xref: /linux/drivers/media/pci/tw68/tw68-video.c (revision e5d3a64e650c721f9e9b1f76e5df8c62f16b734d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  tw68 functions to handle video data
4  *
5  *  Much of this code is derived from the cx88 and sa7134 drivers, which
6  *  were in turn derived from the bt87x driver.  The original work was by
7  *  Gerd Knorr; more recently the code was enhanced by Mauro Carvalho Chehab,
8  *  Hans Verkuil, Andy Walls and many others.  Their work is gratefully
9  *  acknowledged.  Full credit goes to them - any problems within this code
10  *  are mine.
11  *
12  *  Copyright (C) 2009  William M. Brack
13  *
14  *  Refactored and updated to the latest v4l core frameworks:
15  *
16  *  Copyright (C) 2014 Hans Verkuil <hverkuil@xs4all.nl>
17  */
18 
19 #include <linux/module.h>
20 #include <media/v4l2-common.h>
21 #include <media/v4l2-event.h>
22 #include <media/videobuf2-dma-sg.h>
23 
24 #include "tw68.h"
25 #include "tw68-reg.h"
26 
27 /* ------------------------------------------------------------------ */
28 /* data structs for video                                             */
29 /*
30  * FIXME -
31  * Note that the saa7134 has formats, e.g. YUV420, which are classified
32  * as "planar".  These affect overlay mode, and are flagged with a field
33  * ".planar" in the format.  Do we need to implement this in this driver?
34  */
35 static const struct tw68_format formats[] = {
36 	{
37 		.fourcc		= V4L2_PIX_FMT_RGB555,
38 		.depth		= 16,
39 		.twformat	= ColorFormatRGB15,
40 	}, {
41 		.fourcc		= V4L2_PIX_FMT_RGB555X,
42 		.depth		= 16,
43 		.twformat	= ColorFormatRGB15 | ColorFormatBSWAP,
44 	}, {
45 		.fourcc		= V4L2_PIX_FMT_RGB565,
46 		.depth		= 16,
47 		.twformat	= ColorFormatRGB16,
48 	}, {
49 		.fourcc		= V4L2_PIX_FMT_RGB565X,
50 		.depth		= 16,
51 		.twformat	= ColorFormatRGB16 | ColorFormatBSWAP,
52 	}, {
53 		.fourcc		= V4L2_PIX_FMT_BGR24,
54 		.depth		= 24,
55 		.twformat	= ColorFormatRGB24,
56 	}, {
57 		.fourcc		= V4L2_PIX_FMT_RGB24,
58 		.depth		= 24,
59 		.twformat	= ColorFormatRGB24 | ColorFormatBSWAP,
60 	}, {
61 		.fourcc		= V4L2_PIX_FMT_BGR32,
62 		.depth		= 32,
63 		.twformat	= ColorFormatRGB32,
64 	}, {
65 		.fourcc		= V4L2_PIX_FMT_RGB32,
66 		.depth		= 32,
67 		.twformat	= ColorFormatRGB32 | ColorFormatBSWAP |
68 				  ColorFormatWSWAP,
69 	}, {
70 		.fourcc		= V4L2_PIX_FMT_YUYV,
71 		.depth		= 16,
72 		.twformat	= ColorFormatYUY2,
73 	}, {
74 		.fourcc		= V4L2_PIX_FMT_UYVY,
75 		.depth		= 16,
76 		.twformat	= ColorFormatYUY2 | ColorFormatBSWAP,
77 	}
78 };
79 #define FORMATS ARRAY_SIZE(formats)
80 
81 #define NORM_625_50			\
82 		.h_delay	= 3,	\
83 		.h_delay0	= 133,	\
84 		.h_start	= 0,	\
85 		.h_stop		= 719,	\
86 		.v_delay	= 24,	\
87 		.vbi_v_start_0	= 7,	\
88 		.vbi_v_stop_0	= 22,	\
89 		.video_v_start	= 24,	\
90 		.video_v_stop	= 311,	\
91 		.vbi_v_start_1	= 319
92 
93 #define NORM_525_60			\
94 		.h_delay	= 8,	\
95 		.h_delay0	= 138,	\
96 		.h_start	= 0,	\
97 		.h_stop		= 719,	\
98 		.v_delay	= 22,	\
99 		.vbi_v_start_0	= 10,	\
100 		.vbi_v_stop_0	= 21,	\
101 		.video_v_start	= 22,	\
102 		.video_v_stop	= 262,	\
103 		.vbi_v_start_1	= 273
104 
105 /*
106  * The following table is searched by tw68_s_std, first for a specific
107  * match, then for an entry which contains the desired id.  The table
108  * entries should therefore be ordered in ascending order of specificity.
