1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * vsp1_drm.c -- R-Car VSP1 DRM/KMS Interface 4 * 5 * Copyright (C) 2015 Renesas Electronics Corporation 6 * 7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com) 8 */ 9 10 #include <linux/device.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/export.h> 13 #include <linux/slab.h> 14 15 #include <media/media-entity.h> 16 #include <media/v4l2-subdev.h> 17 #include <media/vsp1.h> 18 19 #include "vsp1.h" 20 #include "vsp1_brx.h" 21 #include "vsp1_dl.h" 22 #include "vsp1_drm.h" 23 #include "vsp1_lif.h" 24 #include "vsp1_pipe.h" 25 #include "vsp1_rwpf.h" 26 #include "vsp1_uif.h" 27 28 #define BRX_NAME(e) (e)->type == VSP1_ENTITY_BRU ? "BRU" : "BRS" 29 30 /* ----------------------------------------------------------------------------- 31 * Interrupt Handling 32 */ 33 34 static void vsp1_du_pipeline_frame_end(struct vsp1_pipeline *pipe, 35 unsigned int completion) 36 { 37 struct vsp1_drm_pipeline *drm_pipe = to_vsp1_drm_pipeline(pipe); 38 39 if (drm_pipe->du_complete) { 40 struct vsp1_entity *uif = drm_pipe->uif; 41 unsigned int status = completion 42 & (VSP1_DU_STATUS_COMPLETE | 43 VSP1_DU_STATUS_WRITEBACK); 44 u32 crc; 45 46 crc = uif ? vsp1_uif_get_crc(to_uif(&uif->subdev)) : 0; 47 drm_pipe->du_complete(drm_pipe->du_private, status, crc); 48 } 49 50 if (completion & VSP1_DL_FRAME_END_INTERNAL) { 51 drm_pipe->force_brx_release = false; 52 wake_up(&drm_pipe->wait_queue); 53 } 54 } 55 56 /* ----------------------------------------------------------------------------- 57 * Pipeline Configuration 58 */ 59 60 /* 61 * Insert the UIF in the pipeline between the prev and next entities. If no UIF 62 * is available connect the two entities directly. 63 */ 64 static int vsp1_du_insert_uif(struct vsp1_device *vsp1, 65 struct vsp1_pipeline *pipe, 66 struct vsp1_entity *uif, 67 struct vsp1_entity *prev, unsigned int prev_pad, 68 struct vsp1_entity *next, unsigned int next_pad) 69 { 70 struct v4l2_subdev_format format = { 71 .which = V4L2_SUBDEV_FORMAT_ACTIVE, 72 }; 73 int ret; 74 75 if (!uif) { 76 /* 77 * If there's no UIF to be inserted, connect the previous and 78 * next entities directly. 79 */ 80 prev->sink = next; 81 prev->sink_pad = next_pad; 82 return 0; 83 } 84 85 prev->sink = uif; 86 prev->sink_pad = UIF_PAD_SINK; 87 88 format.pad = prev_pad; 89 90 ret = v4l2_subdev_call(&prev->subdev, pad, get_fmt, NULL, &format); 91 if (ret < 0) 92 return ret; 93 94 format.pad = UIF_PAD_SINK; 95 96 ret = v4l2_subdev_call(&uif->subdev, pad, set_fmt, NULL, &format); 97 if (ret < 0) 98 return ret; 99 100 dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on UIF sink\n", 101 __func__, format.format.width, format.format.height, 102 format.format.code); 103 104 /* 105 * The UIF doesn't mangle the format between its sink and source pads, 106 * so there is no need to retrieve the format on its source pad. 107 */ 108 109 uif->sink = next; 110 uif->sink_pad = next_pad; 111 112 return 0; 113 } 114 115 /* Setup one RPF and the connected BRx sink pad. */ 116 static int vsp1_du_pipeline_setup_rpf(struct vsp1_device *vsp1, 117 struct vsp1_pipeline *pipe, 118 struct vsp1_rwpf *rpf, 119 struct vsp1_entity *uif, 120 unsigned int brx_input) 121 { 122 const struct vsp1_drm_input *input = &vsp1->drm->inputs[rpf->entity.index]; 123 struct v4l2_subdev_selection sel = { 124 .which = V4L2_SUBDEV_FORMAT_ACTIVE, 125 }; 126 struct v4l2_subdev_format format = { 127 .which = V4L2_SUBDEV_FORMAT_ACTIVE, 128 }; 129 int ret; 130 131 /* 132 * Configure the format on the RPF sink pad and propagate it up to the 133 * BRx sink pad. 134 */ 135 format.pad = RWPF_PAD_SINK; 136 format.format.width = input->crop.width + input->crop.left; 137 format.format.height = input->crop.height + input->crop.top; 138 format.format.code = rpf->fmtinfo->mbus; 139 format.format.field = V4L2_FIELD_NONE; 140 