xref: /linux/drivers/media/platform/renesas/rcar_drif.c (revision 68c402fe5c5e5aa9a04c8bba9d99feb08a68afa7)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * R-Car Gen3 Digital Radio Interface (DRIF) driver
4  *
5  * Copyright (C) 2017 Renesas Electronics Corporation
6  */
7 
8 /*
9  * The R-Car DRIF is a receive only MSIOF like controller with an
10  * external master device driving the SCK. It receives data into a FIFO,
11  * then this driver uses the SYS-DMAC engine to move the data from
12  * the device to memory.
13  *
14  * Each DRIF channel DRIFx (as per datasheet) contains two internal
15  * channels DRIFx0 & DRIFx1 within itself with each having its own resources
16  * like module clk, register set, irq and dma. These internal channels share
17  * common CLK & SYNC from master. The two data pins D0 & D1 shall be
18  * considered to represent the two internal channels. This internal split
19  * is not visible to the master device.
20  *
21  * Depending on the master device, a DRIF channel can use
22  *  (1) both internal channels (D0 & D1) to receive data in parallel (or)
23  *  (2) one internal channel (D0 or D1) to receive data
24  *
25  * The primary design goal of this controller is to act as a Digital Radio
26  * Interface that receives digital samples from a tuner device. Hence the
27  * driver exposes the device as a V4L2 SDR device. In order to qualify as
28  * a V4L2 SDR device, it should possess a tuner interface as mandated by the
29  * framework. This driver expects a tuner driver (sub-device) to bind
30  * asynchronously with this device and the combined drivers shall expose
31  * a V4L2 compliant SDR device. The DRIF driver is independent of the
32  * tuner vendor.
33  *
34  * The DRIF h/w can support I2S mode and Frame start synchronization pulse mode.
35  * This driver is tested for I2S mode only because of the availability of
36  * suitable master devices. Hence, not all configurable options of DRIF h/w
37  * like lsb/msb first, syncdl, dtdl etc. are exposed via DT and I2S defaults
38  * are used. These can be exposed later if needed after testing.
39  */
40 #include <linux/bitops.h>
41 #include <linux/clk.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/dmaengine.h>
44 #include <linux/ioctl.h>
45 #include <linux/iopoll.h>
46 #include <linux/module.h>
47 #include <linux/of.h>
48 #include <linux/of_graph.h>
49 #include <linux/of_platform.h>
50 #include <linux/platform_device.h>
51 #include <linux/sched.h>
52 #include <media/v4l2-async.h>
53 #include <media/v4l2-ctrls.h>
54 #include <media/v4l2-device.h>
55 #include <media/v4l2-event.h>
56 #include <media/v4l2-fh.h>
57 #include <media/v4l2-ioctl.h>
58 #include <media/videobuf2-v4l2.h>
59 #include <media/videobuf2-vmalloc.h>
60 
61 /* DRIF register offsets */
62 #define RCAR_DRIF_SITMDR1			0x00
63 #define RCAR_DRIF_SITMDR2			0x04
64 #define RCAR_DRIF_SITMDR3			0x08
65 #define RCAR_DRIF_SIRMDR1			0x10
66 #define RCAR_DRIF_SIRMDR2			0x14
67 #define RCAR_DRIF_SIRMDR3			0x18
68 #define RCAR_DRIF_SICTR				0x28
69 #define RCAR_DRIF_SIFCTR			0x30
70 #define RCAR_DRIF_SISTR				0x40
71 #define RCAR_DRIF_SIIER				0x44
72 #define RCAR_DRIF_SIRFDR			0x60
73 
74 #define RCAR_DRIF_RFOVF			BIT(3)	/* Receive FIFO overflow */
75 #define RCAR_DRIF_RFUDF			BIT(4)	/* Receive FIFO underflow */
76 #define RCAR_DRIF_RFSERR		BIT(5)	/* Receive frame sync error */
77 #define RCAR_DRIF_REOF			BIT(7)	/* Frame reception end */
78 #define RCAR_DRIF_RDREQ			BIT(12) /* Receive data xfer req */
79 #define RCAR_DRIF_RFFUL			BIT(13)	/* Receive FIFO full */
80 
81 /* SIRMDR1 */
82 #define RCAR_DRIF_SIRMDR1_SYNCMD_FRAME		(0 << 28)
83 #define RCAR_DRIF_SIRMDR1_SYNCMD_LR		(3 << 28)
84 
85 #define RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH	(0 << 25)
86 #define RCAR_DRIF_SIRMDR1_SYNCAC_POL_LOW	(1 << 25)
87 
88 #define RCAR_DRIF_SIRMDR1_MSB_FIRST		(0 << 24)
89 #define RCAR_DRIF_SIRMDR1_LSB_FIRST		(1 << 24)
90 
91 #define RCAR_DRIF_SIRMDR1_DTDL_0		(0 << 20)
92 #define RCAR_DRIF_SIRMDR1_DTDL_1		(1 << 20)
93 #define RCAR_DRIF_SIRMDR1_DTDL_2		(2 << 20)
94 #define RCAR_DRIF_SIRMDR1_DTDL_0PT5		(5 << 20)
95 #define RCAR_DRIF_SIRMDR1_DTDL_1PT5		(6 << 20)
96 
97 #define RCAR_DRIF_SIRMDR1_SYNCDL_0		(0 << 20)
98 #define RCAR_DRIF_SIRMDR1_SYNCDL_1		(1 << 20)
99 #define RCAR_DRIF_SIRMDR1_SYNCDL_2		(2 << 20)
100 #define RCAR_DRIF_SIRMDR1_SYNCDL_3		(3 << 20)
101 #define RCAR_DRIF_SIRMDR1_SYNCDL_0PT5		(5 << 20)
102 #define RCAR_DRIF_SIRMDR1_SYNCDL_1PT5		(6 << 20)
103 
104 #define RCAR_DRIF_MDR_GRPCNT(n)			(((n) - 1) << 30)
105 #define RCAR_DRIF_MDR_BITLEN(n)			(((n) - 1) << 24)
106 #define RCAR_DRIF_MDR_WDCNT(n)			(((n) - 1) << 16)
107 
108 /* Hidden Transmit register that controls CLK & SYNC */
109 #define RCAR_DRIF_SITMDR1_PCON			BIT(30)
110 
111 #define RCAR_DRIF_SICTR_RX_RISING_EDGE		BIT(26)
112 #define RCAR_DRIF_SICTR_RX_EN			BIT(8)
113 #define RCAR_DRIF_SICTR_RESET			BIT(0)
114 
115 /* Constants */
116 #define RCAR_DRIF_NUM_HWBUFS			32
117 #define RCAR_DRIF_MAX_DEVS			4
118 #define RCAR_DRIF_DEFAULT_NUM_HWBUFS		16
119 #define RCAR_DRIF_DEFAULT_HWBUF_SIZE		(4 * PAGE_SIZE)
120 #define RCAR_DRIF_MAX_CHANNEL			2
121 #define RCAR_SDR_BUFFER_SIZE			SZ_64K
122 
123 /* Internal buffer status flags */
124 #define RCAR_DRIF_BUF_DONE			BIT(0)	/* DMA completed */
125 #define RCAR_DRIF_BUF_OVERFLOW			BIT(1)	/* Overflow detected */
126 
127 #define to_rcar_drif_buf_pair(sdr, ch_num, idx)			\
128 	(&((sdr)->ch[!(ch_num)]->buf[(idx)]))
129 
130 #define for_each_rcar_drif_channel(ch, ch_mask)			\
131 	for_each_set_bit(ch, ch_mask, RCAR_DRIF_MAX_CHANNEL)
132 
133 /* Debug */
134 #define rdrif_dbg(sdr, fmt, arg...)				\
135 	dev_dbg(sdr->v4l2_dev.dev, fmt, ## arg)
136 
137 #define rdrif_err(sdr, fmt, arg...)				\
138 	dev_err(sdr->v4l2_dev.dev, fmt, ## arg)
139 
140 /* Stream formats */
141 struct rcar_drif_format {
142 	u32	pixelformat;
143 	u32	buffersize;
144 	u32	bitlen;
145 	u32	wdcnt;
146 	u32	num_ch;
147 };
148 
149 /* Format descriptions for capture */
150 static const struct rcar_drif_format formats[] = {