109  */
110 static const struct tw68_tvnorm tvnorms[] = {
111 	{
112 		.name		= "PAL", /* autodetect */
113 		.id		= V4L2_STD_PAL,
114 		NORM_625_50,
115 
116 		.sync_control	= 0x18,
117 		.luma_control	= 0x40,
118 		.chroma_ctrl1	= 0x81,
119 		.chroma_gain	= 0x2a,
120 		.chroma_ctrl2	= 0x06,
121 		.vgate_misc	= 0x1c,
122 		.format		= VideoFormatPALBDGHI,
123 	}, {
124 		.name		= "NTSC",
125 		.id		= V4L2_STD_NTSC,
126 		NORM_525_60,
127 
128 		.sync_control	= 0x59,
129 		.luma_control	= 0x40,
130 		.chroma_ctrl1	= 0x89,
131 		.chroma_gain	= 0x2a,
132 		.chroma_ctrl2	= 0x0e,
133 		.vgate_misc	= 0x18,
134 		.format		= VideoFormatNTSC,
135 	}, {
136 		.name		= "SECAM",
137 		.id		= V4L2_STD_SECAM,
138 		NORM_625_50,
139 
140 		.sync_control	= 0x18,
141 		.luma_control	= 0x1b,
142 		.chroma_ctrl1	= 0xd1,
143 		.chroma_gain	= 0x80,
144 		.chroma_ctrl2	= 0x00,
145 		.vgate_misc	= 0x1c,
146 		.format		= VideoFormatSECAM,
147 	}, {
148 		.name		= "PAL-M",
149 		.id		= V4L2_STD_PAL_M,
150 		NORM_525_60,
151 
152 		.sync_control	= 0x59,
153 		.luma_control	= 0x40,
154 		.chroma_ctrl1	= 0xb9,
155 		.chroma_gain	= 0x2a,
156 		.chroma_ctrl2	= 0x0e,
157 		.vgate_misc	= 0x18,
158 		.format		= VideoFormatPALM,
159 	}, {
160 		.name		= "PAL-Nc",
161 		.id		= V4L2_STD_PAL_Nc,
162 		NORM_625_50,
163 
164 		.sync_control	= 0x18,
165 		.luma_control	= 0x40,
166 		.chroma_ctrl1	= 0xa1,
167 		.chroma_gain	= 0x2a,
168 		.chroma_ctrl2	= 0x06,
169 		.vgate_misc	= 0x1c,
170 		.format		= VideoFormatPALNC,
171 	}, {
172 		.name		= "PAL-60",
173 		.id		= V4L2_STD_PAL_60,
174 		.h_delay	= 186,
175 		.h_start	= 0,
176 		.h_stop		= 719,
177 		.v_delay	= 26,
178 		.video_v_start	= 23,
179 		.video_v_stop	= 262,
180 		.vbi_v_start_0	= 10,
181 		.vbi_v_stop_0	= 21,
182 		.vbi_v_start_1	= 273,
183 
184 		.sync_control	= 0x18,
185 		.luma_control	= 0x40,
186 		.chroma_ctrl1	= 0x81,
187 		.chroma_gain	= 0x2a,
188 		.chroma_ctrl2	= 0x06,
189 		.vgate_misc	= 0x1c,
190 		.format		= VideoFormatPAL60,
191 	}
192 };
193 #define TVNORMS ARRAY_SIZE(tvnorms)
194 
195 static const struct tw68_format *format_by_fourcc(unsigned int fourcc)
196 {
197 	unsigned int i;
198 
199 	for (i = 0; i < FORMATS; i++)
200 		if (formats[i].fourcc == fourcc)
201 			return formats+i;
202 	return NULL;
203 }
204 
205 
206 /* ------------------------------------------------------------------ */
207 /*
208  * Note that the cropping rectangles are described in terms of a single
209  * frame, i.e. line positions are only 1/2 the interlaced equivalent
210  */
211 static void set_tvnorm(struct tw68_dev *dev, const struct tw68_tvnorm *norm)
212 {
213 	if (norm != dev->tvnorm) {
214 		dev->width = 720;
215 		dev->height = (norm->id & V4L2_STD_525_60) ? 480 : 576;
216 		dev->tvnorm = norm;
217 		tw68_set_tvnorm_hw(dev);
218 	}
219 }
220 
221 /*
222  * tw68_set_scale
223  *
224  * Scaling and Cropping for video decoding
225  *
226  * We are working with 3 values for horizontal and vertical - scale,
227  * delay and active.
228  *
229  * HACTIVE represent the actual number of pixels in the "usable" image,
230  * before scaling.  HDELAY represents the number of pixels skipped
231  * between the start of the horizontal sync and the start of the image.
232  * HSCALE is calculated using the formula
233  *	HSCALE = (HACTIVE / (#pixels desired)) * 256
234  *
235  * The vertical registers are similar, except based upon the total number
236  * of lines in the image, and the first line of the image (i.e. ignoring
237  * vertical sync and VBI).
238  *
239  * Note that the number of bytes reaching the FIFO (and hence needing
240  * to be processed by the DMAP program) is completely dependent upon
241  * these values, especially HSCALE.