format.format.ycbcr_enc = input->ycbcr_enc; 141 format.format.quantization = input->quantization; 142 143 ret = v4l2_subdev_call(&rpf->entity.subdev, pad, set_fmt, NULL, 144 &format); 145 if (ret < 0) 146 return ret; 147 148 dev_dbg(vsp1->dev, 149 "%s: set format %ux%u (%x) on RPF%u sink\n", 150 __func__, format.format.width, format.format.height, 151 format.format.code, rpf->entity.index); 152 153 sel.pad = RWPF_PAD_SINK; 154 sel.target = V4L2_SEL_TGT_CROP; 155 sel.r = input->crop; 156 157 ret = v4l2_subdev_call(&rpf->entity.subdev, pad, set_selection, NULL, 158 &sel); 159 if (ret < 0) 160 return ret; 161 162 dev_dbg(vsp1->dev, 163 "%s: set selection (%u,%u)/%ux%u on RPF%u sink\n", 164 __func__, sel.r.left, sel.r.top, sel.r.width, sel.r.height, 165 rpf->entity.index); 166 167 /* 168 * RPF source, hardcode the format to ARGB8888 to turn on format 169 * conversion if needed. 170 */ 171 format.pad = RWPF_PAD_SOURCE; 172 173 ret = v4l2_subdev_call(&rpf->entity.subdev, pad, get_fmt, NULL, 174 &format); 175 if (ret < 0) 176 return ret; 177 178 dev_dbg(vsp1->dev, 179 "%s: got format %ux%u (%x) on RPF%u source\n", 180 __func__, format.format.width, format.format.height, 181 format.format.code, rpf->entity.index); 182 183 format.format.code = MEDIA_BUS_FMT_ARGB8888_1X32; 184 185 ret = v4l2_subdev_call(&rpf->entity.subdev, pad, set_fmt, NULL, 186 &format); 187 if (ret < 0) 188 return ret; 189 190 /* Insert and configure the UIF if available. */ 191 ret = vsp1_du_insert_uif(vsp1, pipe, uif, &rpf->entity, RWPF_PAD_SOURCE, 192 pipe->brx, brx_input); 193 if (ret < 0) 194 return ret; 195 196 /* BRx sink, propagate the format from the RPF source. */ 197 format.pad = brx_input; 198 199 ret = v4l2_subdev_call(&pipe->brx->subdev, pad, set_fmt, NULL, 200 &format); 201 if (ret < 0) 202 return ret; 203 204 dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on %s pad %u\n", 205 __func__, format.format.width, format.format.height, 206 format.format.code, BRX_NAME(pipe->brx), format.pad); 207 208 sel.pad = brx_input; 209 sel.target = V4L2_SEL_TGT_COMPOSE; 210 sel.r = vsp1->drm->inputs[rpf->entity.index].compose; 211 212 ret = v4l2_subdev_call(&pipe->brx->subdev, pad, set_selection, NULL, 213 &sel); 214 if (ret < 0) 215 return ret; 216 217 dev_dbg(vsp1->dev, "%s: set selection (%u,%u)/%ux%u on %s pad %u\n", 218 __func__, sel.r.left, sel.r.top, sel.r.width, sel.r.height, 219 BRX_NAME(pipe->brx), sel.pad); 220 221 return 0; 222 } 223 224 /* Setup the BRx source pad. */ 225 static int vsp1_du_pipeline_setup_inputs(struct vsp1_device *vsp1, 226 struct vsp1_pipeline *pipe); 227 static void vsp1_du_pipeline_configure(struct vsp1_pipeline *pipe); 228 229 static int vsp1_du_pipeline_setup_brx(struct vsp1_device *vsp1, 230 struct vsp1_pipeline *pipe) 231 { 232 struct vsp1_drm_pipeline *drm_pipe = to_vsp1_drm_pipeline(pipe); 233 struct v4l2_subdev_format format = { 234 .which = V4L2_SUBDEV_FORMAT_ACTIVE, 235 }; 236 struct vsp1_entity *brx; 237 int ret; 238 239 /* 240 * Pick a BRx: 241 * - If we need more than two inputs, use the BRU. 242 * - Otherwise, if we are not forced to release our BRx, keep it. 243 * - Else, use any free BRx (randomly starting with the BRU). 244 */ 245 if (pipe->num_inputs > 2) 246 brx = &vsp1->bru->entity; 247 else if (pipe->brx && !drm_pipe->force_brx_release) 248 brx = pipe->brx; 249 else if (vsp1_feature(vsp1, VSP1_HAS_BRU) && !vsp1->bru->entity.pipe) 250 brx = &vsp1->bru->entity; 251 else 252 brx = &vsp1->brs->entity; 253 254 /* Switch BRx if needed. */ 255 if (brx != pipe->brx) { 256 struct vsp1_entity *released_brx = NULL; 257 258 /* Release our BRx if we have one. */ 259 if (pipe->brx) { 260 dev_dbg(vsp1->dev, "%s: pipe %u: releasing %s\n", 261 __func__, pipe->lif->index, 262 BRX_NAME(pipe->brx)); 263 264 /* 265 * The BRx might be acquired by the other pipeline in 266 * the next step. We must thus remove it from the list 267 * of entities for this pipeline. The other pipeline's 268 * hardware configuration will reconfigure the BRx 269 * routing. 