151 	{
152 		.pixelformat	= V4L2_SDR_FMT_PCU16BE,
153 		.buffersize	= RCAR_SDR_BUFFER_SIZE,
154 		.bitlen		= 16,
155 		.wdcnt		= 1,
156 		.num_ch		= 2,
157 	},
158 	{
159 		.pixelformat	= V4L2_SDR_FMT_PCU18BE,
160 		.buffersize	= RCAR_SDR_BUFFER_SIZE,
161 		.bitlen		= 18,
162 		.wdcnt		= 1,
163 		.num_ch		= 2,
164 	},
165 	{
166 		.pixelformat	= V4L2_SDR_FMT_PCU20BE,
167 		.buffersize	= RCAR_SDR_BUFFER_SIZE,
168 		.bitlen		= 20,
169 		.wdcnt		= 1,
170 		.num_ch		= 2,
171 	},
172 };
173 
174 /* Buffer for a received frame from one or both internal channels */
175 struct rcar_drif_frame_buf {
176 	/* Common v4l buffer stuff -- must be first */
177 	struct vb2_v4l2_buffer vb;
178 	struct list_head list;
179 };
180 
181 /* OF graph endpoint's V4L2 async data */
182 struct rcar_drif_graph_ep {
183 	struct v4l2_subdev *subdev;	/* Async matched subdev */
184 };
185 
186 /* DMA buffer */
187 struct rcar_drif_hwbuf {
188 	void *addr;			/* CPU-side address */
189 	unsigned int status;		/* Buffer status flags */
190 };
191 
192 /* Internal channel */
193 struct rcar_drif {
194 	struct rcar_drif_sdr *sdr;	/* Group device */
195 	struct platform_device *pdev;	/* Channel's pdev */
196 	void __iomem *base;		/* Base register address */
197 	resource_size_t start;		/* I/O resource offset */
198 	struct dma_chan *dmach;		/* Reserved DMA channel */
199 	struct clk *clk;		/* Module clock */
200 	struct rcar_drif_hwbuf buf[RCAR_DRIF_NUM_HWBUFS]; /* H/W bufs */
201 	dma_addr_t dma_handle;		/* Handle for all bufs */
202 	unsigned int num;		/* Channel number */
203 	bool acting_sdr;		/* Channel acting as SDR device */
204 };
205 
206 /* DRIF V4L2 SDR */
207 struct rcar_drif_sdr {
208 	struct device *dev;		/* Platform device */
209 	struct video_device *vdev;	/* V4L2 SDR device */
210 	struct v4l2_device v4l2_dev;	/* V4L2 device */
211 
212 	/* Videobuf2 queue and queued buffers list */
213 	struct vb2_queue vb_queue;
214 	struct list_head queued_bufs;
215 	spinlock_t queued_bufs_lock;	/* Protects queued_bufs */
216 	spinlock_t dma_lock;		/* To serialize DMA cb of channels */
217 
218 	struct mutex v4l2_mutex;	/* To serialize ioctls */
219 	struct mutex vb_queue_mutex;	/* To serialize streaming ioctls */
220 	struct v4l2_ctrl_handler ctrl_hdl;	/* SDR control handler */
221 	struct v4l2_async_notifier notifier;	/* For subdev (tuner) */
222 	struct rcar_drif_graph_ep ep;	/* Endpoint V4L2 async data */
223 
224 	/* Current V4L2 SDR format ptr */
225 	const struct rcar_drif_format *fmt;
226 
227 	/* Device tree SYNC properties */
228 	u32 mdr1;
229 
230 	/* Internals */
231 	struct rcar_drif *ch[RCAR_DRIF_MAX_CHANNEL]; /* DRIFx0,1 */
232 	unsigned long hw_ch_mask;	/* Enabled channels per DT */
233 	unsigned long cur_ch_mask;	/* Used channels for an SDR FMT */
234 	u32 num_hw_ch;			/* Num of DT enabled channels */
235 	u32 num_cur_ch;			/* Num of used channels */
236 	u32 hwbuf_size;			/* Each DMA buffer size */
237 	u32 produced;			/* Buffers produced by sdr dev */
238 };
239 
240 /* Register access functions */
241 static void rcar_drif_write(struct rcar_drif *ch, u32 offset, u32 data)
242 {
243 	writel(data, ch->base + offset);
244 }
245 
246 static u32 rcar_drif_read(struct rcar_drif *ch, u32 offset)
247 {
248 	return readl(ch->base + offset);
249 }
250 
251 /* Release DMA channels */
252 static void rcar_drif_release_dmachannels(struct rcar_drif_sdr *sdr)
253 {
254 	unsigned int i;
255 
256 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask)
257 		if (sdr->ch[i]->dmach) {
258 			dma_release_channel(sdr->ch[i]->dmach);
259 			sdr->ch[i]->dmach = NULL;
260 		}
261 }
262 
263 /* Allocate DMA channels */
264 static int rcar_drif_alloc_dmachannels(struct rcar_drif_sdr *sdr)
265 {
266 	struct dma_slave_config dma_cfg;
267 	unsigned int i;
268 	int ret;
269 
270 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
271 		struct rcar_drif *ch = sdr->ch[i];
272 
273 		ch->dmach = dma_request_chan(&ch->pdev->dev, "rx");
274 		if (IS_ERR(ch->dmach)) {
275 			ret = PTR_ERR(ch->dmach);
276 			if (ret != -EPROBE_DEFER)
277 				rdrif_err(sdr,
278 					  "ch%u: dma channel req failed: %pe\n",
279 					  i, ch->dmach);
280 			ch->dmach = NULL;
281 			goto dmach_error;
282 		}
283 
284 		/* Configure slave */
285 		memset(&dma_cfg, 0, sizeof(dma_cfg));
286 		dma_cfg.src_addr = (phys_addr_t)(ch->start + RCAR_DRIF_SIRFDR);
287 		dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
288 		ret = dmaengine_slave_config(ch->dmach, &dma_cfg);
289 		if (ret) {
290 			rdrif_err(sdr, "ch%u: dma slave config failed\n", i);
291 			goto dmach_error;
292 		}
293 	}
294 	return 0;
295 
296 dmach_error:
297 	rcar_drif_release_dmachannels(sdr);
298 	return ret;
299 }
300 
301 /* Release queued vb2 buffers */
302 static void rcar_drif_release_queued_bufs(struct rcar_drif_sdr *sdr,
303 					  enum vb2_buffer_state state)
304 {
305 	struct rcar_drif_frame_buf *fbuf, *tmp;
306 	unsigned long flags;
307 
308 	spin_lock_irqsave(&sdr->queued_bufs_lock, flags);
309 	list_for_each_entry_safe(fbuf, tmp, &sdr->queued_bufs, list) {
310 		list_del(&fbuf->list);
311 		vb2_buffer_done(&fbuf->vb.vb2_buf, state);
312 	}
313 	spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
314 }
315 
316 /* Set MDR defaults */
317 static inline void rcar_drif_set_mdr1(struct rcar_drif_sdr *sdr)
318 {
319 	unsigned int i;
320 
321 	/* Set defaults for enabled internal channels */
322 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
323 		/* Refer MSIOF section in manual for this register setting */
324 		rcar_drif_write(sdr->ch[i], RCAR_DRIF_SITMDR1,
325 				RCAR_DRIF_SITMDR1_PCON);
326 
327 		/* Setup MDR1 value */
328 		rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR1, sdr->mdr1);
329 
330 		rdrif_dbg(sdr, "ch%u: mdr1 = 0x%08x",
331 			  i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR1));
332 	}
333 }
334 
335 /* Set DRIF receive format */
336 static int rcar_drif_set_format(struct rcar_drif_sdr *sdr)
337 {
338 	unsigned int i;
339 
