xref: /linux/drivers/media/platform/marvell/mcam-core.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * The Marvell camera core.  This device appears in a number of settings,
4  * so it needs platform-specific support outside of the core.
5  *
6  * Copyright 2011 Jonathan Corbet corbet@lwn.net
7  * Copyright 2018 Lubomir Rintel <lkundrak@v3.sk>
8  */
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/i2c.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/wait.h>
19 #include <linux/list.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/delay.h>
22 #include <linux/vmalloc.h>
23 #include <linux/io.h>
24 #include <linux/clk.h>
25 #include <linux/clk-provider.h>
26 #include <linux/videodev2.h>
27 #include <linux/pm_runtime.h>
28 #include <media/v4l2-device.h>
29 #include <media/v4l2-ioctl.h>
30 #include <media/v4l2-ctrls.h>
31 #include <media/v4l2-event.h>
32 #include <media/videobuf2-vmalloc.h>
33 #include <media/videobuf2-dma-contig.h>
34 #include <media/videobuf2-dma-sg.h>
35 
36 #include "mcam-core.h"
37 
38 #ifdef MCAM_MODE_VMALLOC
39 /*
40  * Internal DMA buffer management.  Since the controller cannot do S/G I/O,
41  * we must have physically contiguous buffers to bring frames into.
42  * These parameters control how many buffers we use, whether we
43  * allocate them at load time (better chance of success, but nails down
44  * memory) or when somebody tries to use the camera (riskier), and,
45  * for load-time allocation, how big they should be.
46  *
47  * The controller can cycle through three buffers.  We could use
48  * more by flipping pointers around, but it probably makes little
49  * sense.
50  */
51 
52 static bool alloc_bufs_at_read;
53 module_param(alloc_bufs_at_read, bool, 0444);
54 MODULE_PARM_DESC(alloc_bufs_at_read,
55 		"Non-zero value causes DMA buffers to be allocated when the video capture device is read, rather than at module load time.  This saves memory, but decreases the chances of successfully getting those buffers.  This parameter is only used in the vmalloc buffer mode");
56 
57 static int n_dma_bufs = 3;
58 module_param(n_dma_bufs, uint, 0644);
59 MODULE_PARM_DESC(n_dma_bufs,
60 		"The number of DMA buffers to allocate.  Can be either two (saves memory, makes timing tighter) or three.");
61 
62 static int dma_buf_size = VGA_WIDTH * VGA_HEIGHT * 2;  /* Worst case */
63 module_param(dma_buf_size, uint, 0444);
64 MODULE_PARM_DESC(dma_buf_size,
65 		"The size of the allocated DMA buffers.  If actual operating parameters require larger buffers, an attempt to reallocate will be made.");
66 #else /* MCAM_MODE_VMALLOC */
67 static const bool alloc_bufs_at_read;
68 static const int n_dma_bufs = 3;  /* Used by S/G_PARM */
69 #endif /* MCAM_MODE_VMALLOC */
70 
71 static bool flip;
72 module_param(flip, bool, 0444);
73 MODULE_PARM_DESC(flip,
74 		"If set, the sensor will be instructed to flip the image vertically.");
75 
76 static int buffer_mode = -1;
77 module_param(buffer_mode, int, 0444);
78 MODULE_PARM_DESC(buffer_mode,
79 		"Set the buffer mode to be used; default is to go with what the platform driver asks for.  Set to 0 for vmalloc, 1 for DMA contiguous.");
80 
81 /*
82  * Status flags.  Always manipulated with bit operations.
83  */
84 #define CF_BUF0_VALID	 0	/* Buffers valid - first three */
85 #define CF_BUF1_VALID	 1
86 #define CF_BUF2_VALID	 2
87 #define CF_DMA_ACTIVE	 3	/* A frame is incoming */
88 #define CF_CONFIG_NEEDED 4	/* Must configure hardware */
89 #define CF_SINGLE_BUFFER 5	/* Running with a single buffer */
90 #define CF_SG_RESTART	 6	/* SG restart needed */
91 #define CF_FRAME_SOF0	 7	/* Frame 0 started */
92 #define CF_FRAME_SOF1	 8
93 #define CF_FRAME_SOF2	 9
94 
95 #define sensor_call(cam, o, f, args...) \
96 	v4l2_subdev_call(cam->sensor, o, f, ##args)
97 
98 #define notifier_to_mcam(notifier) \
99 	container_of(notifier, struct mcam_camera, notifier)
100 
101 static struct mcam_format_struct {
102 	__u32 pixelformat;
103 	int bpp;   /* Bytes per pixel */
104 	bool planar;
105 	u32 mbus_code;
106 } mcam_formats[] = {
107 	{
108 		.pixelformat	= V4L2_PIX_FMT_YUYV,
109 		.mbus_code	= MEDIA_BUS_FMT_YUYV8_2X8,
110 		.bpp		= 2,
111 		.planar		= false,
112 	},
113 	{
114 		.pixelformat	= V4L2_PIX_FMT_YVYU,
115 		.mbus_code	= MEDIA_BUS_FMT_YUYV8_2X8,
116 		.bpp		= 2,
117 		.planar		= false,
118 	},
119 	{
120 		.pixelformat	= V4L2_PIX_FMT_YUV420,
121 		.mbus_code	= MEDIA_BUS_FMT_YUYV8_2X8,
122 		.bpp		= 1,
123 		.planar		= true,
124 	},
125 	{
126 		.pixelformat	= V4L2_PIX_FMT_YVU420,
127 		.mbus_code	= MEDIA_BUS_FMT_YUYV8_2X8,
128 		.bpp		= 1,
129 		.planar		= true,
130 	},
131 	{
132 		.pixelformat	= V4L2_PIX_FMT_XRGB444,
133 		.mbus_code	= MEDIA_BUS_FMT_RGB444_2X8_PADHI_LE,
134 		.bpp		= 2,
135 		.planar		= false,
136 	},
137 	{
138 		.pixelformat	= V4L2_PIX_FMT_RGB565,
139 		.mbus_code	= MEDIA_BUS_FMT_RGB565_2X8_LE,
140 		.bpp		= 2,
141 		.planar		= false,
142 	},
143 	{
144 		.pixelformat	= V4L2_PIX_FMT_SBGGR8,
145 		.mbus_code	= MEDIA_BUS_FMT_SBGGR8_1X8,
146 		.bpp		= 1,
147 		.planar		= false,
148 	},
149 };
150 #define N_MCAM_FMTS ARRAY_SIZE(mcam_formats)
151 
152 static struct mcam_format_struct *mcam_find_format(u32 pixelformat)
153 {
154 	unsigned i;
155 
156 	for (i = 0; i < N_MCAM_FMTS; i++)
157 		if (mcam_formats[i].pixelformat == pixelformat)
158 			return mcam_formats + i;
159 	/* Not found? Then return the first format. */
160 	return mcam_formats;
161 }
162 
163 /*
164  * The default format we use until somebody says otherwise.
165  */
166 static const struct v4l2_pix_format mcam_def_pix_format = {
167 	.width		= VGA_WIDTH,
168 	.height		= VGA_HEIGHT,
169 	.pixelformat	= V4L2_PIX_FMT_YUYV,
170 	.field		= V4L2_FIELD_NONE,
171 	.bytesperline	= VGA_WIDTH*2,
172 	.sizeimage	= VGA_WIDTH*VGA_HEIGHT*2,
173 	.colorspace	= V4L2_COLORSPACE_SRGB,
174 };
175 
176 static const u32 mcam_def_mbus_code = MEDIA_BUS_FMT_YUYV8_2X8;
177 
178 
179 /*
180  * The two-word DMA descriptor format used by the Armada 610 and like.  There
181  * Is a three-word format as well (set C1_DESC_3WORD) where the third
182  * word is a pointer to the next descriptor, but we don't use it.  Two-word
183  * descriptors have to be contiguous in memory.
184  */
185 struct mcam_dma_desc {
186 	u32 dma_addr;
187 	u32 segment_len;
188 };
189 
190 /*
191  * Our buffer type for working with videobuf2.  Note that the vb2
192  * developers have decreed that struct vb2_v4l2_buffer must be at the
193  * beginning of this structure.
194  */
195 struct mcam_vb_buffer {
196 	struct vb2_v4l2_buffer vb_buf;
197 	struct list_head queue;
198 	struct mcam_dma_desc *dma_desc;	/* Descriptor virtual address */
199 	dma_addr_t dma_desc_pa;		/* Descriptor physical address */
200 };
201 
202 static inline struct mcam_vb_buffer *vb_to_mvb(struct vb2_v4l2_buffer *vb)
203 {
204 	return container_of(vb, struct mcam_vb_buffer, vb_buf);
205 }
206 
207 /*
208  * Hand a completed buffer back to user space.
209  */
210 static void mcam_buffer_done(struct mcam_camera *cam, int frame,
211 		struct vb2_v4l2_buffer *vbuf)
212 {
213 	vbuf->vb2_buf.planes[0].bytesused = cam->pix_format.sizeimage;
214 	vbuf->sequence = cam->buf_seq[frame];
215 	vbuf->field = V4L2_FIELD_NONE;
216 	vbuf->vb2_buf.timestamp = ktime_get_ns();
217 	vb2_set_plane_payload(&vbuf->vb2_buf, 0, cam->pix_format.sizeimage);
218 	vb2_buffer_done(&vbuf->vb2_buf, VB2_BUF_STATE_DONE);
219 }
220 
221 
222 
223 /*
224  * Debugging and related.
