xref: /linux/drivers/media/platform/renesas/rcar-csi2.c (revision 6b8a024d25ebf7535eb4a3e926309aa693cfe1bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for Renesas R-Car MIPI CSI-2 Receiver
4  *
5  * Copyright (C) 2018 Renesas Electronics Corp.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/of_graph.h>
14 #include <linux/platform_device.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/reset.h>
17 #include <linux/sys_soc.h>
18 
19 #include <media/mipi-csi2.h>
20 #include <media/v4l2-ctrls.h>
21 #include <media/v4l2-device.h>
22 #include <media/v4l2-fwnode.h>
23 #include <media/v4l2-mc.h>
24 #include <media/v4l2-subdev.h>
25 
26 struct rcar_csi2;
27 
28 /* Register offsets and bits */
29 
30 /* Control Timing Select */
31 #define TREF_REG			0x00
32 #define TREF_TREF			BIT(0)
33 
34 /* Software Reset */
35 #define SRST_REG			0x04
36 #define SRST_SRST			BIT(0)
37 
38 /* PHY Operation Control */
39 #define PHYCNT_REG			0x08
40 #define PHYCNT_SHUTDOWNZ		BIT(17)
41 #define PHYCNT_RSTZ			BIT(16)
42 #define PHYCNT_ENABLECLK		BIT(4)
43 #define PHYCNT_ENABLE_3			BIT(3)
44 #define PHYCNT_ENABLE_2			BIT(2)
45 #define PHYCNT_ENABLE_1			BIT(1)
46 #define PHYCNT_ENABLE_0			BIT(0)
47 
48 /* Checksum Control */
49 #define CHKSUM_REG			0x0c
50 #define CHKSUM_ECC_EN			BIT(1)
51 #define CHKSUM_CRC_EN			BIT(0)
52 
53 /*
54  * Channel Data Type Select
55  * VCDT[0-15]:  Channel 0 VCDT[16-31]:  Channel 1
56  * VCDT2[0-15]: Channel 2 VCDT2[16-31]: Channel 3
57  */
58 #define VCDT_REG			0x10
59 #define VCDT2_REG			0x14
60 #define VCDT_VCDTN_EN			BIT(15)
61 #define VCDT_SEL_VC(n)			(((n) & 0x3) << 8)
62 #define VCDT_SEL_DTN_ON			BIT(6)
63 #define VCDT_SEL_DT(n)			(((n) & 0x3f) << 0)
64 
65 /* Frame Data Type Select */
66 #define FRDT_REG			0x18
67 
68 /* Field Detection Control */
69 #define FLD_REG				0x1c
70 #define FLD_FLD_NUM(n)			(((n) & 0xff) << 16)
71 #define FLD_DET_SEL(n)			(((n) & 0x3) << 4)
72 #define FLD_FLD_EN4			BIT(3)
73 #define FLD_FLD_EN3			BIT(2)
74 #define FLD_FLD_EN2			BIT(1)
75 #define FLD_FLD_EN			BIT(0)
76 
77 /* Automatic Standby Control */
78 #define ASTBY_REG			0x20
79 
80 /* Long Data Type Setting 0 */
81 #define LNGDT0_REG			0x28
82 
83 /* Long Data Type Setting 1 */
84 #define LNGDT1_REG			0x2c
85 
86 /* Interrupt Enable */
87 #define INTEN_REG			0x30
88 #define INTEN_INT_AFIFO_OF		BIT(27)
89 #define INTEN_INT_ERRSOTHS		BIT(4)
90 #define INTEN_INT_ERRSOTSYNCHS		BIT(3)
91 
92 /* Interrupt Source Mask */
93 #define INTCLOSE_REG			0x34
94 
95 /* Interrupt Status Monitor */
96 #define INTSTATE_REG			0x38
97 #define INTSTATE_INT_ULPS_START		BIT(7)
98 #define INTSTATE_INT_ULPS_END		BIT(6)
99 
100 /* Interrupt Error Status Monitor */
101 #define INTERRSTATE_REG			0x3c
102 
103 /* Short Packet Data */
104 #define SHPDAT_REG			0x40
105 
106 /* Short Packet Count */
107 #define SHPCNT_REG			0x44
108 
109 /* LINK Operation Control */
110 #define LINKCNT_REG			0x48
111 #define LINKCNT_MONITOR_EN		BIT(31)
112 #define LINKCNT_REG_MONI_PACT_EN	BIT(25)
113 #define LINKCNT_ICLK_NONSTOP		BIT(24)
114 
115 /* Lane Swap */
116 #define LSWAP_REG			0x4c
117 #define LSWAP_L3SEL(n)			(((n) & 0x3) << 6)
118 #define LSWAP_L2SEL(n)			(((n) & 0x3) << 4)
119 #define LSWAP_L1SEL(n)			(((n) & 0x3) << 2)
120 #define LSWAP_L0SEL(n)			(((n) & 0x3) << 0)
121 
122 /* PHY Test Interface Write Register */
123 #define PHTW_REG			0x50
124 #define PHTW_DWEN			BIT(24)
125 #define PHTW_TESTDIN_DATA(n)		(((n & 0xff)) << 16)
126 #define PHTW_CWEN			BIT(8)
127 #define PHTW_TESTDIN_CODE(n)		((n & 0xff))
128 
129 #define PHYFRX_REG			0x64
130 #define PHYFRX_FORCERX_MODE_3		BIT(3)
131 #define PHYFRX_FORCERX_MODE_2		BIT(2)
132 #define PHYFRX_FORCERX_MODE_1		BIT(1)
133 #define PHYFRX_FORCERX_MODE_0		BIT(0)
134 
135 /* V4H BASE registers */
136 #define V4H_N_LANES_REG					0x0004
137 #define V4H_CSI2_RESETN_REG				0x0008
138 #define V4H_PHY_MODE_REG				0x001c
139 #define V4H_PHY_SHUTDOWNZ_REG				0x0040
140 #define V4H_DPHY_RSTZ_REG				0x0044
141 #define V4H_FLDC_REG					0x0804
142 #define V4H_FLDD_REG					0x0808
143 #define V4H_IDIC_REG					0x0810
144 #define V4H_PHY_EN_REG					0x2000
145 
146 #define V4H_ST_PHYST_REG				0x2814
147 #define V4H_ST_PHYST_ST_PHY_READY			BIT(31)
148 #define V4H_ST_PHYST_ST_STOPSTATE_3			BIT(3)
149 #define V4H_ST_PHYST_ST_STOPSTATE_2			BIT(2)
150 #define V4H_ST_PHYST_ST_STOPSTATE_1			BIT(1)
151 #define V4H_ST_PHYST_ST_STOPSTATE_0			BIT(0)
152 
153 /* V4H PPI registers */
154 #define V4H_PPI_STARTUP_RW_COMMON_DPHY_REG(n)		(0x21800 + ((n) * 2)) /* n = 0 - 9 */
155 #define V4H_PPI_STARTUP_RW_COMMON_STARTUP_1_1_REG	0x21822
156 #define V4H_PPI_CALIBCTRL_RW_COMMON_BG_0_REG		0x2184c
157 #define V4H_PPI_RW_LPDCOCAL_TIMEBASE_REG		0x21c02
158 #define V4H_PPI_RW_LPDCOCAL_NREF_REG			0x21c04
159 #define V4H_PPI_RW_LPDCOCAL_NREF_RANGE_REG		0x21c06
160 #define V4H_PPI_RW_LPDCOCAL_TWAIT_CONFIG_REG		0x21c0a
161 #define V4H_PPI_RW_LPDCOCAL_VT_CONFIG_REG		0x21c0c
162 #define V4H_PPI_RW_LPDCOCAL_COARSE_CFG_REG		0x21c10
163 #define V4H_PPI_RW_COMMON_CFG_REG			0x21c6c
164 #define V4H_PPI_RW_TERMCAL_CFG_0_REG			0x21c80
165 #define V4H_PPI_RW_OFFSETCAL_CFG_0_REG			0x21ca0
166 
167 /* V4H CORE registers */
168 #define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE0_CTRL_2_REG(n)	(0x22040 + ((n) * 2)) /* n = 0 - 15 */
169 #define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE1_CTRL_2_REG(n)	(0x22440 + ((n) * 2)) /* n = 0 - 15 */
170 #define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE2_CTRL_2_REG(n)	(0x22840 + ((n) * 2)) /* n = 0 - 15 */
171 #define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE3_CTRL_2_REG(n)	(0x22c40 + ((n) * 2)) /* n = 0 - 15 */
172 #define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE4_CTRL_2_REG(n)	(0x23040 + ((n) * 2)) /* n = 0 - 15 */
173 #define V4H_CORE_DIG_IOCTRL_RW_AFE_CB_CTRL_2_REG(n)	(0x23840 + ((n) * 2)) /* n = 0 - 11 */
174 #define V4H_CORE_DIG_RW_COMMON_REG(n)			(0x23880 + ((n) * 2)) /* n = 0 - 15 */
175 #define V4H_CORE_DIG_ANACTRL_RW_COMMON_ANACTRL_REG(n)	(0x239e0 + ((n) * 2)) /* n = 0 - 3 */
176 #define V4H_CORE_DIG_CLANE_1_RW_CFG_0_REG		0x2a400
177 #define V4H_CORE_DIG_CLANE_1_RW_HS_TX_6_REG		0x2a60c
178 
179 /* V4H C-PHY */
180 #define V4H_CORE_DIG_RW_TRIO0_REG(n)			(0x22100 + ((n) * 2)) /* n = 0 - 3 */
181 #define V4H_CORE_DIG_RW_TRIO1_REG(n)			(0x22500 + ((n) * 2)) /* n = 0 - 3 */
182 #define V4H_CORE_DIG_RW_TRIO2_REG(n)			(0x22900 + ((n) * 2)) /* n = 0 - 3 */
183 #define V4H_CORE_DIG_CLANE_0_RW_LP_0_REG		0x2a080
184 #define V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(n)		(0x2a100 + ((n) * 2)) /* n = 0 - 6 */
185 #define V4H_CORE_DIG_CLANE_1_RW_LP_0_REG		0x2a480
186 #define V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(n)		(0x2a500 + ((n) * 2)) /* n = 0 - 6 */
187 #define V4H_CORE_DIG_CLANE_2_RW_LP_0_REG		0x2a880
188 #define V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(n)		(0x2a900 + ((n) * 2)) /* n = 0 - 6 */
189 
190 struct rcsi2_cphy_setting {
191 	u16 msps;
192 	u16 rx2;
193 	u16 trio0;
194 	u16 trio1;
195 	u16 trio2;
196 	u16 lane27;
197 	u16 lane29;
198 };
199 
200 static const struct rcsi2_cphy_setting cphy_setting_table_r8a779g0[] = {
201 	{ .msps =   80, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0134, .trio2 = 0x6a, .lane27 = 0x0000, .lane29 = 0x0a24 },
202 	{ .msps =  100, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x00f5, .trio2 = 0x55, .lane27 = 0x0000, .lane29 = 0x0a24 },
203 	{ .msps =  200, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0077, .trio2 = 0x2b, .lane27 = 0x0000, .lane29 = 0x0a44 },
204 	{ .msps =  300, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x004d, .trio2 = 0x1d, .lane27 = 0x0000, .lane29 = 0x0a44 },
