xref: /linux/drivers/media/platform/qcom/camss/camss-csid.c (revision 0b364cf53b20204e92bac7c6ebd1ee7d3ec62931)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * camss-csid.c
4  *
5  * Qualcomm MSM Camera Subsystem - CSID (CSI Decoder) Module
6  *
7  * Copyright (c) 2011-2015, The Linux Foundation. All rights reserved.
8  * Copyright (C) 2015-2018 Linaro Ltd.
9  */
10 #include <linux/clk.h>
11 #include <linux/completion.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/of.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/regulator/consumer.h>
19 #include <media/media-entity.h>
20 #include <media/v4l2-device.h>
21 #include <media/v4l2-event.h>
22 #include <media/v4l2-subdev.h>
23 
24 #include "camss-csid.h"
25 #include "camss-csid-gen1.h"
26 #include "camss.h"
27 
28 /* offset of CSID registers in VFE region for VFE 480 */
29 #define VFE_480_CSID_OFFSET 0x1200
30 #define VFE_480_LITE_CSID_OFFSET 0x200
31 
32 #define MSM_CSID_NAME "msm_csid"
33 
34 const char * const csid_testgen_modes[] = {
35 	"Disabled",
36 	"Incrementing",
37 	"Alternating 0x55/0xAA",
38 	"All Zeros 0x00",
39 	"All Ones 0xFF",
40 	"Pseudo-random Data",
41 	"User Specified",
42 	"Complex pattern",
43 	"Color box",
44 	"Color bars",
45 	NULL
46 };
47 
48 static const struct csid_format_info formats_4_1[] = {
49 	{
50 		MEDIA_BUS_FMT_UYVY8_1X16,
51 		DATA_TYPE_YUV422_8BIT,
52 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
53 		8,
54 		2,
55 	},
56 	{
57 		MEDIA_BUS_FMT_VYUY8_1X16,
58 		DATA_TYPE_YUV422_8BIT,
59 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
60 		8,
61 		2,
62 	},
63 	{
64 		MEDIA_BUS_FMT_YUYV8_1X16,
65 		DATA_TYPE_YUV422_8BIT,
66 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
67 		8,
68 		2,
69 	},
70 	{
71 		MEDIA_BUS_FMT_YVYU8_1X16,
72 		DATA_TYPE_YUV422_8BIT,
73 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
74 		8,
75 		2,
76 	},
77 	{
78 		MEDIA_BUS_FMT_SBGGR8_1X8,
79 		DATA_TYPE_RAW_8BIT,
80 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
81 		8,
82 		1,
83 	},
84 	{
85 		MEDIA_BUS_FMT_SGBRG8_1X8,
86 		DATA_TYPE_RAW_8BIT,
87 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
88 		8,
89 		1,
90 	},
91 	{
92 		MEDIA_BUS_FMT_SGRBG8_1X8,
93 		DATA_TYPE_RAW_8BIT,
94 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
95 		8,
96 		1,
97 	},
98 	{
99 		MEDIA_BUS_FMT_SRGGB8_1X8,
100 		DATA_TYPE_RAW_8BIT,
101 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
102 		8,
103 		1,
104 	},
105 	{
106 		MEDIA_BUS_FMT_SBGGR10_1X10,
107 		DATA_TYPE_RAW_10BIT,
108 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
109 		10,
110 		1,
111 	},
112 	{
113 		MEDIA_BUS_FMT_SGBRG10_1X10,
114 		DATA_TYPE_RAW_10BIT,
115 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
116 		10,
117 		1,
118 	},
119 	{
120 		MEDIA_BUS_FMT_SGRBG10_1X10,
121 		DATA_TYPE_RAW_10BIT,
122 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
123 		10,
124 		1,
125 	},
126 	{
127 		MEDIA_BUS_FMT_SRGGB10_1X10,
128 		DATA_TYPE_RAW_10BIT,
129 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
130 		10,
131 		1,
132 	},
133 	{
134 		MEDIA_BUS_FMT_SBGGR12_1X12,
135 		DATA_TYPE_RAW_12BIT,
136 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
137 		12,
138 		1,
139 	},
140 	{
141 		MEDIA_BUS_FMT_SGBRG12_1X12,
142 		DATA_TYPE_RAW_12BIT,
143 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
144 		12,
145 		1,
146 	},
147 	{
148 		MEDIA_BUS_FMT_SGRBG12_1X12,
149 		DATA_TYPE_RAW_12BIT,
150 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
151 		12,
152 		1,
153 	},
154 	{
155 		MEDIA_BUS_FMT_SRGGB12_1X12,
156 		DATA_TYPE_RAW_12BIT,
157 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
158 		12,
159 		1,
160 	},
161 	{
162 		MEDIA_BUS_FMT_Y10_1X10,
163 		DATA_TYPE_RAW_10BIT,
164 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
165 		10,
166 		1,
167 	},
168 };
169 
170 static const struct csid_format_info formats_4_7[] = {
171 	{
172 		MEDIA_BUS_FMT_UYVY8_1X16,
173 		DATA_TYPE_YUV422_8BIT,
174 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
175 		8,
176 		2,
177 	},
178 	{
179 		MEDIA_BUS_FMT_VYUY8_1X16,
180 		DATA_TYPE_YUV422_8BIT,
181 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
182 		8,
183 		2,
184 	},
185 	{
186 		MEDIA_BUS_FMT_YUYV8_1X16,
187 		DATA_TYPE_YUV422_8BIT,
188 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
189 		8,
190 		2,
191 	},
192 	{
193 		MEDIA_BUS_FMT_YVYU8_1X16,
194 		DATA_TYPE_YUV422_8BIT,
195 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
196 		8,
197 		2,
198 	},
199 	{
200 		MEDIA_BUS_FMT_SBGGR8_1X8,
201 		DATA_TYPE_RAW_8BIT,
202 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
203 		8,
204 		1,
205 	},
206 	{
207 		MEDIA_BUS_FMT_SGBRG8_1X8,