225  */
226 #define cam_err(cam, fmt, arg...) \
227 	dev_err((cam)->dev, fmt, ##arg);
228 #define cam_warn(cam, fmt, arg...) \
229 	dev_warn((cam)->dev, fmt, ##arg);
230 #define cam_dbg(cam, fmt, arg...) \
231 	dev_dbg((cam)->dev, fmt, ##arg);
232 
233 
234 /*
235  * Flag manipulation helpers
236  */
237 static void mcam_reset_buffers(struct mcam_camera *cam)
238 {
239 	int i;
240 
241 	cam->next_buf = -1;
242 	for (i = 0; i < cam->nbufs; i++) {
243 		clear_bit(i, &cam->flags);
244 		clear_bit(CF_FRAME_SOF0 + i, &cam->flags);
245 	}
246 }
247 
248 static inline int mcam_needs_config(struct mcam_camera *cam)
249 {
250 	return test_bit(CF_CONFIG_NEEDED, &cam->flags);
251 }
252 
253 static void mcam_set_config_needed(struct mcam_camera *cam, int needed)
254 {
255 	if (needed)
256 		set_bit(CF_CONFIG_NEEDED, &cam->flags);
257 	else
258 		clear_bit(CF_CONFIG_NEEDED, &cam->flags);
259 }
260 
261 /* ------------------------------------------------------------------- */
262 /*
263  * Make the controller start grabbing images.  Everything must
264  * be set up before doing this.
265  */
266 static void mcam_ctlr_start(struct mcam_camera *cam)
267 {
268 	/* set_bit performs a read, so no other barrier should be
269 	   needed here */
270 	mcam_reg_set_bit(cam, REG_CTRL0, C0_ENABLE);
271 }
272 
273 static void mcam_ctlr_stop(struct mcam_camera *cam)
274 {
275 	mcam_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
276 }
277 
278 static void mcam_enable_mipi(struct mcam_camera *mcam)
279 {
280 	/* Using MIPI mode and enable MIPI */
281 	if (mcam->calc_dphy)
282 		mcam->calc_dphy(mcam);
283 	cam_dbg(mcam, "camera: DPHY3=0x%x, DPHY5=0x%x, DPHY6=0x%x\n",
284 			mcam->dphy[0], mcam->dphy[1], mcam->dphy[2]);
285 	mcam_reg_write(mcam, REG_CSI2_DPHY3, mcam->dphy[0]);
286 	mcam_reg_write(mcam, REG_CSI2_DPHY5, mcam->dphy[1]);
287 	mcam_reg_write(mcam, REG_CSI2_DPHY6, mcam->dphy[2]);
288 
289 	if (!mcam->mipi_enabled) {
290 		if (mcam->lane > 4 || mcam->lane <= 0) {
291 			cam_warn(mcam, "lane number error\n");
292 			mcam->lane = 1;	/* set the default value */
293 		}
294 		/*
295 		 * 0x41 actives 1 lane
296 		 * 0x43 actives 2 lanes
297 		 * 0x45 actives 3 lanes (never happen)
298 		 * 0x47 actives 4 lanes
299 		 */
300 		mcam_reg_write(mcam, REG_CSI2_CTRL0,
301 			CSI2_C0_MIPI_EN | CSI2_C0_ACT_LANE(mcam->lane));
302 		mcam->mipi_enabled = true;
303 	}
304 }
305 
306 static void mcam_disable_mipi(struct mcam_camera *mcam)
307 {
308 	/* Using Parallel mode or disable MIPI */
309 	mcam_reg_write(mcam, REG_CSI2_CTRL0, 0x0);
310 	mcam_reg_write(mcam, REG_CSI2_DPHY3, 0x0);
311 	mcam_reg_write(mcam, REG_CSI2_DPHY5, 0x0);
312 	mcam_reg_write(mcam, REG_CSI2_DPHY6, 0x0);
313 	mcam->mipi_enabled = false;
314 }
315 
316 static bool mcam_fmt_is_planar(__u32 pfmt)
317 {
318 	struct mcam_format_struct *f;
319 
320 	f = mcam_find_format(pfmt);
321 	return f->planar;
322 }
323 
324 static void mcam_write_yuv_bases(struct mcam_camera *cam,
325 				 unsigned frame, dma_addr_t base)
326 {
327 	struct v4l2_pix_format *fmt = &cam->pix_format;
328 	u32 pixel_count = fmt->width * fmt->height;
329 	dma_addr_t y, u = 0, v = 0;
330 
331 	y = base;
332 
333 	switch (fmt->pixelformat) {
334 	case V4L2_PIX_FMT_YUV420:
335 		u = y + pixel_count;
336 		v = u + pixel_count / 4;
337 		break;
338 	case V4L2_PIX_FMT_YVU420:
339 		v = y + pixel_count;
340 		u = v + pixel_count / 4;
341 		break;
342 	default:
343 		break;
344 	}
345 
346 	mcam_reg_write(cam, REG_Y0BAR + frame * 4, y);
347 	if (mcam_fmt_is_planar(fmt->pixelformat)) {
348 		mcam_reg_write(cam, REG_U0BAR + frame * 4, u);
349 		mcam_reg_write(cam, REG_V0BAR + frame * 4, v);
350 	}
351 }
352 
353 /* ------------------------------------------------------------------- */
354 
355 #ifdef MCAM_MODE_VMALLOC
356 /*
357  * Code specific to the vmalloc buffer mode.
358  */
359 
360 /*
361  * Allocate in-kernel DMA buffers for vmalloc mode.
362  */
363 static int mcam_alloc_dma_bufs(struct mcam_camera *cam, int loadtime)
364 {
365 	int i;
366 
367 	mcam_set_config_needed(cam, 1);
368 	if (loadtime)
369 		cam->dma_buf_size = dma_buf_size;
370 	else
371 		cam->dma_buf_size = cam->pix_format.sizeimage;
372 	if (n_dma_bufs > 3)
373 		n_dma_bufs = 3;
374 
375 	cam->nbufs = 0;
376 	for (i = 0; i < n_dma_bufs; i++) {
377 		cam->dma_bufs[i] = dma_alloc_coherent(cam->dev,
378 				cam->dma_buf_size, cam->dma_handles + i,
379 				GFP_KERNEL);
380 		if (cam->dma_bufs[i] == NULL) {
381 			cam_warn(cam, "Failed to allocate DMA buffer\n");
382 			break;
383 		}
384 		(cam->nbufs)++;
385 	}
386 
387 	switch (cam->nbufs) {
388 	case 1:
389 		dma_free_coherent(cam->dev, cam->dma_buf_size,
390 				cam->dma_bufs[0], cam->dma_handles[0]);
391 		cam->nbufs = 0;
392 		fallthrough;
393 	case 0:
394 		cam_err(cam, "Insufficient DMA buffers, cannot operate\n");
395 		return -ENOMEM;
396 
397 	case 2:
398 		if (n_dma_bufs > 2)
399 			cam_warn(cam, "Will limp along with only 2 buffers\n");
400 		break;
401 	}
402 	return 0;
403 }
404 
405 static void mcam_free_dma_bufs(struct mcam_camera *cam)
406 {
407 	int i;
408 
409 	for (i = 0; i < cam->nbufs; i++) {
410 		dma_free_coherent(cam->dev, cam->dma_buf_size,
411 				cam->dma_bufs[i], cam->dma_handles[i]);
412 		cam->dma_bufs[i] = NULL;
413 	}
414 	cam->nbufs = 0;
415 }
416 
417 
418 /*
419  * Set up DMA buffers when operating in vmalloc mode
420  */
421 static void mcam_ctlr_dma_vmalloc(struct mcam_camera *cam)
422 {
423 	/*
424 	 * Store the first two YUV buffers. Then either
425 	 * set the third if it exists, or tell the controller
426 	 * to just use two.
427 	 */
428 	mcam_write_yuv_bases(cam, 0, cam->dma_handles[0]);
429 	mcam_write_yuv_bases(cam, 1, cam->dma_handles[1]);
430 	if (cam->nbufs > 2) {
431 		mcam_write_yuv_bases(cam, 2, cam->dma_handles[2]);
432 		mcam_reg_clear_bit(cam, REG_CTRL1, C1_TWOBUFS);
433 	} else
434 		mcam_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
435 	if (cam->chip_id == MCAM_CAFE)
436 		mcam_reg_write(cam, REG_UBAR, 0); /* 32 bits only */
437 }
438 
439 /*
440  * Copy data out to user space in the vmalloc case
441  */
442 static void mcam_frame_work(struct work_struct *t)
443 {
444 	struct mcam_camera *cam = from_work(cam, t, s_bh_work);
445 	int i;
446 	unsigned long flags;
447 	struct mcam_vb_buffer *buf;
448 
449 	spin_lock_irqsave(&cam->dev_lock, flags);
450 	for (i = 0; i < cam->nbufs; i++) {
451 		int bufno = cam->next_buf;
452 
453 		if (cam->state != S_STREAMING || bufno < 0)
454 			break;  /* I/O got stopped */
455 		if (++(cam->next_buf) >= cam->nbufs)
456 			cam->next_buf = 0;
457 		if (!test_bit(bufno, &cam->flags))
458 			continue;
459 		if (list_empty(&cam->buffers)) {
460 			cam->frame_state.singles++;
461 			break;  /* Leave it valid, hope for better later */
462 		}
463 		cam->frame_state.delivered++;
464 		clear_bit(bufno, &cam->flags);
465 		buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer,
466 				queue);
467 		list_del_init(&buf->queue);
468 		/*
469 		 * Drop the lock during the big copy.  This *should* be safe...
470 		 */
471 		spin_unlock_irqrestore(&cam->dev_lock, flags);
472 		memcpy(vb2_plane_vaddr(&buf->vb_buf.vb2_buf, 0),
473 				cam->dma_bufs[bufno],
474 				cam->pix_format.sizeimage);
475 		mcam_buffer_done(cam, bufno, &buf->vb_buf);
476 		spin_lock_irqsave(&cam->dev_lock, flags);
477 	}
478 	spin_unlock_irqrestore(&cam->dev_lock, flags);
479 }
480 
481 
482 /*
483  * Make sure our allocated buffers are up to the task.