205 	{ .msps =  400, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0038, .trio2 = 0x16, .lane27 = 0x0000, .lane29 = 0x0a64 },
206 	{ .msps =  500, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x002b, .trio2 = 0x12, .lane27 = 0x0000, .lane29 = 0x0a64 },
207 	{ .msps =  600, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0023, .trio2 = 0x0f, .lane27 = 0x0000, .lane29 = 0x0a64 },
208 	{ .msps =  700, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x001d, .trio2 = 0x0d, .lane27 = 0x0000, .lane29 = 0x0a84 },
209 	{ .msps =  800, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0018, .trio2 = 0x0c, .lane27 = 0x0000, .lane29 = 0x0a84 },
210 	{ .msps =  900, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0015, .trio2 = 0x0b, .lane27 = 0x0000, .lane29 = 0x0a84 },
211 	{ .msps = 1000, .rx2 = 0x3e, .trio0 = 0x024a, .trio1 = 0x0012, .trio2 = 0x0a, .lane27 = 0x0400, .lane29 = 0x0a84 },
212 	{ .msps = 1100, .rx2 = 0x44, .trio0 = 0x024a, .trio1 = 0x000f, .trio2 = 0x09, .lane27 = 0x0800, .lane29 = 0x0a84 },
213 	{ .msps = 1200, .rx2 = 0x4a, .trio0 = 0x024a, .trio1 = 0x000e, .trio2 = 0x08, .lane27 = 0x0c00, .lane29 = 0x0a84 },
214 	{ .msps = 1300, .rx2 = 0x51, .trio0 = 0x024a, .trio1 = 0x000c, .trio2 = 0x08, .lane27 = 0x0c00, .lane29 = 0x0aa4 },
215 	{ .msps = 1400, .rx2 = 0x57, .trio0 = 0x024a, .trio1 = 0x000b, .trio2 = 0x07, .lane27 = 0x1000, .lane29 = 0x0aa4 },
216 	{ .msps = 1500, .rx2 = 0x5d, .trio0 = 0x044a, .trio1 = 0x0009, .trio2 = 0x07, .lane27 = 0x1000, .lane29 = 0x0aa4 },
217 	{ .msps = 1600, .rx2 = 0x63, .trio0 = 0x044a, .trio1 = 0x0008, .trio2 = 0x07, .lane27 = 0x1400, .lane29 = 0x0aa4 },
218 	{ .msps = 1700, .rx2 = 0x6a, .trio0 = 0x044a, .trio1 = 0x0007, .trio2 = 0x06, .lane27 = 0x1400, .lane29 = 0x0aa4 },
219 	{ .msps = 1800, .rx2 = 0x70, .trio0 = 0x044a, .trio1 = 0x0007, .trio2 = 0x06, .lane27 = 0x1400, .lane29 = 0x0aa4 },
220 	{ .msps = 1900, .rx2 = 0x76, .trio0 = 0x044a, .trio1 = 0x0006, .trio2 = 0x06, .lane27 = 0x1400, .lane29 = 0x0aa4 },
221 	{ .msps = 2000, .rx2 = 0x7c, .trio0 = 0x044a, .trio1 = 0x0005, .trio2 = 0x06, .lane27 = 0x1800, .lane29 = 0x0aa4 },
222 	{ .msps = 2100, .rx2 = 0x83, .trio0 = 0x044a, .trio1 = 0x0005, .trio2 = 0x05, .lane27 = 0x1800, .lane29 = 0x0aa4 },
223 	{ .msps = 2200, .rx2 = 0x89, .trio0 = 0x064a, .trio1 = 0x0004, .trio2 = 0x05, .lane27 = 0x1800, .lane29 = 0x0aa4 },
224 	{ .msps = 2300, .rx2 = 0x8f, .trio0 = 0x064a, .trio1 = 0x0003, .trio2 = 0x05, .lane27 = 0x1800, .lane29 = 0x0aa4 },
225 	{ .msps = 2400, .rx2 = 0x95, .trio0 = 0x064a, .trio1 = 0x0003, .trio2 = 0x05, .lane27 = 0x1800, .lane29 = 0x0aa4 },
226 	{ .msps = 2500, .rx2 = 0x9c, .trio0 = 0x064a, .trio1 = 0x0003, .trio2 = 0x05, .lane27 = 0x1c00, .lane29 = 0x0aa4 },
227 	{ .msps = 2600, .rx2 = 0xa2, .trio0 = 0x064a, .trio1 = 0x0002, .trio2 = 0x05, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
228 	{ .msps = 2700, .rx2 = 0xa8, .trio0 = 0x064a, .trio1 = 0x0002, .trio2 = 0x05, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
229 	{ .msps = 2800, .rx2 = 0xae, .trio0 = 0x064a, .trio1 = 0x0002, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
230 	{ .msps = 2900, .rx2 = 0xb5, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
231 	{ .msps = 3000, .rx2 = 0xbb, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
232 	{ .msps = 3100, .rx2 = 0xc1, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
233 	{ .msps = 3200, .rx2 = 0xc7, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
234 	{ .msps = 3300, .rx2 = 0xce, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
235 	{ .msps = 3400, .rx2 = 0xd4, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
236 	{ .msps = 3500, .rx2 = 0xda, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
237 	{ /* sentinel */ },
238 };
239 
240 struct phtw_value {
241 	u16 data;
242 	u16 code;
243 };
244 
245 struct rcsi2_mbps_reg {
246 	u16 mbps;
247 	u16 reg;
248 };
249 
250 static const struct rcsi2_mbps_reg phtw_mbps_v3u[] = {
251 	{ .mbps = 1500, .reg = 0xcc },
252 	{ .mbps = 1550, .reg = 0x1d },
253 	{ .mbps = 1600, .reg = 0x27 },
254 	{ .mbps = 1650, .reg = 0x30 },
255 	{ .mbps = 1700, .reg = 0x39 },
256 	{ .mbps = 1750, .reg = 0x42 },
257 	{ .mbps = 1800, .reg = 0x4b },
258 	{ .mbps = 1850, .reg = 0x55 },
259 	{ .mbps = 1900, .reg = 0x5e },
260 	{ .mbps = 1950, .reg = 0x67 },
261 	{ .mbps = 2000, .reg = 0x71 },
262 	{ .mbps = 2050, .reg = 0x79 },
263 	{ .mbps = 2100, .reg = 0x83 },
264 	{ .mbps = 2150, .reg = 0x8c },
265 	{ .mbps = 2200, .reg = 0x95 },
266 	{ .mbps = 2250, .reg = 0x9e },
267 	{ .mbps = 2300, .reg = 0xa7 },
268 	{ .mbps = 2350, .reg = 0xb0 },
269 	{ .mbps = 2400, .reg = 0xba },
270 	{ .mbps = 2450, .reg = 0xc3 },
271 	{ .mbps = 2500, .reg = 0xcc },
272 	{ /* sentinel */ },
273 };
274 
275 static const struct rcsi2_mbps_reg phtw_mbps_h3_v3h_m3n[] = {
276 	{ .mbps =   80, .reg = 0x86 },
277 	{ .mbps =   90, .reg = 0x86 },
278 	{ .mbps =  100, .reg = 0x87 },
279 	{ .mbps =  110, .reg = 0x87 },
280 	{ .mbps =  120, .reg = 0x88 },
281 	{ .mbps =  130, .reg = 0x88 },
282 	{ .mbps =  140, .reg = 0x89 },
283 	{ .mbps =  150, .reg = 0x89 },
284 	{ .mbps =  160, .reg = 0x8a },
285 	{ .mbps =  170, .reg = 0x8a },
286 	{ .mbps =  180, .reg = 0x8b },
287 	{ .mbps =  190, .reg = 0x8b },
288 	{ .mbps =  205, .reg = 0x8c },
289 	{ .mbps =  220, .reg = 0x8d },
290 	{ .mbps =  235, .reg = 0x8e },
291 	{ .mbps =  250, .reg = 0x8e },
292 	{ /* sentinel */ },
293 };
294 
295 static const struct rcsi2_mbps_reg phtw_mbps_v3m_e3[] = {
296 	{ .mbps =   80, .reg = 0x00 },
297 	{ .mbps =   90, .reg = 0x20 },
298 	{ .mbps =  100, .reg = 0x40 },
299 	{ .mbps =  110, .reg = 0x02 },
300 	{ .mbps =  130, .reg = 0x22 },
301 	{ .mbps =  140, .reg = 0x42 },
302 	{ .mbps =  150, .reg = 0x04 },
303 	{ .mbps =  170, .reg = 0x24 },
304 	{ .mbps =  180, .reg = 0x44 },
305 	{ .mbps =  200, .reg = 0x06 },
306 	{ .mbps =  220, .reg = 0x26 },
307 	{ .mbps =  240, .reg = 0x46 },
308 	{ .mbps =  250, .reg = 0x08 },
309 	{ .mbps =  270, .reg = 0x28 },
310 	{ .mbps =  300, .reg = 0x0a },
311 	{ .mbps =  330, .reg = 0x2a },
312 	{ .mbps =  360, .reg = 0x4a },
313 	{ .mbps =  400, .reg = 0x0c },
314 	{ .mbps =  450, .reg = 0x2c },
315 	{ .mbps =  500, .reg = 0x0e },
316 	{ .mbps =  550, .reg = 0x2e },
317 	{ .mbps =  600, .reg = 0x10 },
318 	{ .mbps =  650, .reg = 0x30 },
319 	{ .mbps =  700, .reg = 0x12 },
320 	{ .mbps =  750, .reg = 0x32 },
321 	{ .mbps =  800, .reg = 0x52 },
322 	{ .mbps =  850, .reg = 0x72 },
323 	{ .mbps =  900, .reg = 0x14 },
324 	{ .mbps =  950, .reg = 0x34 },
325 	{ .mbps = 1000, .reg = 0x54 },
326 	{ .mbps = 1050, .reg = 0x74 },
327 	{ .mbps = 1125, .reg = 0x16 },
328 	{ /* sentinel */ },
329 };
330 
331 /* PHY Test Interface Clear */
332 #define PHTC_REG			0x58
333 #define PHTC_TESTCLR			BIT(0)
334 
335 /* PHY Frequency Control */
336 #define PHYPLL_REG			0x68
337 #define PHYPLL_HSFREQRANGE(n)		((n) << 16)
338 
339 static const struct rcsi2_mbps_reg hsfreqrange_v3u[] = {
340 	{ .mbps =   80, .reg = 0x00 },
341 	{ .mbps =   90, .reg = 0x10 },
342 	{ .mbps =  100, .reg = 0x20 },
343 	{ .mbps =  110, .reg = 0x30 },
344 	{ .mbps =  120, .reg = 0x01 },
345 	{ .mbps =  130, .reg = 0x11 },
346 	{ .mbps =  140, .reg = 0x21 },
347 	{ .mbps =  150, .reg = 0x31 },
348 	{ .mbps =  160, .reg = 0x02 },
349 	{ .mbps =  170, .reg = 0x12 },
350 	{ .mbps =  180, .reg = 0x22 },
351 	{ .mbps =  190, .reg = 0x32 },
352 	{ .mbps =  205, .reg = 0x03 },
353 	{ .mbps =  220, .reg = 0x13 },
354 	{ .mbps =  235, .reg = 0x23 },
355 	{ .mbps =  250, .reg = 0x33 },
356 	{ .mbps =  275, .reg = 0x04 },
