845 */ 846 rpf->entity.pipe = NULL; 847 drm_pipe->pipe.inputs[rpf_index] = NULL; 848 return 0; 849 } 850 851 dev_dbg(vsp1->dev, 852 "%s: RPF%u: (%u,%u)/%ux%u -> (%u,%u)/%ux%u (%08x), pitch %u dma { %pad, %pad, %pad } zpos %u\n", 853 __func__, rpf_index, 854 cfg->src.left, cfg->src.top, cfg->src.width, cfg->src.height, 855 cfg->dst.left, cfg->dst.top, cfg->dst.width, cfg->dst.height, 856 cfg->pixelformat, cfg->pitch, &cfg->mem[0], &cfg->mem[1], 857 &cfg->mem[2], cfg->zpos); 858 859 /* 860 * Store the format, stride, memory buffer address, crop and compose 861 * rectangles and Z-order position and for the input. 862 */ 863 ret = vsp1_du_pipeline_set_rwpf_format(vsp1, rpf, cfg->pixelformat, 864 cfg->pitch); 865 if (ret < 0) 866 return ret; 867 868 rpf->alpha = cfg->alpha; 869 870 rpf->mem.addr[0] = cfg->mem[0]; 871 rpf->mem.addr[1] = cfg->mem[1]; 872 rpf->mem.addr[2] = cfg->mem[2]; 873 874 rpf->format.flags = cfg->premult ? V4L2_PIX_FMT_FLAG_PREMUL_ALPHA : 0; 875 876 vsp1->drm->inputs[rpf_index].crop = cfg->src; 877 vsp1->drm->inputs[rpf_index].compose = cfg->dst; 878 vsp1->drm->inputs[rpf_index].zpos = cfg->zpos; 879 880 drm_pipe->pipe.inputs[rpf_index] = rpf; 881 882 return 0; 883 } 884 EXPORT_SYMBOL_GPL(vsp1_du_atomic_update); 885 886 /** 887 * vsp1_du_atomic_flush - Commit an atomic update 888 * @dev: the VSP device 889 * @pipe_index: the DRM pipeline index 890 * @cfg: atomic pipe configuration 891 */ 892 void vsp1_du_atomic_flush(struct device *dev, unsigned int pipe_index, 893 const struct vsp1_du_atomic_pipe_config *cfg) 894 { 895 struct vsp1_device *vsp1 = dev_get_drvdata(dev); 896 struct vsp1_drm_pipeline *drm_pipe = &vsp1->drm->pipe[pipe_index]; 897 struct vsp1_pipeline *pipe = &drm_pipe->pipe; 898 int ret; 899 900 drm_pipe->crc = cfg->crc; 901 902 mutex_lock(&vsp1->drm->lock); 903 904 if (cfg->writeback.pixelformat) { 905 const struct vsp1_du_writeback_config *wb_cfg = &cfg->writeback; 906 907 ret = vsp1_du_pipeline_set_rwpf_format(vsp1, pipe->output, 908 wb_cfg->pixelformat, 909 wb_cfg->pitch); 910 if (WARN_ON(ret < 0)) 911 goto done; 912 913 pipe->output->mem.addr[0] = wb_cfg->mem[0]; 914 pipe->output->mem.addr[1] = wb_cfg->mem[1]; 915 pipe->output->mem.addr[2] = wb_cfg->mem[2]; 916 pipe->output->writeback = true; 917 } 918 919 vsp1_du_pipeline_setup_inputs(vsp1, pipe); 920 921 vsp1_pipeline_dump(pipe, "atomic update"); 922 923 vsp1_du_pipeline_configure(pipe); 924 925 done: 926 mutex_unlock(&vsp1->drm->lock); 927 } 928 EXPORT_SYMBOL_GPL(vsp1_du_atomic_flush); 929 930 int vsp1_du_map_sg(struct device *dev, struct sg_table *sgt) 931 { 932 struct vsp1_device *vsp1 = dev_get_drvdata(dev); 933 934 /* 935 * As all the buffers allocated by the DU driver are coherent, we can 936 * skip cache sync. This will need to be revisited when support for 937 * non-coherent buffers will be added to the DU driver. 938 */ 939 return dma_map_sgtable(vsp1->bus_master, sgt, DMA_TO_DEVICE, 940 DMA_ATTR_SKIP_CPU_SYNC); 941 } 942 EXPORT_SYMBOL_GPL(vsp1_du_map_sg); 943 944 void vsp1_du_unmap_sg(struct device *dev, struct sg_table *sgt) 945 { 946 struct vsp1_device *vsp1 = dev_get_drvdata(dev); 947 948 dma_unmap_sgtable(vsp1->bus_master, sgt, DMA_TO_DEVICE, 949 DMA_ATTR_SKIP_CPU_SYNC); 950 } 951 EXPORT_SYMBOL_GPL(vsp1_du_unmap_sg); 952 953 /* ----------------------------------------------------------------------------- 954 * Initialization 955 */ 956 957 int vsp1_drm_init(struct vsp1_device *vsp1) 958 { 959 unsigned int i; 960 961 vsp1->drm = devm_kzalloc(vsp1->dev, sizeof(*vsp1->drm), GFP_KERNEL); 962 if (!vsp1->drm) 963 return -ENOMEM; 964 965 mutex_init(&vsp1->drm->lock); 966 967 /* Create one DRM pipeline per LIF. */ 968 for (i = 0; i < vsp1->info->lif_count; ++i) { 969 struct vsp1_drm_pipeline *drm_pipe = &vsp1->drm->pipe[i]; 970 struct vsp1_pipeline *pipe = &drm_pipe->pipe; 971 972 init_waitqueue_head(&drm_pipe->wait_queue); 973 974 vsp1_pipeline_init(pipe); 975 976 pipe->partitions = 1; 977 pipe->part_table = &drm_pipe->partition; 978 979 pipe->frame_end = vsp1_du_pipeline_frame_end; 980 981 /* 982 * The output side of the DRM pipeline is static, add the 983 * corresponding entities manually. 984 */ 985 pipe->output = vsp1->wpf[i]; 986 pipe->lif = &vsp1->lif[i]->entity; 987 988 pipe->output->entity.pipe = pipe; 989 pipe->output->entity.sink = pipe->lif; 990 pipe->output->entity.sink_pad = 0; 991 list_add_tail(&pipe->output->entity.list_pipe, &pipe->entities); 992 993 pipe->lif->pipe = pipe; 994 list_add_tail(&pipe->lif->list_pipe, &pipe->entities); 995 996 /* 997 * CRC computation is initially disabled, don't add the UIF to 998 * the pipeline. 999 */ 1000 if (i < vsp1->info->uif_count) 1001 drm_pipe->uif = &vsp1->uif[i]->entity; 1002 } 1003 1004 /* Disable all RPFs initially. */ 1005 for (i = 0; i < vsp1->info->rpf_count; ++i) { 1006 struct vsp1_rwpf *input = vsp1->rpf[i]; 1007 1008 INIT_LIST_HEAD(&input->entity.list_pipe); 1009 } 1010 1011 return 0; 1012 } 1013 1014 void vsp1_drm_cleanup(struct vsp1_device *vsp1) 1015 { 1016 mutex_destroy(&vsp1->drm->lock); 1017 } 1018