340 	rdrif_dbg(sdr, "setfmt: bitlen %u wdcnt %u num_ch %u\n",
341 		  sdr->fmt->bitlen, sdr->fmt->wdcnt, sdr->fmt->num_ch);
342 
343 	/* Sanity check */
344 	if (sdr->fmt->num_ch > sdr->num_cur_ch) {
345 		rdrif_err(sdr, "fmt num_ch %u cur_ch %u mismatch\n",
346 			  sdr->fmt->num_ch, sdr->num_cur_ch);
347 		return -EINVAL;
348 	}
349 
350 	/* Setup group, bitlen & wdcnt */
351 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
352 		u32 mdr;
353 
354 		/* Two groups */
355 		mdr = RCAR_DRIF_MDR_GRPCNT(2) |
356 			RCAR_DRIF_MDR_BITLEN(sdr->fmt->bitlen) |
357 			RCAR_DRIF_MDR_WDCNT(sdr->fmt->wdcnt);
358 		rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR2, mdr);
359 
360 		mdr = RCAR_DRIF_MDR_BITLEN(sdr->fmt->bitlen) |
361 			RCAR_DRIF_MDR_WDCNT(sdr->fmt->wdcnt);
362 		rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR3, mdr);
363 
364 		rdrif_dbg(sdr, "ch%u: new mdr[2,3] = 0x%08x, 0x%08x\n",
365 			  i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR2),
366 			  rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR3));
367 	}
368 	return 0;
369 }
370 
371 /* Release DMA buffers */
372 static void rcar_drif_release_buf(struct rcar_drif_sdr *sdr)
373 {
374 	unsigned int i;
375 
376 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
377 		struct rcar_drif *ch = sdr->ch[i];
378 
379 		/* First entry contains the dma buf ptr */
380 		if (ch->buf[0].addr) {
381 			dma_free_coherent(&ch->pdev->dev,
382 				sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS,
383 				ch->buf[0].addr, ch->dma_handle);
384 			ch->buf[0].addr = NULL;
385 		}
386 	}
387 }
388 
389 /* Request DMA buffers */
390 static int rcar_drif_request_buf(struct rcar_drif_sdr *sdr)
391 {
392 	int ret = -ENOMEM;
393 	unsigned int i, j;
394 	void *addr;
395 
396 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
397 		struct rcar_drif *ch = sdr->ch[i];
398 
399 		/* Allocate DMA buffers */
400 		addr = dma_alloc_coherent(&ch->pdev->dev,
401 				sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS,
402 				&ch->dma_handle, GFP_KERNEL);
403 		if (!addr) {
404 			rdrif_err(sdr,
405 			"ch%u: dma alloc failed. num hwbufs %u size %u\n",
406 			i, RCAR_DRIF_NUM_HWBUFS, sdr->hwbuf_size);
407 			goto error;
408 		}
409 
410 		/* Split the chunk and populate bufctxt */
411 		for (j = 0; j < RCAR_DRIF_NUM_HWBUFS; j++) {
412 			ch->buf[j].addr = addr + (j * sdr->hwbuf_size);
413 			ch->buf[j].status = 0;
414 		}
415 	}
416 	return 0;
417 error:
418 	return ret;
419 }
420 
421 /* Setup vb_queue minimum buffer requirements */
422 static int rcar_drif_queue_setup(struct vb2_queue *vq,
423 			unsigned int *num_buffers, unsigned int *num_planes,
424 			unsigned int sizes[], struct device *alloc_devs[])
425 {
426 	struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq);
427 	unsigned int q_num_bufs = vb2_get_num_buffers(vq);
428 
429 	/* Need at least 16 buffers */
430 	if (q_num_bufs + *num_buffers < 16)
431 		*num_buffers = 16 - q_num_bufs;
432 
433 	*num_planes = 1;
434 	sizes[0] = PAGE_ALIGN(sdr->fmt->buffersize);
435 	rdrif_dbg(sdr, "num_bufs %d sizes[0] %d\n", *num_buffers, sizes[0]);
436 
437 	return 0;
438 }
439 
440 /* Enqueue buffer */
441 static void rcar_drif_buf_queue(struct vb2_buffer *vb)
442 {
443 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
444 	struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vb->vb2_queue);
445 	struct rcar_drif_frame_buf *fbuf =
446 			container_of(vbuf, struct rcar_drif_frame_buf, vb);
447 	unsigned long flags;
448 
449 	rdrif_dbg(sdr, "buf_queue idx %u\n", vb->index);
450 	spin_lock_irqsave(&sdr->queued_bufs_lock, flags);
451 	list_add_tail(&fbuf->list, &sdr->queued_bufs);
452 	spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
453 }
454 
455 /* Get a frame buf from list */
456 static struct rcar_drif_frame_buf *
457 rcar_drif_get_fbuf(struct rcar_drif_sdr *sdr)
458 {
459 	struct rcar_drif_frame_buf *fbuf;
460 	unsigned long flags;
461 
462 	spin_lock_irqsave(&sdr->queued_bufs_lock, flags);
463 	fbuf = list_first_entry_or_null(&sdr->queued_bufs, struct
464 					rcar_drif_frame_buf, list);
465 	if (!fbuf) {
466 		/*
467 		 * App is late in enqueing buffers. Samples lost & there will
468 		 * be a gap in sequence number when app recovers
469 		 */
470 		rdrif_dbg(sdr, "\napp late: prod %u\n", sdr->produced);
471 		spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
472 		return NULL;
473 	}
474 	list_del(&fbuf->list);
475 	spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
476 
477 	return fbuf;
478 }
479 
480 /* Helpers to set/clear buf pair status */
481 static inline bool rcar_drif_bufs_done(struct rcar_drif_hwbuf **buf)
482 {
483 	return (buf[0]->status & buf[1]->status & RCAR_DRIF_BUF_DONE);
484 }
485 
486 static inline bool rcar_drif_bufs_overflow(struct rcar_drif_hwbuf **buf)
487 {
488 	return ((buf[0]->status | buf[1]->status) & RCAR_DRIF_BUF_OVERFLOW);
489 }
490 
491 static inline void rcar_drif_bufs_clear(struct rcar_drif_hwbuf **buf,
492 					unsigned int bit)
493 {
494 	unsigned int i;
495 
496 	for (i = 0; i < RCAR_DRIF_MAX_CHANNEL; i++)
497 		buf[i]->status &= ~bit;
498 }
499 
500 /* Channel DMA complete */
501 static void rcar_drif_channel_complete(struct rcar_drif *ch, u32 idx)
502 {
503 	u32 str;
504 
505 	ch->buf[idx].status |= RCAR_DRIF_BUF_DONE;
506 
507 	/* Check for DRIF errors */
508 	str = rcar_drif_read(ch, RCAR_DRIF_SISTR);
509 	if (unlikely(str & RCAR_DRIF_RFOVF)) {
510 		/* Writing the same clears it */
511 		rcar_drif_write(ch, RCAR_DRIF_SISTR, str);
512 
513 		/* Overflow: some samples are lost */
514 		ch->buf[idx].status |= RCAR_DRIF_BUF_OVERFLOW;
515 	}
516 }
517 
518 /* DMA callback for each stage */
519 static void rcar_drif_dma_complete(void *dma_async_param)
520 {
521 	struct rcar_drif *ch = dma_async_param;
522 	struct rcar_drif_sdr *sdr = ch->sdr;
523 	struct rcar_drif_hwbuf *buf[RCAR_DRIF_MAX_CHANNEL];
524 	struct rcar_drif_frame_buf *fbuf;
525 	bool overflow = false;
526 	u32 idx, produced;
527 	unsigned int i;
528 
529 	spin_lock(&sdr->dma_lock);