357 	{ .mbps =  300, .reg = 0x14 },
358 	{ .mbps =  325, .reg = 0x25 },
359 	{ .mbps =  350, .reg = 0x35 },
360 	{ .mbps =  400, .reg = 0x05 },
361 	{ .mbps =  450, .reg = 0x16 },
362 	{ .mbps =  500, .reg = 0x26 },
363 	{ .mbps =  550, .reg = 0x37 },
364 	{ .mbps =  600, .reg = 0x07 },
365 	{ .mbps =  650, .reg = 0x18 },
366 	{ .mbps =  700, .reg = 0x28 },
367 	{ .mbps =  750, .reg = 0x39 },
368 	{ .mbps =  800, .reg = 0x09 },
369 	{ .mbps =  850, .reg = 0x19 },
370 	{ .mbps =  900, .reg = 0x29 },
371 	{ .mbps =  950, .reg = 0x3a },
372 	{ .mbps = 1000, .reg = 0x0a },
373 	{ .mbps = 1050, .reg = 0x1a },
374 	{ .mbps = 1100, .reg = 0x2a },
375 	{ .mbps = 1150, .reg = 0x3b },
376 	{ .mbps = 1200, .reg = 0x0b },
377 	{ .mbps = 1250, .reg = 0x1b },
378 	{ .mbps = 1300, .reg = 0x2b },
379 	{ .mbps = 1350, .reg = 0x3c },
380 	{ .mbps = 1400, .reg = 0x0c },
381 	{ .mbps = 1450, .reg = 0x1c },
382 	{ .mbps = 1500, .reg = 0x2c },
383 	{ .mbps = 1550, .reg = 0x3d },
384 	{ .mbps = 1600, .reg = 0x0d },
385 	{ .mbps = 1650, .reg = 0x1d },
386 	{ .mbps = 1700, .reg = 0x2e },
387 	{ .mbps = 1750, .reg = 0x3e },
388 	{ .mbps = 1800, .reg = 0x0e },
389 	{ .mbps = 1850, .reg = 0x1e },
390 	{ .mbps = 1900, .reg = 0x2f },
391 	{ .mbps = 1950, .reg = 0x3f },
392 	{ .mbps = 2000, .reg = 0x0f },
393 	{ .mbps = 2050, .reg = 0x40 },
394 	{ .mbps = 2100, .reg = 0x41 },
395 	{ .mbps = 2150, .reg = 0x42 },
396 	{ .mbps = 2200, .reg = 0x43 },
397 	{ .mbps = 2300, .reg = 0x45 },
398 	{ .mbps = 2350, .reg = 0x46 },
399 	{ .mbps = 2400, .reg = 0x47 },
400 	{ .mbps = 2450, .reg = 0x48 },
401 	{ .mbps = 2500, .reg = 0x49 },
402 	{ /* sentinel */ },
403 };
404 
405 static const struct rcsi2_mbps_reg hsfreqrange_h3_v3h_m3n[] = {
406 	{ .mbps =   80, .reg = 0x00 },
407 	{ .mbps =   90, .reg = 0x10 },
408 	{ .mbps =  100, .reg = 0x20 },
409 	{ .mbps =  110, .reg = 0x30 },
410 	{ .mbps =  120, .reg = 0x01 },
411 	{ .mbps =  130, .reg = 0x11 },
412 	{ .mbps =  140, .reg = 0x21 },
413 	{ .mbps =  150, .reg = 0x31 },
414 	{ .mbps =  160, .reg = 0x02 },
415 	{ .mbps =  170, .reg = 0x12 },
416 	{ .mbps =  180, .reg = 0x22 },
417 	{ .mbps =  190, .reg = 0x32 },
418 	{ .mbps =  205, .reg = 0x03 },
419 	{ .mbps =  220, .reg = 0x13 },
420 	{ .mbps =  235, .reg = 0x23 },
421 	{ .mbps =  250, .reg = 0x33 },
422 	{ .mbps =  275, .reg = 0x04 },
423 	{ .mbps =  300, .reg = 0x14 },
424 	{ .mbps =  325, .reg = 0x25 },
425 	{ .mbps =  350, .reg = 0x35 },
426 	{ .mbps =  400, .reg = 0x05 },
427 	{ .mbps =  450, .reg = 0x16 },
428 	{ .mbps =  500, .reg = 0x26 },
429 	{ .mbps =  550, .reg = 0x37 },
430 	{ .mbps =  600, .reg = 0x07 },
431 	{ .mbps =  650, .reg = 0x18 },
432 	{ .mbps =  700, .reg = 0x28 },
433 	{ .mbps =  750, .reg = 0x39 },
434 	{ .mbps =  800, .reg = 0x09 },
435 	{ .mbps =  850, .reg = 0x19 },
436 	{ .mbps =  900, .reg = 0x29 },
437 	{ .mbps =  950, .reg = 0x3a },
438 	{ .mbps = 1000, .reg = 0x0a },
439 	{ .mbps = 1050, .reg = 0x1a },
440 	{ .mbps = 1100, .reg = 0x2a },
441 	{ .mbps = 1150, .reg = 0x3b },
442 	{ .mbps = 1200, .reg = 0x0b },
443 	{ .mbps = 1250, .reg = 0x1b },
444 	{ .mbps = 1300, .reg = 0x2b },
445 	{ .mbps = 1350, .reg = 0x3c },
446 	{ .mbps = 1400, .reg = 0x0c },
447 	{ .mbps = 1450, .reg = 0x1c },
448 	{ .mbps = 1500, .reg = 0x2c },
449 	{ /* sentinel */ },
450 };
451 
452 static const struct rcsi2_mbps_reg hsfreqrange_m3w[] = {
453 	{ .mbps =   80,	.reg = 0x00 },
454 	{ .mbps =   90,	.reg = 0x10 },
455 	{ .mbps =  100,	.reg = 0x20 },
456 	{ .mbps =  110,	.reg = 0x30 },
457 	{ .mbps =  120,	.reg = 0x01 },
458 	{ .mbps =  130,	.reg = 0x11 },
459 	{ .mbps =  140,	.reg = 0x21 },
460 	{ .mbps =  150,	.reg = 0x31 },
461 	{ .mbps =  160,	.reg = 0x02 },
462 	{ .mbps =  170,	.reg = 0x12 },
463 	{ .mbps =  180,	.reg = 0x22 },
464 	{ .mbps =  190,	.reg = 0x32 },
465 	{ .mbps =  205,	.reg = 0x03 },
466 	{ .mbps =  220,	.reg = 0x13 },
467 	{ .mbps =  235,	.reg = 0x23 },
468 	{ .mbps =  250,	.reg = 0x33 },
469 	{ .mbps =  275,	.reg = 0x04 },
470 	{ .mbps =  300,	.reg = 0x14 },
471 	{ .mbps =  325,	.reg = 0x05 },
472 	{ .mbps =  350,	.reg = 0x15 },
473 	{ .mbps =  400,	.reg = 0x25 },
474 	{ .mbps =  450,	.reg = 0x06 },
475 	{ .mbps =  500,	.reg = 0x16 },
476 	{ .mbps =  550,	.reg = 0x07 },
477 	{ .mbps =  600,	.reg = 0x17 },
478 	{ .mbps =  650,	.reg = 0x08 },
479 	{ .mbps =  700,	.reg = 0x18 },
480 	{ .mbps =  750,	.reg = 0x09 },
481 	{ .mbps =  800,	.reg = 0x19 },
482 	{ .mbps =  850,	.reg = 0x29 },
483 	{ .mbps =  900,	.reg = 0x39 },
484 	{ .mbps =  950,	.reg = 0x0a },
485 	{ .mbps = 1000,	.reg = 0x1a },
486 	{ .mbps = 1050,	.reg = 0x2a },
487 	{ .mbps = 1100,	.reg = 0x3a },
488 	{ .mbps = 1150,	.reg = 0x0b },
489 	{ .mbps = 1200,	.reg = 0x1b },
490 	{ .mbps = 1250,	.reg = 0x2b },
491 	{ .mbps = 1300,	.reg = 0x3b },
492 	{ .mbps = 1350,	.reg = 0x0c },
493 	{ .mbps = 1400,	.reg = 0x1c },
494 	{ .mbps = 1450,	.reg = 0x2c },
495 	{ .mbps = 1500,	.reg = 0x3c },
496 	{ /* sentinel */ },
497 };
498 
499 /* PHY ESC Error Monitor */
500 #define PHEERM_REG			0x74
501 
502 /* PHY Clock Lane Monitor */
503 #define PHCLM_REG			0x78
504 #define PHCLM_STOPSTATECKL		BIT(0)
505 
506 /* PHY Data Lane Monitor */
507 #define PHDLM_REG			0x7c
508 
509 /* CSI0CLK Frequency Configuration Preset Register */
510 #define CSI0CLKFCPR_REG			0x260
511 #define CSI0CLKFREQRANGE(n)		((n & 0x3f) << 16)
512 
513 struct rcar_csi2_format {
514 	u32 code;
515 	unsigned int datatype;
516 	unsigned int bpp;
517 };
518 
519 static const struct rcar_csi2_format rcar_csi2_formats[] = {
520 	{
521 		.code = MEDIA_BUS_FMT_RGB888_1X24,
522 		.datatype = MIPI_CSI2_DT_RGB888,
523 		.bpp = 24,
524 	}, {
525 		.code = MEDIA_BUS_FMT_UYVY8_1X16,
526 		.datatype = MIPI_CSI2_DT_YUV422_8B,
527 		.bpp = 16,
528 	}, {
529 		.code = MEDIA_BUS_FMT_YUYV8_1X16,
530 		.datatype = MIPI_CSI2_DT_YUV422_8B,
531 		.bpp = 16,
532 	}, {
533 		.code = MEDIA_BUS_FMT_UYVY8_2X8,
534 		.datatype = MIPI_CSI2_DT_YUV422_8B,
535 		.bpp = 16,
536 	}, {
537 		.code = MEDIA_BUS_FMT_YUYV10_2X10,
538 		.datatype = MIPI_CSI2_DT_YUV422_8B,
539 		.bpp = 20,
540 	}, {
541 		.code = MEDIA_BUS_FMT_Y10_1X10,
542 		.datatype = MIPI_CSI2_DT_RAW10,
543 		.bpp = 10,
544 	}, {
545 		.code = MEDIA_BUS_FMT_SBGGR8_1X8,
546 		.datatype = MIPI_CSI2_DT_RAW8,
547 		.bpp = 8,
548 	}, {
549 		.code = MEDIA_BUS_FMT_SGBRG8_1X8,
550 		.datatype = MIPI_CSI2_DT_RAW8,
551 		.bpp = 8,
552 	}, {
553 		.code = MEDIA_BUS_FMT_SGRBG8_1X8,
554 		.datatype = MIPI_CSI2_DT_RAW8,
555 		.bpp = 8,
556 	}, {
557 		.code = MEDIA_BUS_FMT_SRGGB8_1X8,
558 		.datatype = MIPI_CSI2_DT_RAW8,
559 		.bpp = 8,
560 	}, {
561 		.code = MEDIA_BUS_FMT_Y8_1X8,
562 		.datatype = MIPI_CSI2_DT_RAW8,
563 		.bpp = 8,
564 	},
565 };
566 
567 static const struct rcar_csi2_format *rcsi2_code_to_fmt(unsigned int code)
568 {
569 	unsigned int i;
570 
571 	for (i = 0; i < ARRAY_SIZE(rcar_csi2_formats); i++)
572 		if (rcar_csi2_formats[i].code == code)
573 			return &rcar_csi2_formats[i];
574 
575 	return NULL;
576 }
577 
578 enum rcar_csi2_pads {
579 	RCAR_CSI2_SINK,
580 	RCAR_CSI2_SOURCE_VC0,
581 	RCAR_CSI2_SOURCE_VC1,
582 	RCAR_CSI2_SOURCE_VC2,
583 	RCAR_CSI2_SOURCE_VC3,
584 	NR_OF_RCAR_CSI2_PAD,
585 };
586 
587 struct rcar_csi2_info {
588 	int (*init_phtw)(struct rcar_csi2 *priv, unsigned int mbps);
589 	int (*phy_post_init)(struct rcar_csi2 *priv);
590 	int (*start_receiver)(struct rcar_csi2 *priv,
591 			      struct v4l2_subdev_state *state);
592 	void (*enter_standby)(struct rcar_csi2 *priv);
593 	const struct rcsi2_mbps_reg *hsfreqrange;
594 	unsigned int csi0clkfreqrange;
595 	unsigned int num_channels;
596 	bool clear_ulps;
597 	bool use_isp;