208 		DATA_TYPE_RAW_8BIT,
209 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
210 		8,
211 		1,
212 	},
213 	{
214 		MEDIA_BUS_FMT_SGRBG8_1X8,
215 		DATA_TYPE_RAW_8BIT,
216 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
217 		8,
218 		1,
219 	},
220 	{
221 		MEDIA_BUS_FMT_SRGGB8_1X8,
222 		DATA_TYPE_RAW_8BIT,
223 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
224 		8,
225 		1,
226 	},
227 	{
228 		MEDIA_BUS_FMT_SBGGR10_1X10,
229 		DATA_TYPE_RAW_10BIT,
230 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
231 		10,
232 		1,
233 	},
234 	{
235 		MEDIA_BUS_FMT_SGBRG10_1X10,
236 		DATA_TYPE_RAW_10BIT,
237 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
238 		10,
239 		1,
240 	},
241 	{
242 		MEDIA_BUS_FMT_SGRBG10_1X10,
243 		DATA_TYPE_RAW_10BIT,
244 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
245 		10,
246 		1,
247 	},
248 	{
249 		MEDIA_BUS_FMT_SRGGB10_1X10,
250 		DATA_TYPE_RAW_10BIT,
251 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
252 		10,
253 		1,
254 	},
255 	{
256 		MEDIA_BUS_FMT_SBGGR12_1X12,
257 		DATA_TYPE_RAW_12BIT,
258 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
259 		12,
260 		1,
261 	},
262 	{
263 		MEDIA_BUS_FMT_SGBRG12_1X12,
264 		DATA_TYPE_RAW_12BIT,
265 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
266 		12,
267 		1,
268 	},
269 	{
270 		MEDIA_BUS_FMT_SGRBG12_1X12,
271 		DATA_TYPE_RAW_12BIT,
272 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
273 		12,
274 		1,
275 	},
276 	{
277 		MEDIA_BUS_FMT_SRGGB12_1X12,
278 		DATA_TYPE_RAW_12BIT,
279 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
280 		12,
281 		1,
282 	},
283 	{
284 		MEDIA_BUS_FMT_SBGGR14_1X14,
285 		DATA_TYPE_RAW_14BIT,
286 		DECODE_FORMAT_UNCOMPRESSED_14_BIT,
287 		14,
288 		1,
289 	},
290 	{
291 		MEDIA_BUS_FMT_SGBRG14_1X14,
292 		DATA_TYPE_RAW_14BIT,
293 		DECODE_FORMAT_UNCOMPRESSED_14_BIT,
294 		14,
295 		1,
296 	},
297 	{
298 		MEDIA_BUS_FMT_SGRBG14_1X14,
299 		DATA_TYPE_RAW_14BIT,
300 		DECODE_FORMAT_UNCOMPRESSED_14_BIT,
301 		14,
302 		1,
303 	},
304 	{
305 		MEDIA_BUS_FMT_SRGGB14_1X14,
306 		DATA_TYPE_RAW_14BIT,
307 		DECODE_FORMAT_UNCOMPRESSED_14_BIT,
308 		14,
309 		1,
310 	},
311 	{
312 		MEDIA_BUS_FMT_Y10_1X10,
313 		DATA_TYPE_RAW_10BIT,
314 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
315 		10,
316 		1,
317 	},
318 };
319 
320 static const struct csid_format_info formats_gen2[] = {
321 	{
322 		MEDIA_BUS_FMT_UYVY8_1X16,
323 		DATA_TYPE_YUV422_8BIT,
324 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
325 		8,
326 		2,
327 	},
328 	{
329 		MEDIA_BUS_FMT_VYUY8_1X16,
330 		DATA_TYPE_YUV422_8BIT,
331 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
332 		8,
333 		2,
334 	},
335 	{
336 		MEDIA_BUS_FMT_YUYV8_1X16,
337 		DATA_TYPE_YUV422_8BIT,
338 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
339 		8,
340 		2,
341 	},
342 	{
343 		MEDIA_BUS_FMT_YVYU8_1X16,
344 		DATA_TYPE_YUV422_8BIT,
345 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
346 		8,
347 		2,
348 	},
349 	{
350 		MEDIA_BUS_FMT_SBGGR8_1X8,
351 		DATA_TYPE_RAW_8BIT,
352 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
353 		8,
354 		1,
355 	},
356 	{
357 		MEDIA_BUS_FMT_SGBRG8_1X8,
358 		DATA_TYPE_RAW_8BIT,
359 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
360 		8,
361 		1,
362 	},
363 	{
364 		MEDIA_BUS_FMT_SGRBG8_1X8,
365 		DATA_TYPE_RAW_8BIT,
366 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
367 		8,
368 		1,
369 	},
370 	{
371 		MEDIA_BUS_FMT_SRGGB8_1X8,
372 		DATA_TYPE_RAW_8BIT,
373 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
374 		8,
375 		1,
376 	},
377 	{
378 		MEDIA_BUS_FMT_SBGGR10_1X10,
379 		DATA_TYPE_RAW_10BIT,
380 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
381 		10,
382 		1,
383 	},
384 	{
385 		MEDIA_BUS_FMT_SGBRG10_1X10,
386 		DATA_TYPE_RAW_10BIT,
387 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
388 		10,
389 		1,
390 	},
391 	{
392 		MEDIA_BUS_FMT_SGRBG10_1X10,
393 		DATA_TYPE_RAW_10BIT,
394 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
395 		10,
396 		1,
397 	},
398 	{
399 		MEDIA_BUS_FMT_SRGGB10_1X10,
400 		DATA_TYPE_RAW_10BIT,
401 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
402 		10,
403 		1,
404 	},
405 	{
406 		MEDIA_BUS_FMT_Y8_1X8,
407 		DATA_TYPE_RAW_8BIT,
408 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
409 		8,
410 		1,
411 	},
412 	{
413 		MEDIA_BUS_FMT_Y10_1X10,
414 		DATA_TYPE_RAW_10BIT,
415 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
416 		10,
417 		1,
418 	},
419 	{
420 		MEDIA_BUS_FMT_SBGGR12_1X12,
421 		DATA_TYPE_RAW_12BIT,
422 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
423 		12,
424 		1,
425 	},
426 	{
427 		MEDIA_BUS_FMT_SGBRG12_1X12,