242  *
243  * Parameters:
244  *	@dev		pointer to the device structure, needed for
245  *			getting current norm (as well as debug print)
246  *	@width		actual image width (from user buffer)
247  *	@height		actual image height
248  *	@field		indicates Top, Bottom or Interlaced
249  */
250 static int tw68_set_scale(struct tw68_dev *dev, unsigned int width,
251 			  unsigned int height, enum v4l2_field field)
252 {
253 	const struct tw68_tvnorm *norm = dev->tvnorm;
254 	/* set individually for debugging clarity */
255 	int hactive, hdelay, hscale;
256 	int vactive, vdelay, vscale;
257 	int comb;
258 
259 	if (V4L2_FIELD_HAS_BOTH(field))	/* if field is interlaced */
260 		height /= 2;		/* we must set for 1-frame */
261 
262 	pr_debug("%s: width=%d, height=%d, both=%d\n"
263 		 "  tvnorm h_delay=%d, h_start=%d, h_stop=%d, v_delay=%d, v_start=%d, v_stop=%d\n",
264 		__func__, width, height, V4L2_FIELD_HAS_BOTH(field),
265 		norm->h_delay, norm->h_start, norm->h_stop,
266 		norm->v_delay, norm->video_v_start,
267 		norm->video_v_stop);
268 
269 	switch (dev->vdecoder) {
270 	case TW6800:
271 		hdelay = norm->h_delay0;
272 		break;
273 	default:
274 		hdelay = norm->h_delay;
275 		break;
276 	}
277 
278 	hdelay += norm->h_start;
279 	hactive = norm->h_stop - norm->h_start + 1;
280 
281 	hscale = (hactive * 256) / (width);
282 
283 	vdelay = norm->v_delay;
284 	vactive = ((norm->id & V4L2_STD_525_60) ? 524 : 624) / 2 - norm->video_v_start;
285 	vscale = (vactive * 256) / height;
286 
287 	pr_debug("%s: %dx%d [%s%s,%s]\n", __func__,
288 		width, height,
289 		V4L2_FIELD_HAS_TOP(field)    ? "T" : "",
290 		V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "",
291 		v4l2_norm_to_name(dev->tvnorm->id));
292 	pr_debug("%s: hactive=%d, hdelay=%d, hscale=%d; vactive=%d, vdelay=%d, vscale=%d\n",
293 		 __func__,
294 		hactive, hdelay, hscale, vactive, vdelay, vscale);
295 
296 	comb =	((vdelay & 0x300)  >> 2) |
297 		((vactive & 0x300) >> 4) |
298 		((hdelay & 0x300)  >> 6) |
299 		((hactive & 0x300) >> 8);
300 	pr_debug("%s: setting CROP_HI=%02x, VDELAY_LO=%02x, VACTIVE_LO=%02x, HDELAY_LO=%02x, HACTIVE_LO=%02x\n",
301 		__func__, comb, vdelay, vactive, hdelay, hactive);
302 	tw_writeb(TW68_CROP_HI, comb);
303 	tw_writeb(TW68_VDELAY_LO, vdelay & 0xff);
304 	tw_writeb(TW68_VACTIVE_LO, vactive & 0xff);
305 	tw_writeb(TW68_HDELAY_LO, hdelay & 0xff);
306 	tw_writeb(TW68_HACTIVE_LO, hactive & 0xff);
307 
308 	comb = ((vscale & 0xf00) >> 4) | ((hscale & 0xf00) >> 8);
309 	pr_debug("%s: setting SCALE_HI=%02x, VSCALE_LO=%02x, HSCALE_LO=%02x\n",
310 		 __func__, comb, vscale, hscale);
311 	tw_writeb(TW68_SCALE_HI, comb);
312 	tw_writeb(TW68_VSCALE_LO, vscale);
313 	tw_writeb(TW68_HSCALE_LO, hscale);
314 
315 	return 0;
316 }
317 
318 /* ------------------------------------------------------------------ */
319 
320 int tw68_video_start_dma(struct tw68_dev *dev, struct tw68_buf *buf)
321 {
322 	/* Set cropping and scaling */
323 	tw68_set_scale(dev, dev->width, dev->height, dev->field);
324 	/*
325 	 *  Set start address for RISC program.  Note that if the DMAP
326 	 *  processor is currently running, it must be stopped before
327 	 *  a new address can be set.
328 	 */
329 	tw_clearl(TW68_DMAC, TW68_DMAP_EN);
330 	tw_writel(TW68_DMAP_SA, buf->dma);
331 	/* Clear any pending interrupts */
332 	tw_writel(TW68_INTSTAT, dev->board_virqmask);
333 	/* Enable the risc engine and the fifo */
334 	tw_andorl(TW68_DMAC, 0xff, dev->fmt->twformat |
335 		ColorFormatGamma | TW68_DMAP_EN | TW68_FIFO_EN);
336 	dev->pci_irqmask |= dev->board_virqmask;
337 	tw_setl(TW68_INTMASK, dev->pci_irqmask);
338 	return 0;
339 }
340 
341 /* ------------------------------------------------------------------ */
342 
343 /* calc max # of buffers from size (must not exceed the 4MB virtual
344  * address space per DMA channel) */
345 static int tw68_buffer_count(unsigned int size, unsigned int count)
346 {
347 	unsigned int maxcount;
348 
349 	maxcount = (4 * 1024 * 1024) / roundup(size, PAGE_SIZE);
350 	if (count > maxcount)
351 		count = maxcount;
352 	return count;
353 }
354 
355 /* ------------------------------------------------------------- */
356 /* vb2 queue operations                                          */
357 
358 static int tw68_queue_setup(struct vb2_queue *q,
359 			   unsigned int *num_buffers, unsigned int *num_planes,
360 			   unsigned int sizes[], struct device *alloc_devs[])
361 {
362 	struct tw68_dev *dev = vb2_get_drv_priv(q);
363 	unsigned tot_bufs = q->num_buffers + *num_buffers;
364 	unsigned size = (dev->fmt->depth * dev->width * dev->height) >> 3;
365 
366 	if (tot_bufs < 2)
367 		tot_bufs = 2;
368 	tot_bufs = tw68_buffer_count(size, tot_bufs);
369 	*num_buffers = tot_bufs - q->num_buffers;
370 	/*
371 	 * We allow create_bufs, but only if the sizeimage is >= as the
372 	 * current sizeimage. The tw68_buffer_count calculation becomes quite
373 	 * difficult otherwise.