530 
531 	/* DMA can be terminated while the callback was waiting on lock */
532 	if (!vb2_is_streaming(&sdr->vb_queue)) {
533 		spin_unlock(&sdr->dma_lock);
534 		return;
535 	}
536 
537 	idx = sdr->produced % RCAR_DRIF_NUM_HWBUFS;
538 	rcar_drif_channel_complete(ch, idx);
539 
540 	if (sdr->num_cur_ch == RCAR_DRIF_MAX_CHANNEL) {
541 		buf[0] = ch->num ? to_rcar_drif_buf_pair(sdr, ch->num, idx) :
542 				&ch->buf[idx];
543 		buf[1] = ch->num ? &ch->buf[idx] :
544 				to_rcar_drif_buf_pair(sdr, ch->num, idx);
545 
546 		/* Check if both DMA buffers are done */
547 		if (!rcar_drif_bufs_done(buf)) {
548 			spin_unlock(&sdr->dma_lock);
549 			return;
550 		}
551 
552 		/* Clear buf done status */
553 		rcar_drif_bufs_clear(buf, RCAR_DRIF_BUF_DONE);
554 
555 		if (rcar_drif_bufs_overflow(buf)) {
556 			overflow = true;
557 			/* Clear the flag in status */
558 			rcar_drif_bufs_clear(buf, RCAR_DRIF_BUF_OVERFLOW);
559 		}
560 	} else {
561 		buf[0] = &ch->buf[idx];
562 		if (buf[0]->status & RCAR_DRIF_BUF_OVERFLOW) {
563 			overflow = true;
564 			/* Clear the flag in status */
565 			buf[0]->status &= ~RCAR_DRIF_BUF_OVERFLOW;
566 		}
567 	}
568 
569 	/* Buffer produced for consumption */
570 	produced = sdr->produced++;
571 	spin_unlock(&sdr->dma_lock);
572 
573 	rdrif_dbg(sdr, "ch%u: prod %u\n", ch->num, produced);
574 
575 	/* Get fbuf */
576 	fbuf = rcar_drif_get_fbuf(sdr);
577 	if (!fbuf)
578 		return;
579 
580 	for (i = 0; i < RCAR_DRIF_MAX_CHANNEL; i++)
581 		memcpy(vb2_plane_vaddr(&fbuf->vb.vb2_buf, 0) +
582 		       i * sdr->hwbuf_size, buf[i]->addr, sdr->hwbuf_size);
583 
584 	fbuf->vb.field = V4L2_FIELD_NONE;
585 	fbuf->vb.sequence = produced;
586 	fbuf->vb.vb2_buf.timestamp = ktime_get_ns();
587 	vb2_set_plane_payload(&fbuf->vb.vb2_buf, 0, sdr->fmt->buffersize);
588 
589 	/* Set error state on overflow */
590 	vb2_buffer_done(&fbuf->vb.vb2_buf,
591 			overflow ? VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE);
592 }
593 
594 static int rcar_drif_qbuf(struct rcar_drif *ch)
595 {
596 	struct rcar_drif_sdr *sdr = ch->sdr;
597 	dma_addr_t addr = ch->dma_handle;
598 	struct dma_async_tx_descriptor *rxd;
599 	dma_cookie_t cookie;
600 	int ret = -EIO;
601 
602 	/* Setup cyclic DMA with given buffers */
603 	rxd = dmaengine_prep_dma_cyclic(ch->dmach, addr,
604 					sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS,
605 					sdr->hwbuf_size, DMA_DEV_TO_MEM,
606 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
607 	if (!rxd) {
608 		rdrif_err(sdr, "ch%u: prep dma cyclic failed\n", ch->num);
609 		return ret;
610 	}
611 
612 	/* Submit descriptor */
613 	rxd->callback = rcar_drif_dma_complete;
614 	rxd->callback_param = ch;
615 	cookie = dmaengine_submit(rxd);
616 	if (dma_submit_error(cookie)) {
617 		rdrif_err(sdr, "ch%u: dma submit failed\n", ch->num);
618 		return ret;
619 	}
620 
621 	dma_async_issue_pending(ch->dmach);
622 	return 0;
623 }
624 
625 /* Enable reception */
626 static int rcar_drif_enable_rx(struct rcar_drif_sdr *sdr)
627 {
628 	unsigned int i;
629 	u32 ctr;
630 	int ret = -EINVAL;
631 
632 	/*
633 	 * When both internal channels are enabled, they can be synchronized
634 	 * only by the master
635 	 */
636 
637 	/* Enable receive */
638 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
639 		ctr = rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR);
640 		ctr |= (RCAR_DRIF_SICTR_RX_RISING_EDGE |
641 			 RCAR_DRIF_SICTR_RX_EN);
642 		rcar_drif_write(sdr->ch[i], RCAR_DRIF_SICTR, ctr);
643 	}
644 
645 	/* Check receive enabled */
646 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
647 		ret = readl_poll_timeout(sdr->ch[i]->base + RCAR_DRIF_SICTR,
648 				ctr, ctr & RCAR_DRIF_SICTR_RX_EN, 7, 100000);
649 		if (ret) {
650 			rdrif_err(sdr, "ch%u: rx en failed. ctr 0x%08x\n", i,
651 				  rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR));
652 			break;
653 		}
654 	}
655 	return ret;
656 }
657 
658 /* Disable reception */
659 static void rcar_drif_disable_rx(struct rcar_drif_sdr *sdr)
660 {
661 	unsigned int i;
662 	u32 ctr;
663 	int ret;
664 
665 	/* Disable receive */
666 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
667 		ctr = rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR);
668 		ctr &= ~RCAR_DRIF_SICTR_RX_EN;
669 		rcar_drif_write(sdr->ch[i], RCAR_DRIF_SICTR, ctr);
670 	}
671 
672 	/* Check receive disabled */
673 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
674 		ret = readl_poll_timeout(sdr->ch[i]->base + RCAR_DRIF_SICTR,
675 				ctr, !(ctr & RCAR_DRIF_SICTR_RX_EN), 7, 100000);
676 		if (ret)
677 			dev_warn(&sdr->vdev->dev,
678 			"ch%u: failed to disable rx. ctr 0x%08x\n",
679 			i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR));
680 	}
681 }
682 
683 /* Stop channel */
684 static void rcar_drif_stop_channel(struct rcar_drif *ch)
685 {
686 	/* Disable DMA receive interrupt */
687 	rcar_drif_write(ch, RCAR_DRIF_SIIER, 0x00000000);
688 
689 	/* Terminate all DMA transfers */
690 	dmaengine_terminate_sync(ch->dmach);
691 }
692 
693 /* Stop receive operation */
694 static void rcar_drif_stop(struct rcar_drif_sdr *sdr)
695 {
696 	unsigned int i;
697 
698 	/* Disable Rx */
699 	rcar_drif_disable_rx(sdr);
700 
701 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask)
702 		rcar_drif_stop_channel(sdr->ch[i]);
703 }
704 
705 /* Start channel */
706 static int rcar_drif_start_channel(struct rcar_drif *ch)
707 {
708 	struct rcar_drif_sdr *sdr = ch->sdr;
709 	u32 ctr, str;
710 	int ret;
711 
712 	/* Reset receive */
713 	rcar_drif_write(ch, RCAR_DRIF_SICTR, RCAR_DRIF_SICTR_RESET);
714 	ret = readl_poll_timeout(ch->base + RCAR_DRIF_SICTR, ctr,
715 				 !(ctr & RCAR_DRIF_SICTR_RESET), 7, 100000);
716 	if (ret) {
717 		rdrif_err(sdr, "ch%u: failed to reset rx. ctr 0x%08x\n",
718 			  ch->num, rcar_drif_read(ch, RCAR_DRIF_SICTR));
719 		return ret;
720 	}
721 
722 	/* Queue buffers for DMA */
723 	ret = rcar_drif_qbuf(ch);
724 	if (ret)
725 		return ret;
726 
727 	/* Clear status register flags */