428 		DATA_TYPE_RAW_12BIT,
429 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
430 		12,
431 		1,
432 	},
433 	{
434 		MEDIA_BUS_FMT_SGRBG12_1X12,
435 		DATA_TYPE_RAW_12BIT,
436 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
437 		12,
438 		1,
439 	},
440 	{
441 		MEDIA_BUS_FMT_SRGGB12_1X12,
442 		DATA_TYPE_RAW_12BIT,
443 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
444 		12,
445 		1,
446 	},
447 	{
448 		MEDIA_BUS_FMT_SBGGR14_1X14,
449 		DATA_TYPE_RAW_14BIT,
450 		DECODE_FORMAT_UNCOMPRESSED_14_BIT,
451 		14,
452 		1,
453 	},
454 	{
455 		MEDIA_BUS_FMT_SGBRG14_1X14,
456 		DATA_TYPE_RAW_14BIT,
457 		DECODE_FORMAT_UNCOMPRESSED_14_BIT,
458 		14,
459 		1,
460 	},
461 	{
462 		MEDIA_BUS_FMT_SGRBG14_1X14,
463 		DATA_TYPE_RAW_14BIT,
464 		DECODE_FORMAT_UNCOMPRESSED_14_BIT,
465 		14,
466 		1,
467 	},
468 	{
469 		MEDIA_BUS_FMT_SRGGB14_1X14,
470 		DATA_TYPE_RAW_14BIT,
471 		DECODE_FORMAT_UNCOMPRESSED_14_BIT,
472 		14,
473 		1,
474 	},
475 };
476 
477 const struct csid_formats csid_formats_4_1 = {
478 	.nformats = ARRAY_SIZE(formats_4_1),
479 	.formats = formats_4_1
480 };
481 
482 const struct csid_formats csid_formats_4_7 = {
483 	.nformats = ARRAY_SIZE(formats_4_7),
484 	.formats = formats_4_7
485 };
486 
487 const struct csid_formats csid_formats_gen2 = {
488 	.nformats = ARRAY_SIZE(formats_gen2),
489 	.formats = formats_gen2
490 };
491 
492 u32 csid_find_code(u32 *codes, unsigned int ncodes,
493 		   unsigned int match_format_idx, u32 match_code)
494 {
495 	int i;
496 
497 	if (!match_code && (match_format_idx >= ncodes))
498 		return 0;
499 
500 	for (i = 0; i < ncodes; i++)
501 		if (match_code) {
502 			if (codes[i] == match_code)
503 				return match_code;
504 		} else {
505 			if (i == match_format_idx)
506 				return codes[i];
507 		}
508 
509 	return codes[0];
510 }
511 
512 const struct csid_format_info *csid_get_fmt_entry(const struct csid_format_info *formats,
513 						  unsigned int nformats,
514 						  u32 code)
515 {
516 	unsigned int i;
517 
518 	for (i = 0; i < nformats; i++)
519 		if (code == formats[i].code)
520 			return &formats[i];
521 
522 	WARN(1, "Unknown format\n");
523 
524 	return &formats[0];
525 }
526 
527 /*
528  * csid_set_clock_rates - Calculate and set clock rates on CSID module
529  * @csiphy: CSID device
530  */
531 static int csid_set_clock_rates(struct csid_device *csid)
532 {
533 	struct device *dev = csid->camss->dev;
534 	const struct csid_format_info *fmt;
535 	s64 link_freq;
536 	int i, j;
537 	int ret;
538 
539 	fmt = csid_get_fmt_entry(csid->res->formats->formats, csid->res->formats->nformats,
540 				 csid->fmt[MSM_CSIPHY_PAD_SINK].code);
541 	link_freq = camss_get_link_freq(&csid->subdev.entity, fmt->bpp,
542 					csid->phy.lane_cnt);
543 	if (link_freq < 0)
544 		link_freq = 0;
545 
546 	for (i = 0; i < csid->nclocks; i++) {
547 		struct camss_clock *clock = &csid->clock[i];
548 
549 		if (!strcmp(clock->name, "csi0") ||
550 		    !strcmp(clock->name, "csi1") ||
551 		    !strcmp(clock->name, "csi2") ||
552 		    !strcmp(clock->name, "csi3")) {
553 			u64 min_rate = link_freq / 4;
554 			long rate;
555 
556 			camss_add_clock_margin(&min_rate);
557 
558 			for (j = 0; j < clock->nfreqs; j++)
559 				if (min_rate < clock->freq[j])
560 					break;
561 
562 			if (j == clock->nfreqs) {
563 				dev_err(dev,
564 					"Pixel clock is too high for CSID\n");
565 				return -EINVAL;
566 			}
567 
568 			/* if sensor pixel clock is not available */
569 			/* set highest possible CSID clock rate */
570 			if (min_rate == 0)
571 				j = clock->nfreqs - 1;
572 
573 			rate = clk_round_rate(clock->clk, clock->freq[j]);
574 			if (rate < 0) {
575 				dev_err(dev, "clk round rate failed: %ld\n",
576 					rate);
577 				return -EINVAL;
578 			}
579 
580 			ret = clk_set_rate(clock->clk, rate);
581 			if (ret < 0) {
582 				dev_err(dev, "clk set rate failed: %d\n", ret);
583 				return ret;
584 			}
585 		} else if (clock->nfreqs) {
586 			clk_set_rate(clock->clk, clock->freq[0]);
587 		}
588 	}
589 
590 	return 0;
591 }
592 
593 /*
594  * csid_set_power - Power on/off CSID module
595  * @sd: CSID V4L2 subdevice
596  * @on: Requested power state
597  *
598  * Return 0 on success or a negative error code otherwise
599  */
600 static int csid_set_power(struct v4l2_subdev *sd, int on)
601 {
602 	struct csid_device *csid = v4l2_get_subdevdata(sd);
603 	struct camss *camss = csid->camss;
604 	struct device *dev = camss->dev;
605 	int ret = 0;
606 
607 	if (on) {
608 		/*
609 		 * From SDM845 onwards, the VFE needs to be powered on before
610 		 * switching on the CSID. Do so unconditionally, as there is no
611 		 * drawback in following the same powering order on older SoCs.