484  */
485 static int mcam_check_dma_buffers(struct mcam_camera *cam)
486 {
487 	if (cam->nbufs > 0 && cam->dma_buf_size < cam->pix_format.sizeimage)
488 			mcam_free_dma_bufs(cam);
489 	if (cam->nbufs == 0)
490 		return mcam_alloc_dma_bufs(cam, 0);
491 	return 0;
492 }
493 
494 static void mcam_vmalloc_done(struct mcam_camera *cam, int frame)
495 {
496 	queue_work(system_bh_wq, &cam->s_bh_work);
497 }
498 
499 #else /* MCAM_MODE_VMALLOC */
500 
501 static inline int mcam_alloc_dma_bufs(struct mcam_camera *cam, int loadtime)
502 {
503 	return 0;
504 }
505 
506 static inline void mcam_free_dma_bufs(struct mcam_camera *cam)
507 {
508 	return;
509 }
510 
511 static inline int mcam_check_dma_buffers(struct mcam_camera *cam)
512 {
513 	return 0;
514 }
515 
516 
517 
518 #endif /* MCAM_MODE_VMALLOC */
519 
520 
521 #ifdef MCAM_MODE_DMA_CONTIG
522 /* ---------------------------------------------------------------------- */
523 /*
524  * DMA-contiguous code.
525  */
526 
527 /*
528  * Set up a contiguous buffer for the given frame.  Here also is where
529  * the underrun strategy is set: if there is no buffer available, reuse
530  * the buffer from the other BAR and set the CF_SINGLE_BUFFER flag to
531  * keep the interrupt handler from giving that buffer back to user
532  * space.  In this way, we always have a buffer to DMA to and don't
533  * have to try to play games stopping and restarting the controller.
534  */
535 static void mcam_set_contig_buffer(struct mcam_camera *cam, int frame)
536 {
537 	struct mcam_vb_buffer *buf;
538 	dma_addr_t dma_handle;
539 	struct vb2_v4l2_buffer *vb;
540 
541 	/*
542 	 * If there are no available buffers, go into single mode
543 	 */
544 	if (list_empty(&cam->buffers)) {
545 		buf = cam->vb_bufs[frame ^ 0x1];
546 		set_bit(CF_SINGLE_BUFFER, &cam->flags);
547 		cam->frame_state.singles++;
548 	} else {
549 		/*
550 		 * OK, we have a buffer we can use.
551 		 */
552 		buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer,
553 					queue);
554 		list_del_init(&buf->queue);
555 		clear_bit(CF_SINGLE_BUFFER, &cam->flags);
556 	}
557 
558 	cam->vb_bufs[frame] = buf;
559 	vb = &buf->vb_buf;
560 
561 	dma_handle = vb2_dma_contig_plane_dma_addr(&vb->vb2_buf, 0);
562 	mcam_write_yuv_bases(cam, frame, dma_handle);
563 }
564 
565 /*
566  * Initial B_DMA_contig setup.
567  */
568 static void mcam_ctlr_dma_contig(struct mcam_camera *cam)
569 {
570 	mcam_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
571 	cam->nbufs = 2;
572 	mcam_set_contig_buffer(cam, 0);
573 	mcam_set_contig_buffer(cam, 1);
574 }
575 
576 /*
577  * Frame completion handling.
578  */
579 static void mcam_dma_contig_done(struct mcam_camera *cam, int frame)
580 {
581 	struct mcam_vb_buffer *buf = cam->vb_bufs[frame];
582 
583 	if (!test_bit(CF_SINGLE_BUFFER, &cam->flags)) {
584 		cam->frame_state.delivered++;
585 		cam->vb_bufs[frame] = NULL;
586 		mcam_buffer_done(cam, frame, &buf->vb_buf);
587 	}
588 	mcam_set_contig_buffer(cam, frame);
589 }
590 
591 #endif /* MCAM_MODE_DMA_CONTIG */
592 
593 #ifdef MCAM_MODE_DMA_SG
594 /* ---------------------------------------------------------------------- */
595 /*
596  * Scatter/gather-specific code.
597  */
598 
599 /*
600  * Set up the next buffer for S/G I/O; caller should be sure that
601  * the controller is stopped and a buffer is available.
602  */
603 static void mcam_sg_next_buffer(struct mcam_camera *cam)
604 {
605 	struct mcam_vb_buffer *buf;
606 	struct sg_table *sg_table;
607 
608 	buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer, queue);
609 	list_del_init(&buf->queue);
610 	sg_table = vb2_dma_sg_plane_desc(&buf->vb_buf.vb2_buf, 0);
611 	/*
612 	 * Very Bad Not Good Things happen if you don't clear
613 	 * C1_DESC_ENA before making any descriptor changes.
614 	 */
615 	mcam_reg_clear_bit(cam, REG_CTRL1, C1_DESC_ENA);
616 	mcam_reg_write(cam, REG_DMA_DESC_Y, buf->dma_desc_pa);
617 	mcam_reg_write(cam, REG_DESC_LEN_Y,
618 			sg_table->nents * sizeof(struct mcam_dma_desc));
619 	mcam_reg_write(cam, REG_DESC_LEN_U, 0);
620 	mcam_reg_write(cam, REG_DESC_LEN_V, 0);
621 	mcam_reg_set_bit(cam, REG_CTRL1, C1_DESC_ENA);
622 	cam->vb_bufs[0] = buf;
623 }
624 
625 /*
626  * Initial B_DMA_sg setup
627  */
628 static void mcam_ctlr_dma_sg(struct mcam_camera *cam)
629 {
630 	/*
631 	 * The list-empty condition can hit us at resume time
632 	 * if the buffer list was empty when the system was suspended.
633 	 */
634 	if (list_empty(&cam->buffers)) {
635 		set_bit(CF_SG_RESTART, &cam->flags);
636 		return;
637 	}
638 
639 	mcam_reg_clear_bit(cam, REG_CTRL1, C1_DESC_3WORD);
640 	mcam_sg_next_buffer(cam);
641 	cam->nbufs = 3;
642 }
643 
644 
645 /*
646  * Frame completion with S/G is trickier.  We can't muck with
647  * a descriptor chain on the fly, since the controller buffers it
648  * internally.  So we have to actually stop and restart; Marvell
649  * says this is the way to do it.
650  *
651  * Of course, stopping is easier said than done; experience shows
652  * that the controller can start a frame *after* C0_ENABLE has been
653  * cleared.  So when running in S/G mode, the controller is "stopped"
654  * on receipt of the start-of-frame interrupt.  That means we can
655  * safely change the DMA descriptor array here and restart things
656  * (assuming there's another buffer waiting to go).
657  */
658 static void mcam_dma_sg_done(struct mcam_camera *cam, int frame)
659 {
660 	struct mcam_vb_buffer *buf = cam->vb_bufs[0];
661 
662 	/*
663 	 * If we're no longer supposed to be streaming, don't do anything.
664 	 */
665 	if (cam->state != S_STREAMING)
666 		return;
667 	/*
668 	 * If we have another buffer available, put it in and
669 	 * restart the engine.
670 	 */
671 	if (!list_empty(&cam->buffers)) {
672 		mcam_sg_next_buffer(cam);
673 		mcam_ctlr_start(cam);
674 	/*
675 	 * Otherwise set CF_SG_RESTART and the controller will
676 	 * be restarted once another buffer shows up.
677 	 */
678 	} else {
679 		set_bit(CF_SG_RESTART, &cam->flags);
680 		cam->frame_state.singles++;
681 		cam->vb_bufs[0] = NULL;
682 	}
683 	/*
684 	 * Now we can give the completed frame back to user space.
685 	 */
686 	cam->frame_state.delivered++;
687 	mcam_buffer_done(cam, frame, &buf->vb_buf);
688 }
689 
690 
691 /*
692  * Scatter/gather mode requires stopping the controller between
693  * frames so we can put in a new DMA descriptor array.  If no new
694  * buffer exists at frame completion, the controller is left stopped;
695  * this function is charged with getting things going again.
696  */
697 static void mcam_sg_restart(struct mcam_camera *cam)
698 {
699 	mcam_ctlr_dma_sg(cam);
700 	mcam_ctlr_start(cam);
701 	clear_bit(CF_SG_RESTART, &cam->flags);
702 }
703 
704 #else /* MCAM_MODE_DMA_SG */
705 
706 static inline void mcam_sg_restart(struct mcam_camera *cam)
707 {
708 	return;
709 }
710 
711 #endif /* MCAM_MODE_DMA_SG */
712 
713 /* ---------------------------------------------------------------------- */
714 /*
715  * Buffer-mode-independent controller code.
716  */
717 
718 /*
719  * Image format setup
720  */
721 static void mcam_ctlr_image(struct mcam_camera *cam)
722 {
723 	struct v4l2_pix_format *fmt = &cam->pix_format;
724 	u32 widthy = 0, widthuv = 0, imgsz_h, imgsz_w;
725 
726 	cam_dbg(cam, "camera: bytesperline = %d; height = %d\n",
727 		fmt->bytesperline, fmt->sizeimage / fmt->bytesperline);
728 	imgsz_h = (fmt->height << IMGSZ_V_SHIFT) & IMGSZ_V_MASK;
729 	imgsz_w = (fmt->width * 2) & IMGSZ_H_MASK;
730 
731 	switch (fmt->pixelformat) {
732 	case V4L2_PIX_FMT_YUYV:
733 	case V4L2_PIX_FMT_YVYU:
734 		widthy = fmt->width * 2;
735 		widthuv = 0;
736 		break;
737 	case V4L2_PIX_FMT_YUV420:
738 	case V4L2_PIX_FMT_YVU420:
739 		widthy = fmt->width;
740 		widthuv = fmt->width / 2;
741 		break;
742 	default:
743 		widthy = fmt->bytesperline;
744 		widthuv = 0;
745 		break;
746 	}
747 
748 	mcam_reg_write_mask(cam, REG_IMGPITCH, widthuv << 16 | widthy,
749 			IMGP_YP_MASK | IMGP_UVP_MASK);
750 	mcam_reg_write(cam, REG_IMGSIZE, imgsz_h | imgsz_w);
751 	mcam_reg_write(cam, REG_IMGOFFSET, 0x0);
752 
753 	/*
754 	 * Tell the controller about the image format we are using.