270 * 271 * However, if the other pipeline doesn't acquire our 272 * BRx, we need to keep it in the list, otherwise the 273 * hardware configuration step won't disconnect it from 274 * the pipeline. To solve this, store the released BRx 275 * pointer to add it back to the list of entities later 276 * if it isn't acquired by the other pipeline. 277 */ 278 released_brx = pipe->brx; 279 280 list_del(&pipe->brx->list_pipe); 281 pipe->brx->sink = NULL; 282 pipe->brx->pipe = NULL; 283 pipe->brx = NULL; 284 } 285 286 /* 287 * If the BRx we need is in use, force the owner pipeline to 288 * switch to the other BRx and wait until the switch completes. 289 */ 290 if (brx->pipe) { 291 struct vsp1_drm_pipeline *owner_pipe; 292 293 dev_dbg(vsp1->dev, "%s: pipe %u: waiting for %s\n", 294 __func__, pipe->lif->index, BRX_NAME(brx)); 295 296 owner_pipe = to_vsp1_drm_pipeline(brx->pipe); 297 owner_pipe->force_brx_release = true; 298 299 vsp1_du_pipeline_setup_inputs(vsp1, &owner_pipe->pipe); 300 vsp1_du_pipeline_configure(&owner_pipe->pipe); 301 302 ret = wait_event_timeout(owner_pipe->wait_queue, 303 !owner_pipe->force_brx_release, 304 msecs_to_jiffies(500)); 305 if (ret == 0) 306 dev_warn(vsp1->dev, 307 "DRM pipeline %u reconfiguration timeout\n", 308 owner_pipe->pipe.lif->index); 309 } 310 311 /* 312 * If the BRx we have released previously hasn't been acquired 313 * by the other pipeline, add it back to the entities list (with 314 * the pipe pointer NULL) to let vsp1_du_pipeline_configure() 315 * disconnect it from the hardware pipeline. 316 */ 317 if (released_brx && !released_brx->pipe) 318 list_add_tail(&released_brx->list_pipe, 319 &pipe->entities); 320 321 /* 322 * Add the BRx to the pipeline, inserting it just before the 323 * WPF. 324 */ 325 dev_dbg(vsp1->dev, "%s: pipe %u: acquired %s\n", 326 __func__, pipe->lif->index, BRX_NAME(brx)); 327 328 pipe->brx = brx; 329 pipe->brx->pipe = pipe; 330 pipe->brx->sink = &pipe->output->entity; 331 pipe->brx->sink_pad = 0; 332 333 list_add_tail(&pipe->brx->list_pipe, 334 &pipe->output->entity.list_pipe); 335 } 336 337 /* 338 * Configure the format on the BRx source and verify that it matches the 339 * requested format. We don't set the media bus code as it is configured 340 * on the BRx sink pad 0 and propagated inside the entity, not on the 341 * source pad. 342 */ 343 format.pad = brx->source_pad; 344 format.format.width = drm_pipe->width; 345 format.format.height = drm_pipe->height; 346 format.format.field = V4L2_FIELD_NONE; 347 348 ret = v4l2_subdev_call(&brx->subdev, pad, set_fmt, NULL, 349 &format); 350 if (ret < 0) 351 return ret; 352 353 dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on %s pad %u\n", 354 __func__, format.format.width, format.format.height, 355 format.format.code, BRX_NAME(brx), brx->source_pad); 356 357 if (format.format.width != drm_pipe->width || 358 format.format.height != drm_pipe->height) { 359 dev_dbg(vsp1->dev, "%s: format mismatch\n", __func__); 360 return -EPIPE; 361 } 362 363 return 0; 364 } 365 366 static unsigned int rpf_zpos(struct vsp1_device *vsp1, struct vsp1_rwpf *rpf) 367 { 368 return vsp1->drm->inputs[rpf->entity.index].zpos; 369 } 370 371 /* Setup the input side of the pipeline (RPFs and BRx). */ 372 static int vsp1_du_pipeline_setup_inputs(struct vsp1_device *vsp1, 373 struct vsp1_pipeline *pipe) 374 { 375 struct vsp1_drm_pipeline *drm_pipe = to_vsp1_drm_pipeline(pipe); 376 struct vsp1_rwpf *inputs[VSP1_MAX_RPF] = { NULL, }; 377 struct vsp1_entity *uif; 378 bool use_uif = false; 379 struct vsp1_brx *brx; 380 unsigned int i; 381 int ret; 382 383 /* Count the number of enabled inputs and sort them by Z-order. */ 384 pipe->num_inputs = 0; 385 386 for (i = 0; i < vsp1->info->rpf_count; ++i) { 387 struct vsp1_rwpf *rpf = vsp1->rpf[i]; 388 unsigned int j; 389 390 if (!pipe->inputs[i]) 391 continue; 392 393 /* Insert the RPF in the sorted RPFs array. */ 394 for (j = pipe->num_inputs++; j > 0; --j) { 395 if (rpf_zpos(vsp1, inputs[j-1]) <= rpf_zpos(vsp1, rpf)) 396 break; 397 inputs[j] = inputs[j-1]; 398 } 399 400 inputs[j] = rpf; 401 } 402 403 /* 404 * Setup the BRx. This must be done before setting up the RPF input 405 * pipelines as the BRx sink compose rectangles depend on the BRx source 406 * format. 