612 		 */
613 		ret = csid->res->parent_dev_ops->get(camss, csid->id);
614 		if (ret < 0)
615 			return ret;
616 
617 		ret = pm_runtime_resume_and_get(dev);
618 		if (ret < 0)
619 			return ret;
620 
621 		ret = regulator_bulk_enable(csid->num_supplies,
622 					    csid->supplies);
623 		if (ret < 0) {
624 			pm_runtime_put_sync(dev);
625 			return ret;
626 		}
627 
628 		ret = csid_set_clock_rates(csid);
629 		if (ret < 0) {
630 			regulator_bulk_disable(csid->num_supplies,
631 					       csid->supplies);
632 			pm_runtime_put_sync(dev);
633 			return ret;
634 		}
635 
636 		ret = camss_enable_clocks(csid->nclocks, csid->clock, dev);
637 		if (ret < 0) {
638 			regulator_bulk_disable(csid->num_supplies,
639 					       csid->supplies);
640 			pm_runtime_put_sync(dev);
641 			return ret;
642 		}
643 
644 		csid->phy.need_vc_update = true;
645 
646 		enable_irq(csid->irq);
647 
648 		ret = csid->res->hw_ops->reset(csid);
649 		if (ret < 0) {
650 			disable_irq(csid->irq);
651 			camss_disable_clocks(csid->nclocks, csid->clock);
652 			regulator_bulk_disable(csid->num_supplies,
653 					       csid->supplies);
654 			pm_runtime_put_sync(dev);
655 			return ret;
656 		}
657 
658 		csid->res->hw_ops->hw_version(csid);
659 	} else {
660 		disable_irq(csid->irq);
661 		camss_disable_clocks(csid->nclocks, csid->clock);
662 		regulator_bulk_disable(csid->num_supplies,
663 				       csid->supplies);
664 		pm_runtime_put_sync(dev);
665 		csid->res->parent_dev_ops->put(camss, csid->id);
666 	}
667 
668 	return ret;
669 }
670 
671 /*
672  * csid_set_stream - Enable/disable streaming on CSID module
673  * @sd: CSID V4L2 subdevice
674  * @enable: Requested streaming state
675  *
676  * Main configuration of CSID module is also done here.
677  *
678  * Return 0 on success or a negative error code otherwise
679  */
680 static int csid_set_stream(struct v4l2_subdev *sd, int enable)
681 {
682 	struct csid_device *csid = v4l2_get_subdevdata(sd);
683 	int ret;
684 
685 	if (enable) {
686 		ret = v4l2_ctrl_handler_setup(&csid->ctrls);
687 		if (ret < 0) {
688 			dev_err(csid->camss->dev,
689 				"could not sync v4l2 controls: %d\n", ret);
690 			return ret;
691 		}
692 
693 		if (!csid->testgen.enabled &&
694 		    !media_pad_remote_pad_first(&csid->pads[MSM_CSID_PAD_SINK]))
695 			return -ENOLINK;
696 	}
697 
698 	if (csid->phy.need_vc_update) {
699 		csid->res->hw_ops->configure_stream(csid, enable);
700 		csid->phy.need_vc_update = false;
701 	}
702 
703 	return 0;
704 }
705 
706 /*
707  * __csid_get_format - Get pointer to format structure
708  * @csid: CSID device
709  * @sd_state: V4L2 subdev state
710  * @pad: pad from which format is requested
711  * @which: TRY or ACTIVE format
712  *
713  * Return pointer to TRY or ACTIVE format structure
714  */
715 static struct v4l2_mbus_framefmt *
716 __csid_get_format(struct csid_device *csid,
717 		  struct v4l2_subdev_state *sd_state,
718 		  unsigned int pad,
719 		  enum v4l2_subdev_format_whence which)
720 {
721 	if (which == V4L2_SUBDEV_FORMAT_TRY)
722 		return v4l2_subdev_state_get_format(sd_state, pad);
723 
724 	return &csid->fmt[pad];
725 }
726 
727 /*
728  * csid_try_format - Handle try format by pad subdev method
729  * @csid: CSID device
730  * @sd_state: V4L2 subdev state
731  * @pad: pad on which format is requested
732  * @fmt: pointer to v4l2 format structure
733  * @which: wanted subdev format
734  */
735 static void csid_try_format(struct csid_device *csid,
736 			    struct v4l2_subdev_state *sd_state,
737 			    unsigned int pad,
738 			    struct v4l2_mbus_framefmt *fmt,
739 			    enum v4l2_subdev_format_whence which)
740 {
741 	unsigned int i;
742 
743 	switch (pad) {
744 	case MSM_CSID_PAD_SINK:
745 		/* Set format on sink pad */
746 
747 		for (i = 0; i < csid->res->formats->nformats; i++)
748 			if (fmt->code == csid->res->formats->formats[i].code)
749 				break;
750 
751 		/* If not found, use UYVY as default */
752 		if (i >= csid->res->formats->nformats)
753 			fmt->code = MEDIA_BUS_FMT_UYVY8_1X16;
754 
755 		fmt->width = clamp_t(u32, fmt->width, 1, 8191);
756 		fmt->height = clamp_t(u32, fmt->height, 1, 8191);
757 
758 		fmt->field = V4L2_FIELD_NONE;
759 		fmt->colorspace = V4L2_COLORSPACE_SRGB;
760 
761 		break;
762 
763 	case MSM_CSID_PAD_SRC:
764 		if (csid->testgen_mode->cur.val == 0) {
765 			/* Test generator is disabled, */
766 			/* keep pad formats in sync */
767 			u32 code = fmt->code;
768 
769 			*fmt = *__csid_get_format(csid, sd_state,
770 						      MSM_CSID_PAD_SINK, which);
771 			fmt->code = csid->res->hw_ops->src_pad_code(csid, fmt->code, 0, code);
772 		} else {
773 			/* Test generator is enabled, set format on source */
774 			/* pad to allow test generator usage */
775 
776 			for (i = 0; i < csid->res->formats->nformats; i++)