755 	 */
756 	switch (fmt->pixelformat) {
757 	case V4L2_PIX_FMT_YUV420:
758 	case V4L2_PIX_FMT_YVU420:
759 		mcam_reg_write_mask(cam, REG_CTRL0,
760 			C0_DF_YUV | C0_YUV_420PL | C0_YUVE_VYUY, C0_DF_MASK);
761 		break;
762 	case V4L2_PIX_FMT_YUYV:
763 		mcam_reg_write_mask(cam, REG_CTRL0,
764 			C0_DF_YUV | C0_YUV_PACKED | C0_YUVE_NOSWAP, C0_DF_MASK);
765 		break;
766 	case V4L2_PIX_FMT_YVYU:
767 		mcam_reg_write_mask(cam, REG_CTRL0,
768 			C0_DF_YUV | C0_YUV_PACKED | C0_YUVE_SWAP24, C0_DF_MASK);
769 		break;
770 	case V4L2_PIX_FMT_XRGB444:
771 		mcam_reg_write_mask(cam, REG_CTRL0,
772 			C0_DF_RGB | C0_RGBF_444 | C0_RGB4_XBGR, C0_DF_MASK);
773 		break;
774 	case V4L2_PIX_FMT_RGB565:
775 		mcam_reg_write_mask(cam, REG_CTRL0,
776 			C0_DF_RGB | C0_RGBF_565 | C0_RGB5_BGGR, C0_DF_MASK);
777 		break;
778 	case V4L2_PIX_FMT_SBGGR8:
779 		mcam_reg_write_mask(cam, REG_CTRL0,
780 			C0_DF_RGB | C0_RGB5_GRBG, C0_DF_MASK);
781 		break;
782 	default:
783 		cam_err(cam, "camera: unknown format: %#x\n", fmt->pixelformat);
784 		break;
785 	}
786 
787 	/*
788 	 * Make sure it knows we want to use hsync/vsync.
789 	 */
790 	mcam_reg_write_mask(cam, REG_CTRL0, C0_SIF_HVSYNC, C0_SIFM_MASK);
791 }
792 
793 
794 /*
795  * Configure the controller for operation; caller holds the
796  * device mutex.
797  */
798 static int mcam_ctlr_configure(struct mcam_camera *cam)
799 {
800 	unsigned long flags;
801 
802 	spin_lock_irqsave(&cam->dev_lock, flags);
803 	clear_bit(CF_SG_RESTART, &cam->flags);
804 	cam->dma_setup(cam);
805 	mcam_ctlr_image(cam);
806 	mcam_set_config_needed(cam, 0);
807 	spin_unlock_irqrestore(&cam->dev_lock, flags);
808 	return 0;
809 }
810 
811 static void mcam_ctlr_irq_enable(struct mcam_camera *cam)
812 {
813 	/*
814 	 * Clear any pending interrupts, since we do not
815 	 * expect to have I/O active prior to enabling.
816 	 */
817 	mcam_reg_write(cam, REG_IRQSTAT, FRAMEIRQS);
818 	mcam_reg_set_bit(cam, REG_IRQMASK, FRAMEIRQS);
819 }
820 
821 static void mcam_ctlr_irq_disable(struct mcam_camera *cam)
822 {
823 	mcam_reg_clear_bit(cam, REG_IRQMASK, FRAMEIRQS);
824 }
825 
826 /*
827  * Stop the controller, and don't return until we're really sure that no
828  * further DMA is going on.
829  */
830 static void mcam_ctlr_stop_dma(struct mcam_camera *cam)
831 {
832 	unsigned long flags;
833 
834 	/*
835 	 * Theory: stop the camera controller (whether it is operating
836 	 * or not).  Delay briefly just in case we race with the SOF
837 	 * interrupt, then wait until no DMA is active.
838 	 */
839 	spin_lock_irqsave(&cam->dev_lock, flags);
840 	clear_bit(CF_SG_RESTART, &cam->flags);
841 	mcam_ctlr_stop(cam);
842 	cam->state = S_IDLE;
843 	spin_unlock_irqrestore(&cam->dev_lock, flags);
844 	/*
845 	 * This is a brutally long sleep, but experience shows that
846 	 * it can take the controller a while to get the message that
847 	 * it needs to stop grabbing frames.  In particular, we can
848 	 * sometimes (on mmp) get a frame at the end WITHOUT the
849 	 * start-of-frame indication.
850 	 */
851 	msleep(150);
852 	if (test_bit(CF_DMA_ACTIVE, &cam->flags))
853 		cam_err(cam, "Timeout waiting for DMA to end\n");
854 		/* This would be bad news - what now? */
855 	spin_lock_irqsave(&cam->dev_lock, flags);
856 	mcam_ctlr_irq_disable(cam);
857 	spin_unlock_irqrestore(&cam->dev_lock, flags);
858 }
859 
860 /*
861  * Power up and down.
862  */
863 static int mcam_ctlr_power_up(struct mcam_camera *cam)
864 {
865 	unsigned long flags;
866 	int ret;
867 
868 	spin_lock_irqsave(&cam->dev_lock, flags);
869 	if (cam->plat_power_up) {
870 		ret = cam->plat_power_up(cam);
871 		if (ret) {
872 			spin_unlock_irqrestore(&cam->dev_lock, flags);
873 			return ret;
874 		}
875 	}
876 	mcam_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
877 	spin_unlock_irqrestore(&cam->dev_lock, flags);
878 	return 0;
879 }
880 
881 static void mcam_ctlr_power_down(struct mcam_camera *cam)
882 {
883 	unsigned long flags;
884 
885 	spin_lock_irqsave(&cam->dev_lock, flags);
886 	/*
887 	 * School of hard knocks department: be sure we do any register
888 	 * twiddling on the controller *before* calling the platform
889 	 * power down routine.
890 	 */
891 	mcam_reg_set_bit(cam, REG_CTRL1, C1_PWRDWN);
892 	if (cam->plat_power_down)
893 		cam->plat_power_down(cam);
894 	spin_unlock_irqrestore(&cam->dev_lock, flags);
895 }
896 
897 /* ---------------------------------------------------------------------- */
898 /*
899  * Master sensor clock.
900  */
901 static int mclk_prepare(struct clk_hw *hw)
902 {
903 	struct mcam_camera *cam = container_of(hw, struct mcam_camera, mclk_hw);
904 
905 	clk_prepare(cam->clk[0]);
906 	return 0;
907 }
908 
909 static void mclk_unprepare(struct clk_hw *hw)
910 {
911 	struct mcam_camera *cam = container_of(hw, struct mcam_camera, mclk_hw);
912 
913 	clk_unprepare(cam->clk[0]);
914 }
915 
916 static int mclk_enable(struct clk_hw *hw)
917 {
918 	struct mcam_camera *cam = container_of(hw, struct mcam_camera, mclk_hw);
919 	int mclk_src;
920 	int mclk_div;
921 	int ret;
922 
923 	/*
924 	 * Clock the sensor appropriately.  Controller clock should
925 	 * be 48MHz, sensor "typical" value is half that.
926 	 */
927 	if (cam->bus_type == V4L2_MBUS_CSI2_DPHY) {
928 		mclk_src = cam->mclk_src;
929 		mclk_div = cam->mclk_div;
930 	} else {
931 		mclk_src = 3;
932 		mclk_div = 2;
933 	}
934 
935 	ret = pm_runtime_resume_and_get(cam->dev);
936 	if (ret < 0)
937 		return ret;
938 	clk_enable(cam->clk[0]);
939 	mcam_reg_write(cam, REG_CLKCTRL, (mclk_src << 29) | mclk_div);
940 	mcam_ctlr_power_up(cam);
941 
942 	return 0;
943 }
944 
945 static void mclk_disable(struct clk_hw *hw)
946 {
947 	struct mcam_camera *cam = container_of(hw, struct mcam_camera, mclk_hw);
948 
949 	mcam_ctlr_power_down(cam);
950 	clk_disable(cam->clk[0]);
951 	pm_runtime_put(cam->dev);
952 }
953 
954 static unsigned long mclk_recalc_rate(struct clk_hw *hw,
955 				unsigned long parent_rate)
956 {
957 	return 48000000;
958 }
959 
960 static const struct clk_ops mclk_ops = {
961 	.prepare = mclk_prepare,
962 	.unprepare = mclk_unprepare,
963 	.enable = mclk_enable,
964 	.disable = mclk_disable,
965 	.recalc_rate = mclk_recalc_rate,
966 };
967 
968 /* -------------------------------------------------------------------- */
969 /*
970  * Communications with the sensor.
971  */
972 
973 static int __mcam_cam_reset(struct mcam_camera *cam)
974 {
975 	return sensor_call(cam, core, reset, 0);
976 }
977 
978 /*
979  * We have found the sensor on the i2c.  Let's try to have a
980  * conversation.
981  */
982 static int mcam_cam_init(struct mcam_camera *cam)
983 {
984 	int ret;
985 
986 	if (cam->state != S_NOTREADY)
987 		cam_warn(cam, "Cam init with device in funky state %d",
988 				cam->state);
989 	ret = __mcam_cam_reset(cam);
990 	/* Get/set parameters? */
991 	cam->state = S_IDLE;
992 	return ret;
993 }
994 
995 /*
996  * Configure the sensor to match the parameters we have.  Caller should
997  * hold s_mutex
998  */
999 static int mcam_cam_set_flip(struct mcam_camera *cam)
1000 {
1001 	struct v4l2_control ctrl;
1002 
1003 	memset(&ctrl, 0, sizeof(ctrl));
1004 	ctrl.id = V4L2_CID_VFLIP;
1005 	ctrl.value = flip;
1006 	return v4l2_s_ctrl(NULL, cam->sensor->ctrl_handler, &ctrl);
1007 }
1008 
1009 
1010 static int mcam_cam_configure(struct mcam_camera *cam)
1011 {
1012 	struct v4l2_subdev_format format = {
1013 		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
1014 	};
1015 	int ret;
1016 
1017 	v4l2_fill_mbus_format(&format.format, &cam->pix_format, cam->mbus_code);
1018 	ret = sensor_call(cam, core, init, 0);
1019 	if (ret == 0)
1020 		ret = sensor_call(cam, pad, set_fmt, NULL, &format);
1021 	/*
1022 	 * OV7670 does weird things if flip is set *before* format...