407 */ 408 ret = vsp1_du_pipeline_setup_brx(vsp1, pipe); 409 if (ret < 0) { 410 dev_err(vsp1->dev, "%s: failed to setup %s source\n", __func__, 411 BRX_NAME(pipe->brx)); 412 return ret; 413 } 414 415 brx = to_brx(&pipe->brx->subdev); 416 417 /* Setup the RPF input pipeline for every enabled input. */ 418 for (i = 0; i < pipe->brx->source_pad; ++i) { 419 struct vsp1_rwpf *rpf = inputs[i]; 420 421 if (!rpf) { 422 brx->inputs[i].rpf = NULL; 423 continue; 424 } 425 426 if (!rpf->entity.pipe) { 427 rpf->entity.pipe = pipe; 428 list_add(&rpf->entity.list_pipe, &pipe->entities); 429 } 430 431 brx->inputs[i].rpf = rpf; 432 rpf->brx_input = i; 433 rpf->entity.sink = pipe->brx; 434 rpf->entity.sink_pad = i; 435 436 dev_dbg(vsp1->dev, "%s: connecting RPF.%u to %s:%u\n", 437 __func__, rpf->entity.index, BRX_NAME(pipe->brx), i); 438 439 uif = drm_pipe->crc.source == VSP1_DU_CRC_PLANE && 440 drm_pipe->crc.index == i ? drm_pipe->uif : NULL; 441 if (uif) 442 use_uif = true; 443 ret = vsp1_du_pipeline_setup_rpf(vsp1, pipe, rpf, uif, i); 444 if (ret < 0) { 445 dev_err(vsp1->dev, 446 "%s: failed to setup RPF.%u\n", 447 __func__, rpf->entity.index); 448 return ret; 449 } 450 } 451 452 /* Insert and configure the UIF at the BRx output if available. */ 453 uif = drm_pipe->crc.source == VSP1_DU_CRC_OUTPUT ? drm_pipe->uif : NULL; 454 if (uif) 455 use_uif = true; 456 ret = vsp1_du_insert_uif(vsp1, pipe, uif, 457 pipe->brx, pipe->brx->source_pad, 458 &pipe->output->entity, 0); 459 if (ret < 0) 460 dev_err(vsp1->dev, "%s: failed to setup UIF after %s\n", 461 __func__, BRX_NAME(pipe->brx)); 462 463 /* If the DRM pipe does not have a UIF there is nothing we can update. */ 464 if (!drm_pipe->uif) 465 return 0; 466 467 /* 468 * If the UIF is not in use schedule it for removal by setting its pipe 469 * pointer to NULL, vsp1_du_pipeline_configure() will remove it from the 470 * hardware pipeline and from the pipeline's list of entities. Otherwise 471 * make sure it is present in the pipeline's list of entities if it 472 * wasn't already. 473 */ 474 if (!use_uif) { 475 drm_pipe->uif->pipe = NULL; 476 } else if (!drm_pipe->uif->pipe) { 477 drm_pipe->uif->pipe = pipe; 478 list_add_tail(&drm_pipe->uif->list_pipe, &pipe->entities); 479 } 480 481 return 0; 482 } 483 484 /* Setup the output side of the pipeline (WPF and LIF). */ 485 static int vsp1_du_pipeline_setup_output(struct vsp1_device *vsp1, 486 struct vsp1_pipeline *pipe) 487 { 488 struct vsp1_drm_pipeline *drm_pipe = to_vsp1_drm_pipeline(pipe); 489 struct v4l2_subdev_format format = { 490 .which = V4L2_SUBDEV_FORMAT_ACTIVE, 491 }; 492 int ret; 493 494 format.pad = RWPF_PAD_SINK; 495 format.format.width = drm_pipe->width; 496 format.format.height = drm_pipe->height; 497 format.format.code = MEDIA_BUS_FMT_ARGB8888_1X32; 498 format.format.field = V4L2_FIELD_NONE; 499 500 ret = v4l2_subdev_call(&pipe->output->entity.subdev, pad, set_fmt, NULL, 501 &format); 502 if (ret < 0) 503 return ret; 504 505 dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on WPF%u sink\n", 506 __func__, format.format.width, format.format.height, 507 format.format.code, pipe->output->entity.index); 508 509 format.pad = RWPF_PAD_SOURCE; 510 ret = v4l2_subdev_call(&pipe->output->entity.subdev, pad, get_fmt, NULL, 511 &format); 512 if (ret < 0) 513 return ret; 