777 				if (csid->res->formats->formats[i].code == fmt->code)
778 					break;
779 
780 			/* If not found, use UYVY as default */
781 			if (i >= csid->res->formats->nformats)
782 				fmt->code = MEDIA_BUS_FMT_UYVY8_1X16;
783 
784 			fmt->width = clamp_t(u32, fmt->width, 1, 8191);
785 			fmt->height = clamp_t(u32, fmt->height, 1, 8191);
786 
787 			fmt->field = V4L2_FIELD_NONE;
788 		}
789 		break;
790 	}
791 
792 	fmt->colorspace = V4L2_COLORSPACE_SRGB;
793 }
794 
795 /*
796  * csid_enum_mbus_code - Handle pixel format enumeration
797  * @sd: CSID V4L2 subdevice
798  * @sd_state: V4L2 subdev state
799  * @code: pointer to v4l2_subdev_mbus_code_enum structure
800  * return -EINVAL or zero on success
801  */
802 static int csid_enum_mbus_code(struct v4l2_subdev *sd,
803 			       struct v4l2_subdev_state *sd_state,
804 			       struct v4l2_subdev_mbus_code_enum *code)
805 {
806 	struct csid_device *csid = v4l2_get_subdevdata(sd);
807 
808 	if (code->pad == MSM_CSID_PAD_SINK) {
809 		if (code->index >= csid->res->formats->nformats)
810 			return -EINVAL;
811 
812 		code->code = csid->res->formats->formats[code->index].code;
813 	} else {
814 		if (csid->testgen_mode->cur.val == 0) {
815 			struct v4l2_mbus_framefmt *sink_fmt;
816 
817 			sink_fmt = __csid_get_format(csid, sd_state,
818 						     MSM_CSID_PAD_SINK,
819 						     code->which);
820 
821 			code->code = csid->res->hw_ops->src_pad_code(csid, sink_fmt->code,
822 								     code->index, 0);
823 			if (!code->code)
824 				return -EINVAL;
825 		} else {
826 			if (code->index >= csid->res->formats->nformats)
827 				return -EINVAL;
828 
829 			code->code = csid->res->formats->formats[code->index].code;
830 		}
831 	}
832 
833 	return 0;
834 }
835 
836 /*
837  * csid_enum_frame_size - Handle frame size enumeration
838  * @sd: CSID V4L2 subdevice
839  * @sd_state: V4L2 subdev state
840  * @fse: pointer to v4l2_subdev_frame_size_enum structure
841  * return -EINVAL or zero on success
842  */
843 static int csid_enum_frame_size(struct v4l2_subdev *sd,
844 				struct v4l2_subdev_state *sd_state,
845 				struct v4l2_subdev_frame_size_enum *fse)
846 {
847 	struct csid_device *csid = v4l2_get_subdevdata(sd);
848 	struct v4l2_mbus_framefmt format;
849 
850 	if (fse->index != 0)
851 		return -EINVAL;
852 
853 	format.code = fse->code;
854 	format.width = 1;
855 	format.height = 1;
856 	csid_try_format(csid, sd_state, fse->pad, &format, fse->which);
857 	fse->min_width = format.width;
858 	fse->min_height = format.height;
859 
860 	if (format.code != fse->code)
861 		return -EINVAL;
862 
863 	format.code = fse->code;
864 	format.width = -1;
865 	format.height = -1;
866 	csid_try_format(csid, sd_state, fse->pad, &format, fse->which);
867 	fse->max_width = format.width;
868 	fse->max_height = format.height;
869 
870 	return 0;
871 }
872 
873 /*
874  * csid_get_format - Handle get format by pads subdev method
875  * @sd: CSID V4L2 subdevice
876  * @sd_state: V4L2 subdev state
877  * @fmt: pointer to v4l2 subdev format structure
878  *
879  * Return -EINVAL or zero on success
880  */
881 static int csid_get_format(struct v4l2_subdev *sd,
882 			   struct v4l2_subdev_state *sd_state,
883 			   struct v4l2_subdev_format *fmt)
884 {
885 	struct csid_device *csid = v4l2_get_subdevdata(sd);
886 	struct v4l2_mbus_framefmt *format;
887 
888 	format = __csid_get_format(csid, sd_state, fmt->pad, fmt->which);
889 	if (format == NULL)
890 		return -EINVAL;
891 
892 	fmt->format = *format;
893 
894 	return 0;
895 }
896 
897 /*
898  * csid_set_format - Handle set format by pads subdev method
899  * @sd: CSID V4L2 subdevice
900  * @sd_state: V4L2 subdev state
901  * @fmt: pointer to v4l2 subdev format structure
902  *
903  * Return -EINVAL or zero on success
904  */
905 static int csid_set_format(struct v4l2_subdev *sd,
906 			   struct v4l2_subdev_state *sd_state,
907 			   struct v4l2_subdev_format *fmt)
908 {
909 	struct csid_device *csid = v4l2_get_subdevdata(sd);
910 	struct v4l2_mbus_framefmt *format;
911 	int i;
912 
913 	format = __csid_get_format(csid, sd_state, fmt->pad, fmt->which);
914 	if (format == NULL)
915 		return -EINVAL;
916 
917 	csid_try_format(csid, sd_state, fmt->pad, &fmt->format, fmt->which);
918 	*format = fmt->format;
919 
920 	/* Propagate the format from sink to source pads */
921 	if (fmt->pad == MSM_CSID_PAD_SINK) {
922 		for (i = MSM_CSID_PAD_FIRST_SRC; i < MSM_CSID_PADS_NUM; ++i) {
923 			format = __csid_get_format(csid, sd_state, i, fmt->which);
924 
925 			*format = fmt->format;
926 			csid_try_format(csid, sd_state, i, format, fmt->which);
927 		}
928 	}
929 
930 	return 0;
931 }
932 
933 /*
934  * csid_init_formats - Initialize formats on all pads
935  * @sd: CSID V4L2 subdevice
936  * @fh: V4L2 subdev file handle
937  *
938  * Initialize all pad formats with default values.