1023 	 */
1024 	ret += mcam_cam_set_flip(cam);
1025 	return ret;
1026 }
1027 
1028 /*
1029  * Get everything ready, and start grabbing frames.
1030  */
1031 static int mcam_read_setup(struct mcam_camera *cam)
1032 {
1033 	int ret;
1034 	unsigned long flags;
1035 
1036 	/*
1037 	 * Configuration.  If we still don't have DMA buffers,
1038 	 * make one last, desperate attempt.
1039 	 */
1040 	if (cam->buffer_mode == B_vmalloc && cam->nbufs == 0 &&
1041 			mcam_alloc_dma_bufs(cam, 0))
1042 		return -ENOMEM;
1043 
1044 	if (mcam_needs_config(cam)) {
1045 		mcam_cam_configure(cam);
1046 		ret = mcam_ctlr_configure(cam);
1047 		if (ret)
1048 			return ret;
1049 	}
1050 
1051 	/*
1052 	 * Turn it loose.
1053 	 */
1054 	spin_lock_irqsave(&cam->dev_lock, flags);
1055 	clear_bit(CF_DMA_ACTIVE, &cam->flags);
1056 	mcam_reset_buffers(cam);
1057 	if (cam->bus_type == V4L2_MBUS_CSI2_DPHY)
1058 		mcam_enable_mipi(cam);
1059 	else
1060 		mcam_disable_mipi(cam);
1061 	mcam_ctlr_irq_enable(cam);
1062 	cam->state = S_STREAMING;
1063 	if (!test_bit(CF_SG_RESTART, &cam->flags))
1064 		mcam_ctlr_start(cam);
1065 	spin_unlock_irqrestore(&cam->dev_lock, flags);
1066 	return 0;
1067 }
1068 
1069 /* ----------------------------------------------------------------------- */
1070 /*
1071  * Videobuf2 interface code.
1072  */
1073 
1074 static int mcam_vb_queue_setup(struct vb2_queue *vq,
1075 		unsigned int *nbufs,
1076 		unsigned int *num_planes, unsigned int sizes[],
1077 		struct device *alloc_devs[])
1078 {
1079 	struct mcam_camera *cam = vb2_get_drv_priv(vq);
1080 	int minbufs = (cam->buffer_mode == B_DMA_contig) ? 3 : 2;
1081 	unsigned size = cam->pix_format.sizeimage;
1082 
1083 	if (*nbufs < minbufs)
1084 		*nbufs = minbufs;
1085 
1086 	if (*num_planes)
1087 		return sizes[0] < size ? -EINVAL : 0;
1088 	sizes[0] = size;
1089 	*num_planes = 1; /* Someday we have to support planar formats... */
1090 	return 0;
1091 }
1092 
1093 
1094 static void mcam_vb_buf_queue(struct vb2_buffer *vb)
1095 {
1096 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1097 	struct mcam_vb_buffer *mvb = vb_to_mvb(vbuf);
1098 	struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
1099 	unsigned long flags;
1100 	int start;
1101 
1102 	spin_lock_irqsave(&cam->dev_lock, flags);
1103 	start = (cam->state == S_BUFWAIT) && !list_empty(&cam->buffers);
1104 	list_add(&mvb->queue, &cam->buffers);
1105 	if (cam->state == S_STREAMING && test_bit(CF_SG_RESTART, &cam->flags))
1106 		mcam_sg_restart(cam);
1107 	spin_unlock_irqrestore(&cam->dev_lock, flags);
1108 	if (start)
1109 		mcam_read_setup(cam);
1110 }
1111 
1112 static void mcam_vb_requeue_bufs(struct vb2_queue *vq,
1113 				 enum vb2_buffer_state state)
1114 {
1115 	struct mcam_camera *cam = vb2_get_drv_priv(vq);
1116 	struct mcam_vb_buffer *buf, *node;
1117 	unsigned long flags;
1118 	unsigned i;
1119 
1120 	spin_lock_irqsave(&cam->dev_lock, flags);
1121 	list_for_each_entry_safe(buf, node, &cam->buffers, queue) {
1122 		vb2_buffer_done(&buf->vb_buf.vb2_buf, state);
1123 		list_del(&buf->queue);
1124 	}
1125 	for (i = 0; i < MAX_DMA_BUFS; i++) {
1126 		buf = cam->vb_bufs[i];
1127 
1128 		if (buf) {
1129 			vb2_buffer_done(&buf->vb_buf.vb2_buf, state);
1130 			cam->vb_bufs[i] = NULL;
1131 		}
1132 	}
1133 	spin_unlock_irqrestore(&cam->dev_lock, flags);
1134 }
1135 
1136 /*
1137  * These need to be called with the mutex held from vb2
1138  */
1139 static int mcam_vb_start_streaming(struct vb2_queue *vq, unsigned int count)
1140 {
1141 	struct mcam_camera *cam = vb2_get_drv_priv(vq);
1142 	unsigned int frame;
1143 	int ret;
1144 
1145 	if (cam->state != S_IDLE) {
1146 		mcam_vb_requeue_bufs(vq, VB2_BUF_STATE_QUEUED);
1147 		return -EINVAL;
1148 	}
1149 	cam->frame_state.frames = 0;
1150 	cam->frame_state.singles = 0;
1151 	cam->frame_state.delivered = 0;
1152 	cam->sequence = 0;
1153 	/*
1154 	 * Videobuf2 sneakily hoards all the buffers and won't
1155 	 * give them to us until *after* streaming starts.  But
1156 	 * we can't actually start streaming until we have a
1157 	 * destination.  So go into a wait state and hope they
1158 	 * give us buffers soon.
1159 	 */
1160 	if (cam->buffer_mode != B_vmalloc && list_empty(&cam->buffers)) {
1161 		cam->state = S_BUFWAIT;
1162 		return 0;
1163 	}
1164 
1165 	/*
1166 	 * Ensure clear the left over frame flags
1167 	 * before every really start streaming
1168 	 */
1169 	for (frame = 0; frame < cam->nbufs; frame++)
1170 		clear_bit(CF_FRAME_SOF0 + frame, &cam->flags);
1171 
1172 	ret = mcam_read_setup(cam);
1173 	if (ret)
1174 		mcam_vb_requeue_bufs(vq, VB2_BUF_STATE_QUEUED);
1175 	return ret;
1176 }
1177 
1178 static void mcam_vb_stop_streaming(struct vb2_queue *vq)
1179 {
1180 	struct mcam_camera *cam = vb2_get_drv_priv(vq);
1181 
1182 	cam_dbg(cam, "stop_streaming: %d frames, %d singles, %d delivered\n",
1183 			cam->frame_state.frames, cam->frame_state.singles,
1184 			cam->frame_state.delivered);
1185 	if (cam->state == S_BUFWAIT) {
1186 		/* They never gave us buffers */
1187 		cam->state = S_IDLE;
1188 		return;
1189 	}
1190 	if (cam->state != S_STREAMING)
1191 		return;
1192 	mcam_ctlr_stop_dma(cam);
1193 	/*
1194 	 * VB2 reclaims the buffers, so we need to forget
1195 	 * about them.
1196 	 */
1197 	mcam_vb_requeue_bufs(vq, VB2_BUF_STATE_ERROR);
1198 }
1199 
1200 
1201 static const struct vb2_ops mcam_vb2_ops = {
1202 	.queue_setup		= mcam_vb_queue_setup,
1203 	.buf_queue		= mcam_vb_buf_queue,
1204 	.start_streaming	= mcam_vb_start_streaming,
1205 	.stop_streaming		= mcam_vb_stop_streaming,
1206 };
1207 
1208 
1209 #ifdef MCAM_MODE_DMA_SG
1210 /*
1211  * Scatter/gather mode uses all of the above functions plus a
1212  * few extras to deal with DMA mapping.