728 	str = RCAR_DRIF_RFFUL | RCAR_DRIF_REOF | RCAR_DRIF_RFSERR |
729 		RCAR_DRIF_RFUDF | RCAR_DRIF_RFOVF;
730 	rcar_drif_write(ch, RCAR_DRIF_SISTR, str);
731 
732 	/* Enable DMA receive interrupt */
733 	rcar_drif_write(ch, RCAR_DRIF_SIIER, 0x00009000);
734 
735 	return ret;
736 }
737 
738 /* Start receive operation */
739 static int rcar_drif_start(struct rcar_drif_sdr *sdr)
740 {
741 	unsigned long enabled = 0;
742 	unsigned int i;
743 	int ret;
744 
745 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
746 		ret = rcar_drif_start_channel(sdr->ch[i]);
747 		if (ret)
748 			goto start_error;
749 		enabled |= BIT(i);
750 	}
751 
752 	ret = rcar_drif_enable_rx(sdr);
753 	if (ret)
754 		goto enable_error;
755 
756 	sdr->produced = 0;
757 	return ret;
758 
759 enable_error:
760 	rcar_drif_disable_rx(sdr);
761 start_error:
762 	for_each_rcar_drif_channel(i, &enabled)
763 		rcar_drif_stop_channel(sdr->ch[i]);
764 
765 	return ret;
766 }
767 
768 /* Start streaming */
769 static int rcar_drif_start_streaming(struct vb2_queue *vq, unsigned int count)
770 {
771 	struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq);
772 	unsigned long enabled = 0;
773 	unsigned int i;
774 	int ret;
775 
776 	mutex_lock(&sdr->v4l2_mutex);
777 
778 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
779 		ret = clk_prepare_enable(sdr->ch[i]->clk);
780 		if (ret)
781 			goto error;
782 		enabled |= BIT(i);
783 	}
784 
785 	/* Set default MDRx settings */
786 	rcar_drif_set_mdr1(sdr);
787 
788 	/* Set new format */
789 	ret = rcar_drif_set_format(sdr);
790 	if (ret)
791 		goto error;
792 
793 	if (sdr->num_cur_ch == RCAR_DRIF_MAX_CHANNEL)
794 		sdr->hwbuf_size = sdr->fmt->buffersize / RCAR_DRIF_MAX_CHANNEL;
795 	else
796 		sdr->hwbuf_size = sdr->fmt->buffersize;
797 
798 	rdrif_dbg(sdr, "num hwbufs %u, hwbuf_size %u\n",
799 		RCAR_DRIF_NUM_HWBUFS, sdr->hwbuf_size);
800 
801 	/* Alloc DMA channel */
802 	ret = rcar_drif_alloc_dmachannels(sdr);
803 	if (ret)
804 		goto error;
805 
806 	/* Request buffers */
807 	ret = rcar_drif_request_buf(sdr);
808 	if (ret)
809 		goto error;
810 
811 	/* Start Rx */
812 	ret = rcar_drif_start(sdr);
813 	if (ret)
814 		goto error;
815 
816 	mutex_unlock(&sdr->v4l2_mutex);
817 
818 	return ret;
819 
820 error:
821 	rcar_drif_release_queued_bufs(sdr, VB2_BUF_STATE_QUEUED);
822 	rcar_drif_release_buf(sdr);
823 	rcar_drif_release_dmachannels(sdr);
824 	for_each_rcar_drif_channel(i, &enabled)
825 		clk_disable_unprepare(sdr->ch[i]->clk);
826 
827 	mutex_unlock(&sdr->v4l2_mutex);
828 
829 	return ret;
830 }
831 
832 /* Stop streaming */
833 static void rcar_drif_stop_streaming(struct vb2_queue *vq)
834 {
835 	struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq);
836 	unsigned int i;
837 
838 	mutex_lock(&sdr->v4l2_mutex);
839 
840 	/* Stop hardware streaming */
841 	rcar_drif_stop(sdr);
842 
843 	/* Return all queued buffers to vb2 */
844 	rcar_drif_release_queued_bufs(sdr, VB2_BUF_STATE_ERROR);
845 
846 	/* Release buf */
847 	rcar_drif_release_buf(sdr);
848 
849 	/* Release DMA channel resources */
850 	rcar_drif_release_dmachannels(sdr);
851 
852 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask)
853 		clk_disable_unprepare(sdr->ch[i]->clk);
854 
855 	mutex_unlock(&sdr->v4l2_mutex);
856 }
857 
858 /* Vb2 ops */
859 static const struct vb2_ops rcar_drif_vb2_ops = {
860 	.queue_setup            = rcar_drif_queue_setup,
861 	.buf_queue              = rcar_drif_buf_queue,
862 	.start_streaming        = rcar_drif_start_streaming,
863 	.stop_streaming         = rcar_drif_stop_streaming,
864 	.wait_prepare		= vb2_ops_wait_prepare,
865 	.wait_finish		= vb2_ops_wait_finish,
866 };
867 
868 static int rcar_drif_querycap(struct file *file, void *fh,
869 			      struct v4l2_capability *cap)
870 {
871 	struct rcar_drif_sdr *sdr = video_drvdata(file);
872 
873 	strscpy(cap->driver, KBUILD_MODNAME, sizeof(cap->driver));
874 	strscpy(cap->card, sdr->vdev->name, sizeof(cap->card));
875 	strscpy(cap->bus_info, "platform:R-Car DRIF", sizeof(cap->bus_info));
876 
877 	return 0;
878 }
879 
880 static int rcar_drif_set_default_format(struct rcar_drif_sdr *sdr)
881 {
882 	unsigned int i;
883 
884 	for (i = 0; i < ARRAY_SIZE(formats); i++) {
885 		/* Matching fmt based on required channels is set as default */
886 		if (sdr->num_hw_ch == formats[i].num_ch) {
887 			sdr->fmt = &formats[i];
888 			sdr->cur_ch_mask = sdr->hw_ch_mask;
889 			sdr->num_cur_ch = sdr->num_hw_ch;
890 			dev_dbg(sdr->dev, "default fmt[%u]: mask %lu num %u\n",
891 				i, sdr->cur_ch_mask, sdr->num_cur_ch);
892 			return 0;
893 		}
894 	}
895 	return -EINVAL;
896 }
897 
898 static int rcar_drif_enum_fmt_sdr_cap(struct file *file, void *priv,
899 				      struct v4l2_fmtdesc *f)
900 {
901 	if (f->index >= ARRAY_SIZE(formats))
902 		return -EINVAL;
903 
904 	f->pixelformat = formats[f->index].pixelformat;
905 
906 	return 0;
907 }
908 
909 static int rcar_drif_g_fmt_sdr_cap(struct file *file, void *priv,
910 				   struct v4l2_format *f)
911 {
912 	struct rcar_drif_sdr *sdr = video_drvdata(file);
913 
914 	f->fmt.sdr.pixelformat = sdr->fmt->pixelformat;
915 	f->fmt.sdr.buffersize = sdr->fmt->buffersize;
916 
917 	return 0;
918 }
919 
920 static int rcar_drif_s_fmt_sdr_cap(struct file *file, void *priv,
921 				   struct v4l2_format *f)
922 {
923 	struct rcar_drif_sdr *sdr = video_drvdata(file);
924 	struct vb2_queue *q = &sdr->vb_queue;
925 	unsigned int i;
926 
927 	if (vb2_is_busy(q))
928 		return -EBUSY;
929 
930 	for (i = 0; i < ARRAY_SIZE(formats); i++) {
931 		if (formats[i].pixelformat == f->fmt.sdr.pixelformat)
932 			break;
933 	}
934 
935 	if (i == ARRAY_SIZE(formats))
936 		i = 0;		/* Set the 1st format as default on no match */
937 
938 	sdr->fmt = &formats[i];
939 	f->fmt.sdr.pixelformat = sdr->fmt->pixelformat;
940 	f->fmt.sdr.buffersize = formats[i].buffersize;
941 	memset(f->fmt.sdr.reserved, 0, sizeof(f->fmt.sdr.reserved));
942 
943 	/*
944 	 * If a format demands one channel only out of two
945 	 * enabled channels, pick the 0th channel.
