1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * tw68 functions to handle video data 4 * 5 * Much of this code is derived from the cx88 and sa7134 drivers, which 6 * were in turn derived from the bt87x driver. The original work was by 7 * Gerd Knorr; more recently the code was enhanced by Mauro Carvalho Chehab, 8 * Hans Verkuil, Andy Walls and many others. Their work is gratefully 9 * acknowledged. Full credit goes to them - any problems within this code 10 * are mine. 11 * 12 * Copyright (C) 2009 William M. Brack 13 * 14 * Refactored and updated to the latest v4l core frameworks: 15 * 16 * Copyright (C) 2014 Hans Verkuil <hverkuil@xs4all.nl> 17 */ 18 19 #include <linux/module.h> 20 #include <media/v4l2-common.h> 21 #include <media/v4l2-event.h> 22 #include <media/videobuf2-dma-sg.h> 23 24 #include "tw68.h" 25 #include "tw68-reg.h" 26 27 /* ------------------------------------------------------------------ */ 28 /* data structs for video */ 29 /* 30 * FIXME - 31 * Note that the saa7134 has formats, e.g. YUV420, which are classified 32 * as "planar". These affect overlay mode, and are flagged with a field 33 * ".planar" in the format. Do we need to implement this in this driver? 34 */ 35 static const struct tw68_format formats[] = { 36 { 37 .fourcc = V4L2_PIX_FMT_RGB555, 38 .depth = 16, 39 .twformat = ColorFormatRGB15, 40 }, { 41 .fourcc = V4L2_PIX_FMT_RGB555X, 42 .depth = 16, 43 .twformat = ColorFormatRGB15 | ColorFormatBSWAP, 44 }, { 45 .fourcc = V4L2_PIX_FMT_RGB565, 46 .depth = 16, 47 .twformat = ColorFormatRGB16, 48 }, { 49 .fourcc = V4L2_PIX_FMT_RGB565X, 50 .depth = 16, 51 .twformat = ColorFormatRGB16 | ColorFormatBSWAP, 52 }, { 53 .fourcc = V4L2_PIX_FMT_BGR24, 54 .depth = 24, 55 .twformat = ColorFormatRGB24, 56 }, { 57 .fourcc = V4L2_PIX_FMT_RGB24, 58 .depth = 24, 59 .twformat = ColorFormatRGB24 | ColorFormatBSWAP, 60 }, { 61 .fourcc = V4L2_PIX_FMT_BGR32, 62 .depth = 32, 63 .twformat = ColorFormatRGB32, 64 }, { 65 .fourcc = V4L2_PIX_FMT_RGB32, 66 .depth = 32, 67 .twformat = ColorFormatRGB32 | ColorFormatBSWAP | 68 ColorFormatWSWAP, 69 }, { 70 .fourcc = V4L2_PIX_FMT_YUYV, 71 .depth = 16, 72 .twformat = ColorFormatYUY2, 73 }, { 74 .fourcc = V4L2_PIX_FMT_UYVY, 75 .depth = 16, 76 .twformat = ColorFormatYUY2 | ColorFormatBSWAP, 77 } 78 }; 79 #define FORMATS ARRAY_SIZE(formats) 80 81 #define NORM_625_50 \ 82 .h_delay = 3, \ 83 .h_delay0 = 133, \ 84 .h_start = 0, \ 85 .h_stop = 719, \ 86 .v_delay = 24, \ 87 .vbi_v_start_0 = 7, \ 88 .vbi_v_stop_0 = 22, \ 89 .video_v_start = 24, \ 90 .video_v_stop = 311, \ 91 .vbi_v_start_1 = 319 92 93 #define NORM_525_60 \ 94 .h_delay = 8, \ 95 .h_delay0 = 138, \ 96 .h_start = 0, \ 97 .h_stop = 719, \ 98 .v_delay = 22, \ 99 .vbi_v_start_0 = 10, \ 100 .vbi_v_stop_0 = 21, \ 101 .video_v_start = 22, \ 102 .video_v_stop = 262, \ 103 .vbi_v_start_1 = 273 104 105 /* 106 * The following table is searched by tw68_s_std, first for a specific 107 * match, then for an entry which contains the desired id. The table 108 * entries should therefore be ordered in ascending order of specificity. 