598 	bool support_dphy;
599 	bool support_cphy;
600 };
601 
602 struct rcar_csi2 {
603 	struct device *dev;
604 	void __iomem *base;
605 	const struct rcar_csi2_info *info;
606 	struct reset_control *rstc;
607 
608 	struct v4l2_subdev subdev;
609 	struct media_pad pads[NR_OF_RCAR_CSI2_PAD];
610 
611 	struct v4l2_async_notifier notifier;
612 	struct v4l2_subdev *remote;
613 	unsigned int remote_pad;
614 
615 	int channel_vc[4];
616 
617 	int stream_count;
618 
619 	bool cphy;
620 	unsigned short lanes;
621 	unsigned char lane_swap[4];
622 };
623 
624 static inline struct rcar_csi2 *sd_to_csi2(struct v4l2_subdev *sd)
625 {
626 	return container_of(sd, struct rcar_csi2, subdev);
627 }
628 
629 static inline struct rcar_csi2 *notifier_to_csi2(struct v4l2_async_notifier *n)
630 {
631 	return container_of(n, struct rcar_csi2, notifier);
632 }
633 
634 static unsigned int rcsi2_num_pads(const struct rcar_csi2 *priv)
635 {
636 	/* Used together with R-Car ISP: one sink and one source pad. */
637 	if (priv->info->use_isp)
638 		return 2;
639 
640 	/* Used together with R-Car VIN: one sink and four source pads. */
641 	return 5;
642 }
643 
644 static u32 rcsi2_read(struct rcar_csi2 *priv, unsigned int reg)
645 {
646 	return ioread32(priv->base + reg);
647 }
648 
649 static void rcsi2_write(struct rcar_csi2 *priv, unsigned int reg, u32 data)
650 {
651 	iowrite32(data, priv->base + reg);
652 }
653 
654 static void rcsi2_write16(struct rcar_csi2 *priv, unsigned int reg, u16 data)
655 {
656 	iowrite16(data, priv->base + reg);
657 }
658 
659 static void rcsi2_enter_standby_gen3(struct rcar_csi2 *priv)
660 {
661 	rcsi2_write(priv, PHYCNT_REG, 0);
662 	rcsi2_write(priv, PHTC_REG, PHTC_TESTCLR);
663 }
664 
665 static void rcsi2_enter_standby(struct rcar_csi2 *priv)
666 {
667 	if (priv->info->enter_standby)
668 		priv->info->enter_standby(priv);
669 
670 	reset_control_assert(priv->rstc);
671 	usleep_range(100, 150);
672 	pm_runtime_put(priv->dev);
673 }
674 
675 static int rcsi2_exit_standby(struct rcar_csi2 *priv)
676 {
677 	int ret;
678 
679 	ret = pm_runtime_resume_and_get(priv->dev);
680 	if (ret < 0)
681 		return ret;
682 
683 	reset_control_deassert(priv->rstc);
684 
685 	return 0;
686 }
687 
688 static int rcsi2_wait_phy_start(struct rcar_csi2 *priv,
689 				unsigned int lanes)
690 {
691 	unsigned int timeout;
692 
693 	/* Wait for the clock and data lanes to enter LP-11 state. */
694 	for (timeout = 0; timeout <= 20; timeout++) {
695 		const u32 lane_mask = (1 << lanes) - 1;
696 
697 		if ((rcsi2_read(priv, PHCLM_REG) & PHCLM_STOPSTATECKL)  &&
698 		    (rcsi2_read(priv, PHDLM_REG) & lane_mask) == lane_mask)
699 			return 0;
700 
701 		usleep_range(1000, 2000);
702 	}
703 
704 	dev_err(priv->dev, "Timeout waiting for LP-11 state\n");
705 
706 	return -ETIMEDOUT;
707 }
708 
709 static int rcsi2_set_phypll(struct rcar_csi2 *priv, unsigned int mbps)
710 {
711 	const struct rcsi2_mbps_reg *hsfreq;
712 	const struct rcsi2_mbps_reg *hsfreq_prev = NULL;
713 
714 	if (mbps < priv->info->hsfreqrange->mbps)
715 		dev_warn(priv->dev, "%u Mbps less than min PHY speed %u Mbps",
716 			 mbps, priv->info->hsfreqrange->mbps);
717 
718 	for (hsfreq = priv->info->hsfreqrange; hsfreq->mbps != 0; hsfreq++) {
719 		if (hsfreq->mbps >= mbps)
720 			break;
721 		hsfreq_prev = hsfreq;
722 	}
723 
724 	if (!hsfreq->mbps) {
725 		dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
726 		return -ERANGE;
727 	}
728 
729 	if (hsfreq_prev &&
730 	    ((mbps - hsfreq_prev->mbps) <= (hsfreq->mbps - mbps)))
731 		hsfreq = hsfreq_prev;
732 
733 	rcsi2_write(priv, PHYPLL_REG, PHYPLL_HSFREQRANGE(hsfreq->reg));
734 
735 	return 0;
736 }
737 
738 static int rcsi2_calc_mbps(struct rcar_csi2 *priv, unsigned int bpp,
739 			   unsigned int lanes)
740 {
741 	struct v4l2_subdev *source;
742 	struct v4l2_ctrl *ctrl;
743 	u64 mbps;
744 
745 	if (!priv->remote)
746 		return -ENODEV;
747 
748 	source = priv->remote;
749 
750 	/* Read the pixel rate control from remote. */
751 	ctrl = v4l2_ctrl_find(source->ctrl_handler, V4L2_CID_PIXEL_RATE);
752 	if (!ctrl) {
753 		dev_err(priv->dev, "no pixel rate control in subdev %s\n",
754 			source->name);
755 		return -EINVAL;
756 	}
757 
758 	/*
759 	 * Calculate the phypll in mbps.
760 	 * link_freq = (pixel_rate * bits_per_sample) / (2 * nr_of_lanes)
761 	 * bps = link_freq * 2
762 	 */
763 	mbps = v4l2_ctrl_g_ctrl_int64(ctrl) * bpp;
764 	do_div(mbps, lanes * 1000000);
765 
766 	/* Adjust for C-PHY, divide by 2.8. */
767 	if (priv->cphy)
768 		mbps = div_u64(mbps * 5, 14);
769 
770 	return mbps;
771 }
772 
773 static int rcsi2_get_active_lanes(struct rcar_csi2 *priv,
774 				  unsigned int *lanes)
775 {
776 	struct v4l2_mbus_config mbus_config = { 0 };
777 	int ret;
778 
779 	*lanes = priv->lanes;
780 
781 	ret = v4l2_subdev_call(priv->remote, pad, get_mbus_config,
782 			       priv->remote_pad, &mbus_config);
783 	if (ret == -ENOIOCTLCMD) {
784 		dev_dbg(priv->dev, "No remote mbus configuration available\n");
785 		return 0;
786 	}
787 
788 	if (ret) {
789 		dev_err(priv->dev, "Failed to get remote mbus configuration\n");
790 		return ret;
791 	}
792 
793 	switch (mbus_config.type) {
794 	case V4L2_MBUS_CSI2_CPHY:
795 		if (!priv->cphy)
796 			return -EINVAL;
797 		break;
798 	case V4L2_MBUS_CSI2_DPHY:
799 		if (priv->cphy)
800 			return -EINVAL;
801 		break;
802 	default:
803 		dev_err(priv->dev, "Unsupported media bus type %u\n",
804 			mbus_config.type);
805 		return -EINVAL;
806 	}
807 
808 	if (mbus_config.bus.mipi_csi2.num_data_lanes > priv->lanes) {
809 		dev_err(priv->dev,
810 			"Unsupported mbus config: too many data lanes %u\n",
811 			mbus_config.bus.mipi_csi2.num_data_lanes);
812 		return -EINVAL;
813 	}
814 
815 	*lanes = mbus_config.bus.mipi_csi2.num_data_lanes;
816 
817 	return 0;
818 }
819 
820 static int rcsi2_start_receiver_gen3(struct rcar_csi2 *priv,
821 				     struct v4l2_subdev_state *state)
822 {
823 	const struct rcar_csi2_format *format;
824 	u32 phycnt, vcdt = 0, vcdt2 = 0, fld = 0;
825 	const struct v4l2_mbus_framefmt *fmt;
826 	unsigned int lanes;
827 	unsigned int i;
828 	int mbps, ret;
829 
830 	/* Use the format on the sink pad to compute the receiver config. */
831 	fmt = v4l2_subdev_state_get_format(state, RCAR_CSI2_SINK);
832 
833 	dev_dbg(priv->dev, "Input size (%ux%u%c)\n",
834 		fmt->width, fmt->height,
835 		fmt->field == V4L2_FIELD_NONE ? 'p' : 'i');
836 
837 	/* Code is validated in set_fmt. */
838 	format = rcsi2_code_to_fmt(fmt->code);
839 	if (!format)
840 		return -EINVAL;
841 
842 	/*
843 	 * Enable all supported CSI-2 channels with virtual channel and
844 	 * data type matching.
845 	 *
846 	 * NOTE: It's not possible to get individual datatype for each
847 	 *       source virtual channel. Once this is possible in V4L2
848 	 *       it should be used here.
849 	 */
850 	for (i = 0; i < priv->info->num_channels; i++) {
851 		u32 vcdt_part;
852 
853 		if (priv->channel_vc[i] < 0)
854 			continue;
855 
856 		vcdt_part = VCDT_SEL_VC(priv->channel_vc[i]) | VCDT_VCDTN_EN |
857 			VCDT_SEL_DTN_ON | VCDT_SEL_DT(format->datatype);
858 
859 		/* Store in correct reg and offset. */
860 		if (i < 2)
861 			vcdt |= vcdt_part << ((i % 2) * 16);
862 		else
863 			vcdt2 |= vcdt_part << ((i % 2) * 16);
864 	}
865 
866 	if (fmt->field == V4L2_FIELD_ALTERNATE) {
867 		fld = FLD_DET_SEL(1) | FLD_FLD_EN4 | FLD_FLD_EN3 | FLD_FLD_EN2
868 			| FLD_FLD_EN;
869 
870 		if (fmt->height == 240)
871 			fld |= FLD_FLD_NUM(0);
872 		else
873 			fld |= FLD_FLD_NUM(1);
874 	}
875 
876 	/*
877 	 * Get the number of active data lanes inspecting the remote mbus
878 	 * configuration.