1213  */
1214 static int mcam_vb_sg_buf_init(struct vb2_buffer *vb)
1215 {
1216 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1217 	struct mcam_vb_buffer *mvb = vb_to_mvb(vbuf);
1218 	struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
1219 	int ndesc = cam->pix_format.sizeimage/PAGE_SIZE + 1;
1220 
1221 	mvb->dma_desc = dma_alloc_coherent(cam->dev,
1222 			ndesc * sizeof(struct mcam_dma_desc),
1223 			&mvb->dma_desc_pa, GFP_KERNEL);
1224 	if (mvb->dma_desc == NULL) {
1225 		cam_err(cam, "Unable to get DMA descriptor array\n");
1226 		return -ENOMEM;
1227 	}
1228 	return 0;
1229 }
1230 
1231 static int mcam_vb_sg_buf_prepare(struct vb2_buffer *vb)
1232 {
1233 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1234 	struct mcam_vb_buffer *mvb = vb_to_mvb(vbuf);
1235 	struct sg_table *sg_table = vb2_dma_sg_plane_desc(vb, 0);
1236 	struct mcam_dma_desc *desc = mvb->dma_desc;
1237 	struct scatterlist *sg;
1238 	int i;
1239 
1240 	for_each_sg(sg_table->sgl, sg, sg_table->nents, i) {
1241 		desc->dma_addr = sg_dma_address(sg);
1242 		desc->segment_len = sg_dma_len(sg);
1243 		desc++;
1244 	}
1245 	return 0;
1246 }
1247 
1248 static void mcam_vb_sg_buf_cleanup(struct vb2_buffer *vb)
1249 {
1250 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1251 	struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
1252 	struct mcam_vb_buffer *mvb = vb_to_mvb(vbuf);
1253 	int ndesc = cam->pix_format.sizeimage/PAGE_SIZE + 1;
1254 
1255 	dma_free_coherent(cam->dev, ndesc * sizeof(struct mcam_dma_desc),
1256 			mvb->dma_desc, mvb->dma_desc_pa);
1257 }
1258 
1259 
1260 static const struct vb2_ops mcam_vb2_sg_ops = {
1261 	.queue_setup		= mcam_vb_queue_setup,
1262 	.buf_init		= mcam_vb_sg_buf_init,
1263 	.buf_prepare		= mcam_vb_sg_buf_prepare,
1264 	.buf_queue		= mcam_vb_buf_queue,
1265 	.buf_cleanup		= mcam_vb_sg_buf_cleanup,
1266 	.start_streaming	= mcam_vb_start_streaming,
1267 	.stop_streaming		= mcam_vb_stop_streaming,
1268 };
1269 
1270 #endif /* MCAM_MODE_DMA_SG */
1271 
1272 static int mcam_setup_vb2(struct mcam_camera *cam)
1273 {
1274 	struct vb2_queue *vq = &cam->vb_queue;
1275 
1276 	memset(vq, 0, sizeof(*vq));
1277 	vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1278 	vq->drv_priv = cam;
1279 	vq->lock = &cam->s_mutex;
1280 	vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
1281 	vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF | VB2_READ;
1282 	vq->buf_struct_size = sizeof(struct mcam_vb_buffer);
1283 	vq->dev = cam->dev;
1284 	INIT_LIST_HEAD(&cam->buffers);
1285 	switch (cam->buffer_mode) {
1286 	case B_DMA_contig:
1287 #ifdef MCAM_MODE_DMA_CONTIG
1288 		vq->ops = &mcam_vb2_ops;
1289 		vq->mem_ops = &vb2_dma_contig_memops;
1290 		cam->dma_setup = mcam_ctlr_dma_contig;
1291 		cam->frame_complete = mcam_dma_contig_done;
1292 #endif
1293 		break;
1294 	case B_DMA_sg:
1295 #ifdef MCAM_MODE_DMA_SG
1296 		vq->ops = &mcam_vb2_sg_ops;
1297 		vq->mem_ops = &vb2_dma_sg_memops;
1298 		cam->dma_setup = mcam_ctlr_dma_sg;
1299 		cam->frame_complete = mcam_dma_sg_done;
1300 #endif
1301 		break;
1302 	case B_vmalloc:
1303 #ifdef MCAM_MODE_VMALLOC
1304 		INIT_WORK(&cam->s_bh_work, mcam_frame_work);
1305 		vq->ops = &mcam_vb2_ops;
1306 		vq->mem_ops = &vb2_vmalloc_memops;
1307 		cam->dma_setup = mcam_ctlr_dma_vmalloc;
1308 		cam->frame_complete = mcam_vmalloc_done;
1309 #endif
1310 		break;
1311 	}
1312 	return vb2_queue_init(vq);
1313 }
1314 
1315 
1316 /* ---------------------------------------------------------------------- */
1317 /*
1318  * The long list of V4L2 ioctl() operations.
1319  */
1320 
1321 static int mcam_vidioc_querycap(struct file *file, void *priv,
1322 		struct v4l2_capability *cap)
1323 {
1324 	struct mcam_camera *cam = video_drvdata(file);
1325 
1326 	strscpy(cap->driver, "marvell_ccic", sizeof(cap->driver));
1327 	strscpy(cap->card, "marvell_ccic", sizeof(cap->card));
1328 	strscpy(cap->bus_info, cam->bus_info, sizeof(cap->bus_info));
1329 	return 0;
1330 }
1331 
1332 
1333 static int mcam_vidioc_enum_fmt_vid_cap(struct file *filp,
1334 		void *priv, struct v4l2_fmtdesc *fmt)
1335 {
1336 	if (fmt->index >= N_MCAM_FMTS)
1337 		return -EINVAL;
1338 	fmt->pixelformat = mcam_formats[fmt->index].pixelformat;
1339 	return 0;
1340 }
1341 
1342 static int mcam_vidioc_try_fmt_vid_cap(struct file *filp, void *priv,
1343 		struct v4l2_format *fmt)
1344 {
1345 	struct mcam_camera *cam = video_drvdata(filp);
1346 	struct mcam_format_struct *f;
1347 	struct v4l2_pix_format *pix = &fmt->fmt.pix;
1348 	struct v4l2_subdev_pad_config pad_cfg;
1349 	struct v4l2_subdev_state pad_state = {
1350 		.pads = &pad_cfg,
1351 	};
1352 	struct v4l2_subdev_format format = {
1353 		.which = V4L2_SUBDEV_FORMAT_TRY,
1354 	};
1355 	int ret;
1356 
1357 	f = mcam_find_format(pix->pixelformat);
1358 	pix->pixelformat = f->pixelformat;
1359 	v4l2_fill_mbus_format(&format.format, pix, f->mbus_code);
1360 	ret = sensor_call(cam, pad, set_fmt, &pad_state, &format);
1361 	v4l2_fill_pix_format(pix, &format.format);
1362 	pix->bytesperline = pix->width * f->bpp;
1363 	switch (f->pixelformat) {
1364 	case V4L2_PIX_FMT_YUV420:
1365 	case V4L2_PIX_FMT_YVU420:
1366 		pix->sizeimage = pix->height * pix->bytesperline * 3 / 2;
1367 		break;
1368 	default:
1369 		pix->sizeimage = pix->height * pix->bytesperline;
1370 		break;
1371 	}
1372 	pix->colorspace = V4L2_COLORSPACE_SRGB;
1373 	return ret;
1374 }
1375 
1376 static int mcam_vidioc_s_fmt_vid_cap(struct file *filp, void *priv,
1377 		struct v4l2_format *fmt)
1378 {
1379 	struct mcam_camera *cam = video_drvdata(filp);
1380 	struct mcam_format_struct *f;
1381 	int ret;
1382 
1383 	/*
1384 	 * Can't do anything if the device is not idle
1385 	 * Also can't if there are streaming buffers in place.
1386 	 */
1387 	if (cam->state != S_IDLE || vb2_is_busy(&cam->vb_queue))
1388 		return -EBUSY;
1389 
1390 	f = mcam_find_format(fmt->fmt.pix.pixelformat);
1391 
1392 	/*
1393 	 * See if the formatting works in principle.
1394 	 */
1395 	ret = mcam_vidioc_try_fmt_vid_cap(filp, priv, fmt);
1396 	if (ret)
1397 		return ret;
1398 	/*
1399 	 * Now we start to change things for real, so let's do it
1400 	 * under lock.
1401 	 */
1402 	cam->pix_format = fmt->fmt.pix;
1403 	cam->mbus_code = f->mbus_code;
1404 
1405 	/*
1406 	 * Make sure we have appropriate DMA buffers.
1407 	 */
1408 	if (cam->buffer_mode == B_vmalloc) {
1409 		ret = mcam_check_dma_buffers(cam);
1410 		if (ret)
1411 			goto out;
1412 	}
1413 	mcam_set_config_needed(cam, 1);
1414 out:
1415 	return ret;
1416 }
1417 
1418 /*
1419  * Return our stored notion of how the camera is/should be configured.
1420  * The V4l2 spec wants us to be smarter, and actually get this from
1421  * the camera (and not mess with it at open time).  Someday.
1422  */
1423 static int mcam_vidioc_g_fmt_vid_cap(struct file *filp, void *priv,
1424 		struct v4l2_format *f)
1425 {
1426 	struct mcam_camera *cam = video_drvdata(filp);
1427 
1428 	f->fmt.pix = cam->pix_format;
1429 	return 0;
1430 }
1431 
1432 /*
1433  * We only have one input - the sensor - so minimize the nonsense here.
1434  */
1435 static int mcam_vidioc_enum_input(struct file *filp, void *priv,
1436 		struct v4l2_input *input)
1437 {
1438 	if (input->index != 0)
1439 		return -EINVAL;
1440 
1441 	input->type = V4L2_INPUT_TYPE_CAMERA;
1442 	strscpy(input->name, "Camera", sizeof(input->name));
1443 	return 0;
1444 }
1445 
1446 static int mcam_vidioc_g_input(struct file *filp, void *priv, unsigned int *i)
1447 {
1448 	*i = 0;
1449 	return 0;
1450 }
1451 
1452 static int mcam_vidioc_s_input(struct file *filp, void *priv, unsigned int i)
1453 {
1454 	if (i != 0)
1455 		return -EINVAL;
1456 	return 0;
1457 }
1458 
1459 /*
1460  * G/S_PARM.  Most of this is done by the sensor, but we are
1461  * the level which controls the number of read buffers.