514 515 dev_dbg(vsp1->dev, "%s: got format %ux%u (%x) on WPF%u source\n", 516 __func__, format.format.width, format.format.height, 517 format.format.code, pipe->output->entity.index); 518 519 format.pad = LIF_PAD_SINK; 520 ret = v4l2_subdev_call(&pipe->lif->subdev, pad, set_fmt, NULL, 521 &format); 522 if (ret < 0) 523 return ret; 524 525 dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on LIF%u sink\n", 526 __func__, format.format.width, format.format.height, 527 format.format.code, pipe->lif->index); 528 529 /* 530 * Verify that the format at the output of the pipeline matches the 531 * requested frame size and media bus code. 532 */ 533 if (format.format.width != drm_pipe->width || 534 format.format.height != drm_pipe->height || 535 format.format.code != MEDIA_BUS_FMT_ARGB8888_1X32) { 536 dev_dbg(vsp1->dev, "%s: format mismatch on LIF%u\n", __func__, 537 pipe->lif->index); 538 return -EPIPE; 539 } 540 541 return 0; 542 } 543 544 /* Configure all entities in the pipeline. */ 545 static void vsp1_du_pipeline_configure(struct vsp1_pipeline *pipe) 546 { 547 struct vsp1_drm_pipeline *drm_pipe = to_vsp1_drm_pipeline(pipe); 548 struct vsp1_entity *entity; 549 struct vsp1_entity *next; 550 struct vsp1_dl_list *dl; 551 struct vsp1_dl_body *dlb; 552 unsigned int dl_flags = 0; 553 554 vsp1_pipeline_calculate_partition(pipe, &pipe->part_table[0], 555 drm_pipe->width, 0); 556 557 if (drm_pipe->force_brx_release) 558 dl_flags |= VSP1_DL_FRAME_END_INTERNAL; 559 if (pipe->output->writeback) 560 dl_flags |= VSP1_DL_FRAME_END_WRITEBACK; 561 562 dl = vsp1_dl_list_get(pipe->output->dlm); 563 dlb = vsp1_dl_list_get_body0(dl); 564 565 list_for_each_entry_safe(entity, next, &pipe->entities, list_pipe) { 566 /* Disconnect unused entities from the pipeline. */ 567 if (!entity->pipe) { 568 vsp1_dl_body_write(dlb, entity->route->reg, 569 VI6_DPR_NODE_UNUSED); 570 571 entity->sink = NULL; 572 list_del(&entity->list_pipe); 573 574 continue; 575 } 576 577 vsp1_entity_route_setup(entity, pipe, dlb); 578 vsp1_entity_configure_stream(entity, entity->state, pipe, 579 dl, dlb); 580 vsp1_entity_configure_frame(entity, pipe, dl, dlb); 581 vsp1_entity_configure_partition(entity, pipe, 582 &pipe->part_table[0], dl, dlb); 583 } 584 585 vsp1_dl_list_commit(dl, dl_flags); 586 } 587 588 static int vsp1_du_pipeline_set_rwpf_format(struct vsp1_device *vsp1, 589 struct vsp1_rwpf *rwpf, 590 u32 pixelformat, unsigned int pitch) 591 { 592 const struct vsp1_format_info *fmtinfo; 593 unsigned int chroma_hsub; 594 595 fmtinfo = vsp1_get_format_info(vsp1, pixelformat); 596 if (!fmtinfo) { 597 dev_dbg(vsp1->dev, "Unsupported pixel format %p4cc\n", 598 &pixelformat); 599 return -EINVAL; 600 } 601 602 /* 603 * Only formats with three planes can affect the chroma planes pitch. 604 * All formats with two planes have a horizontal subsampling value of 2, 605 * but combine U and V in a single chroma plane, which thus results in 606 * the luma plane and chroma plane having the same pitch. 607 */ 608 chroma_hsub = (fmtinfo->planes == 3) ? fmtinfo->hsub : 1; 609 610 rwpf->fmtinfo = fmtinfo; 611 rwpf->format.num_planes = fmtinfo->planes; 612 rwpf->format.plane_fmt[0].bytesperline = pitch; 613 rwpf->format.plane_fmt[1].bytesperline = pitch / chroma_hsub; 614 615 return 0; 616 } 617 618 /* ----------------------------------------------------------------------------- 619 * DU Driver API 620 */ 621 622 int vsp1_du_init(struct device *dev) 623 { 624 struct vsp1_device *vsp1 = dev_get_drvdata(dev); 625 626 if (!vsp1) 627 return -EPROBE_DEFER; 628 629 return 0; 630 } 631 EXPORT_SYMBOL_GPL(vsp1_du_init); 632 633 /** 634 * vsp1_du_setup_lif - Setup the output part of the VSP pipeline 635 * @dev: the VSP device 636 * @pipe_index: the DRM pipeline index 637 * @cfg: the LIF configuration 638 * 639 * Configure the output part of VSP DRM pipeline for the given frame @cfg.width 640 * and @cfg.height. This sets up formats on the BRx source pad, the WPF sink and 641 * source pads, and the LIF sink pad. 642 * 643 * The @pipe_index argument selects which DRM pipeline to setup. The number of 644 * available pipelines depend on the VSP instance. 