946 	 */
947 	if (formats[i].num_ch < sdr->num_hw_ch) {
948 		sdr->cur_ch_mask = BIT(0);
949 		sdr->num_cur_ch = formats[i].num_ch;
950 	} else {
951 		sdr->cur_ch_mask = sdr->hw_ch_mask;
952 		sdr->num_cur_ch = sdr->num_hw_ch;
953 	}
954 
955 	rdrif_dbg(sdr, "cur: idx %u mask %lu num %u\n",
956 		  i, sdr->cur_ch_mask, sdr->num_cur_ch);
957 
958 	return 0;
959 }
960 
961 static int rcar_drif_try_fmt_sdr_cap(struct file *file, void *priv,
962 				     struct v4l2_format *f)
963 {
964 	unsigned int i;
965 
966 	for (i = 0; i < ARRAY_SIZE(formats); i++) {
967 		if (formats[i].pixelformat == f->fmt.sdr.pixelformat) {
968 			f->fmt.sdr.buffersize = formats[i].buffersize;
969 			return 0;
970 		}
971 	}
972 
973 	f->fmt.sdr.pixelformat = formats[0].pixelformat;
974 	f->fmt.sdr.buffersize = formats[0].buffersize;
975 	memset(f->fmt.sdr.reserved, 0, sizeof(f->fmt.sdr.reserved));
976 
977 	return 0;
978 }
979 
980 /* Tuner subdev ioctls */
981 static int rcar_drif_enum_freq_bands(struct file *file, void *priv,
982 				     struct v4l2_frequency_band *band)
983 {
984 	struct rcar_drif_sdr *sdr = video_drvdata(file);
985 
986 	return v4l2_subdev_call(sdr->ep.subdev, tuner, enum_freq_bands, band);
987 }
988 
989 static int rcar_drif_g_frequency(struct file *file, void *priv,
990 				 struct v4l2_frequency *f)
991 {
992 	struct rcar_drif_sdr *sdr = video_drvdata(file);
993 
994 	return v4l2_subdev_call(sdr->ep.subdev, tuner, g_frequency, f);
995 }
996 
997 static int rcar_drif_s_frequency(struct file *file, void *priv,
998 				 const struct v4l2_frequency *f)
999 {
1000 	struct rcar_drif_sdr *sdr = video_drvdata(file);
1001 
1002 	return v4l2_subdev_call(sdr->ep.subdev, tuner, s_frequency, f);
1003 }
1004 
1005 static int rcar_drif_g_tuner(struct file *file, void *priv,
1006 			     struct v4l2_tuner *vt)
1007 {
1008 	struct rcar_drif_sdr *sdr = video_drvdata(file);
1009 
1010 	return v4l2_subdev_call(sdr->ep.subdev, tuner, g_tuner, vt);
1011 }
1012 
1013 static int rcar_drif_s_tuner(struct file *file, void *priv,
1014 			     const struct v4l2_tuner *vt)
1015 {
1016 	struct rcar_drif_sdr *sdr = video_drvdata(file);
1017 
1018 	return v4l2_subdev_call(sdr->ep.subdev, tuner, s_tuner, vt);
1019 }
1020 
1021 static const struct v4l2_ioctl_ops rcar_drif_ioctl_ops = {
1022 	.vidioc_querycap          = rcar_drif_querycap,
1023 
1024 	.vidioc_enum_fmt_sdr_cap  = rcar_drif_enum_fmt_sdr_cap,
1025 	.vidioc_g_fmt_sdr_cap     = rcar_drif_g_fmt_sdr_cap,
1026 	.vidioc_s_fmt_sdr_cap     = rcar_drif_s_fmt_sdr_cap,
1027 	.vidioc_try_fmt_sdr_cap   = rcar_drif_try_fmt_sdr_cap,
1028 
1029 	.vidioc_reqbufs           = vb2_ioctl_reqbufs,
1030 	.vidioc_create_bufs       = vb2_ioctl_create_bufs,
1031 	.vidioc_prepare_buf       = vb2_ioctl_prepare_buf,
1032 	.vidioc_querybuf          = vb2_ioctl_querybuf,
1033 	.vidioc_qbuf              = vb2_ioctl_qbuf,
1034 	.vidioc_dqbuf             = vb2_ioctl_dqbuf,
1035 
1036 	.vidioc_streamon          = vb2_ioctl_streamon,
1037 	.vidioc_streamoff         = vb2_ioctl_streamoff,
1038 
1039 	.vidioc_s_frequency       = rcar_drif_s_frequency,
1040 	.vidioc_g_frequency       = rcar_drif_g_frequency,
1041 	.vidioc_s_tuner		  = rcar_drif_s_tuner,
1042 	.vidioc_g_tuner		  = rcar_drif_g_tuner,
1043 	.vidioc_enum_freq_bands   = rcar_drif_enum_freq_bands,
1044 	.vidioc_subscribe_event   = v4l2_ctrl_subscribe_event,
1045 	.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
1046 	.vidioc_log_status        = v4l2_ctrl_log_status,
1047 };
1048 
1049 static const struct v4l2_file_operations rcar_drif_fops = {
1050 	.owner                    = THIS_MODULE,
1051 	.open                     = v4l2_fh_open,
1052 	.release                  = vb2_fop_release,
1053 	.read                     = vb2_fop_read,
1054 	.poll                     = vb2_fop_poll,
1055 	.mmap                     = vb2_fop_mmap,
1056 	.unlocked_ioctl           = video_ioctl2,
1057 };
1058 
1059 static int rcar_drif_sdr_register(struct rcar_drif_sdr *sdr)
1060 {
1061 	int ret;
1062 
1063 	/* Init video_device structure */
1064 	sdr->vdev = video_device_alloc();
1065 	if (!sdr->vdev)
1066 		return -ENOMEM;
1067 
1068 	snprintf(sdr->vdev->name, sizeof(sdr->vdev->name), "R-Car DRIF");
1069 	sdr->vdev->fops = &rcar_drif_fops;
1070 	sdr->vdev->ioctl_ops = &rcar_drif_ioctl_ops;
1071 	sdr->vdev->release = video_device_release;
1072 	sdr->vdev->lock = &sdr->v4l2_mutex;
1073 	sdr->vdev->queue = &sdr->vb_queue;
1074 	sdr->vdev->queue->lock = &sdr->vb_queue_mutex;
1075 	sdr->vdev->ctrl_handler = &sdr->ctrl_hdl;
1076 	sdr->vdev->v4l2_dev = &sdr->v4l2_dev;
1077 	sdr->vdev->device_caps = V4L2_CAP_SDR_CAPTURE | V4L2_CAP_TUNER |
1078 		V4L2_CAP_STREAMING | V4L2_CAP_READWRITE;
1079 	video_set_drvdata(sdr->vdev, sdr);
1080 
1081 	/* Register V4L2 SDR device */
1082 	ret = video_register_device(sdr->vdev, VFL_TYPE_SDR, -1);
1083 	if (ret) {
1084 		video_device_release(sdr->vdev);
1085 		sdr->vdev = NULL;
1086 		dev_err(sdr->dev, "failed video_register_device (%d)\n", ret);
1087 	}
1088 
1089 	return ret;
1090 }
1091 
1092 static void rcar_drif_sdr_unregister(struct rcar_drif_sdr *sdr)
1093 {
1094 	video_unregister_device(sdr->vdev);
1095 	sdr->vdev = NULL;
1096 }
1097 
1098 /* Sub-device bound callback */
1099 static int rcar_drif_notify_bound(struct v4l2_async_notifier *notifier,
1100 				   struct v4l2_subdev *subdev,
1101 				   struct v4l2_async_connection *asd)
1102 {
1103 	struct rcar_drif_sdr *sdr =
1104 		container_of(notifier, struct rcar_drif_sdr, notifier);
1105 
1106 	v4l2_set_subdev_hostdata(subdev, sdr);
1107 	sdr->ep.subdev = subdev;
1108 	rdrif_dbg(sdr, "bound asd %s\n", subdev->name);
1109 
1110 	return 0;
1111 }
1112 
1113 /* Sub-device unbind callback */
1114 static void rcar_drif_notify_unbind(struct v4l2_async_notifier *notifier,
1115 				   struct v4l2_subdev *subdev,
1116 				   struct v4l2_async_connection *asd)
1117 {
1118 	struct rcar_drif_sdr *sdr =
1119 		container_of(notifier, struct rcar_drif_sdr, notifier);
1120 
1121 	if (sdr->ep.subdev != subdev) {
1122 		rdrif_err(sdr, "subdev %s is not bound\n", subdev->name);
1123 		return;
1124 	}
1125 
1126 	/* Free ctrl handler if initialized */
1127 	v4l2_ctrl_handler_free(&sdr->ctrl_hdl);
1128 	sdr->v4l2_dev.ctrl_handler = NULL;
1129 	sdr->ep.subdev = NULL;
1130 
1131 	rcar_drif_sdr_unregister(sdr);
1132 	rdrif_dbg(sdr, "unbind asd %s\n", subdev->name);
1133 }
1134 
1135 /* Sub-device registered notification callback */
1136 static int rcar_drif_notify_complete(struct v4l2_async_notifier *notifier)
1137 {
1138 	struct rcar_drif_sdr *sdr =
1139 		container_of(notifier, struct rcar_drif_sdr, notifier);
1140 	int ret;
1141 
1142 	/*
1143 	 * The subdev tested at this point uses 4 controls. Using 10 as a worst
1144 	 * case scenario hint. When less controls are needed there will be some
1145 	 * unused memory and when more controls are needed the framework uses
1146 	 * hash to manage controls within this number.