1462  */
1463 static int mcam_vidioc_g_parm(struct file *filp, void *priv,
1464 		struct v4l2_streamparm *a)
1465 {
1466 	struct mcam_camera *cam = video_drvdata(filp);
1467 	int ret;
1468 
1469 	ret = v4l2_g_parm_cap(video_devdata(filp), cam->sensor, a);
1470 	a->parm.capture.readbuffers = n_dma_bufs;
1471 	return ret;
1472 }
1473 
1474 static int mcam_vidioc_s_parm(struct file *filp, void *priv,
1475 		struct v4l2_streamparm *a)
1476 {
1477 	struct mcam_camera *cam = video_drvdata(filp);
1478 	int ret;
1479 
1480 	ret = v4l2_s_parm_cap(video_devdata(filp), cam->sensor, a);
1481 	a->parm.capture.readbuffers = n_dma_bufs;
1482 	return ret;
1483 }
1484 
1485 static int mcam_vidioc_enum_framesizes(struct file *filp, void *priv,
1486 		struct v4l2_frmsizeenum *sizes)
1487 {
1488 	struct mcam_camera *cam = video_drvdata(filp);
1489 	struct mcam_format_struct *f;
1490 	struct v4l2_subdev_frame_size_enum fse = {
1491 		.index = sizes->index,
1492 		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
1493 	};
1494 	int ret;
1495 
1496 	f = mcam_find_format(sizes->pixel_format);
1497 	if (f->pixelformat != sizes->pixel_format)
1498 		return -EINVAL;
1499 	fse.code = f->mbus_code;
1500 	ret = sensor_call(cam, pad, enum_frame_size, NULL, &fse);
1501 	if (ret)
1502 		return ret;
1503 	if (fse.min_width == fse.max_width &&
1504 	    fse.min_height == fse.max_height) {
1505 		sizes->type = V4L2_FRMSIZE_TYPE_DISCRETE;
1506 		sizes->discrete.width = fse.min_width;
1507 		sizes->discrete.height = fse.min_height;
1508 		return 0;
1509 	}
1510 	sizes->type = V4L2_FRMSIZE_TYPE_CONTINUOUS;
1511 	sizes->stepwise.min_width = fse.min_width;
1512 	sizes->stepwise.max_width = fse.max_width;
1513 	sizes->stepwise.min_height = fse.min_height;
1514 	sizes->stepwise.max_height = fse.max_height;
1515 	sizes->stepwise.step_width = 1;
1516 	sizes->stepwise.step_height = 1;
1517 	return 0;
1518 }
1519 
1520 static int mcam_vidioc_enum_frameintervals(struct file *filp, void *priv,
1521 		struct v4l2_frmivalenum *interval)
1522 {
1523 	struct mcam_camera *cam = video_drvdata(filp);
1524 	struct mcam_format_struct *f;
1525 	struct v4l2_subdev_frame_interval_enum fie = {
1526 		.index = interval->index,
1527 		.width = interval->width,
1528 		.height = interval->height,
1529 		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
1530 	};
1531 	int ret;
1532 
1533 	f = mcam_find_format(interval->pixel_format);
1534 	if (f->pixelformat != interval->pixel_format)
1535 		return -EINVAL;
1536 	fie.code = f->mbus_code;
1537 	ret = sensor_call(cam, pad, enum_frame_interval, NULL, &fie);
1538 	if (ret)
1539 		return ret;
1540 	interval->type = V4L2_FRMIVAL_TYPE_DISCRETE;
1541 	interval->discrete = fie.interval;
1542 	return 0;
1543 }
1544 
1545 #ifdef CONFIG_VIDEO_ADV_DEBUG
1546 static int mcam_vidioc_g_register(struct file *file, void *priv,
1547 		struct v4l2_dbg_register *reg)
1548 {
1549 	struct mcam_camera *cam = video_drvdata(file);
1550 
1551 	if (reg->reg > cam->regs_size - 4)
1552 		return -EINVAL;
1553 	reg->val = mcam_reg_read(cam, reg->reg);
1554 	reg->size = 4;
1555 	return 0;
1556 }
1557 
1558 static int mcam_vidioc_s_register(struct file *file, void *priv,
1559 		const struct v4l2_dbg_register *reg)
1560 {
1561 	struct mcam_camera *cam = video_drvdata(file);
1562 
1563 	if (reg->reg > cam->regs_size - 4)
1564 		return -EINVAL;
1565 	mcam_reg_write(cam, reg->reg, reg->val);
1566 	return 0;
1567 }
1568 #endif
1569 
1570 static const struct v4l2_ioctl_ops mcam_v4l_ioctl_ops = {
1571 	.vidioc_querycap	= mcam_vidioc_querycap,
1572 	.vidioc_enum_fmt_vid_cap = mcam_vidioc_enum_fmt_vid_cap,
1573 	.vidioc_try_fmt_vid_cap	= mcam_vidioc_try_fmt_vid_cap,
1574 	.vidioc_s_fmt_vid_cap	= mcam_vidioc_s_fmt_vid_cap,
1575 	.vidioc_g_fmt_vid_cap	= mcam_vidioc_g_fmt_vid_cap,
1576 	.vidioc_enum_input	= mcam_vidioc_enum_input,
1577 	.vidioc_g_input		= mcam_vidioc_g_input,
1578 	.vidioc_s_input		= mcam_vidioc_s_input,
1579 	.vidioc_reqbufs		= vb2_ioctl_reqbufs,
1580 	.vidioc_create_bufs	= vb2_ioctl_create_bufs,
1581 	.vidioc_querybuf	= vb2_ioctl_querybuf,
1582 	.vidioc_qbuf		= vb2_ioctl_qbuf,
1583 	.vidioc_dqbuf		= vb2_ioctl_dqbuf,
1584 	.vidioc_expbuf		= vb2_ioctl_expbuf,
1585 	.vidioc_streamon	= vb2_ioctl_streamon,
1586 	.vidioc_streamoff	= vb2_ioctl_streamoff,
1587 	.vidioc_g_parm		= mcam_vidioc_g_parm,
1588 	.vidioc_s_parm		= mcam_vidioc_s_parm,
1589 	.vidioc_enum_framesizes = mcam_vidioc_enum_framesizes,
1590 	.vidioc_enum_frameintervals = mcam_vidioc_enum_frameintervals,
1591 	.vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
1592 	.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
1593 #ifdef CONFIG_VIDEO_ADV_DEBUG
1594 	.vidioc_g_register	= mcam_vidioc_g_register,
1595 	.vidioc_s_register	= mcam_vidioc_s_register,
1596 #endif
1597 };
1598 
1599 /* ---------------------------------------------------------------------- */
1600 /*
1601  * Our various file operations.
1602  */
1603 static int mcam_v4l_open(struct file *filp)
1604 {
1605 	struct mcam_camera *cam = video_drvdata(filp);
1606 	int ret;
1607 
1608 	mutex_lock(&cam->s_mutex);
1609 	ret = v4l2_fh_open(filp);
1610 	if (ret)
1611 		goto out;
1612 	if (v4l2_fh_is_singular_file(filp)) {
1613 		ret = sensor_call(cam, core, s_power, 1);
1614 		if (ret)
1615 			goto out;
1616 		ret = pm_runtime_resume_and_get(cam->dev);
1617 		if (ret < 0)
1618 			goto out;
1619 		__mcam_cam_reset(cam);
1620 		mcam_set_config_needed(cam, 1);
1621 	}
1622 out:
1623 	mutex_unlock(&cam->s_mutex);
1624 	if (ret)
1625 		v4l2_fh_release(filp);
1626 	return ret;
1627 }
1628 
1629 
1630 static int mcam_v4l_release(struct file *filp)
1631 {
1632 	struct mcam_camera *cam = video_drvdata(filp);
1633 	bool last_open;
1634 
1635 	mutex_lock(&cam->s_mutex);
1636 	last_open = v4l2_fh_is_singular_file(filp);
1637 	_vb2_fop_release(filp, NULL);
1638 	if (last_open) {
1639 		mcam_disable_mipi(cam);
1640 		sensor_call(cam, core, s_power, 0);
1641 		pm_runtime_put(cam->dev);
1642 		if (cam->buffer_mode == B_vmalloc && alloc_bufs_at_read)
1643 			mcam_free_dma_bufs(cam);
1644 	}
1645 
1646 	mutex_unlock(&cam->s_mutex);
1647 	return 0;
1648 }
1649 
1650 static const struct v4l2_file_operations mcam_v4l_fops = {
1651 	.owner = THIS_MODULE,
1652 	.open = mcam_v4l_open,
1653 	.release = mcam_v4l_release,
1654 	.read = vb2_fop_read,
1655 	.poll = vb2_fop_poll,
1656 	.mmap = vb2_fop_mmap,
1657 	.unlocked_ioctl = video_ioctl2,
1658 };
1659 
1660 
1661 /*
1662  * This template device holds all of those v4l2 methods; we
1663  * clone it for specific real devices.
1664  */
1665 static const struct video_device mcam_v4l_template = {
1666 	.name = "mcam",
1667 	.fops = &mcam_v4l_fops,
1668 	.ioctl_ops = &mcam_v4l_ioctl_ops,
1669 	.release = video_device_release_empty,
1670 	.device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_READWRITE |
1671 		       V4L2_CAP_STREAMING,
1672 };
1673 
1674 /* ---------------------------------------------------------------------- */
1675 /*
1676  * Interrupt handler stuff
1677  */
1678 static void mcam_frame_complete(struct mcam_camera *cam, int frame)
1679 {
1680 	/*
1681 	 * Basic frame housekeeping.
1682 	 */
1683 	set_bit(frame, &cam->flags);
1684 	clear_bit(CF_DMA_ACTIVE, &cam->flags);
1685 	cam->next_buf = frame;
1686 	cam->buf_seq[frame] = cam->sequence++;
1687 	cam->frame_state.frames++;
1688 	/*
1689 	 * "This should never happen"
1690 	 */
1691 	if (cam->state != S_STREAMING)
1692 		return;
1693 	/*
1694 	 * Process the frame and set up the next one.
1695 	 */
1696 	cam->frame_complete(cam, frame);
1697 }
1698 
1699 
1700 /*
1701  * The interrupt handler; this needs to be called from the
1702  * platform irq handler with the lock held.
1703  */
1704 int mccic_irq(struct mcam_camera *cam, unsigned int irqs)
1705 {
1706 	unsigned int frame, handled = 0;
1707 
1708 	mcam_reg_write(cam, REG_IRQSTAT, FRAMEIRQS); /* Clear'em all */
1709 	/*
1710 	 * Handle any frame completions.  There really should
1711 	 * not be more than one of these, or we have fallen
1712 	 * far behind.
1713 	 *
1714 	 * When running in S/G mode, the frame number lacks any
1715 	 * real meaning - there's only one descriptor array - but
1716 	 * the controller still picks a different one to signal
1717 	 * each time.
1718 	 */
1719 	for (frame = 0; frame < cam->nbufs; frame++)
1720 		if (irqs & (IRQ_EOF0 << frame) &&
1721 			test_bit(CF_FRAME_SOF0 + frame, &cam->flags)) {
1722 			mcam_frame_complete(cam, frame);
1723 			handled = 1;
1724 			clear_bit(CF_FRAME_SOF0 + frame, &cam->flags);
1725 			if (cam->buffer_mode == B_DMA_sg)
1726 				break;
1727 		}
1728 	/*
1729 	 * If a frame starts, note that we have DMA active.  This
1730 	 * code assumes that we won't get multiple frame interrupts
1731 	 * at once; may want to rethink that.