879 	 */
880 	ret = rcsi2_get_active_lanes(priv, &lanes);
881 	if (ret)
882 		return ret;
883 
884 	phycnt = PHYCNT_ENABLECLK;
885 	phycnt |= (1 << lanes) - 1;
886 
887 	mbps = rcsi2_calc_mbps(priv, format->bpp, lanes);
888 	if (mbps < 0)
889 		return mbps;
890 
891 	/* Enable interrupts. */
892 	rcsi2_write(priv, INTEN_REG, INTEN_INT_AFIFO_OF | INTEN_INT_ERRSOTHS
893 		    | INTEN_INT_ERRSOTSYNCHS);
894 
895 	/* Init */
896 	rcsi2_write(priv, TREF_REG, TREF_TREF);
897 	rcsi2_write(priv, PHTC_REG, 0);
898 
899 	/* Configure */
900 	if (!priv->info->use_isp) {
901 		rcsi2_write(priv, VCDT_REG, vcdt);
902 		if (vcdt2)
903 			rcsi2_write(priv, VCDT2_REG, vcdt2);
904 	}
905 
906 	/* Lanes are zero indexed. */
907 	rcsi2_write(priv, LSWAP_REG,
908 		    LSWAP_L0SEL(priv->lane_swap[0] - 1) |
909 		    LSWAP_L1SEL(priv->lane_swap[1] - 1) |
910 		    LSWAP_L2SEL(priv->lane_swap[2] - 1) |
911 		    LSWAP_L3SEL(priv->lane_swap[3] - 1));
912 
913 	/* Start */
914 	if (priv->info->init_phtw) {
915 		ret = priv->info->init_phtw(priv, mbps);
916 		if (ret)
917 			return ret;
918 	}
919 
920 	if (priv->info->hsfreqrange) {
921 		ret = rcsi2_set_phypll(priv, mbps);
922 		if (ret)
923 			return ret;
924 	}
925 
926 	if (priv->info->csi0clkfreqrange)
927 		rcsi2_write(priv, CSI0CLKFCPR_REG,
928 			    CSI0CLKFREQRANGE(priv->info->csi0clkfreqrange));
929 
930 	if (priv->info->use_isp)
931 		rcsi2_write(priv, PHYFRX_REG,
932 			    PHYFRX_FORCERX_MODE_3 | PHYFRX_FORCERX_MODE_2 |
933 			    PHYFRX_FORCERX_MODE_1 | PHYFRX_FORCERX_MODE_0);
934 
935 	rcsi2_write(priv, PHYCNT_REG, phycnt);
936 	rcsi2_write(priv, LINKCNT_REG, LINKCNT_MONITOR_EN |
937 		    LINKCNT_REG_MONI_PACT_EN | LINKCNT_ICLK_NONSTOP);
938 	rcsi2_write(priv, FLD_REG, fld);
939 	rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ);
940 	rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ | PHYCNT_RSTZ);
941 
942 	ret = rcsi2_wait_phy_start(priv, lanes);
943 	if (ret)
944 		return ret;
945 
946 	if (priv->info->use_isp)
947 		rcsi2_write(priv, PHYFRX_REG, 0);
948 
949 	/* Run post PHY start initialization, if needed. */
950 	if (priv->info->phy_post_init) {
951 		ret = priv->info->phy_post_init(priv);
952 		if (ret)
953 			return ret;
954 	}
955 
956 	/* Clear Ultra Low Power interrupt. */
957 	if (priv->info->clear_ulps)
958 		rcsi2_write(priv, INTSTATE_REG,
959 			    INTSTATE_INT_ULPS_START |
960 			    INTSTATE_INT_ULPS_END);
961 	return 0;
962 }
963 
964 static int rcsi2_wait_phy_start_v4h(struct rcar_csi2 *priv, u32 match)
965 {
966 	unsigned int timeout;
967 	u32 status;
968 
969 	for (timeout = 0; timeout <= 10; timeout++) {
970 		status = rcsi2_read(priv, V4H_ST_PHYST_REG);
971 		if ((status & match) == match)
972 			return 0;
973 
974 		usleep_range(1000, 2000);
975 	}
976 
977 	return -ETIMEDOUT;
978 }
979 
980 static int rcsi2_c_phy_setting_v4h(struct rcar_csi2 *priv, int msps)
981 {
982 	const struct rcsi2_cphy_setting *conf;
983 
984 	for (conf = cphy_setting_table_r8a779g0; conf->msps != 0; conf++) {
985 		if (conf->msps > msps)
986 			break;
987 	}
988 
989 	if (!conf->msps) {
990 		dev_err(priv->dev, "Unsupported PHY speed for msps setting (%u Msps)", msps);
991 		return -ERANGE;
992 	}
993 
994 	/* C-PHY specific */
995 	rcsi2_write16(priv, V4H_CORE_DIG_RW_COMMON_REG(7), 0x0155);
996 	rcsi2_write16(priv, V4H_PPI_STARTUP_RW_COMMON_DPHY_REG(7), 0x0068);
997 	rcsi2_write16(priv, V4H_PPI_STARTUP_RW_COMMON_DPHY_REG(8), 0x0010);
998 
999 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_LP_0_REG, 0x463c);
1000 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_LP_0_REG, 0x463c);
1001 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_LP_0_REG, 0x463c);
1002 
1003 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(0), 0x00d5);
1004 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(0), 0x00d5);
1005 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(0), 0x00d5);
1006 
1007 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(1), 0x0013);
1008 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(1), 0x0013);
1009 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(1), 0x0013);
1010 
1011 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(5), 0x0013);
1012 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(5), 0x0013);
1013 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(5), 0x0013);
1014 
1015 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(6), 0x000a);
1016 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(6), 0x000a);
1017 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(6), 0x000a);
1018 
1019 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(2), conf->rx2);
1020 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(2), conf->rx2);
1021 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(2), conf->rx2);
1022 
1023 	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE0_CTRL_2_REG(2), 0x0001);
1024 	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE1_CTRL_2_REG(2), 0);
1025 	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE2_CTRL_2_REG(2), 0x0001);
1026 	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE3_CTRL_2_REG(2), 0x0001);
1027 	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE4_CTRL_2_REG(2), 0);
1028 
1029 	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO0_REG(0), conf->trio0);
1030 	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO1_REG(0), conf->trio0);
1031 	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO2_REG(0), conf->trio0);
1032 
1033 	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO0_REG(2), conf->trio2);
1034 	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO1_REG(2), conf->trio2);
1035 	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO2_REG(2), conf->trio2);
1036 
1037 	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO0_REG(1), conf->trio1);
1038 	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO1_REG(1), conf->trio1);
1039 	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO2_REG(1), conf->trio1);
1040 
1041 	/*
1042 	 * Configure pin-swap.
1043 	 * TODO: This registers is not documented yet, the values should depend
1044 	 * on the 'clock-lanes' and 'data-lanes' devicetree properties.
1045 	 */
1046 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_CFG_0_REG, 0xf5);
1047 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_TX_6_REG, 0x5000);
1048 
1049 	/* Leave Shutdown mode */
1050 	rcsi2_write(priv, V4H_DPHY_RSTZ_REG, BIT(0));
1051 	rcsi2_write(priv, V4H_PHY_SHUTDOWNZ_REG, BIT(0));
1052 
1053 	/* Wait for calibration */
1054 	if (rcsi2_wait_phy_start_v4h(priv, V4H_ST_PHYST_ST_PHY_READY)) {
1055 		dev_err(priv->dev, "PHY calibration failed\n");
1056 		return -ETIMEDOUT;
1057 	}
1058 
1059 	/* C-PHY setting - analog programing*/
1060 	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE0_CTRL_2_REG(9), conf->lane29);
1061 	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE0_CTRL_2_REG(7), conf->lane27);
1062 
1063 	return 0;
1064 }
1065 
1066 static int rcsi2_start_receiver_v4h(struct rcar_csi2 *priv,
1067 				    struct v4l2_subdev_state *state)
1068 {
1069 	const struct rcar_csi2_format *format;
1070 	const struct v4l2_mbus_framefmt *fmt;
1071 	unsigned int lanes;
1072 	int msps;
1073 	int ret;
1074 
1075 	/* Use the format on the sink pad to compute the receiver config. */
1076 	fmt = v4l2_subdev_state_get_format(state, RCAR_CSI2_SINK);
1077 	format = rcsi2_code_to_fmt(fmt->code);
1078 	if (!format)
1079 		return -EINVAL;
1080 
1081 	ret = rcsi2_get_active_lanes(priv, &lanes);
1082 	if (ret)
1083 		return ret;
1084 
1085 	msps = rcsi2_calc_mbps(priv, format->bpp, lanes);
1086 	if (msps < 0)
1087 		return msps;
1088 
1089 	/* Reset LINK and PHY*/
1090 	rcsi2_write(priv, V4H_CSI2_RESETN_REG, 0);
1091 	rcsi2_write(priv, V4H_DPHY_RSTZ_REG, 0);
1092 	rcsi2_write(priv, V4H_PHY_SHUTDOWNZ_REG, 0);
1093 
1094 	/* PHY static setting */
1095 	rcsi2_write(priv, V4H_PHY_EN_REG, BIT(0));
1096 	rcsi2_write(priv, V4H_FLDC_REG, 0);
1097 	rcsi2_write(priv, V4H_FLDD_REG, 0);
1098 	rcsi2_write(priv, V4H_IDIC_REG, 0);
1099 	rcsi2_write(priv, V4H_PHY_MODE_REG, BIT(0));
1100 	rcsi2_write(priv, V4H_N_LANES_REG, lanes - 1);
1101 
1102 	/* Reset CSI2 */
1103 	rcsi2_write(priv, V4H_CSI2_RESETN_REG, BIT(0));
1104 
1105 	/* Registers static setting through APB */
1106 	/* Common setting */
1107 	rcsi2_write16(priv, V4H_CORE_DIG_ANACTRL_RW_COMMON_ANACTRL_REG(0), 0x1bfd);
1108 	rcsi2_write16(priv, V4H_PPI_STARTUP_RW_COMMON_STARTUP_1_1_REG, 0x0233);
1109 	rcsi2_write16(priv, V4H_PPI_STARTUP_RW_COMMON_DPHY_REG(6), 0x0027);