1147 	 */
1148 	ret = v4l2_ctrl_handler_init(&sdr->ctrl_hdl, 10);
1149 	if (ret)
1150 		return -ENOMEM;
1151 
1152 	sdr->v4l2_dev.ctrl_handler = &sdr->ctrl_hdl;
1153 	ret = v4l2_device_register_subdev_nodes(&sdr->v4l2_dev);
1154 	if (ret) {
1155 		rdrif_err(sdr, "failed: register subdev nodes ret %d\n", ret);
1156 		goto error;
1157 	}
1158 
1159 	ret = v4l2_ctrl_add_handler(&sdr->ctrl_hdl,
1160 				    sdr->ep.subdev->ctrl_handler, NULL, true);
1161 	if (ret) {
1162 		rdrif_err(sdr, "failed: ctrl add hdlr ret %d\n", ret);
1163 		goto error;
1164 	}
1165 
1166 	ret = rcar_drif_sdr_register(sdr);
1167 	if (ret)
1168 		goto error;
1169 
1170 	return ret;
1171 
1172 error:
1173 	v4l2_ctrl_handler_free(&sdr->ctrl_hdl);
1174 
1175 	return ret;
1176 }
1177 
1178 static const struct v4l2_async_notifier_operations rcar_drif_notify_ops = {
1179 	.bound = rcar_drif_notify_bound,
1180 	.unbind = rcar_drif_notify_unbind,
1181 	.complete = rcar_drif_notify_complete,
1182 };
1183 
1184 /* Read endpoint properties */
1185 static void rcar_drif_get_ep_properties(struct rcar_drif_sdr *sdr,
1186 					struct fwnode_handle *fwnode)
1187 {
1188 	u32 val;
1189 
1190 	/* Set the I2S defaults for SIRMDR1*/
1191 	sdr->mdr1 = RCAR_DRIF_SIRMDR1_SYNCMD_LR | RCAR_DRIF_SIRMDR1_MSB_FIRST |
1192 		RCAR_DRIF_SIRMDR1_DTDL_1 | RCAR_DRIF_SIRMDR1_SYNCDL_0;
1193 
1194 	/* Parse sync polarity from endpoint */
1195 	if (!fwnode_property_read_u32(fwnode, "sync-active", &val))
1196 		sdr->mdr1 |= val ? RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH :
1197 			RCAR_DRIF_SIRMDR1_SYNCAC_POL_LOW;
1198 	else
1199 		sdr->mdr1 |= RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH; /* default */
1200 
1201 	dev_dbg(sdr->dev, "mdr1 0x%08x\n", sdr->mdr1);
1202 }
1203 
1204 /* Parse sub-devs (tuner) to find a matching device */
1205 static int rcar_drif_parse_subdevs(struct rcar_drif_sdr *sdr)
1206 {
1207 	struct v4l2_async_notifier *notifier = &sdr->notifier;
1208 	struct fwnode_handle *fwnode, *ep;
1209 	struct v4l2_async_connection *asd;
1210 
1211 	v4l2_async_nf_init(&sdr->notifier, &sdr->v4l2_dev);
1212 
1213 	ep = fwnode_graph_get_next_endpoint(of_fwnode_handle(sdr->dev->of_node),
1214 					    NULL);
1215 	if (!ep)
1216 		return 0;
1217 
1218 	/* Get the endpoint properties */
1219 	rcar_drif_get_ep_properties(sdr, ep);
1220 
1221 	fwnode = fwnode_graph_get_remote_port_parent(ep);
1222 	fwnode_handle_put(ep);
1223 	if (!fwnode) {
1224 		dev_warn(sdr->dev, "bad remote port parent\n");
1225 		return -EINVAL;
1226 	}
1227 
1228 	asd = v4l2_async_nf_add_fwnode(notifier, fwnode,
1229 				       struct v4l2_async_connection);
1230 	fwnode_handle_put(fwnode);
1231 	if (IS_ERR(asd))
1232 		return PTR_ERR(asd);
1233 
1234 	return 0;
1235 }
1236 
1237 /* Check if the given device is the primary bond */
1238 static bool rcar_drif_primary_bond(struct platform_device *pdev)
1239 {
1240 	return of_property_read_bool(pdev->dev.of_node, "renesas,primary-bond");
1241 }
1242 
1243 /* Check if both devices of the bond are enabled */
1244 static struct device_node *rcar_drif_bond_enabled(struct platform_device *p)
1245 {
1246 	struct device_node *np;
1247 
1248 	np = of_parse_phandle(p->dev.of_node, "renesas,bonding", 0);
1249 	if (np && of_device_is_available(np))
1250 		return np;
1251 
1252 	return NULL;
1253 }
1254 
1255 /* Check if the bonded device is probed */
1256 static int rcar_drif_bond_available(struct rcar_drif_sdr *sdr,
1257 				    struct device_node *np)
1258 {
1259 	struct platform_device *pdev;
1260 	struct rcar_drif *ch;
1261 	int ret = 0;
1262 
1263 	pdev = of_find_device_by_node(np);
1264 	if (!pdev) {
1265 		dev_err(sdr->dev, "failed to get bonded device from node\n");
1266 		return -ENODEV;
1267 	}
1268 
1269 	device_lock(&pdev->dev);
1270 	ch = platform_get_drvdata(pdev);
1271 	if (ch) {
1272 		/* Update sdr data in the bonded device */
1273 		ch->sdr = sdr;
1274 
1275 		/* Update sdr with bonded device data */
1276 		sdr->ch[ch->num] = ch;
1277 		sdr->hw_ch_mask |= BIT(ch->num);
1278 	} else {
1279 		/* Defer */
1280 		dev_info(sdr->dev, "defer probe\n");
1281 		ret = -EPROBE_DEFER;
1282 	}
1283 	device_unlock(&pdev->dev);
1284 
1285 	put_device(&pdev->dev);
1286 
1287 	return ret;
1288 }
1289 
1290 /* V4L2 SDR device probe */
1291 static int rcar_drif_sdr_probe(struct rcar_drif_sdr *sdr)
1292 {
1293 	int ret;
1294 
1295 	/* Validate any supported format for enabled channels */
1296 	ret = rcar_drif_set_default_format(sdr);
1297 	if (ret) {
1298 		dev_err(sdr->dev, "failed to set default format\n");
1299 		return ret;
1300 	}
1301 
1302 	/* Set defaults */
1303 	sdr->hwbuf_size = RCAR_DRIF_DEFAULT_HWBUF_SIZE;
1304 
1305 	mutex_init(&sdr->v4l2_mutex);
1306 	mutex_init(&sdr->vb_queue_mutex);
1307 	spin_lock_init(&sdr->queued_bufs_lock);
1308 	spin_lock_init(&sdr->dma_lock);
1309 	INIT_LIST_HEAD(&sdr->queued_bufs);
1310 
1311 	/* Init videobuf2 queue structure */
1312 	sdr->vb_queue.type = V4L2_BUF_TYPE_SDR_CAPTURE;
1313 	sdr->vb_queue.io_modes = VB2_READ | VB2_MMAP | VB2_DMABUF;