939  *
940  * Return 0 on success or a negative error code otherwise
941  */
942 static int csid_init_formats(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
943 {
944 	struct v4l2_subdev_format format = {
945 		.pad = MSM_CSID_PAD_SINK,
946 		.which = fh ? V4L2_SUBDEV_FORMAT_TRY :
947 			      V4L2_SUBDEV_FORMAT_ACTIVE,
948 		.format = {
949 			.code = MEDIA_BUS_FMT_UYVY8_1X16,
950 			.width = 1920,
951 			.height = 1080
952 		}
953 	};
954 
955 	return csid_set_format(sd, fh ? fh->state : NULL, &format);
956 }
957 
958 /*
959  * csid_set_test_pattern - Set test generator's pattern mode
960  * @csid: CSID device
961  * @value: desired test pattern mode
962  *
963  * Return 0 on success or a negative error code otherwise
964  */
965 static int csid_set_test_pattern(struct csid_device *csid, s32 value)
966 {
967 	struct csid_testgen_config *tg = &csid->testgen;
968 
969 	/* If CSID is linked to CSIPHY, do not allow to enable test generator */
970 	if (value && media_pad_remote_pad_first(&csid->pads[MSM_CSID_PAD_SINK]))
971 		return -EBUSY;
972 
973 	tg->enabled = !!value;
974 
975 	return csid->res->hw_ops->configure_testgen_pattern(csid, value);
976 }
977 
978 /*
979  * csid_s_ctrl - Handle set control subdev method
980  * @ctrl: pointer to v4l2 control structure
981  *
982  * Return 0 on success or a negative error code otherwise
983  */
984 static int csid_s_ctrl(struct v4l2_ctrl *ctrl)
985 {
986 	struct csid_device *csid = container_of(ctrl->handler,
987 						struct csid_device, ctrls);
988 	int ret = -EINVAL;
989 
990 	switch (ctrl->id) {
991 	case V4L2_CID_TEST_PATTERN:
992 		ret = csid_set_test_pattern(csid, ctrl->val);
993 		break;
994 	}
995 
996 	return ret;
997 }
998 
999 static const struct v4l2_ctrl_ops csid_ctrl_ops = {
1000 	.s_ctrl = csid_s_ctrl,
1001 };
1002 
1003 /*
1004  * msm_csid_subdev_init - Initialize CSID device structure and resources
1005  * @csid: CSID device
1006  * @res: CSID module resources table
1007  * @id: CSID module id
1008  *
1009  * Return 0 on success or a negative error code otherwise
1010  */
1011 int msm_csid_subdev_init(struct camss *camss, struct csid_device *csid,
1012 			 const struct camss_subdev_resources *res, u8 id)
1013 {
1014 	struct device *dev = camss->dev;
1015 	struct platform_device *pdev = to_platform_device(dev);
1016 	int i, j;
1017 	int ret;
1018 
1019 	csid->camss = camss;
1020 	csid->id = id;
1021 	csid->res = &res->csid;
1022 
1023 	if (dev_WARN_ONCE(dev, !csid->res->parent_dev_ops,
1024 			  "Error: CSID depends on VFE/IFE device ops!\n")) {
1025 		return -EINVAL;
1026 	}
1027 
1028 	csid->res->hw_ops->subdev_init(csid);
1029 
1030 	/* Memory */
1031 
1032 	if (camss->res->version == CAMSS_8250) {
1033 		/* for titan 480, CSID registers are inside the VFE region,
1034 		 * between the VFE "top" and "bus" registers. this requires
1035 		 * VFE to be initialized before CSID
1036 		 */
1037 		if (id >= 2) /* VFE/CSID lite */
1038 			csid->base = csid->res->parent_dev_ops->get_base_address(camss, id)
1039 				+ VFE_480_LITE_CSID_OFFSET;
1040 		else
1041 			csid->base = csid->res->parent_dev_ops->get_base_address(camss, id)
1042 				 + VFE_480_CSID_OFFSET;
1043 	} else {
1044 		csid->base = devm_platform_ioremap_resource_byname(pdev, res->reg[0]);
1045 		if (IS_ERR(csid->base))
1046 			return PTR_ERR(csid->base);
1047 	}
1048 
1049 	/* Interrupt */
1050 
1051 	ret = platform_get_irq_byname(pdev, res->interrupt[0]);
1052 	if (ret < 0)
1053 		return ret;
1054 
1055 	csid->irq = ret;
1056 	snprintf(csid->irq_name, sizeof(csid->irq_name), "%s_%s%d",
1057 		 dev_name(dev), MSM_CSID_NAME, csid->id);
1058 	ret = devm_request_irq(dev, csid->irq, csid->res->hw_ops->isr,
1059 			       IRQF_TRIGGER_RISING | IRQF_NO_AUTOEN,
1060 			       csid->irq_name, csid);
1061 	if (ret < 0) {
1062 		dev_err(dev, "request_irq failed: %d\n", ret);
1063 		return ret;
1064 	}
1065 
1066 	/* Clocks */
1067 
1068 	csid->nclocks = 0;
1069 	while (res->clock[csid->nclocks])
1070 		csid->nclocks++;
1071 
1072 	csid->clock = devm_kcalloc(dev, csid->nclocks, sizeof(*csid->clock),
1073 				    GFP_KERNEL);
1074 	if (!csid->clock)
1075 		return -ENOMEM;
1076 
1077 	for (i = 0; i < csid->nclocks; i++) {