109 */ 110 static const struct tw68_tvnorm tvnorms[] = { 111 { 112 .name = "PAL", /* autodetect */ 113 .id = V4L2_STD_PAL, 114 NORM_625_50, 115 116 .sync_control = 0x18, 117 .luma_control = 0x40, 118 .chroma_ctrl1 = 0x81, 119 .chroma_gain = 0x2a, 120 .chroma_ctrl2 = 0x06, 121 .vgate_misc = 0x1c, 122 .format = VideoFormatPALBDGHI, 123 }, { 124 .name = "NTSC", 125 .id = V4L2_STD_NTSC, 126 NORM_525_60, 127 128 .sync_control = 0x59, 129 .luma_control = 0x40, 130 .chroma_ctrl1 = 0x89, 131 .chroma_gain = 0x2a, 132 .chroma_ctrl2 = 0x0e, 133 .vgate_misc = 0x18, 134 .format = VideoFormatNTSC, 135 }, { 136 .name = "SECAM", 137 .id = V4L2_STD_SECAM, 138 NORM_625_50, 139 140 .sync_control = 0x18, 141 .luma_control = 0x1b, 142 .chroma_ctrl1 = 0xd1, 143 .chroma_gain = 0x80, 144 .chroma_ctrl2 = 0x00, 145 .vgate_misc = 0x1c, 146 .format = VideoFormatSECAM, 147 }, { 148 .name = "PAL-M", 149 .id = V4L2_STD_PAL_M, 150 NORM_525_60, 151 152 .sync_control = 0x59, 153 .luma_control = 0x40, 154 .chroma_ctrl1 = 0xb9, 155 .chroma_gain = 0x2a, 156 .chroma_ctrl2 = 0x0e, 157 .vgate_misc = 0x18, 158 .format = VideoFormatPALM, 159 }, { 160 .name = "PAL-Nc", 161 .id = V4L2_STD_PAL_Nc, 162 NORM_625_50, 163 164 .sync_control = 0x18, 165 .luma_control = 0x40, 166 .chroma_ctrl1 = 0xa1, 167 .chroma_gain = 0x2a, 168 .chroma_ctrl2 = 0x06, 169 .vgate_misc = 0x1c, 170 .format = VideoFormatPALNC, 171 }, { 172 .name = "PAL-60", 173 .id = V4L2_STD_PAL_60, 174 .h_delay = 186, 175 .h_start = 0, 176 .h_stop = 719, 177 .v_delay = 26, 178 .video_v_start = 23, 179 .video_v_stop = 262, 180 .vbi_v_start_0 = 10, 181 .vbi_v_stop_0 = 21, 182 .vbi_v_start_1 = 273, 183 184 .sync_control = 0x18, 185 .luma_control = 0x40, 186 .chroma_ctrl1 = 0x81, 187 .chroma_gain = 0x2a, 188 .chroma_ctrl2 = 0x06, 189 .vgate_misc = 0x1c, 190 .format = VideoFormatPAL60, 191 } 192 }; 193 #define TVNORMS ARRAY_SIZE(tvnorms) 194 195 static const struct tw68_format *format_by_fourcc(unsigned int fourcc) 196 { 197 unsigned int i; 198 199 for (i = 0; i < FORMATS; i++) 200 if (formats[i].fourcc == fourcc) 201 return formats+i; 202 return NULL; 203 } 204 205 206 /* ------------------------------------------------------------------ */ 207 /* 208 * Note that the cropping rectangles are described in terms of a single 209 * frame, i.e. line positions are only 1/2 the interlaced equivalent 210 */ 211 static void set_tvnorm(struct tw68_dev *dev, const struct tw68_tvnorm *norm) 212 { 213 if (norm != dev->tvnorm) { 214 dev->width = 720; 215 dev->height = (norm->id & V4L2_STD_525_60) ? 480 : 576; 216 dev->tvnorm = norm; 217 tw68_set_tvnorm_hw(dev); 218 } 219 } 220 221 /* 222 * tw68_set_scale 223 * 224 * Scaling and Cropping for video decoding 225 * 226 * We are working with 3 values for horizontal and vertical - scale, 227 * delay and active. 228 * 229 * HACTIVE represent the actual number of pixels in the "usable" image, 230 * before scaling. HDELAY represents the number of pixels skipped 231 * between the start of the horizontal sync and the start of the image. 232 * HSCALE is calculated using the formula 233 * HSCALE = (HACTIVE / (#pixels desired)) * 256 234 * 235 * The vertical registers are similar, except based upon the total number 236 * of lines in the image, and the first line of the image (i.e. ignoring 237 * vertical sync and VBI). 238 * 239 * Note that the number of bytes reaching the FIFO (and hence needing 240 * to be processed by the DMAP program) is completely dependent upon 241 * these values, especially HSCALE. 