1314 	sdr->vb_queue.drv_priv = sdr;
1315 	sdr->vb_queue.buf_struct_size = sizeof(struct rcar_drif_frame_buf);
1316 	sdr->vb_queue.ops = &rcar_drif_vb2_ops;
1317 	sdr->vb_queue.mem_ops = &vb2_vmalloc_memops;
1318 	sdr->vb_queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
1319 
1320 	/* Init videobuf2 queue */
1321 	ret = vb2_queue_init(&sdr->vb_queue);
1322 	if (ret) {
1323 		dev_err(sdr->dev, "failed: vb2_queue_init ret %d\n", ret);
1324 		return ret;
1325 	}
1326 
1327 	/* Register the v4l2_device */
1328 	ret = v4l2_device_register(sdr->dev, &sdr->v4l2_dev);
1329 	if (ret) {
1330 		dev_err(sdr->dev, "failed: v4l2_device_register ret %d\n", ret);
1331 		return ret;
1332 	}
1333 
1334 	/*
1335 	 * Parse subdevs after v4l2_device_register because if the subdev
1336 	 * is already probed, bound and complete will be called immediately
1337 	 */
1338 	ret = rcar_drif_parse_subdevs(sdr);
1339 	if (ret)
1340 		goto error;
1341 
1342 	sdr->notifier.ops = &rcar_drif_notify_ops;
1343 
1344 	/* Register notifier */
1345 	ret = v4l2_async_nf_register(&sdr->notifier);
1346 	if (ret < 0) {
1347 		dev_err(sdr->dev, "failed: notifier register ret %d\n", ret);
1348 		goto cleanup;
1349 	}
1350 
1351 	return ret;
1352 
1353 cleanup:
1354 	v4l2_async_nf_cleanup(&sdr->notifier);
1355 error:
1356 	v4l2_device_unregister(&sdr->v4l2_dev);
1357 
1358 	return ret;
1359 }
1360 
1361 /* V4L2 SDR device remove */
1362 static void rcar_drif_sdr_remove(struct rcar_drif_sdr *sdr)
1363 {
1364 	v4l2_async_nf_unregister(&sdr->notifier);
1365 	v4l2_async_nf_cleanup(&sdr->notifier);
1366 	v4l2_device_unregister(&sdr->v4l2_dev);
1367 }
1368 
1369 /* DRIF channel probe */
1370 static int rcar_drif_probe(struct platform_device *pdev)
1371 {
1372 	struct rcar_drif_sdr *sdr;
1373 	struct device_node *np;
1374 	struct rcar_drif *ch;
1375 	struct resource	*res;
1376 	int ret;
1377 
1378 	/* Reserve memory for enabled channel */
1379 	ch = devm_kzalloc(&pdev->dev, sizeof(*ch), GFP_KERNEL);
1380 	if (!ch)
1381 		return -ENOMEM;
1382 
1383 	ch->pdev = pdev;
1384 
1385 	/* Module clock */
1386 	ch->clk = devm_clk_get(&pdev->dev, "fck");
1387 	if (IS_ERR(ch->clk)) {
1388 		ret = PTR_ERR(ch->clk);
1389 		dev_err(&pdev->dev, "clk get failed (%d)\n", ret);
1390 		return ret;
1391 	}
1392 
1393 	/* Register map */
1394 	ch->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1395 	if (IS_ERR(ch->base))
1396 		return PTR_ERR(ch->base);
1397 
1398 	ch->start = res->start;
1399 	platform_set_drvdata(pdev, ch);
1400 
1401 	/* Check if both channels of the bond are enabled */
1402 	np = rcar_drif_bond_enabled(pdev);
1403 	if (np) {
1404 		/* Check if current channel acting as primary-bond */
1405 		if (!rcar_drif_primary_bond(pdev)) {
1406 			ch->num = 1;	/* Primary bond is channel 0 always */
1407 			of_node_put(np);
1408 			return 0;
1409 		}
1410 	}
1411 
1412 	/* Reserve memory for SDR structure */
1413 	sdr = devm_kzalloc(&pdev->dev, sizeof(*sdr), GFP_KERNEL);
1414 	if (!sdr) {
1415 		of_node_put(np);
1416 		return -ENOMEM;
1417 	}
1418 	ch->sdr = sdr;
1419 	sdr->dev = &pdev->dev;
1420 
1421 	/* Establish links between SDR and channel(s) */
1422 	sdr->ch[ch->num] = ch;
1423 	sdr->hw_ch_mask = BIT(ch->num);
1424 	if (np) {
1425 		/* Check if bonded device is ready */
1426 		ret = rcar_drif_bond_available(sdr, np);
1427 		of_node_put(np);
1428 		if (ret)
1429 			return ret;
1430 	}
1431 	sdr->num_hw_ch = hweight_long(sdr->hw_ch_mask);
1432 
1433 	return rcar_drif_sdr_probe(sdr);
1434 }
1435 
1436 /* DRIF channel remove */
1437 static void rcar_drif_remove(struct platform_device *pdev)
1438 {
1439 	struct rcar_drif *ch = platform_get_drvdata(pdev);
1440 	struct rcar_drif_sdr *sdr = ch->sdr;
1441 
1442 	/* Channel 0 will be the SDR instance */
1443 	if (ch->num)
1444 		return;
1445 
1446 	/* SDR instance */
1447 	rcar_drif_sdr_remove(sdr);
1448 }
1449 
1450 /* FIXME: Implement suspend/resume support */
1451 static int __maybe_unused rcar_drif_suspend(struct device *dev)
1452 {
1453 	return 0;
1454 }
1455 
1456 static int __maybe_unused rcar_drif_resume(struct device *dev)
1457 {
1458 	return 0;
1459 }
1460 
1461 static SIMPLE_DEV_PM_OPS(rcar_drif_pm_ops, rcar_drif_suspend,
1462 			 rcar_drif_resume);
1463 
1464 static const struct of_device_id rcar_drif_of_table[] = {
1465 	{ .compatible = "renesas,rcar-gen3-drif" },
1466 	{ }
1467 };
1468 MODULE_DEVICE_TABLE(of, rcar_drif_of_table);
1469 
1470 #define RCAR_DRIF_DRV_NAME "rcar_drif"
1471 static struct platform_driver rcar_drif_driver = {
1472 	.driver = {
1473 		.name = RCAR_DRIF_DRV_NAME,
1474 		.of_match_table = rcar_drif_of_table,
1475 		.pm = &rcar_drif_pm_ops,
1476 		},
1477 	.probe = rcar_drif_probe,
1478 	.remove_new = rcar_drif_remove,
1479 };
1480 
1481 module_platform_driver(rcar_drif_driver);
1482 
1483 MODULE_DESCRIPTION("Renesas R-Car Gen3 DRIF driver");
1484 MODULE_ALIAS("platform:" RCAR_DRIF_DRV_NAME);
1485 MODULE_LICENSE("GPL");
1486 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
1487