1732 	 */
1733 	for (frame = 0; frame < cam->nbufs; frame++) {
1734 		if (irqs & (IRQ_SOF0 << frame)) {
1735 			set_bit(CF_FRAME_SOF0 + frame, &cam->flags);
1736 			handled = IRQ_HANDLED;
1737 		}
1738 	}
1739 
1740 	if (handled == IRQ_HANDLED) {
1741 		set_bit(CF_DMA_ACTIVE, &cam->flags);
1742 		if (cam->buffer_mode == B_DMA_sg)
1743 			mcam_ctlr_stop(cam);
1744 	}
1745 	return handled;
1746 }
1747 EXPORT_SYMBOL_GPL(mccic_irq);
1748 
1749 /* ---------------------------------------------------------------------- */
1750 /*
1751  * Registration and such.
1752  */
1753 
1754 static int mccic_notify_bound(struct v4l2_async_notifier *notifier,
1755 	struct v4l2_subdev *subdev, struct v4l2_async_connection *asd)
1756 {
1757 	struct mcam_camera *cam = notifier_to_mcam(notifier);
1758 	int ret;
1759 
1760 	mutex_lock(&cam->s_mutex);
1761 	if (cam->sensor) {
1762 		cam_err(cam, "sensor already bound\n");
1763 		ret = -EBUSY;
1764 		goto out;
1765 	}
1766 
1767 	v4l2_set_subdev_hostdata(subdev, cam);
1768 	cam->sensor = subdev;
1769 
1770 	ret = mcam_cam_init(cam);
1771 	if (ret) {
1772 		cam->sensor = NULL;
1773 		goto out;
1774 	}
1775 
1776 	ret = mcam_setup_vb2(cam);
1777 	if (ret) {
1778 		cam->sensor = NULL;
1779 		goto out;
1780 	}
1781 
1782 	cam->vdev = mcam_v4l_template;
1783 	cam->vdev.v4l2_dev = &cam->v4l2_dev;
1784 	cam->vdev.lock = &cam->s_mutex;
1785 	cam->vdev.queue = &cam->vb_queue;
1786 	video_set_drvdata(&cam->vdev, cam);
1787 	ret = video_register_device(&cam->vdev, VFL_TYPE_VIDEO, -1);
1788 	if (ret) {
1789 		cam->sensor = NULL;
1790 		goto out;
1791 	}
1792 
1793 	cam_dbg(cam, "sensor %s bound\n", subdev->name);
1794 out:
1795 	mutex_unlock(&cam->s_mutex);
1796 	return ret;
1797 }
1798 
1799 static void mccic_notify_unbind(struct v4l2_async_notifier *notifier,
1800 	struct v4l2_subdev *subdev, struct v4l2_async_connection *asd)
1801 {
1802 	struct mcam_camera *cam = notifier_to_mcam(notifier);
1803 
1804 	mutex_lock(&cam->s_mutex);
1805 	if (cam->sensor != subdev) {
1806 		cam_err(cam, "sensor %s not bound\n", subdev->name);
1807 		goto out;
1808 	}
1809 
1810 	video_unregister_device(&cam->vdev);
1811 	cam->sensor = NULL;
1812 	cam_dbg(cam, "sensor %s unbound\n", subdev->name);
1813 
1814 out:
1815 	mutex_unlock(&cam->s_mutex);
1816 }
1817 
1818 static int mccic_notify_complete(struct v4l2_async_notifier *notifier)
1819 {
1820 	struct mcam_camera *cam = notifier_to_mcam(notifier);
1821 	int ret;
1822 
1823 	/*
1824 	 * Get the v4l2 setup done.
1825 	 */
1826 	ret = v4l2_ctrl_handler_init(&cam->ctrl_handler, 10);
1827 	if (!ret)
1828 		cam->v4l2_dev.ctrl_handler = &cam->ctrl_handler;
1829 
1830 	return ret;
1831 }
1832 
1833 static const struct v4l2_async_notifier_operations mccic_notify_ops = {
1834 	.bound = mccic_notify_bound,
1835 	.unbind = mccic_notify_unbind,
1836 	.complete = mccic_notify_complete,
1837 };
1838 
1839 int mccic_register(struct mcam_camera *cam)
1840 {
1841 	struct clk_init_data mclk_init = { };
1842 	int ret;
1843 
1844 	/*
1845 	 * Validate the requested buffer mode.
1846 	 */
1847 	if (buffer_mode >= 0)
1848 		cam->buffer_mode = buffer_mode;
1849 	if (cam->buffer_mode == B_DMA_sg &&
1850 			cam->chip_id == MCAM_CAFE) {
1851 		printk(KERN_ERR "marvell-cam: Cafe can't do S/G I/O, attempting vmalloc mode instead\n");
1852 		cam->buffer_mode = B_vmalloc;
1853 	}
1854 
1855 	if (!mcam_buffer_mode_supported(cam->buffer_mode)) {
1856 		printk(KERN_ERR "marvell-cam: buffer mode %d unsupported\n",
1857 				cam->buffer_mode);
1858 		ret = -EINVAL;
1859 		goto out;
1860 	}
1861 
1862 	mutex_init(&cam->s_mutex);
1863 	cam->state = S_NOTREADY;
1864 	mcam_set_config_needed(cam, 1);
1865 	cam->pix_format = mcam_def_pix_format;
1866 	cam->mbus_code = mcam_def_mbus_code;
1867 
1868 	cam->notifier.ops = &mccic_notify_ops;
1869 	ret = v4l2_async_nf_register(&cam->notifier);
1870 	if (ret < 0) {
1871 		cam_warn(cam, "failed to register a sensor notifier");
1872 		goto out;
1873 	}
1874 
1875 	/*
1876 	 * Register sensor master clock.
1877 	 */
1878 	mclk_init.parent_names = NULL;
1879 	mclk_init.num_parents = 0;
1880 	mclk_init.ops = &mclk_ops;
1881 	mclk_init.name = "mclk";
1882 
1883 	of_property_read_string(cam->dev->of_node, "clock-output-names",
1884 							&mclk_init.name);
1885 
1886 	cam->mclk_hw.init = &mclk_init;
1887 
1888 	cam->mclk = devm_clk_register(cam->dev, &cam->mclk_hw);
1889 	if (IS_ERR(cam->mclk)) {
1890 		ret = PTR_ERR(cam->mclk);
1891 		dev_err(cam->dev, "can't register clock\n");
1892 		goto out;
1893 	}
1894 
1895 	/*
1896 	 * If so requested, try to get our DMA buffers now.
1897 	 */
1898 	if (cam->buffer_mode == B_vmalloc && !alloc_bufs_at_read) {
1899 		if (mcam_alloc_dma_bufs(cam, 1))
1900 			cam_warn(cam, "Unable to alloc DMA buffers at load will try again later.");
1901 	}
1902 
1903 	return 0;
1904 
1905 out:
1906 	v4l2_async_nf_unregister(&cam->notifier);
1907 	v4l2_async_nf_cleanup(&cam->notifier);
1908 	return ret;
1909 }
1910 EXPORT_SYMBOL_GPL(mccic_register);
1911 
1912 void mccic_shutdown(struct mcam_camera *cam)
1913 {
1914 	/*
1915 	 * If we have no users (and we really, really should have no
1916 	 * users) the device will already be powered down.  Trying to
1917 	 * take it down again will wedge the machine, which is frowned
1918 	 * upon.
1919 	 */
1920 	if (!list_empty(&cam->vdev.fh_list)) {
1921 		cam_warn(cam, "Removing a device with users!\n");
1922 		sensor_call(cam, core, s_power, 0);
1923 	}
1924 	if (cam->buffer_mode == B_vmalloc)
1925 		mcam_free_dma_bufs(cam);
1926 	v4l2_ctrl_handler_free(&cam->ctrl_handler);
1927 	v4l2_async_nf_unregister(&cam->notifier);
1928 	v4l2_async_nf_cleanup(&cam->notifier);
1929 }
1930 EXPORT_SYMBOL_GPL(mccic_shutdown);
1931 
1932 /*
1933  * Power management
1934  */
1935 void mccic_suspend(struct mcam_camera *cam)
1936 {
1937 	mutex_lock(&cam->s_mutex);
1938 	if (!list_empty(&cam->vdev.fh_list)) {
1939 		enum mcam_state cstate = cam->state;
1940 
1941 		mcam_ctlr_stop_dma(cam);
1942 		sensor_call(cam, core, s_power, 0);
1943 		cam->state = cstate;
1944 	}
1945 	mutex_unlock(&cam->s_mutex);
1946 }
1947 EXPORT_SYMBOL_GPL(mccic_suspend);
1948 
1949 int mccic_resume(struct mcam_camera *cam)
1950 {
1951 	int ret = 0;
1952 
1953 	mutex_lock(&cam->s_mutex);
1954 	if (!list_empty(&cam->vdev.fh_list)) {
1955 		ret = sensor_call(cam, core, s_power, 1);
1956 		if (ret) {
1957 			mutex_unlock(&cam->s_mutex);
1958 			return ret;
1959 		}
1960 		__mcam_cam_reset(cam);
1961 	} else {
1962 		sensor_call(cam, core, s_power, 0);
1963 	}
1964 	mutex_unlock(&cam->s_mutex);
1965 
1966 	set_bit(CF_CONFIG_NEEDED, &cam->flags);
1967 	if (cam->state == S_STREAMING) {
1968 		/*
1969 		 * If there was a buffer in the DMA engine at suspend
1970 		 * time, put it back on the queue or we'll forget about it.
1971 		 */
1972 		if (cam->buffer_mode == B_DMA_sg && cam->vb_bufs[0])
1973 			list_add(&cam->vb_bufs[0]->queue, &cam->buffers);
1974 		ret = mcam_read_setup(cam);
1975 	}
1976 	return ret;
1977 }
1978 EXPORT_SYMBOL_GPL(mccic_resume);
1979 
1980 MODULE_DESCRIPTION("Marvell camera core driver");
1981 MODULE_LICENSE("GPL v2");
1982 MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
1983