1110 	rcsi2_write16(priv, V4H_PPI_CALIBCTRL_RW_COMMON_BG_0_REG, 0x01f4);
1111 	rcsi2_write16(priv, V4H_PPI_RW_TERMCAL_CFG_0_REG, 0x0013);
1112 	rcsi2_write16(priv, V4H_PPI_RW_OFFSETCAL_CFG_0_REG, 0x0003);
1113 	rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_TIMEBASE_REG, 0x004f);
1114 	rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_NREF_REG, 0x0320);
1115 	rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_NREF_RANGE_REG, 0x000f);
1116 	rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_TWAIT_CONFIG_REG, 0xfe18);
1117 	rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_VT_CONFIG_REG, 0x0c3c);
1118 	rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_COARSE_CFG_REG, 0x0105);
1119 	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_CB_CTRL_2_REG(6), 0x1000);
1120 	rcsi2_write16(priv, V4H_PPI_RW_COMMON_CFG_REG, 0x0003);
1121 
1122 	/* C-PHY settings */
1123 	ret = rcsi2_c_phy_setting_v4h(priv, msps);
1124 	if (ret)
1125 		return ret;
1126 
1127 	rcsi2_wait_phy_start_v4h(priv, V4H_ST_PHYST_ST_STOPSTATE_0 |
1128 				 V4H_ST_PHYST_ST_STOPSTATE_1 |
1129 				 V4H_ST_PHYST_ST_STOPSTATE_2);
1130 
1131 	return 0;
1132 }
1133 
1134 static int rcsi2_start(struct rcar_csi2 *priv, struct v4l2_subdev_state *state)
1135 {
1136 	int ret;
1137 
1138 	ret = rcsi2_exit_standby(priv);
1139 	if (ret < 0)
1140 		return ret;
1141 
1142 	ret = priv->info->start_receiver(priv, state);
1143 	if (ret) {
1144 		rcsi2_enter_standby(priv);
1145 		return ret;
1146 	}
1147 
1148 	ret = v4l2_subdev_call(priv->remote, video, s_stream, 1);
1149 	if (ret) {
1150 		rcsi2_enter_standby(priv);
1151 		return ret;
1152 	}
1153 
1154 	return 0;
1155 }
1156 
1157 static void rcsi2_stop(struct rcar_csi2 *priv)
1158 {
1159 	rcsi2_enter_standby(priv);
1160 	v4l2_subdev_call(priv->remote, video, s_stream, 0);
1161 }
1162 
1163 static int rcsi2_s_stream(struct v4l2_subdev *sd, int enable)
1164 {
1165 	struct rcar_csi2 *priv = sd_to_csi2(sd);
1166 	struct v4l2_subdev_state *state;
1167 	int ret = 0;
1168 
1169 	if (!priv->remote)
1170 		return -ENODEV;
1171 
1172 	state = v4l2_subdev_lock_and_get_active_state(&priv->subdev);
1173 
1174 	if (enable && priv->stream_count == 0) {
1175 		ret = rcsi2_start(priv, state);
1176 		if (ret)
1177 			goto out;
1178 	} else if (!enable && priv->stream_count == 1) {
1179 		rcsi2_stop(priv);
1180 	}
1181 
1182 	priv->stream_count += enable ? 1 : -1;
1183 out:
1184 	v4l2_subdev_unlock_state(state);
1185 
1186 	return ret;
1187 }
1188 
1189 static int rcsi2_set_pad_format(struct v4l2_subdev *sd,
1190 				struct v4l2_subdev_state *state,
1191 				struct v4l2_subdev_format *format)
1192 {
1193 	struct rcar_csi2 *priv = sd_to_csi2(sd);
1194 	unsigned int num_pads = rcsi2_num_pads(priv);
1195 
1196 	if (format->pad > RCAR_CSI2_SINK)
1197 		return v4l2_subdev_get_fmt(sd, state, format);
1198 
1199 	if (!rcsi2_code_to_fmt(format->format.code))
1200 		format->format.code = rcar_csi2_formats[0].code;
1201 
1202 	*v4l2_subdev_state_get_format(state, format->pad) = format->format;
1203 
1204 	/* Propagate the format to the source pads. */
1205 	for (unsigned int i = RCAR_CSI2_SOURCE_VC0; i < num_pads; i++)
1206 		*v4l2_subdev_state_get_format(state, i) = format->format;
1207 
1208 	return 0;
1209 }
1210 
1211 static const struct v4l2_subdev_video_ops rcar_csi2_video_ops = {
1212 	.s_stream = rcsi2_s_stream,
1213 };
1214 
1215 static const struct v4l2_subdev_pad_ops rcar_csi2_pad_ops = {
1216 	.set_fmt = rcsi2_set_pad_format,
1217 	.get_fmt = v4l2_subdev_get_fmt,
1218 };
1219 
1220 static const struct v4l2_subdev_ops rcar_csi2_subdev_ops = {
1221 	.video	= &rcar_csi2_video_ops,
1222 	.pad	= &rcar_csi2_pad_ops,
1223 };
1224 
1225 static int rcsi2_init_state(struct v4l2_subdev *sd,
1226 			    struct v4l2_subdev_state *state)
1227 {
1228 	struct rcar_csi2 *priv = sd_to_csi2(sd);
1229 	unsigned int num_pads = rcsi2_num_pads(priv);
1230 
1231 	static const struct v4l2_mbus_framefmt rcar_csi2_default_fmt = {
1232 		.width		= 1920,
1233 		.height		= 1080,
1234 		.code		= MEDIA_BUS_FMT_RGB888_1X24,
1235 		.colorspace	= V4L2_COLORSPACE_SRGB,
1236 		.field		= V4L2_FIELD_NONE,
1237 		.ycbcr_enc	= V4L2_YCBCR_ENC_DEFAULT,
1238 		.quantization	= V4L2_QUANTIZATION_DEFAULT,
1239 		.xfer_func	= V4L2_XFER_FUNC_DEFAULT,
1240 	};
1241 
1242 	for (unsigned int i = RCAR_CSI2_SINK; i < num_pads; i++)
1243 		*v4l2_subdev_state_get_format(state, i) = rcar_csi2_default_fmt;
1244 
1245 	return 0;
1246 }
1247 
1248 static const struct v4l2_subdev_internal_ops rcar_csi2_internal_ops = {
1249 	.init_state = rcsi2_init_state,
1250 };
1251 
1252 static irqreturn_t rcsi2_irq(int irq, void *data)
1253 {
1254 	struct rcar_csi2 *priv = data;
1255 	u32 status, err_status;
1256 
1257 	status = rcsi2_read(priv, INTSTATE_REG);
1258 	err_status = rcsi2_read(priv, INTERRSTATE_REG);
1259 
1260 	if (!status)
1261 		return IRQ_HANDLED;
1262 
1263 	rcsi2_write(priv, INTSTATE_REG, status);
1264 
1265 	if (!err_status)
1266 		return IRQ_HANDLED;
1267 
1268 	rcsi2_write(priv, INTERRSTATE_REG, err_status);
1269 
1270 	dev_info(priv->dev, "Transfer error, restarting CSI-2 receiver\n");
1271 
1272 	return IRQ_WAKE_THREAD;
1273 }
1274 
1275 static irqreturn_t rcsi2_irq_thread(int irq, void *data)
1276 {
1277 	struct v4l2_subdev_state *state;
1278 	struct rcar_csi2 *priv = data;
1279 
1280 	state = v4l2_subdev_lock_and_get_active_state(&priv->subdev);
1281 
1282 	rcsi2_stop(priv);
1283 	usleep_range(1000, 2000);
1284 	if (rcsi2_start(priv, state))
1285 		dev_warn(priv->dev, "Failed to restart CSI-2 receiver\n");
1286 
1287 	v4l2_subdev_unlock_state(state);
1288 
1289 	return IRQ_HANDLED;
1290 }
1291 
1292 /* -----------------------------------------------------------------------------
1293  * Async handling and registration of subdevices and links.
1294  */
1295 
1296 static int rcsi2_notify_bound(struct v4l2_async_notifier *notifier,
1297 			      struct v4l2_subdev *subdev,
1298 			      struct v4l2_async_connection *asc)
1299 {
1300 	struct rcar_csi2 *priv = notifier_to_csi2(notifier);
1301 	int pad;
1302 
1303 	pad = media_entity_get_fwnode_pad(&subdev->entity, asc->match.fwnode,
1304 					  MEDIA_PAD_FL_SOURCE);
1305 	if (pad < 0) {
1306 		dev_err(priv->dev, "Failed to find pad for %s\n", subdev->name);
1307 		return pad;
1308 	}
1309 
1310 	priv->remote = subdev;
1311 	priv->remote_pad = pad;
1312 
1313 	dev_dbg(priv->dev, "Bound %s pad: %d\n", subdev->name, pad);
1314 
1315 	return media_create_pad_link(&subdev->entity, pad,
1316 				     &priv->subdev.entity, 0,
1317 				     MEDIA_LNK_FL_ENABLED |
1318 				     MEDIA_LNK_FL_IMMUTABLE);
1319 }
1320 
1321 static void rcsi2_notify_unbind(struct v4l2_async_notifier *notifier,
1322 				struct v4l2_subdev *subdev,
1323 				struct v4l2_async_connection *asc)
1324 {
1325 	struct rcar_csi2 *priv = notifier_to_csi2(notifier);
1326 
1327 	priv->remote = NULL;
1328 
1329 	dev_dbg(priv->dev, "Unbind %s\n", subdev->name);
1330 }
1331 
1332 static const struct v4l2_async_notifier_operations rcar_csi2_notify_ops = {
1333 	.bound = rcsi2_notify_bound,
1334 	.unbind = rcsi2_notify_unbind,
1335 };
1336 
1337 static int rcsi2_parse_v4l2(struct rcar_csi2 *priv,
1338 			    struct v4l2_fwnode_endpoint *vep)
1339 {
1340 	unsigned int i;
1341 
1342 	/* Only port 0 endpoint 0 is valid. */
1343 	if (vep->base.port || vep->base.id)
1344 		return -ENOTCONN;
1345 
1346 	priv->lanes = vep->bus.mipi_csi2.num_data_lanes;
1347 
1348 	switch (vep->bus_type) {
1349 	case V4L2_MBUS_CSI2_DPHY:
1350 		if (!priv->info->support_dphy) {
1351 			dev_err(priv->dev, "D-PHY not supported\n");
1352 			return -EINVAL;
1353 		}
1354 
1355 		if (priv->lanes != 1 && priv->lanes != 2 && priv->lanes != 4) {
1356 			dev_err(priv->dev,
1357 				"Unsupported number of data-lanes for D-PHY: %u\n",
1358 				priv->lanes);
1359 			return -EINVAL;
1360 		}
1361 
1362 		priv->cphy = false;
1363 		break;
1364 	case V4L2_MBUS_CSI2_CPHY:
1365 		if (!priv->info->support_cphy) {
1366 			dev_err(priv->dev, "C-PHY not supported\n");
1367 			return -EINVAL;
1368 		}
1369 
1370 		if (priv->lanes != 3) {
1371 			dev_err(priv->dev,
1372 				"Unsupported number of data-lanes for C-PHY: %u\n",
1373 				priv->lanes);
1374 			return -EINVAL;
1375 		}
1376 
1377 		priv->cphy = true;
1378 		break;
1379 	default:
1380 		dev_err(priv->dev, "Unsupported bus: %u\n", vep->bus_type);
1381 		return -EINVAL;
1382 	}
1383 
1384 	for (i = 0; i < ARRAY_SIZE(priv->lane_swap); i++) {
1385 		priv->lane_swap[i] = i < priv->lanes ?