645 * 646 * As the media bus code on the blend unit source pad is conditioned by the 647 * configuration of its sink 0 pad, we also set up the formats on all blend unit 648 * sinks, even if the configuration will be overwritten later by 649 * vsp1_du_setup_rpf(). This ensures that the blend unit configuration is set to 650 * a well defined state. 651 * 652 * Return 0 on success or a negative error code on failure. 653 */ 654 int vsp1_du_setup_lif(struct device *dev, unsigned int pipe_index, 655 const struct vsp1_du_lif_config *cfg) 656 { 657 struct vsp1_device *vsp1 = dev_get_drvdata(dev); 658 struct vsp1_drm_pipeline *drm_pipe; 659 struct vsp1_pipeline *pipe; 660 unsigned long flags; 661 unsigned int i; 662 int ret; 663 664 if (pipe_index >= vsp1->info->lif_count) 665 return -EINVAL; 666 667 drm_pipe = &vsp1->drm->pipe[pipe_index]; 668 pipe = &drm_pipe->pipe; 669 670 if (!cfg) { 671 struct vsp1_brx *brx; 672 673 mutex_lock(&vsp1->drm->lock); 674 675 brx = to_brx(&pipe->brx->subdev); 676 677 /* 678 * NULL configuration means the CRTC is being disabled, stop 679 * the pipeline and turn the light off. 680 */ 681 ret = vsp1_pipeline_stop(pipe); 682 if (ret == -ETIMEDOUT) 683 dev_err(vsp1->dev, "DRM pipeline stop timeout\n"); 684 685 for (i = 0; i < ARRAY_SIZE(pipe->inputs); ++i) { 686 struct vsp1_rwpf *rpf = pipe->inputs[i]; 687 688 if (!rpf) 689 continue; 690 691 /* 692 * Remove the RPF from the pipe and the list of BRx 693 * inputs. 694 */ 695 WARN_ON(!rpf->entity.pipe); 696 rpf->entity.pipe = NULL; 697 list_del(&rpf->entity.list_pipe); 698 pipe->inputs[i] = NULL; 699 700 brx->inputs[rpf->brx_input].rpf = NULL; 701 } 702 703 drm_pipe->du_complete = NULL; 704 pipe->num_inputs = 0; 705 706 dev_dbg(vsp1->dev, "%s: pipe %u: releasing %s\n", 707 __func__, pipe->lif->index, 708 BRX_NAME(pipe->brx)); 709 710 list_del(&pipe->brx->list_pipe); 711 pipe->brx->pipe = NULL; 712 pipe->brx = NULL; 713 714 mutex_unlock(&vsp1->drm->lock); 715 716 vsp1_dlm_reset(pipe->output->dlm); 717 vsp1_device_put(vsp1); 718 719 dev_dbg(vsp1->dev, "%s: pipeline disabled\n", __func__); 720 721 return 0; 722 } 723 724 /* Reset the underrun counter */ 725 pipe->underrun_count = 0; 726 727 drm_pipe->width = cfg->width; 728 drm_pipe->height = cfg->height; 729 pipe->interlaced = cfg->interlaced; 730 731 dev_dbg(vsp1->dev, "%s: configuring LIF%u with format %ux%u%s\n", 732 __func__, pipe_index, cfg->width, cfg->height, 733 pipe->interlaced ? "i" : ""); 734 735 mutex_lock(&vsp1->drm->lock); 736 737 /* Setup formats through the pipeline. */ 738 ret = vsp1_du_pipeline_setup_inputs(vsp1, pipe); 739 if (ret < 0) 740 goto unlock; 741 742 ret = vsp1_du_pipeline_setup_output(vsp1, pipe); 743 if (ret < 0) 744 goto unlock; 745 746 vsp1_pipeline_dump(pipe, "LIF setup"); 747 748 /* Enable the VSP1. */ 749 ret = vsp1_device_get(vsp1); 750 if (ret < 0) 751 goto unlock; 752 753 /* 754 * Register a callback to allow us to notify the DRM driver of frame 755 * completion events. 756 */ 757 drm_pipe->du_complete = cfg->callback; 758 drm_pipe->du_private = cfg->callback_data; 759 760 /* Disable the display interrupts. */ 761 vsp1_write(vsp1, VI6_DISP_IRQ_STA(pipe_index), 0); 762 vsp1_write(vsp1, VI6_DISP_IRQ_ENB(pipe_index), 0); 763 764 /* Configure all entities in the pipeline. */ 765 vsp1_du_pipeline_configure(pipe); 766 767 unlock: 768 mutex_unlock(&vsp1->drm->lock); 769 770 if (ret < 0) 771 return ret; 772 773 /* Start the pipeline. */ 774 spin_lock_irqsave(&pipe->irqlock, flags); 775 vsp1_pipeline_run(pipe); 776 spin_unlock_irqrestore(&pipe->irqlock, flags); 777 