374 	 */
375 	if (*num_planes)
376 		return sizes[0] < size ? -EINVAL : 0;
377 	*num_planes = 1;
378 	sizes[0] = size;
379 
380 	return 0;
381 }
382 
383 /*
384  * The risc program for each buffers works as follows: it starts with a simple
385  * 'JUMP to addr + 8', which is effectively a NOP. Then the program to DMA the
386  * buffer follows and at the end we have a JUMP back to the start + 8 (skipping
387  * the initial JUMP).
388  *
389  * This is the program of the first buffer to be queued if the active list is
390  * empty and it just keeps DMAing this buffer without generating any interrupts.
391  *
392  * If a new buffer is added then the initial JUMP in the program generates an
393  * interrupt as well which signals that the previous buffer has been DMAed
394  * successfully and that it can be returned to userspace.
395  *
396  * It also sets the final jump of the previous buffer to the start of the new
397  * buffer, thus chaining the new buffer into the DMA chain. This is a single
398  * atomic u32 write, so there is no race condition.
399  *
400  * The end-result of all this that you only get an interrupt when a buffer
401  * is ready, so the control flow is very easy.
402  */
403 static void tw68_buf_queue(struct vb2_buffer *vb)
404 {
405 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
406 	struct vb2_queue *vq = vb->vb2_queue;
407 	struct tw68_dev *dev = vb2_get_drv_priv(vq);
408 	struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb);
409 	struct tw68_buf *prev;
410 	unsigned long flags;
411 
412 	spin_lock_irqsave(&dev->slock, flags);
413 
414 	/* append a 'JUMP to start of buffer' to the buffer risc program */
415 	buf->jmp[0] = cpu_to_le32(RISC_JUMP);
416 	buf->jmp[1] = cpu_to_le32(buf->dma + 8);
417 
418 	if (!list_empty(&dev->active)) {
419 		prev = list_entry(dev->active.prev, struct tw68_buf, list);
420 		buf->cpu[0] |= cpu_to_le32(RISC_INT_BIT);
421 		prev->jmp[1] = cpu_to_le32(buf->dma);
422 	}
423 	list_add_tail(&buf->list, &dev->active);
424 	spin_unlock_irqrestore(&dev->slock, flags);
425 }
426 
427 /*
428  * buffer_prepare
429  *
430  * Set the ancillary information into the buffer structure.  This
431  * includes generating the necessary risc program if it hasn't already
432  * been done for the current buffer format.
433  * The structure fh contains the details of the format requested by the
434  * user - type, width, height and #fields.  This is compared with the
435  * last format set for the current buffer.  If they differ, the risc
436  * code (which controls the filling of the buffer) is (re-)generated.
437  */
438 static int tw68_buf_prepare(struct vb2_buffer *vb)
439 {
440 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
441 	struct vb2_queue *vq = vb->vb2_queue;
442 	struct tw68_dev *dev = vb2_get_drv_priv(vq);
443 	struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb);
444 	struct sg_table *dma = vb2_dma_sg_plane_desc(vb, 0);
445 	unsigned size, bpl;
446 
447 	size = (dev->width * dev->height * dev->fmt->depth) >> 3;
448 	if (vb2_plane_size(vb, 0) < size)
449 		return -EINVAL;
450 	vb2_set_plane_payload(vb, 0, size);
451 
452 	bpl = (dev->width * dev->fmt->depth) >> 3;
453 	switch (dev->field) {
454 	case V4L2_FIELD_TOP:
455 		tw68_risc_buffer(dev->pci, buf, dma->sgl,
456 				 0, UNSET, bpl, 0, dev->height);
457 		break;
458 	case V4L2_FIELD_BOTTOM:
459 		tw68_risc_buffer(dev->pci, buf, dma->sgl,
460 				 UNSET, 0, bpl, 0, dev->height);
461 		break;
462 	case V4L2_FIELD_SEQ_TB:
463 		tw68_risc_buffer(dev->pci, buf, dma->sgl,
464 				 0, bpl * (dev->height >> 1),
465 				 bpl, 0, dev->height >> 1);
466 		break;
467 	case V4L2_FIELD_SEQ_BT:
468 		tw68_risc_buffer(dev->pci, buf, dma->sgl,
469 				 bpl * (dev->height >> 1), 0,
470 				 bpl, 0, dev->height >> 1);
471 		break;
472 	case V4L2_FIELD_INTERLACED:
473 	default:
474 		tw68_risc_buffer(dev->pci, buf, dma->sgl,
475 				 0, bpl, bpl, bpl, dev->height >> 1);
476 		break;
477 	}
478 	return 0;
479 }
480 
481 static void tw68_buf_finish(struct vb2_buffer *vb)
482 {
483 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
484 	struct vb2_queue *vq = vb->vb2_queue;
485 	struct tw68_dev *dev = vb2_get_drv_priv(vq);
486 	struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb);
487 
488 	dma_free_coherent(&dev->pci->dev, buf->size, buf->cpu, buf->dma);
489 }
490 
491 static int tw68_start_streaming(struct vb2_queue *q, unsigned int count)
492 {