1078 		struct camss_clock *clock = &csid->clock[i];
1079 
1080 		clock->clk = devm_clk_get(dev, res->clock[i]);
1081 		if (IS_ERR(clock->clk))
1082 			return PTR_ERR(clock->clk);
1083 
1084 		clock->name = res->clock[i];
1085 
1086 		clock->nfreqs = 0;
1087 		while (res->clock_rate[i][clock->nfreqs])
1088 			clock->nfreqs++;
1089 
1090 		if (!clock->nfreqs) {
1091 			clock->freq = NULL;
1092 			continue;
1093 		}
1094 
1095 		clock->freq = devm_kcalloc(dev,
1096 					   clock->nfreqs,
1097 					   sizeof(*clock->freq),
1098 					   GFP_KERNEL);
1099 		if (!clock->freq)
1100 			return -ENOMEM;
1101 
1102 		for (j = 0; j < clock->nfreqs; j++)
1103 			clock->freq[j] = res->clock_rate[i][j];
1104 	}
1105 
1106 	/* Regulator */
1107 	for (i = 0; i < ARRAY_SIZE(res->regulators); i++) {
1108 		if (res->regulators[i])
1109 			csid->num_supplies++;
1110 	}
1111 
1112 	if (csid->num_supplies) {
1113 		csid->supplies = devm_kmalloc_array(camss->dev,
1114 						    csid->num_supplies,
1115 						    sizeof(*csid->supplies),
1116 						    GFP_KERNEL);
1117 		if (!csid->supplies)
1118 			return -ENOMEM;
1119 	}
1120 
1121 	for (i = 0; i < csid->num_supplies; i++)
1122 		csid->supplies[i].supply = res->regulators[i];
1123 
1124 	ret = devm_regulator_bulk_get(camss->dev, csid->num_supplies,
1125 				      csid->supplies);
1126 	if (ret)
1127 		return ret;
1128 
1129 	init_completion(&csid->reset_complete);
1130 
1131 	return 0;
1132 }
1133 
1134 /*
1135  * msm_csid_get_csid_id - Get CSID HW module id
1136  * @entity: Pointer to CSID media entity structure
1137  * @id: Return CSID HW module id here
1138  */
1139 void msm_csid_get_csid_id(struct media_entity *entity, u8 *id)
1140 {
1141 	struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(entity);
1142 	struct csid_device *csid = v4l2_get_subdevdata(sd);
1143 
1144 	*id = csid->id;
1145 }
1146 
1147 /*
1148  * csid_get_lane_assign - Calculate CSI2 lane assign configuration parameter
1149  * @lane_cfg - CSI2 lane configuration
1150  *
1151  * Return lane assign
1152  */
1153 static u32 csid_get_lane_assign(struct csiphy_lanes_cfg *lane_cfg)
1154 {
1155 	u32 lane_assign = 0;
1156 	int i;
1157 
1158 	for (i = 0; i < lane_cfg->num_data; i++)
1159 		lane_assign |= lane_cfg->data[i].pos << (i * 4);
1160 
1161 	return lane_assign;
1162 }
1163 
1164 /*
1165  * csid_link_setup - Setup CSID connections
1166  * @entity: Pointer to media entity structure
1167  * @local: Pointer to local pad
1168  * @remote: Pointer to remote pad
1169  * @flags: Link flags
1170  *
1171  * Return 0 on success
1172  */
1173 static int csid_link_setup(struct media_entity *entity,
1174 			   const struct media_pad *local,
1175 			   const struct media_pad *remote, u32 flags)
1176 {
1177 	if (flags & MEDIA_LNK_FL_ENABLED)
1178 		if (media_pad_remote_pad_first(local))
1179 			return -EBUSY;
1180 
1181 	if ((local->flags & MEDIA_PAD_FL_SINK) &&
1182 	    (flags & MEDIA_LNK_FL_ENABLED)) {
1183 		struct v4l2_subdev *sd;
1184 		struct csid_device *csid;
1185 		struct csiphy_device *csiphy;
1186 		struct csiphy_lanes_cfg *lane_cfg;
1187 
1188 		sd = media_entity_to_v4l2_subdev(entity);
1189 		csid = v4l2_get_subdevdata(sd);
1190 
1191 		/* If test generator is enabled */
1192 		/* do not allow a link from CSIPHY to CSID */
1193 		if (csid->testgen_mode->cur.val != 0)
1194 			return -EBUSY;
1195 
1196 		sd = media_entity_to_v4l2_subdev(remote->entity);
1197 		csiphy = v4l2_get_subdevdata(sd);
1198 
1199 		/* If a sensor is not linked to CSIPHY */
1200 		/* do no allow a link from CSIPHY to CSID */
1201 		if (!csiphy->cfg.csi2)
1202 			return -EPERM;
1203 
1204 		csid->phy.csiphy_id = csiphy->id;
1205 
1206 		lane_cfg = &csiphy->cfg.csi2->lane_cfg;
1207 		csid->phy.lane_cnt = lane_cfg->num_data;
1208 		csid->phy.lane_assign = csid_get_lane_assign(lane_cfg);
1209 	}
1210 	/* Decide which virtual channels to enable based on which source pads are enabled */
1211 	if (local->flags & MEDIA_PAD_FL_SOURCE) {
1212 		struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(entity);
1213 		struct csid_device *csid = v4l2_get_subdevdata(sd);
1214 		struct device *dev = csid->camss->dev;
1215 
1216 		if (flags & MEDIA_LNK_FL_ENABLED)
1217 			csid->phy.en_vc |= BIT(local->index - 1);