778 dev_dbg(vsp1->dev, "%s: pipeline enabled\n", __func__); 779 780 return 0; 781 } 782 EXPORT_SYMBOL_GPL(vsp1_du_setup_lif); 783 784 /** 785 * vsp1_du_atomic_begin - Prepare for an atomic update 786 * @dev: the VSP device 787 * @pipe_index: the DRM pipeline index 788 */ 789 void vsp1_du_atomic_begin(struct device *dev, unsigned int pipe_index) 790 { 791 } 792 EXPORT_SYMBOL_GPL(vsp1_du_atomic_begin); 793 794 /** 795 * vsp1_du_atomic_update - Setup one RPF input of the VSP pipeline 796 * @dev: the VSP device 797 * @pipe_index: the DRM pipeline index 798 * @rpf_index: index of the RPF to setup (0-based) 799 * @cfg: the RPF configuration 800 * 801 * Configure the VSP to perform image composition through RPF @rpf_index as 802 * described by the @cfg configuration. The image to compose is referenced by 803 * @cfg.mem and composed using the @cfg.src crop rectangle and the @cfg.dst 804 * composition rectangle. The Z-order is configurable with higher @zpos values 805 * displayed on top. 806 * 807 * If the @cfg configuration is NULL, the RPF will be disabled. Calling the 808 * function on a disabled RPF is allowed. 809 * 810 * Image format as stored in memory is expressed as a V4L2 @cfg.pixelformat 811 * value. The memory pitch is configurable to allow for padding at end of lines, 812 * or simply for images that extend beyond the crop rectangle boundaries. The 813 * @cfg.pitch value is expressed in bytes and applies to all planes for 814 * multiplanar formats. 815 * 816 * The source memory buffer is referenced by the DMA address of its planes in 817 * the @cfg.mem array. Up to two planes are supported. The second plane DMA 818 * address is ignored for formats using a single plane. 819 * 820 * This function isn't reentrant, the caller needs to serialize calls. 821 * 822 * Return 0 on success or a negative error code on failure. 823 */ 824 int vsp1_du_atomic_update(struct device *dev, unsigned int pipe_index, 825 unsigned int rpf_index, 826 const struct vsp1_du_atomic_config *cfg) 827 { 828 struct vsp1_device *vsp1 = dev_get_drvdata(dev); 829 struct vsp1_drm_pipeline *drm_pipe = &vsp1->drm->pipe[pipe_index]; 830 struct vsp1_drm_input *input; 831 struct vsp1_rwpf *rpf; 832 int ret; 833 834 if (rpf_index >= vsp1->info->rpf_count) 835 return -EINVAL; 836 837 input = &vsp1->drm->inputs[rpf_index]; 838 rpf = vsp1->rpf[rpf_index]; 839 840 if (!cfg) { 841 dev_dbg(vsp1->dev, "%s: RPF%u: disable requested\n", __func__, 842 rpf_index); 843 844 /* 845 * Remove the RPF from the pipeline's inputs. Keep it in the 846 * pipeline's entity list to let vsp1_du_pipeline_configure() 847 * remove it from the hardware pipeline. 848 */ 849 rpf->entity.pipe = NULL; 850 drm_pipe->pipe.inputs[rpf_index] = NULL; 851 return 0; 852 } 853 854 dev_dbg(vsp1->dev, 855 "%s: RPF%u: (%u,%u)/%ux%u -> (%u,%u)/%ux%u (%p4cc), pitch %u dma { %pad, %pad, %pad } zpos %u\n", 856 __func__, rpf_index, 857 cfg->src.left, cfg->src.top, cfg->src.width, cfg->src.height, 858 cfg->dst.left, cfg->dst.top, cfg->dst.width, cfg->dst.height, 859 &cfg->pixelformat, cfg->pitch, &cfg->mem[0], &cfg->mem[1], 860 &cfg->mem[2], cfg->zpos); 861 862 /* 863 * Store the format, stride, memory buffer address, crop and compose 864 * rectangles and Z-order position and for the input. 865 */ 866 ret = vsp1_du_pipeline_set_rwpf_format(vsp1, rpf, cfg->pixelformat, 867 cfg->pitch); 868 if (ret < 0) 869 return ret; 870 871 rpf->alpha = cfg->alpha; 872 873 rpf->mem.addr[0] = cfg->mem[0]; 874 rpf->mem.addr[1] = cfg->mem[1]; 875 rpf->mem.addr[2] = cfg->mem[2]; 876 877 rpf->format.flags = cfg->premult ? V4L2_PIX_FMT_FLAG_PREMUL_ALPHA : 0; 878 879 input->crop = cfg->src; 880 input->compose = cfg->dst; 881 input->zpos = cfg->zpos; 882 input->ycbcr_enc = cfg->color_encoding; 883 input->quantization = cfg->color_range; 884 885 drm_pipe->pipe.inputs[rpf_index] = rpf; 886 887 return 0; 