242 * 243 * Parameters: 244 * @dev pointer to the device structure, needed for 245 * getting current norm (as well as debug print) 246 * @width actual image width (from user buffer) 247 * @height actual image height 248 * @field indicates Top, Bottom or Interlaced 249 */ 250 static int tw68_set_scale(struct tw68_dev *dev, unsigned int width, 251 unsigned int height, enum v4l2_field field) 252 { 253 const struct tw68_tvnorm *norm = dev->tvnorm; 254 /* set individually for debugging clarity */ 255 int hactive, hdelay, hscale; 256 int vactive, vdelay, vscale; 257 int comb; 258 259 if (V4L2_FIELD_HAS_BOTH(field)) /* if field is interlaced */ 260 height /= 2; /* we must set for 1-frame */ 261 262 pr_debug("%s: width=%d, height=%d, both=%d\n" 263 " tvnorm h_delay=%d, h_start=%d, h_stop=%d, v_delay=%d, v_start=%d, v_stop=%d\n", 264 __func__, width, height, V4L2_FIELD_HAS_BOTH(field), 265 norm->h_delay, norm->h_start, norm->h_stop, 266 norm->v_delay, norm->video_v_start, 267 norm->video_v_stop); 268 269 switch (dev->vdecoder) { 270 case TW6800: 271 hdelay = norm->h_delay0; 272 break; 273 default: 274 hdelay = norm->h_delay; 275 break; 276 } 277 278 hdelay += norm->h_start; 279 hactive = norm->h_stop - norm->h_start + 1; 280 281 hscale = (hactive * 256) / (width); 282 283 vdelay = norm->v_delay; 284 vactive = ((norm->id & V4L2_STD_525_60) ? 524 : 624) / 2 - norm->video_v_start; 285 vscale = (vactive * 256) / height; 286 287 pr_debug("%s: %dx%d [%s%s,%s]\n", __func__, 288 width, height, 289 V4L2_FIELD_HAS_TOP(field) ? "T" : "", 290 V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "", 291 v4l2_norm_to_name(dev->tvnorm->id)); 292 pr_debug("%s: hactive=%d, hdelay=%d, hscale=%d; vactive=%d, vdelay=%d, vscale=%d\n", 293 __func__, 294 hactive, hdelay, hscale, vactive, vdelay, vscale); 295 296 comb = ((vdelay & 0x300) >> 2) | 297 ((vactive & 0x300) >> 4) | 298 ((hdelay & 0x300) >> 6) | 299 ((hactive & 0x300) >> 8); 300 pr_debug("%s: setting CROP_HI=%02x, VDELAY_LO=%02x, VACTIVE_LO=%02x, HDELAY_LO=%02x, HACTIVE_LO=%02x\n", 301 __func__, comb, vdelay, vactive, hdelay, hactive); 302 tw_writeb(TW68_CROP_HI, comb); 303 tw_writeb(TW68_VDELAY_LO, vdelay & 0xff); 304 tw_writeb(TW68_VACTIVE_LO, vactive & 0xff); 305 tw_writeb(TW68_HDELAY_LO, hdelay & 0xff); 306 tw_writeb(TW68_HACTIVE_LO, hactive & 0xff); 307 308 comb = ((vscale & 0xf00) >> 4) | ((hscale & 0xf00) >> 8); 309 pr_debug("%s: setting SCALE_HI=%02x, VSCALE_LO=%02x, HSCALE_LO=%02x\n", 310 __func__, comb, vscale, hscale); 311 tw_writeb(TW68_SCALE_HI, comb); 312 tw_writeb(TW68_VSCALE_LO, vscale); 313 tw_writeb(TW68_HSCALE_LO, hscale); 314 315 return 0; 316 } 317 318 /* ------------------------------------------------------------------ */ 319 320 int tw68_video_start_dma(struct tw68_dev *dev, struct tw68_buf *buf) 321 { 322 /* Set cropping and scaling */ 323 tw68_set_scale(dev, dev->width, dev->height, dev->field); 324 /* 325 * Set start address for RISC program. Note that if the DMAP 326 * processor is currently running, it must be stopped before 327 * a new address can be set. 328 */ 329 tw_clearl(TW68_DMAC, TW68_DMAP_EN); 330 tw_writel(TW68_DMAP_SA, buf->dma); 331 /* Clear any pending interrupts */ 332 tw_writel(TW68_INTSTAT, dev->board_virqmask); 333 /* Enable the risc engine and the fifo */ 334 tw_andorl(TW68_DMAC, 0xff, dev->fmt->twformat | 335 ColorFormatGamma | TW68_DMAP_EN | TW68_FIFO_EN); 336 dev->pci_irqmask |= dev->board_virqmask; 337 tw_setl(TW68_INTMASK, dev->pci_irqmask); 338 return 0; 339 } 340 341 /* ------------------------------------------------------------------ */ 342 343 /* calc max # of buffers from size (must not exceed the 4MB virtual 344 * address space per DMA channel) */ 345 static int tw68_buffer_count(unsigned int size, unsigned int count) 346 { 347 unsigned int maxcount; 348 349 maxcount = (4 * 1024 * 1024) / roundup(size, PAGE_SIZE); 350 if (count > maxcount) 351 count = maxcount; 352 return count; 353 } 354 355 /* ------------------------------------------------------------- */ 356 /* vb2 queue operations */ 357 358 static int tw68_queue_setup(struct vb2_queue *q, 359 unsigned int *num_buffers, unsigned int *num_planes, 360 unsigned int sizes[], struct device *alloc_devs[]) 361 { 362 struct tw68_dev *dev = vb2_get_drv_priv(q); 363 unsigned int q_num_bufs = vb2_get_num_buffers(q); 364 unsigned int tot_bufs = q_num_bufs + *num_buffers; 365 unsigned size = (dev->fmt->depth * dev->width * dev->height) >> 3; 366 367 if (tot_bufs < 2) 368 tot_bufs = 2; 369 tot_bufs = tw68_buffer_count(size, tot_bufs); 370 *num_buffers = tot_bufs - q_num_bufs; 371 /* 372 * We allow create_bufs, but only if the sizeimage is >= as the 373 * current sizeimage. The tw68_buffer_count calculation becomes quite 374 * difficult otherwise. 375 */ 376 if (*num_planes) 377 return sizes[0] < size ? -EINVAL : 0; 378 *num_planes = 1; 379 sizes[0] = size; 380 381 return 0; 382 } 383 384 /* 385 * The risc program for each buffers works as follows: it starts with a simple 386 * 'JUMP to addr + 8', which is effectively a NOP. Then the program to DMA the 387 * buffer follows and at the end we have a JUMP back to the start + 8 (skipping 388 * the initial JUMP). 389 * 390 * This is the program of the first buffer to be queued if the active list is 391 * empty and it just keeps DMAing this buffer without generating any interrupts. 392 * 393 * If a new buffer is added then the initial JUMP in the program generates an 394 * interrupt as well which signals that the previous buffer has been DMAed 395 * successfully and that it can be returned to userspace. 396 * 397 * It also sets the final jump of the previous buffer to the start of the new 398 * buffer, thus chaining the new buffer into the DMA chain. This is a single 399 * atomic u32 write, so there is no race condition. 400 * 401 * The end-result of all this that you only get an interrupt when a buffer 402 * is ready, so the control flow is very easy. 403 */ 404 static void tw68_buf_queue(struct vb2_buffer *vb) 405 { 406 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); 407 struct vb2_queue *vq = vb->vb2_queue; 408 struct tw68_dev *dev = vb2_get_drv_priv(vq); 409 struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb); 410 struct tw68_buf *prev; 411 unsigned long flags; 412 413 spin_lock_irqsave(&dev->slock, flags); 414 415 /* append a 'JUMP to start of buffer' to the buffer risc program */ 416 buf->jmp[0] = cpu_to_le32(RISC_JUMP); 417 buf->jmp[1] = cpu_to_le32(buf->dma + 8); 418 419 if (!list_empty(&dev->active)) { 420 prev = list_entry(dev->active.prev, struct tw68_buf, list); 421 buf->cpu[0] |= cpu_to_le32(RISC_INT_BIT); 422 prev->jmp[1] = cpu_to_le32(buf->dma); 423 } 424 list_add_tail(&buf->list, &dev->active); 425 spin_unlock_irqrestore(&dev->slock, flags); 426 } 427 428 /* 429 * buffer_prepare 430 * 431 * Set the ancillary information into the buffer structure. This 432 * includes generating the necessary risc program if it hasn't already 433 * been done for the current buffer format. 434 * The structure fh contains the details of the format requested by the 435 * user - type, width, height and #fields. This is compared with the 436 * last format set for the current buffer. If they differ, the risc 437 * code (which controls the filling of the buffer) is (re-)generated. 