493 	struct tw68_dev *dev = vb2_get_drv_priv(q);
494 	struct tw68_buf *buf =
495 		container_of(dev->active.next, struct tw68_buf, list);
496 
497 	dev->seqnr = 0;
498 	tw68_video_start_dma(dev, buf);
499 	return 0;
500 }
501 
502 static void tw68_stop_streaming(struct vb2_queue *q)
503 {
504 	struct tw68_dev *dev = vb2_get_drv_priv(q);
505 
506 	/* Stop risc & fifo */
507 	tw_clearl(TW68_DMAC, TW68_DMAP_EN | TW68_FIFO_EN);
508 	while (!list_empty(&dev->active)) {
509 		struct tw68_buf *buf =
510 			container_of(dev->active.next, struct tw68_buf, list);
511 
512 		list_del(&buf->list);
513 		vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
514 	}
515 }
516 
517 static const struct vb2_ops tw68_video_qops = {
518 	.queue_setup	= tw68_queue_setup,
519 	.buf_queue	= tw68_buf_queue,
520 	.buf_prepare	= tw68_buf_prepare,
521 	.buf_finish	= tw68_buf_finish,
522 	.start_streaming = tw68_start_streaming,
523 	.stop_streaming = tw68_stop_streaming,
524 	.wait_prepare	= vb2_ops_wait_prepare,
525 	.wait_finish	= vb2_ops_wait_finish,
526 };
527 
528 /* ------------------------------------------------------------------ */
529 
530 static int tw68_s_ctrl(struct v4l2_ctrl *ctrl)
531 {
532 	struct tw68_dev *dev =
533 		container_of(ctrl->handler, struct tw68_dev, hdl);
534 
535 	switch (ctrl->id) {
536 	case V4L2_CID_BRIGHTNESS:
537 		tw_writeb(TW68_BRIGHT, ctrl->val);
538 		break;
539 	case V4L2_CID_HUE:
540 		tw_writeb(TW68_HUE, ctrl->val);
541 		break;
542 	case V4L2_CID_CONTRAST:
543 		tw_writeb(TW68_CONTRAST, ctrl->val);
544 		break;
545 	case V4L2_CID_SATURATION:
546 		tw_writeb(TW68_SAT_U, ctrl->val);
547 		tw_writeb(TW68_SAT_V, ctrl->val);
548 		break;
549 	case V4L2_CID_COLOR_KILLER:
550 		if (ctrl->val)
551 			tw_andorb(TW68_MISC2, 0xe0, 0xe0);
552 		else
553 			tw_andorb(TW68_MISC2, 0xe0, 0x00);
554 		break;
555 	case V4L2_CID_CHROMA_AGC:
556 		if (ctrl->val)
557 			tw_andorb(TW68_LOOP, 0x30, 0x20);
558 		else
559 			tw_andorb(TW68_LOOP, 0x30, 0x00);
560 		break;
561 	}
562 	return 0;
563 }
564 
565 /* ------------------------------------------------------------------ */
566 
567 /*
568  * Note that this routine returns what is stored in the fh structure, and
569  * does not interrogate any of the device registers.
570  */
571 static int tw68_g_fmt_vid_cap(struct file *file, void *priv,
572 				struct v4l2_format *f)
573 {
574 	struct tw68_dev *dev = video_drvdata(file);
575 
576 	f->fmt.pix.width        = dev->width;
577 	f->fmt.pix.height       = dev->height;
578 	f->fmt.pix.field        = dev->field;
579 	f->fmt.pix.pixelformat  = dev->fmt->fourcc;
580 	f->fmt.pix.bytesperline =
581 		(f->fmt.pix.width * (dev->fmt->depth)) >> 3;
582 	f->fmt.pix.sizeimage =
583 		f->fmt.pix.height * f->fmt.pix.bytesperline;
584 	f->fmt.pix.colorspace	= V4L2_COLORSPACE_SMPTE170M;
585 	return 0;
586 }
587 
588 static int tw68_try_fmt_vid_cap(struct file *file, void *priv,
589 						struct v4l2_format *f)
590 {
591 	struct tw68_dev *dev = video_drvdata(file);
592 	const struct tw68_format *fmt;
593 	enum v4l2_field field;
594 	unsigned int maxh;
595 
596 	fmt = format_by_fourcc(f->fmt.pix.pixelformat);
597 	if (NULL == fmt)
598 		return -EINVAL;
599 
600 	field = f->fmt.pix.field;
601 	maxh  = (dev->tvnorm->id & V4L2_STD_525_60) ? 480 : 576;
602 
603 	switch (field) {
604 	case V4L2_FIELD_TOP:
605 	case V4L2_FIELD_BOTTOM:
606 		break;
607 	case V4L2_FIELD_INTERLACED:
608 	case V4L2_FIELD_SEQ_BT:
609 	case V4L2_FIELD_SEQ_TB:
610 		maxh = maxh * 2;
611 		break;
612 	default:
613 		field = (f->fmt.pix.height > maxh / 2)
614 			? V4L2_FIELD_INTERLACED
615 			: V4L2_FIELD_BOTTOM;
616 		break;
617 	}
618 
619 	f->fmt.pix.field = field;
620 	if (f->fmt.pix.width  < 48)
621 		f->fmt.pix.width  = 48;
622 	if (f->fmt.pix.height < 32)
623 		f->fmt.pix.height = 32;
624 	if (f->fmt.pix.width > 720)
625 		f->fmt.pix.width = 720;
626 	if (f->fmt.pix.height > maxh)
627 		f->fmt.pix.height = maxh;
628 	f->fmt.pix.width &= ~0x03;
629 	f->fmt.pix.bytesperline =
630 		(f->fmt.pix.width * (fmt->depth)) >> 3;
631 	f->fmt.pix.sizeimage =
632 		f->fmt.pix.height * f->fmt.pix.bytesperline;
633 	f->fmt.pix.colorspace = V4L2_COLORSPACE_SMPTE170M;
634 	return 0;
635 }
636 
637 /*
638  * Note that tw68_s_fmt_vid_cap sets the information into the fh structure,
639  * and it will be used for all future new buffers.  However, there could be
640  * some number of buffers on the "active" chain which will be filled before
641  * the change takes place.