1386 			vep->bus.mipi_csi2.data_lanes[i] : i;
1387 
1388 		/* Check for valid lane number. */
1389 		if (priv->lane_swap[i] < 1 || priv->lane_swap[i] > 4) {
1390 			dev_err(priv->dev, "data-lanes must be in 1-4 range\n");
1391 			return -EINVAL;
1392 		}
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 static int rcsi2_parse_dt(struct rcar_csi2 *priv)
1399 {
1400 	struct v4l2_async_connection *asc;
1401 	struct fwnode_handle *fwnode;
1402 	struct fwnode_handle *ep;
1403 	struct v4l2_fwnode_endpoint v4l2_ep = {
1404 		.bus_type = V4L2_MBUS_UNKNOWN,
1405 	};
1406 	int ret;
1407 
1408 	ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(priv->dev), 0, 0, 0);
1409 	if (!ep) {
1410 		dev_err(priv->dev, "Not connected to subdevice\n");
1411 		return -EINVAL;
1412 	}
1413 
1414 	ret = v4l2_fwnode_endpoint_parse(ep, &v4l2_ep);
1415 	if (ret) {
1416 		dev_err(priv->dev, "Could not parse v4l2 endpoint\n");
1417 		fwnode_handle_put(ep);
1418 		return -EINVAL;
1419 	}
1420 
1421 	ret = rcsi2_parse_v4l2(priv, &v4l2_ep);
1422 	if (ret) {
1423 		fwnode_handle_put(ep);
1424 		return ret;
1425 	}
1426 
1427 	fwnode = fwnode_graph_get_remote_endpoint(ep);
1428 	fwnode_handle_put(ep);
1429 
1430 	dev_dbg(priv->dev, "Found '%pOF'\n", to_of_node(fwnode));
1431 
1432 	v4l2_async_subdev_nf_init(&priv->notifier, &priv->subdev);
1433 	priv->notifier.ops = &rcar_csi2_notify_ops;
1434 
1435 	asc = v4l2_async_nf_add_fwnode(&priv->notifier, fwnode,
1436 				       struct v4l2_async_connection);
1437 	fwnode_handle_put(fwnode);
1438 	if (IS_ERR(asc))
1439 		return PTR_ERR(asc);
1440 
1441 	ret = v4l2_async_nf_register(&priv->notifier);
1442 	if (ret)
1443 		v4l2_async_nf_cleanup(&priv->notifier);
1444 
1445 	return ret;
1446 }
1447 
1448 /* -----------------------------------------------------------------------------
1449  * PHTW initialization sequences.
1450  *
1451  * NOTE: Magic values are from the datasheet and lack documentation.
1452  */
1453 
1454 static int rcsi2_phtw_write(struct rcar_csi2 *priv, u16 data, u16 code)
1455 {
1456 	unsigned int timeout;
1457 
1458 	rcsi2_write(priv, PHTW_REG,
1459 		    PHTW_DWEN | PHTW_TESTDIN_DATA(data) |
1460 		    PHTW_CWEN | PHTW_TESTDIN_CODE(code));
1461 
1462 	/* Wait for DWEN and CWEN to be cleared by hardware. */
1463 	for (timeout = 0; timeout <= 20; timeout++) {
1464 		if (!(rcsi2_read(priv, PHTW_REG) & (PHTW_DWEN | PHTW_CWEN)))
1465 			return 0;
1466 
1467 		usleep_range(1000, 2000);
1468 	}
1469 
1470 	dev_err(priv->dev, "Timeout waiting for PHTW_DWEN and/or PHTW_CWEN\n");
1471 
1472 	return -ETIMEDOUT;
1473 }
1474 
1475 static int rcsi2_phtw_write_array(struct rcar_csi2 *priv,
1476 				  const struct phtw_value *values)
1477 {
1478 	const struct phtw_value *value;
1479 	int ret;
1480 
1481 	for (value = values; value->data || value->code; value++) {
1482 		ret = rcsi2_phtw_write(priv, value->data, value->code);
1483 		if (ret)
1484 			return ret;
1485 	}
1486 
1487 	return 0;
1488 }
1489 
1490 static int rcsi2_phtw_write_mbps(struct rcar_csi2 *priv, unsigned int mbps,
1491 				 const struct rcsi2_mbps_reg *values, u16 code)
1492 {
1493 	const struct rcsi2_mbps_reg *value;
1494 	const struct rcsi2_mbps_reg *prev_value = NULL;
1495 
1496 	for (value = values; value->mbps; value++) {
1497 		if (value->mbps >= mbps)
1498 			break;
1499 		prev_value = value;
1500 	}
1501 
1502 	if (prev_value &&
1503 	    ((mbps - prev_value->mbps) <= (value->mbps - mbps)))
1504 		value = prev_value;
1505 
1506 	if (!value->mbps) {
1507 		dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
1508 		return -ERANGE;
1509 	}
1510 
1511 	return rcsi2_phtw_write(priv, value->reg, code);
1512 }
1513 
1514 static int __rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv,
1515 					unsigned int mbps)
1516 {
1517 	static const struct phtw_value step1[] = {
1518 		{ .data = 0xcc, .code = 0xe2 },
1519 		{ .data = 0x01, .code = 0xe3 },
1520 		{ .data = 0x11, .code = 0xe4 },
1521 		{ .data = 0x01, .code = 0xe5 },
1522 		{ .data = 0x10, .code = 0x04 },
1523 		{ /* sentinel */ },
1524 	};
1525 
1526 	static const struct phtw_value step2[] = {
1527 		{ .data = 0x38, .code = 0x08 },
1528 		{ .data = 0x01, .code = 0x00 },
1529 		{ .data = 0x4b, .code = 0xac },
1530 		{ .data = 0x03, .code = 0x00 },
1531 		{ .data = 0x80, .code = 0x07 },
1532 		{ /* sentinel */ },
1533 	};
1534 
1535 	int ret;
1536 
1537 	ret = rcsi2_phtw_write_array(priv, step1);
1538 	if (ret)
1539 		return ret;
1540 
1541 	if (mbps != 0 && mbps <= 250) {
1542 		ret = rcsi2_phtw_write(priv, 0x39, 0x05);
1543 		if (ret)
1544 			return ret;
1545 
1546 		ret = rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_h3_v3h_m3n,
1547 					    0xf1);
1548 		if (ret)
1549 			return ret;
1550 	}
1551 
1552 	return rcsi2_phtw_write_array(priv, step2);
1553 }
1554 
1555 static int rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv, unsigned int mbps)
1556 {
1557 	return __rcsi2_init_phtw_h3_v3h_m3n(priv, mbps);
1558 }
1559 
1560 static int rcsi2_init_phtw_h3es2(struct rcar_csi2 *priv, unsigned int mbps)
1561 {
1562 	return __rcsi2_init_phtw_h3_v3h_m3n(priv, 0);
1563 }
1564 
1565 static int rcsi2_init_phtw_v3m_e3(struct rcar_csi2 *priv, unsigned int mbps)
1566 {
1567 	return rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_v3m_e3, 0x44);
1568 }
1569 
1570 static int rcsi2_phy_post_init_v3m_e3(struct rcar_csi2 *priv)
1571 {
1572 	static const struct phtw_value step1[] = {
1573 		{ .data = 0xee, .code = 0x34 },
1574 		{ .data = 0xee, .code = 0x44 },
1575 		{ .data = 0xee, .code = 0x54 },
1576 		{ .data = 0xee, .code = 0x84 },
1577 		{ .data = 0xee, .code = 0x94 },
1578 		{ /* sentinel */ },
1579 	};
1580 
1581 	return rcsi2_phtw_write_array(priv, step1);
1582 }
1583 
1584 static int rcsi2_init_phtw_v3u(struct rcar_csi2 *priv,
1585 			       unsigned int mbps)
1586 {
1587 	/* In case of 1500Mbps or less */
1588 	static const struct phtw_value step1[] = {
1589 		{ .data = 0xcc, .code = 0xe2 },
1590 		{ /* sentinel */ },
1591 	};
1592 
1593 	static const struct phtw_value step2[] = {
1594 		{ .data = 0x01, .code = 0xe3 },
1595 		{ .data = 0x11, .code = 0xe4 },
1596 		{ .data = 0x01, .code = 0xe5 },
1597 		{ /* sentinel */ },
1598 	};
1599 
1600 	/* In case of 1500Mbps or less */
1601 	static const struct phtw_value step3[] = {
1602 		{ .data = 0x38, .code = 0x08 },
1603 		{ /* sentinel */ },
1604 	};
1605 
1606 	static const struct phtw_value step4[] = {
1607 		{ .data = 0x01, .code = 0x00 },
1608 		{ .data = 0x4b, .code = 0xac },
1609 		{ .data = 0x03, .code = 0x00 },
1610 		{ .data = 0x80, .code = 0x07 },
1611 		{ /* sentinel */ },
1612 	};
1613 
1614 	int ret;
1615 
1616 	if (mbps != 0 && mbps <= 1500)
1617 		ret = rcsi2_phtw_write_array(priv, step1);
1618 	else
1619 		ret = rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_v3u, 0xe2);
1620 	if (ret)
1621 		return ret;
1622 
1623 	ret = rcsi2_phtw_write_array(priv, step2);
1624 	if (ret)
1625 		return ret;
1626 
1627 	if (mbps != 0 && mbps <= 1500) {
1628 		ret = rcsi2_phtw_write_array(priv, step3);
1629 		if (ret)
1630 			return ret;
1631 	}
1632 
1633 	ret = rcsi2_phtw_write_array(priv, step4);
1634 	if (ret)
1635 		return ret;
1636 
1637 	return ret;
1638 }
1639 
1640 /* -----------------------------------------------------------------------------
1641  * Platform Device Driver.