438 */ 439 static int tw68_buf_prepare(struct vb2_buffer *vb) 440 { 441 int ret; 442 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); 443 struct vb2_queue *vq = vb->vb2_queue; 444 struct tw68_dev *dev = vb2_get_drv_priv(vq); 445 struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb); 446 struct sg_table *dma = vb2_dma_sg_plane_desc(vb, 0); 447 unsigned size, bpl; 448 449 size = (dev->width * dev->height * dev->fmt->depth) >> 3; 450 if (vb2_plane_size(vb, 0) < size) 451 return -EINVAL; 452 vb2_set_plane_payload(vb, 0, size); 453 454 bpl = (dev->width * dev->fmt->depth) >> 3; 455 switch (dev->field) { 456 case V4L2_FIELD_TOP: 457 ret = tw68_risc_buffer(dev->pci, buf, dma->sgl, 458 0, UNSET, bpl, 0, dev->height); 459 break; 460 case V4L2_FIELD_BOTTOM: 461 ret = tw68_risc_buffer(dev->pci, buf, dma->sgl, 462 UNSET, 0, bpl, 0, dev->height); 463 break; 464 case V4L2_FIELD_SEQ_TB: 465 ret = tw68_risc_buffer(dev->pci, buf, dma->sgl, 466 0, bpl * (dev->height >> 1), 467 bpl, 0, dev->height >> 1); 468 break; 469 case V4L2_FIELD_SEQ_BT: 470 ret = tw68_risc_buffer(dev->pci, buf, dma->sgl, 471 bpl * (dev->height >> 1), 0, 472 bpl, 0, dev->height >> 1); 473 break; 474 case V4L2_FIELD_INTERLACED: 475 default: 476 ret = tw68_risc_buffer(dev->pci, buf, dma->sgl, 477 0, bpl, bpl, bpl, dev->height >> 1); 478 break; 479 } 480 return ret; 481 } 482 483 static void tw68_buf_finish(struct vb2_buffer *vb) 484 { 485 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); 486 struct vb2_queue *vq = vb->vb2_queue; 487 struct tw68_dev *dev = vb2_get_drv_priv(vq); 488 struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb); 489 490 if (buf->cpu) 491 dma_free_coherent(&dev->pci->dev, buf->size, buf->cpu, buf->dma); 492 } 493 494 static int tw68_start_streaming(struct vb2_queue *q, unsigned int count) 495 { 496 struct tw68_dev *dev = vb2_get_drv_priv(q); 497 struct tw68_buf *buf = 498 container_of(dev->active.next, struct tw68_buf, list); 499 500 dev->seqnr = 0; 501 tw68_video_start_dma(dev, buf); 502 return 0; 503 } 504 505 static void tw68_stop_streaming(struct vb2_queue *q) 506 { 507 struct tw68_dev *dev = vb2_get_drv_priv(q); 508 509 /* Stop risc & fifo */ 510 tw_clearl(TW68_DMAC, TW68_DMAP_EN | TW68_FIFO_EN); 511 while (!list_empty(&dev->active)) { 512 struct tw68_buf *buf = 513 container_of(dev->active.next, struct tw68_buf, list); 514 515 list_del(&buf->list); 516 vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR); 517 } 518 } 519 520 static const struct vb2_ops tw68_video_qops = { 521 .queue_setup = tw68_queue_setup, 522 .buf_queue = tw68_buf_queue, 523 .buf_prepare = tw68_buf_prepare, 524 .buf_finish = tw68_buf_finish, 525 .start_streaming = tw68_start_streaming, 526 .stop_streaming = tw68_stop_streaming, 527 }; 528 529 /* ------------------------------------------------------------------ */ 530 531 static int tw68_s_ctrl(struct v4l2_ctrl *ctrl) 532 { 533 struct tw68_dev *dev = 534 container_of(ctrl->handler, struct tw68_dev, hdl); 535 536 switch (ctrl->id) { 537 case V4L2_CID_BRIGHTNESS: 538 tw_writeb(TW68_BRIGHT, ctrl->val); 539 break; 540 case V4L2_CID_HUE: 541 tw_writeb(TW68_HUE, ctrl->val); 542 break; 543 case V4L2_CID_CONTRAST: 544 tw_writeb(TW68_CONTRAST, ctrl->val); 545 break; 546 case V4L2_CID_SATURATION: 547 tw_writeb(TW68_SAT_U, ctrl->val); 548 tw_writeb(TW68_SAT_V, ctrl->val); 549 break; 550 case V4L2_CID_COLOR_KILLER: 551 if (ctrl->val) 552 tw_andorb(TW68_MISC2, 0xe0, 0xe0); 553 else 554 tw_andorb(TW68_MISC2, 0xe0, 0x00); 555 break; 556 case V4L2_CID_CHROMA_AGC: 557 if (ctrl->val) 558 tw_andorb(TW68_LOOP, 0x30, 0x20); 559 else 560 tw_andorb(TW68_LOOP, 0x30, 0x00); 561 break; 562 } 563 return 0; 564 } 565 566 /* ------------------------------------------------------------------ */ 567 568 /* 569 * Note that this routine returns what is stored in the fh structure, and 570 * does not interrogate any of the device registers. 