642  */
643 static int tw68_s_fmt_vid_cap(struct file *file, void *priv,
644 					struct v4l2_format *f)
645 {
646 	struct tw68_dev *dev = video_drvdata(file);
647 	int err;
648 
649 	err = tw68_try_fmt_vid_cap(file, priv, f);
650 	if (0 != err)
651 		return err;
652 
653 	dev->fmt = format_by_fourcc(f->fmt.pix.pixelformat);
654 	dev->width = f->fmt.pix.width;
655 	dev->height = f->fmt.pix.height;
656 	dev->field = f->fmt.pix.field;
657 	return 0;
658 }
659 
660 static int tw68_enum_input(struct file *file, void *priv,
661 					struct v4l2_input *i)
662 {
663 	struct tw68_dev *dev = video_drvdata(file);
664 	unsigned int n;
665 
666 	n = i->index;
667 	if (n >= TW68_INPUT_MAX)
668 		return -EINVAL;
669 	i->index = n;
670 	i->type = V4L2_INPUT_TYPE_CAMERA;
671 	snprintf(i->name, sizeof(i->name), "Composite %d", n);
672 
673 	/* If the query is for the current input, get live data */
674 	if (n == dev->input) {
675 		int v1 = tw_readb(TW68_STATUS1);
676 		int v2 = tw_readb(TW68_MVSN);
677 
678 		if (0 != (v1 & (1 << 7)))
679 			i->status |= V4L2_IN_ST_NO_SYNC;
680 		if (0 != (v1 & (1 << 6)))
681 			i->status |= V4L2_IN_ST_NO_H_LOCK;
682 		if (0 != (v1 & (1 << 2)))
683 			i->status |= V4L2_IN_ST_NO_SIGNAL;
684 		if (0 != (v1 & 1 << 1))
685 			i->status |= V4L2_IN_ST_NO_COLOR;
686 		if (0 != (v2 & (1 << 2)))
687 			i->status |= V4L2_IN_ST_MACROVISION;
688 	}
689 	i->std = video_devdata(file)->tvnorms;
690 	return 0;
691 }
692 
693 static int tw68_g_input(struct file *file, void *priv, unsigned int *i)
694 {
695 	struct tw68_dev *dev = video_drvdata(file);
696 
697 	*i = dev->input;
698 	return 0;
699 }
700 
701 static int tw68_s_input(struct file *file, void *priv, unsigned int i)
702 {
703 	struct tw68_dev *dev = video_drvdata(file);
704 
705 	if (i >= TW68_INPUT_MAX)
706 		return -EINVAL;
707 	dev->input = i;
708 	tw_andorb(TW68_INFORM, 0x03 << 2, dev->input << 2);
709 	return 0;
710 }
711 
712 static int tw68_querycap(struct file *file, void  *priv,
713 					struct v4l2_capability *cap)
714 {
715 	strscpy(cap->driver, "tw68", sizeof(cap->driver));
716 	strscpy(cap->card, "Techwell Capture Card",
717 		sizeof(cap->card));
718 	return 0;
719 }
720 
721 static int tw68_s_std(struct file *file, void *priv, v4l2_std_id id)
722 {
723 	struct tw68_dev *dev = video_drvdata(file);
724 	unsigned int i;
725 
726 	if (vb2_is_busy(&dev->vidq))
727 		return -EBUSY;
728 
729 	/* Look for match on complete norm id (may have mult bits) */
730 	for (i = 0; i < TVNORMS; i++) {
731 		if (id == tvnorms[i].id)
732 			break;
733 	}
734 
735 	/* If no exact match, look for norm which contains this one */
736 	if (i == TVNORMS) {
737 		for (i = 0; i < TVNORMS; i++)
738 			if (id & tvnorms[i].id)
739 				break;
740 	}
741 	/* If still not matched, give up */
742 	if (i == TVNORMS)
743 		return -EINVAL;
744 
745 	set_tvnorm(dev, &tvnorms[i]);	/* do the actual setting */
746 	return 0;
747 }
748 
749 static int tw68_g_std(struct file *file, void *priv, v4l2_std_id *id)
750 {
751 	struct tw68_dev *dev = video_drvdata(file);
752 
753 	*id = dev->tvnorm->id;
754 	return 0;
755 }
756 
757 static int tw68_enum_fmt_vid_cap(struct file *file, void  *priv,
758 					struct v4l2_fmtdesc *f)
759 {
760 	if (f->index >= FORMATS)
761 		return -EINVAL;
762 
763 	f->pixelformat = formats[f->index].fourcc;
764 
765 	return 0;
766 }
767 
768 /*
769  * Used strictly for internal development and debugging, this routine
770  * prints out the current register contents for the tw68xx device.