1642  */
1643 
1644 static int rcsi2_link_setup(struct media_entity *entity,
1645 			    const struct media_pad *local,
1646 			    const struct media_pad *remote, u32 flags)
1647 {
1648 	struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(entity);
1649 	struct rcar_csi2 *priv = sd_to_csi2(sd);
1650 	struct video_device *vdev;
1651 	int channel, vc;
1652 	u32 id;
1653 
1654 	if (!is_media_entity_v4l2_video_device(remote->entity)) {
1655 		dev_err(priv->dev, "Remote is not a video device\n");
1656 		return -EINVAL;
1657 	}
1658 
1659 	vdev = media_entity_to_video_device(remote->entity);
1660 
1661 	if (of_property_read_u32(vdev->dev_parent->of_node, "renesas,id", &id)) {
1662 		dev_err(priv->dev, "No renesas,id, can't configure routing\n");
1663 		return -EINVAL;
1664 	}
1665 
1666 	channel = id % 4;
1667 
1668 	if (flags & MEDIA_LNK_FL_ENABLED) {
1669 		if (media_pad_remote_pad_first(local)) {
1670 			dev_dbg(priv->dev,
1671 				"Each VC can only be routed to one output channel\n");
1672 			return -EINVAL;
1673 		}
1674 
1675 		vc = local->index - 1;
1676 
1677 		dev_dbg(priv->dev, "Route VC%d to VIN%u on output channel %d\n",
1678 			vc, id, channel);
1679 	} else {
1680 		vc = -1;
1681 	}
1682 
1683 	priv->channel_vc[channel] = vc;
1684 
1685 	return 0;
1686 }
1687 
1688 static const struct media_entity_operations rcar_csi2_entity_ops = {
1689 	.link_setup = rcsi2_link_setup,
1690 	.link_validate = v4l2_subdev_link_validate,
1691 };
1692 
1693 static int rcsi2_probe_resources(struct rcar_csi2 *priv,
1694 				 struct platform_device *pdev)
1695 {
1696 	int irq, ret;
1697 
1698 	priv->base = devm_platform_ioremap_resource(pdev, 0);
1699 	if (IS_ERR(priv->base))
1700 		return PTR_ERR(priv->base);
1701 
1702 	irq = platform_get_irq(pdev, 0);
1703 	if (irq < 0)
1704 		return irq;
1705 
1706 	ret = devm_request_threaded_irq(&pdev->dev, irq, rcsi2_irq,
1707 					rcsi2_irq_thread, IRQF_SHARED,
1708 					KBUILD_MODNAME, priv);
1709 	if (ret)
1710 		return ret;
1711 
1712 	priv->rstc = devm_reset_control_get(&pdev->dev, NULL);
1713 
1714 	return PTR_ERR_OR_ZERO(priv->rstc);
1715 }
1716 
1717 static const struct rcar_csi2_info rcar_csi2_info_r8a7795 = {
1718 	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1719 	.start_receiver = rcsi2_start_receiver_gen3,
1720 	.enter_standby = rcsi2_enter_standby_gen3,
1721 	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1722 	.csi0clkfreqrange = 0x20,
1723 	.num_channels = 4,
1724 	.clear_ulps = true,
1725 	.support_dphy = true,
1726 };
1727 
1728 static const struct rcar_csi2_info rcar_csi2_info_r8a7795es2 = {
1729 	.init_phtw = rcsi2_init_phtw_h3es2,
1730 	.start_receiver = rcsi2_start_receiver_gen3,
1731 	.enter_standby = rcsi2_enter_standby_gen3,
1732 	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1733 	.csi0clkfreqrange = 0x20,
1734 	.num_channels = 4,
1735 	.clear_ulps = true,
1736 	.support_dphy = true,
1737 };
1738 
1739 static const struct rcar_csi2_info rcar_csi2_info_r8a7796 = {
1740 	.start_receiver = rcsi2_start_receiver_gen3,
1741 	.enter_standby = rcsi2_enter_standby_gen3,
1742 	.hsfreqrange = hsfreqrange_m3w,
1743 	.num_channels = 4,
1744 	.support_dphy = true,
1745 };
1746 
1747 static const struct rcar_csi2_info rcar_csi2_info_r8a77961 = {
1748 	.start_receiver = rcsi2_start_receiver_gen3,
1749 	.enter_standby = rcsi2_enter_standby_gen3,
1750 	.hsfreqrange = hsfreqrange_m3w,
1751 	.num_channels = 4,
1752 	.support_dphy = true,
1753 };
1754 
1755 static const struct rcar_csi2_info rcar_csi2_info_r8a77965 = {
1756 	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1757 	.start_receiver = rcsi2_start_receiver_gen3,
1758 	.enter_standby = rcsi2_enter_standby_gen3,
1759 	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1760 	.csi0clkfreqrange = 0x20,
1761 	.num_channels = 4,
1762 	.clear_ulps = true,
1763 	.support_dphy = true,
1764 };
1765 
1766 static const struct rcar_csi2_info rcar_csi2_info_r8a77970 = {
1767 	.init_phtw = rcsi2_init_phtw_v3m_e3,
1768 	.phy_post_init = rcsi2_phy_post_init_v3m_e3,
1769 	.start_receiver = rcsi2_start_receiver_gen3,
1770 	.enter_standby = rcsi2_enter_standby_gen3,
1771 	.num_channels = 4,
1772 	.support_dphy = true,
1773 };
1774 
1775 static const struct rcar_csi2_info rcar_csi2_info_r8a77980 = {
1776 	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1777 	.start_receiver = rcsi2_start_receiver_gen3,
1778 	.enter_standby = rcsi2_enter_standby_gen3,
1779 	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1780 	.csi0clkfreqrange = 0x20,
1781 	.clear_ulps = true,
1782 	.support_dphy = true,
1783 };
1784 
1785 static const struct rcar_csi2_info rcar_csi2_info_r8a77990 = {
1786 	.init_phtw = rcsi2_init_phtw_v3m_e3,
1787 	.phy_post_init = rcsi2_phy_post_init_v3m_e3,
1788 	.start_receiver = rcsi2_start_receiver_gen3,
1789 	.enter_standby = rcsi2_enter_standby_gen3,
1790 	.num_channels = 2,
1791 	.support_dphy = true,
1792 };
1793 
1794 static const struct rcar_csi2_info rcar_csi2_info_r8a779a0 = {
1795 	.init_phtw = rcsi2_init_phtw_v3u,
1796 	.start_receiver = rcsi2_start_receiver_gen3,
1797 	.enter_standby = rcsi2_enter_standby_gen3,
1798 	.hsfreqrange = hsfreqrange_v3u,
1799 	.csi0clkfreqrange = 0x20,
1800 	.clear_ulps = true,
1801 	.use_isp = true,
1802 	.support_dphy = true,
1803 };
1804 
1805 static const struct rcar_csi2_info rcar_csi2_info_r8a779g0 = {
1806 	.start_receiver = rcsi2_start_receiver_v4h,
1807 	.use_isp = true,
1808 	.support_cphy = true,
1809 };
1810 
1811 static const struct of_device_id rcar_csi2_of_table[] = {
1812 	{
1813 		.compatible = "renesas,r8a774a1-csi2",
1814 		.data = &rcar_csi2_info_r8a7796,
1815 	},
1816 	{
1817 		.compatible = "renesas,r8a774b1-csi2",
1818 		.data = &rcar_csi2_info_r8a77965,
1819 	},
1820 	{
1821 		.compatible = "renesas,r8a774c0-csi2",
1822 		.data = &rcar_csi2_info_r8a77990,
1823 	},
1824 	{
1825 		.compatible = "renesas,r8a774e1-csi2",
1826 		.data = &rcar_csi2_info_r8a7795,
1827 	},
1828 	{
1829 		.compatible = "renesas,r8a7795-csi2",
1830 		.data = &rcar_csi2_info_r8a7795,
1831 	},
1832 	{
1833 		.compatible = "renesas,r8a7796-csi2",
1834 		.data = &rcar_csi2_info_r8a7796,
1835 	},
1836 	{
1837 		.compatible = "renesas,r8a77961-csi2",
1838 		.data = &rcar_csi2_info_r8a77961,
1839 	},
1840 	{
1841 		.compatible = "renesas,r8a77965-csi2",
1842 		.data = &rcar_csi2_info_r8a77965,
1843 	},
1844 	{
1845 		.compatible = "renesas,r8a77970-csi2",
1846 		.data = &rcar_csi2_info_r8a77970,
1847 	},
1848 	{
1849 		.compatible = "renesas,r8a77980-csi2",
1850 		.data = &rcar_csi2_info_r8a77980,
1851 	},
1852 	{
1853 		.compatible = "renesas,r8a77990-csi2",
1854 		.data = &rcar_csi2_info_r8a77990,
1855 	},
1856 	{
1857 		.compatible = "renesas,r8a779a0-csi2",
1858 		.data = &rcar_csi2_info_r8a779a0,
1859 	},
1860 	{
1861 		.compatible = "renesas,r8a779g0-csi2",
1862 		.data = &rcar_csi2_info_r8a779g0,
1863 	},
1864 	{ /* sentinel */ },
1865 };
1866 MODULE_DEVICE_TABLE(of, rcar_csi2_of_table);
1867 
1868 static const struct soc_device_attribute r8a7795[] = {
1869 	{
1870 		.soc_id = "r8a7795", .revision = "ES2.*",
1871 		.data = &rcar_csi2_info_r8a7795es2,
1872 	},
1873 	{ /* sentinel */ }
1874 };
1875 
1876 static int rcsi2_probe(struct platform_device *pdev)
1877 {
1878 	const struct soc_device_attribute *attr;
1879 	struct rcar_csi2 *priv;
1880 	unsigned int i, num_pads;
1881 	int ret;
1882 
1883 	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
1884 	if (!priv)
1885 		return -ENOMEM;
1886 
1887 	priv->info = of_device_get_match_data(&pdev->dev);
1888 
1889 	/*
1890 	 * The different ES versions of r8a7795 (H3) behave differently but
1891 	 * share the same compatible string.
1892 	 */
1893 	attr = soc_device_match(r8a7795);
1894 	if (attr)
1895 		priv->info = attr->data;
1896 
1897 	priv->dev = &pdev->dev;
1898 
1899 	priv->stream_count = 0;
1900 
1901 	ret = rcsi2_probe_resources(priv, pdev);
1902 	if (ret) {
1903 		dev_err(priv->dev, "Failed to get resources\n");
1904 		return ret;
1905 	}
1906 
1907 	platform_set_drvdata(pdev, priv);
1908 
1909 	ret = rcsi2_parse_dt(priv);
1910 	if (ret)
1911 		return ret;
1912 
1913 	priv->subdev.owner = THIS_MODULE;
1914 	priv->subdev.dev = &pdev->dev;
1915 	priv->subdev.internal_ops = &rcar_csi2_internal_ops;
1916 	v4l2_subdev_init(&priv->subdev, &rcar_csi2_subdev_ops);
1917 	v4l2_set_subdevdata(&priv->subdev, &pdev->dev);
1918 	snprintf(priv->subdev.name, sizeof(priv->subdev.name), "%s %s",
1919 		 KBUILD_MODNAME, dev_name(&pdev->dev));
1920 	priv->subdev.flags = V4L2_SUBDEV_FL_HAS_DEVNODE;
1921 
1922 	priv->subdev.entity.function = MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER;
1923 	priv->subdev.entity.ops = &rcar_csi2_entity_ops;
1924 
1925 	num_pads = rcsi2_num_pads(priv);
1926 
1927 	priv->pads[RCAR_CSI2_SINK].flags = MEDIA_PAD_FL_SINK;
1928 	for (i = RCAR_CSI2_SOURCE_VC0; i < num_pads; i++)
1929 		priv->pads[i].flags = MEDIA_PAD_FL_SOURCE;
1930 
1931 	ret = media_entity_pads_init(&priv->subdev.entity, num_pads,
1932 				     priv->pads);
1933 	if (ret)
1934 		goto error_async;
1935 
1936 	for (i = 0; i < ARRAY_SIZE(priv->channel_vc); i++)
1937 		priv->channel_vc[i] = -1;
1938 
1939 	pm_runtime_enable(&pdev->dev);
1940 
1941 	ret = v4l2_subdev_init_finalize(&priv->subdev);
1942 	if (ret)
1943 		goto error_pm_runtime;
1944 
1945 	ret = v4l2_async_register_subdev(&priv->subdev);
1946 	if (ret < 0)
1947 		goto error_subdev;
1948 
1949 	dev_info(priv->dev, "%d lanes found\n", priv->lanes);
1950 
1951 	return 0;
1952 
1953 error_subdev:
1954 	v4l2_subdev_cleanup(&priv->subdev);
1955 error_pm_runtime:
1956 	pm_runtime_disable(&pdev->dev);
1957 error_async:
1958 	v4l2_async_nf_unregister(&priv->notifier);
1959 	v4l2_async_nf_cleanup(&priv->notifier);
1960 
1961 	return ret;
1962 }
1963 
1964 static void rcsi2_remove(struct platform_device *pdev)
1965 {
1966 	struct rcar_csi2 *priv = platform_get_drvdata(pdev);
1967 
1968 	v4l2_async_nf_unregister(&priv->notifier);
1969 	v4l2_async_nf_cleanup(&priv->notifier);
1970 	v4l2_async_unregister_subdev(&priv->subdev);
1971 	v4l2_subdev_cleanup(&priv->subdev);
1972 
1973 	pm_runtime_disable(&pdev->dev);
1974 }
1975 
1976 static struct platform_driver rcar_csi2_pdrv = {
1977 	.remove_new = rcsi2_remove,
1978 	.probe	= rcsi2_probe,
1979 	.driver	= {
1980 		.name	= "rcar-csi2",
1981 		.suppress_bind_attrs = true,
1982 		.of_match_table	= rcar_csi2_of_table,
1983 	},
1984 };
1985 
1986 module_platform_driver(rcar_csi2_pdrv);
1987 
1988 MODULE_AUTHOR("Niklas Söderlund <niklas.soderlund@ragnatech.se>");
1989 MODULE_DESCRIPTION("Renesas R-Car MIPI CSI-2 receiver driver");
1990 MODULE_LICENSE("GPL");
1991