571 */ 572 static int tw68_g_fmt_vid_cap(struct file *file, void *priv, 573 struct v4l2_format *f) 574 { 575 struct tw68_dev *dev = video_drvdata(file); 576 577 f->fmt.pix.width = dev->width; 578 f->fmt.pix.height = dev->height; 579 f->fmt.pix.field = dev->field; 580 f->fmt.pix.pixelformat = dev->fmt->fourcc; 581 f->fmt.pix.bytesperline = 582 (f->fmt.pix.width * (dev->fmt->depth)) >> 3; 583 f->fmt.pix.sizeimage = 584 f->fmt.pix.height * f->fmt.pix.bytesperline; 585 f->fmt.pix.colorspace = V4L2_COLORSPACE_SMPTE170M; 586 return 0; 587 } 588 589 static int tw68_try_fmt_vid_cap(struct file *file, void *priv, 590 struct v4l2_format *f) 591 { 592 struct tw68_dev *dev = video_drvdata(file); 593 const struct tw68_format *fmt; 594 enum v4l2_field field; 595 unsigned int maxh; 596 597 fmt = format_by_fourcc(f->fmt.pix.pixelformat); 598 if (NULL == fmt) 599 return -EINVAL; 600 601 field = f->fmt.pix.field; 602 maxh = (dev->tvnorm->id & V4L2_STD_525_60) ? 480 : 576; 603 604 switch (field) { 605 case V4L2_FIELD_TOP: 606 case V4L2_FIELD_BOTTOM: 607 break; 608 case V4L2_FIELD_INTERLACED: 609 case V4L2_FIELD_SEQ_BT: 610 case V4L2_FIELD_SEQ_TB: 611 maxh = maxh * 2; 612 break; 613 default: 614 field = (f->fmt.pix.height > maxh / 2) 615 ? V4L2_FIELD_INTERLACED 616 : V4L2_FIELD_BOTTOM; 617 break; 618 } 619 620 f->fmt.pix.field = field; 621 if (f->fmt.pix.width < 48) 622 f->fmt.pix.width = 48; 623 if (f->fmt.pix.height < 32) 624 f->fmt.pix.height = 32; 625 if (f->fmt.pix.width > 720) 626 f->fmt.pix.width = 720; 627 if (f->fmt.pix.height > maxh) 628 f->fmt.pix.height = maxh; 629 f->fmt.pix.width &= ~0x03; 630 f->fmt.pix.bytesperline = 631 (f->fmt.pix.width * (fmt->depth)) >> 3; 632 f->fmt.pix.sizeimage = 633 f->fmt.pix.height * f->fmt.pix.bytesperline; 634 f->fmt.pix.colorspace = V4L2_COLORSPACE_SMPTE170M; 635 return 0; 636 } 637 638 /* 639 * Note that tw68_s_fmt_vid_cap sets the information into the fh structure, 640 * and it will be used for all future new buffers. However, there could be 641 * some number of buffers on the "active" chain which will be filled before 642 * the change takes place. 643 */ 644 static int tw68_s_fmt_vid_cap(struct file *file, void *priv, 645 struct v4l2_format *f) 646 { 647 struct tw68_dev *dev = video_drvdata(file); 648 int err; 649 650 err = tw68_try_fmt_vid_cap(file, priv, f); 651 if (0 != err) 652 return err; 653 654 dev->fmt = format_by_fourcc(f->fmt.pix.pixelformat); 655 dev->width = f->fmt.pix.width; 656 dev->height = f->fmt.pix.height; 657 dev->field = f->fmt.pix.field; 658 return 0; 659 } 660 661 static int tw68_enum_input(struct file *file, void *priv, 662 struct v4l2_input *i) 663 { 664 struct tw68_dev *dev = video_drvdata(file); 665 unsigned int n; 666 667 n = i->index; 668 if (n >= TW68_INPUT_MAX) 669 return -EINVAL; 670 i->index = n; 671 i->type = V4L2_INPUT_TYPE_CAMERA; 672 snprintf(i->name, sizeof(i->name), "Composite %d", n); 673 674 /* If the query is for the current input, get live data */ 675 if (n == dev->input) { 676 int v1 = tw_readb(TW68_STATUS1); 677 int v2 = tw_readb(TW68_MVSN); 678 679 if (0 != (v1 & (1 << 7))) 680 i->status |= V4L2_IN_ST_NO_SYNC; 