1218 		else
1219 			csid->phy.en_vc &= ~BIT(local->index - 1);
1220 
1221 		csid->phy.need_vc_update = true;
1222 
1223 		dev_dbg(dev, "%s: Enabled CSID virtual channels mask 0x%x\n",
1224 			__func__, csid->phy.en_vc);
1225 	}
1226 
1227 	return 0;
1228 }
1229 
1230 static const struct v4l2_subdev_core_ops csid_core_ops = {
1231 	.s_power = csid_set_power,
1232 	.subscribe_event = v4l2_ctrl_subdev_subscribe_event,
1233 	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
1234 };
1235 
1236 static const struct v4l2_subdev_video_ops csid_video_ops = {
1237 	.s_stream = csid_set_stream,
1238 };
1239 
1240 static const struct v4l2_subdev_pad_ops csid_pad_ops = {
1241 	.enum_mbus_code = csid_enum_mbus_code,
1242 	.enum_frame_size = csid_enum_frame_size,
1243 	.get_fmt = csid_get_format,
1244 	.set_fmt = csid_set_format,
1245 };
1246 
1247 static const struct v4l2_subdev_ops csid_v4l2_ops = {
1248 	.core = &csid_core_ops,
1249 	.video = &csid_video_ops,
1250 	.pad = &csid_pad_ops,
1251 };
1252 
1253 static const struct v4l2_subdev_internal_ops csid_v4l2_internal_ops = {
1254 	.open = csid_init_formats,
1255 };
1256 
1257 static const struct media_entity_operations csid_media_ops = {
1258 	.link_setup = csid_link_setup,
1259 	.link_validate = v4l2_subdev_link_validate,
1260 };
1261 
1262 /*
1263  * msm_csid_register_entity - Register subdev node for CSID module
1264  * @csid: CSID device
1265  * @v4l2_dev: V4L2 device
1266  *
1267  * Return 0 on success or a negative error code otherwise
1268  */
1269 int msm_csid_register_entity(struct csid_device *csid,
1270 			     struct v4l2_device *v4l2_dev)
1271 {
1272 	struct v4l2_subdev *sd = &csid->subdev;
1273 	struct media_pad *pads = csid->pads;
1274 	struct device *dev = csid->camss->dev;
1275 	int i;
1276 	int ret;
1277 
1278 	v4l2_subdev_init(sd, &csid_v4l2_ops);
1279 	sd->internal_ops = &csid_v4l2_internal_ops;
1280 	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE |
1281 		     V4L2_SUBDEV_FL_HAS_EVENTS;
1282 	snprintf(sd->name, ARRAY_SIZE(sd->name), "%s%d",
1283 		 MSM_CSID_NAME, csid->id);
1284 	v4l2_set_subdevdata(sd, csid);
1285 
1286 	ret = v4l2_ctrl_handler_init(&csid->ctrls, 1);
1287 	if (ret < 0) {
1288 		dev_err(dev, "Failed to init ctrl handler: %d\n", ret);
1289 		return ret;
1290 	}
1291 
1292 	csid->testgen_mode = v4l2_ctrl_new_std_menu_items(&csid->ctrls,
1293 				&csid_ctrl_ops, V4L2_CID_TEST_PATTERN,
1294 				csid->testgen.nmodes, 0, 0,
1295 				csid->testgen.modes);
1296 
1297 	if (csid->ctrls.error) {
1298 		dev_err(dev, "Failed to init ctrl: %d\n", csid->ctrls.error);
1299 		ret = csid->ctrls.error;
1300 		goto free_ctrl;
1301 	}
1302 
1303 	csid->subdev.ctrl_handler = &csid->ctrls;
1304 
1305 	ret = csid_init_formats(sd, NULL);
1306 	if (ret < 0) {
1307 		dev_err(dev, "Failed to init format: %d\n", ret);
1308 		goto free_ctrl;
1309 	}
1310 
1311 	pads[MSM_CSID_PAD_SINK].flags = MEDIA_PAD_FL_SINK;
1312 	for (i = MSM_CSID_PAD_FIRST_SRC; i < MSM_CSID_PADS_NUM; ++i)
1313 		pads[i].flags = MEDIA_PAD_FL_SOURCE;
1314 
1315 	sd->entity.function = MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER;
1316 	sd->entity.ops = &csid_media_ops;
1317 	ret = media_entity_pads_init(&sd->entity, MSM_CSID_PADS_NUM, pads);
1318 	if (ret < 0) {
1319 		dev_err(dev, "Failed to init media entity: %d\n", ret);
1320 		goto free_ctrl;
1321 	}
1322 
1323 	ret = v4l2_device_register_subdev(v4l2_dev, sd);
1324 	if (ret < 0) {
1325 		dev_err(dev, "Failed to register subdev: %d\n", ret);
1326 		goto media_cleanup;
1327 	}
1328 
1329 	return 0;
1330 
1331 media_cleanup:
1332 	media_entity_cleanup(&sd->entity);
1333 free_ctrl:
1334 	v4l2_ctrl_handler_free(&csid->ctrls);
1335 
1336 	return ret;
1337 }
1338 
1339 /*
1340  * msm_csid_unregister_entity - Unregister CSID module subdev node
1341  * @csid: CSID device
1342  */
1343 void msm_csid_unregister_entity(struct csid_device *csid)
1344 {
1345 	v4l2_device_unregister_subdev(&csid->subdev);
1346 	media_entity_cleanup(&csid->subdev.entity);
1347 	v4l2_ctrl_handler_free(&csid->ctrls);
1348 }
1349 
1350 inline bool csid_is_lite(struct csid_device *csid)
1351 {
1352 	return csid->camss->res->csid_res[csid->id].csid.is_lite;
1353 }
1354