771  */
772 static void tw68_dump_regs(struct tw68_dev *dev)
773 {
774 	unsigned char line[80];
775 	int i, j, k;
776 	unsigned char *cptr;
777 
778 	pr_info("Full dump of TW68 registers:\n");
779 	/* First we do the PCI regs, 8 4-byte regs per line */
780 	for (i = 0; i < 0x100; i += 32) {
781 		cptr = line;
782 		cptr += sprintf(cptr, "%03x  ", i);
783 		/* j steps through the next 4 words */
784 		for (j = i; j < i + 16; j += 4)
785 			cptr += sprintf(cptr, "%08x ", tw_readl(j));
786 		*cptr++ = ' ';
787 		for (; j < i + 32; j += 4)
788 			cptr += sprintf(cptr, "%08x ", tw_readl(j));
789 		*cptr++ = '\n';
790 		*cptr = 0;
791 		pr_info("%s", line);
792 	}
793 	/* Next the control regs, which are single-byte, address mod 4 */
794 	while (i < 0x400) {
795 		cptr = line;
796 		cptr += sprintf(cptr, "%03x ", i);
797 		/* Print out 4 groups of 4 bytes */
798 		for (j = 0; j < 4; j++) {
799 			for (k = 0; k < 4; k++) {
800 				cptr += sprintf(cptr, "%02x ",
801 					tw_readb(i));
802 				i += 4;
803 			}
804 			*cptr++ = ' ';
805 		}
806 		*cptr++ = '\n';
807 		*cptr = 0;
808 		pr_info("%s", line);
809 	}
810 }
811 
812 static int vidioc_log_status(struct file *file, void *priv)
813 {
814 	struct tw68_dev *dev = video_drvdata(file);
815 
816 	tw68_dump_regs(dev);
817 	return v4l2_ctrl_log_status(file, priv);
818 }
819 
820 #ifdef CONFIG_VIDEO_ADV_DEBUG
821 static int vidioc_g_register(struct file *file, void *priv,
822 			      struct v4l2_dbg_register *reg)
823 {
824 	struct tw68_dev *dev = video_drvdata(file);
825 
826 	if (reg->size == 1)
827 		reg->val = tw_readb(reg->reg);
828 	else
829 		reg->val = tw_readl(reg->reg);
830 	return 0;
831 }
832 
833 static int vidioc_s_register(struct file *file, void *priv,
834 				const struct v4l2_dbg_register *reg)
835 {
836 	struct tw68_dev *dev = video_drvdata(file);
837 
838 	if (reg->size == 1)
839 		tw_writeb(reg->reg, reg->val);
840 	else
841 		tw_writel(reg->reg & 0xffff, reg->val);
842 	return 0;
843 }
844 #endif
845 
846 static const struct v4l2_ctrl_ops tw68_ctrl_ops = {
847 	.s_ctrl = tw68_s_ctrl,
848 };
849 
850 static const struct v4l2_file_operations video_fops = {
851 	.owner			= THIS_MODULE,
852 	.open			= v4l2_fh_open,
853 	.release		= vb2_fop_release,
854 	.read			= vb2_fop_read,
855 	.poll			= vb2_fop_poll,
856 	.mmap			= vb2_fop_mmap,
857 	.unlocked_ioctl		= video_ioctl2,
858 };
859 
860 static const struct v4l2_ioctl_ops video_ioctl_ops = {
861 	.vidioc_querycap		= tw68_querycap,
862 	.vidioc_enum_fmt_vid_cap	= tw68_enum_fmt_vid_cap,
863 	.vidioc_reqbufs			= vb2_ioctl_reqbufs,
864 	.vidioc_create_bufs		= vb2_ioctl_create_bufs,
865 	.vidioc_querybuf		= vb2_ioctl_querybuf,
866 	.vidioc_qbuf			= vb2_ioctl_qbuf,
867 	.vidioc_dqbuf			= vb2_ioctl_dqbuf,
868 	.vidioc_s_std			= tw68_s_std,
869 	.vidioc_g_std			= tw68_g_std,
870 	.vidioc_enum_input		= tw68_enum_input,
871 	.vidioc_g_input			= tw68_g_input,
872 	.vidioc_s_input			= tw68_s_input,
873 	.vidioc_streamon		= vb2_ioctl_streamon,
874 	.vidioc_streamoff		= vb2_ioctl_streamoff,
875 	.vidioc_g_fmt_vid_cap		= tw68_g_fmt_vid_cap,
876 	.vidioc_try_fmt_vid_cap		= tw68_try_fmt_vid_cap,
877 	.vidioc_s_fmt_vid_cap		= tw68_s_fmt_vid_cap,
878 	.vidioc_log_status		= vidioc_log_status,
879 	.vidioc_subscribe_event		= v4l2_ctrl_subscribe_event,
880 	.vidioc_unsubscribe_event	= v4l2_event_unsubscribe,
881 #ifdef CONFIG_VIDEO_ADV_DEBUG
882 	.vidioc_g_register              = vidioc_g_register,
883 	.vidioc_s_register              = vidioc_s_register,
884 #endif
885 };
886 
887 static const struct video_device tw68_video_template = {
888 	.name			= "tw68_video",
889 	.fops			= &video_fops,
890 	.ioctl_ops		= &video_ioctl_ops,
891 	.release		= video_device_release_empty,
892 	.tvnorms		= TW68_NORMS,
893 	.device_caps		= V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_READWRITE |
894 				  V4L2_CAP_STREAMING,
895 };
896 
897 /* ------------------------------------------------------------------ */
898 /* exported stuff                                                     */