888 } 889 EXPORT_SYMBOL_GPL(vsp1_du_atomic_update); 890 891 /** 892 * vsp1_du_atomic_flush - Commit an atomic update 893 * @dev: the VSP device 894 * @pipe_index: the DRM pipeline index 895 * @cfg: atomic pipe configuration 896 */ 897 void vsp1_du_atomic_flush(struct device *dev, unsigned int pipe_index, 898 const struct vsp1_du_atomic_pipe_config *cfg) 899 { 900 struct vsp1_device *vsp1 = dev_get_drvdata(dev); 901 struct vsp1_drm_pipeline *drm_pipe = &vsp1->drm->pipe[pipe_index]; 902 struct vsp1_pipeline *pipe = &drm_pipe->pipe; 903 int ret; 904 905 drm_pipe->crc = cfg->crc; 906 907 mutex_lock(&vsp1->drm->lock); 908 909 if (cfg->writeback.pixelformat) { 910 const struct vsp1_du_writeback_config *wb_cfg = &cfg->writeback; 911 912 ret = vsp1_du_pipeline_set_rwpf_format(vsp1, pipe->output, 913 wb_cfg->pixelformat, 914 wb_cfg->pitch); 915 if (WARN_ON(ret < 0)) 916 goto done; 917 918 pipe->output->mem.addr[0] = wb_cfg->mem[0]; 919 pipe->output->mem.addr[1] = wb_cfg->mem[1]; 920 pipe->output->mem.addr[2] = wb_cfg->mem[2]; 921 pipe->output->writeback = true; 922 } 923 924 vsp1_du_pipeline_setup_inputs(vsp1, pipe); 925 926 vsp1_pipeline_dump(pipe, "atomic update"); 927 928 vsp1_du_pipeline_configure(pipe); 929 930 done: 931 mutex_unlock(&vsp1->drm->lock); 932 } 933 EXPORT_SYMBOL_GPL(vsp1_du_atomic_flush); 934 935 int vsp1_du_map_sg(struct device *dev, struct sg_table *sgt) 936 { 937 struct vsp1_device *vsp1 = dev_get_drvdata(dev); 938 939 /* 940 * As all the buffers allocated by the DU driver are coherent, we can 941 * skip cache sync. This will need to be revisited when support for 942 * non-coherent buffers will be added to the DU driver. 943 */ 944 return dma_map_sgtable(vsp1->bus_master, sgt, DMA_TO_DEVICE, 945 DMA_ATTR_SKIP_CPU_SYNC); 946 } 947 EXPORT_SYMBOL_GPL(vsp1_du_map_sg); 948 949 void vsp1_du_unmap_sg(struct device *dev, struct sg_table *sgt) 950 { 951 struct vsp1_device *vsp1 = dev_get_drvdata(dev); 952 953 dma_unmap_sgtable(vsp1->bus_master, sgt, DMA_TO_DEVICE, 954 DMA_ATTR_SKIP_CPU_SYNC); 955 } 956 EXPORT_SYMBOL_GPL(vsp1_du_unmap_sg); 957 958 /* ----------------------------------------------------------------------------- 959 * Initialization 960 */ 961 962 int vsp1_drm_init(struct vsp1_device *vsp1) 963 { 964 unsigned int i; 965 966 vsp1->drm = devm_kzalloc(vsp1->dev, sizeof(*vsp1->drm), GFP_KERNEL); 967 if (!vsp1->drm) 968 return -ENOMEM; 969 970 mutex_init(&vsp1->drm->lock); 971 972 /* Create one DRM pipeline per LIF. */ 973 for (i = 0; i < vsp1->info->lif_count; ++i) { 974 struct vsp1_drm_pipeline *drm_pipe = &vsp1->drm->pipe[i]; 975 struct vsp1_pipeline *pipe = &drm_pipe->pipe; 976 977 init_waitqueue_head(&drm_pipe->wait_queue); 978 979 vsp1_pipeline_init(pipe); 980 981 pipe->partitions = 1; 982 pipe->part_table = &drm_pipe->partition; 983 984 pipe->frame_end = vsp1_du_pipeline_frame_end; 985 986 /* 987 * The output side of the DRM pipeline is static, add the 988 * corresponding entities manually. 989 */ 990 pipe->output = vsp1->wpf[i]; 991 pipe->lif = &vsp1->lif[i]->entity; 992 993 pipe->output->entity.pipe = pipe; 994 pipe->output->entity.sink = pipe->lif; 995 pipe->output->entity.sink_pad = 0; 996 list_add_tail(&pipe->output->entity.list_pipe, &pipe->entities); 997 998 pipe->lif->pipe = pipe; 999 list_add_tail(&pipe->lif->list_pipe, &pipe->entities); 1000 1001 /* 1002 * CRC computation is initially disabled, don't add the UIF to 1003 * the pipeline. 1004 */ 1005 if (i < vsp1->info->uif_count) 1006 drm_pipe->uif = &vsp1->uif[i]->entity; 1007 } 1008 1009 /* Disable all RPFs initially. */ 1010 for (i = 0; i < vsp1->info->rpf_count; ++i) { 1011 struct vsp1_rwpf *input = vsp1->rpf[i]; 1012 1013 INIT_LIST_HEAD(&input->entity.list_pipe); 1014 } 1015 1016 return 0; 1017 } 1018 1019 void vsp1_drm_cleanup(struct vsp1_device *vsp1) 1020 { 1021 mutex_destroy(&vsp1->drm->lock); 1022 } 1023