899 void tw68_set_tvnorm_hw(struct tw68_dev *dev)
900 {
901 	tw_andorb(TW68_SDT, 0x07, dev->tvnorm->format);
902 }
903 
904 int tw68_video_init1(struct tw68_dev *dev)
905 {
906 	struct v4l2_ctrl_handler *hdl = &dev->hdl;
907 
908 	v4l2_ctrl_handler_init(hdl, 6);
909 	v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
910 			V4L2_CID_BRIGHTNESS, -128, 127, 1, 20);
911 	v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
912 			V4L2_CID_CONTRAST, 0, 255, 1, 100);
913 	v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
914 			V4L2_CID_SATURATION, 0, 255, 1, 128);
915 	/* NTSC only */
916 	v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
917 			V4L2_CID_HUE, -128, 127, 1, 0);
918 	v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
919 			V4L2_CID_COLOR_KILLER, 0, 1, 1, 0);
920 	v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
921 			V4L2_CID_CHROMA_AGC, 0, 1, 1, 1);
922 	if (hdl->error) {
923 		v4l2_ctrl_handler_free(hdl);
924 		return hdl->error;
925 	}
926 	dev->v4l2_dev.ctrl_handler = hdl;
927 	v4l2_ctrl_handler_setup(hdl);
928 	return 0;
929 }
930 
931 int tw68_video_init2(struct tw68_dev *dev, int video_nr)
932 {
933 	int ret;
934 
935 	set_tvnorm(dev, &tvnorms[0]);
936 
937 	dev->fmt      = format_by_fourcc(V4L2_PIX_FMT_BGR24);
938 	dev->width    = 720;
939 	dev->height   = 576;
940 	dev->field    = V4L2_FIELD_INTERLACED;
941 
942 	INIT_LIST_HEAD(&dev->active);
943 	dev->vidq.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
944 	dev->vidq.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
945 	dev->vidq.io_modes = VB2_MMAP | VB2_USERPTR | VB2_READ | VB2_DMABUF;
946 	dev->vidq.ops = &tw68_video_qops;
947 	dev->vidq.mem_ops = &vb2_dma_sg_memops;
948 	dev->vidq.drv_priv = dev;
949 	dev->vidq.gfp_flags = __GFP_DMA32 | __GFP_KSWAPD_RECLAIM;
950 	dev->vidq.buf_struct_size = sizeof(struct tw68_buf);
951 	dev->vidq.lock = &dev->lock;
952 	dev->vidq.min_buffers_needed = 2;
953 	dev->vidq.dev = &dev->pci->dev;
954 	ret = vb2_queue_init(&dev->vidq);
955 	if (ret)
956 		return ret;
957 	dev->vdev = tw68_video_template;
958 	dev->vdev.v4l2_dev = &dev->v4l2_dev;
959 	dev->vdev.lock = &dev->lock;
960 	dev->vdev.queue = &dev->vidq;
961 	video_set_drvdata(&dev->vdev, dev);
962 	return video_register_device(&dev->vdev, VFL_TYPE_VIDEO, video_nr);
963 }
964 
965 /*
966  * tw68_irq_video_done
967  */
968 void tw68_irq_video_done(struct tw68_dev *dev, unsigned long status)
969 {
970 	__u32 reg;
971 
972 	/* reset interrupts handled by this routine */
973 	tw_writel(TW68_INTSTAT, status);
974 	/*
975 	 * Check most likely first
976 	 *
977 	 * DMAPI shows we have reached the end of the risc code
978 	 * for the current buffer.
979 	 */
980 	if (status & TW68_DMAPI) {
981 		struct tw68_buf *buf;
982 
983 		spin_lock(&dev->slock);
984 		buf = list_entry(dev->active.next, struct tw68_buf, list);
985 		list_del(&buf->list);
986 		spin_unlock(&dev->slock);
987 		buf->vb.vb2_buf.timestamp = ktime_get_ns();
988 		buf->vb.field = dev->field;
989 		buf->vb.sequence = dev->seqnr++;
990 		vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_DONE);
991 		status &= ~(TW68_DMAPI);
992 		if (0 == status)
993 			return;
994 	}
995 	if (status & (TW68_VLOCK | TW68_HLOCK))
996 		dev_dbg(&dev->pci->dev, "Lost sync\n");
997 	if (status & TW68_PABORT)
998 		dev_err(&dev->pci->dev, "PABORT interrupt\n");
999 	if (status & TW68_DMAPERR)
1000 		dev_err(&dev->pci->dev, "DMAPERR interrupt\n");
1001 	/*
1002 	 * On TW6800, FDMIS is apparently generated if video input is switched
1003 	 * during operation.  Therefore, it is not enabled for that chip.
1004 	 */
1005 	if (status & TW68_FDMIS)
1006 		dev_dbg(&dev->pci->dev, "FDMIS interrupt\n");
1007 	if (status & TW68_FFOF) {
1008 		/* probably a logic error */
1009 		reg = tw_readl(TW68_DMAC) & TW68_FIFO_EN;
1010 		tw_clearl(TW68_DMAC, TW68_FIFO_EN);
1011 		dev_dbg(&dev->pci->dev, "FFOF interrupt\n");
1012 		tw_setl(TW68_DMAC, reg);
1013 	}
1014 	if (status & TW68_FFERR)
1015 		dev_dbg(&dev->pci->dev, "FFERR interrupt\n");
1016 }
1017