681 if (0 != (v1 & (1 << 6))) 682 i->status |= V4L2_IN_ST_NO_H_LOCK; 683 if (0 != (v1 & (1 << 2))) 684 i->status |= V4L2_IN_ST_NO_SIGNAL; 685 if (0 != (v1 & 1 << 1)) 686 i->status |= V4L2_IN_ST_NO_COLOR; 687 if (0 != (v2 & (1 << 2))) 688 i->status |= V4L2_IN_ST_MACROVISION; 689 } 690 i->std = video_devdata(file)->tvnorms; 691 return 0; 692 } 693 694 static int tw68_g_input(struct file *file, void *priv, unsigned int *i) 695 { 696 struct tw68_dev *dev = video_drvdata(file); 697 698 *i = dev->input; 699 return 0; 700 } 701 702 static int tw68_s_input(struct file *file, void *priv, unsigned int i) 703 { 704 struct tw68_dev *dev = video_drvdata(file); 705 706 if (i >= TW68_INPUT_MAX) 707 return -EINVAL; 708 dev->input = i; 709 tw_andorb(TW68_INFORM, 0x03 << 2, dev->input << 2); 710 return 0; 711 } 712 713 static int tw68_querycap(struct file *file, void *priv, 714 struct v4l2_capability *cap) 715 { 716 strscpy(cap->driver, "tw68", sizeof(cap->driver)); 717 strscpy(cap->card, "Techwell Capture Card", 718 sizeof(cap->card)); 719 return 0; 720 } 721 722 static int tw68_s_std(struct file *file, void *priv, v4l2_std_id id) 723 { 724 struct tw68_dev *dev = video_drvdata(file); 725 unsigned int i; 726 727 if (vb2_is_busy(&dev->vidq)) 728 return -EBUSY; 729 730 /* Look for match on complete norm id (may have mult bits) */ 731 for (i = 0; i < TVNORMS; i++) { 732 if (id == tvnorms[i].id) 733 break; 734 } 735 736 /* If no exact match, look for norm which contains this one */ 737 if (i == TVNORMS) { 738 for (i = 0; i < TVNORMS; i++) 739 if (id & tvnorms[i].id) 740 break; 741 } 742 /* If still not matched, give up */ 743 if (i == TVNORMS) 744 return -EINVAL; 745 746 set_tvnorm(dev, &tvnorms[i]); /* do the actual setting */ 747 return 0; 748 } 749 750 static int tw68_g_std(struct file *file, void *priv, v4l2_std_id *id) 751 { 752 struct tw68_dev *dev = video_drvdata(file); 753 754 *id = dev->tvnorm->id; 755 return 0; 756 } 757 758 static int tw68_enum_fmt_vid_cap(struct file *file, void *priv, 759 struct v4l2_fmtdesc *f) 760 { 761 if (f->index >= FORMATS) 762 return -EINVAL; 763 764 f->pixelformat = formats[f->index].fourcc; 765 766 return 0; 767 } 768 769 /* 770 * Used strictly for internal development and debugging, this routine 771 * prints out the current register contents for the tw68xx device. 772 */ 773 static void tw68_dump_regs(struct tw68_dev *dev) 774 { 775 unsigned char line[80]; 776 int i, j, k; 777 unsigned char *cptr; 778 779 pr_info("Full dump of TW68 registers:\n"); 780 /* First we do the PCI regs, 8 4-byte regs per line */ 781 for (i = 0; i < 0x100; i += 32) { 782 cptr = line; 783 cptr += sprintf(cptr, "%03x ", i); 784 /* j steps through the next 4 words */ 785 for (j = i; j < i + 16; j += 4) 786 cptr += sprintf(cptr, "%08x ", tw_readl(j)); 787 *cptr++ = ' '; 788 for (; j < i + 32; j += 4) 789 cptr += sprintf(cptr, "%08x ", tw_readl(j)); 790 *cptr++ = '\n'; 791 *cptr = 0; 792 pr_info("%s", line); 793 } 794 /* Next the control regs, which are single-byte, address mod 4 */ 795 while (i < 0x400) { 796 cptr = line; 797 cptr += sprintf(cptr, "%03x ", i); 798 /* Print out 4 groups of 4 bytes */ 799 for (j = 0; j < 4; j++) { 800 for (k = 0; k < 4; k++) { 801 cptr += sprintf(cptr, "%02x ", 802 tw_readb(i)); 803 i += 4; 804 } 805 *cptr++ = ' '; 806 } 807 *cptr++ = '\n'; 808 *cptr = 0; 809 pr_info("%s", line); 810 } 811 } 812 813 static int vidioc_log_status(struct file *file, void *priv) 814 { 815 struct tw68_dev *dev = video_drvdata(file); 816 817 tw68_dump_regs(dev); 818 return v4l2_ctrl_log_status(file, priv); 819 } 820 821 #ifdef CONFIG_VIDEO_ADV_DEBUG 822 static int vidioc_g_register(struct file *file, void *priv, 823 struct v4l2_dbg_register *reg) 824 { 825 struct tw68_dev *dev = video_drvdata(file); 826 827 if (reg->size == 1) 828 reg->val = tw_readb(reg->reg); 829 else 830 reg->val = tw_readl(reg->reg); 831 return 0; 832 } 833 834 static int vidioc_s_register(struct file *file, void *priv, 835 const struct v4l2_dbg_register *reg) 836 { 837 struct tw68_dev *dev = video_drvdata(file); 838 839 if (reg->size == 1) 840 tw_writeb(reg->reg, reg->val); 841 else 842 tw_writel(reg->reg & 0xffff, reg->val); 843 return 0; 844 } 845 #endif 846 847 static const struct v4l2_ctrl_ops tw68_ctrl_ops = { 848 .s_ctrl = tw68_s_ctrl, 849 }; 850 851 static const struct v4l2_file_operations video_fops = { 852 .owner = THIS_MODULE, 853 .open = v4l2_fh_open, 854 .release = vb2_fop_release, 855 .read = vb2_fop_read, 856 .poll = vb2_fop_poll, 857 .mmap = vb2_fop_mmap, 858 .unlocked_ioctl = video_ioctl2, 859 }; 860 861 static const struct v4l2_ioctl_ops video_ioctl_ops = { 862 .vidioc_querycap = tw68_querycap, 863 .vidioc_enum_fmt_vid_cap = tw68_enum_fmt_vid_cap, 864 .vidioc_reqbufs = vb2_ioctl_reqbufs, 865 .vidioc_create_bufs = vb2_ioctl_create_bufs, 866 .vidioc_querybuf = vb2_ioctl_querybuf, 867 .vidioc_qbuf = vb2_ioctl_qbuf, 868 .vidioc_dqbuf = vb2_ioctl_dqbuf, 869 .vidioc_s_std = tw68_s_std, 870 .vidioc_g_std = tw68_g_std, 871 .vidioc_enum_input = tw68_enum_input, 872 .vidioc_g_input = tw68_g_input, 873 .vidioc_s_input = tw68_s_input, 874 .vidioc_streamon = vb2_ioctl_streamon, 875 .vidioc_streamoff = vb2_ioctl_streamoff, 876 .vidioc_g_fmt_vid_cap = tw68_g_fmt_vid_cap, 877 .vidioc_try_fmt_vid_cap = tw68_try_fmt_vid_cap, 878 .vidioc_s_fmt_vid_cap = tw68_s_fmt_vid_cap, 879 .vidioc_log_status = vidioc_log_status, 880 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event, 881 .vidioc_unsubscribe_event = v4l2_event_unsubscribe, 882 #ifdef CONFIG_VIDEO_ADV_DEBUG 883 .vidioc_g_register = vidioc_g_register, 884 .vidioc_s_register = vidioc_s_register, 885 #endif 886 }; 887 888 static const struct video_device tw68_video_template = { 889 .name = "tw68_video", 890 .fops = &video_fops, 891 .ioctl_ops = &video_ioctl_ops, 892 .release = video_device_release_empty, 893 .tvnorms = TW68_NORMS, 894 .device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_READWRITE | 895 V4L2_CAP_STREAMING, 896 }; 897 898 /* ------------------------------------------------------------------ */ 899 /* exported stuff */ 900 void tw68_set_tvnorm_hw(struct tw68_dev *dev) 901 { 902 tw_andorb(TW68_SDT, 0x07, dev->tvnorm->format); 903 } 904 905 int tw68_video_init1(struct tw68_dev *dev) 906 { 907 struct v4l2_ctrl_handler *hdl = &dev->hdl; 908 909 v4l2_ctrl_handler_init(hdl, 6); 910 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 911 V4L2_CID_BRIGHTNESS, -128, 127, 1, 20); 912 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 913 V4L2_CID_CONTRAST, 0, 255, 1, 100); 914 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 915 V4L2_CID_SATURATION, 0, 255, 1, 128); 916 /* NTSC only */ 917 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 918 V4L2_CID_HUE, -128, 127, 1, 0); 919 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 920 V4L2_CID_COLOR_KILLER, 0, 1, 1, 0); 921 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 922 V4L2_CID_CHROMA_AGC, 0, 1, 1, 1); 923 if (hdl->error) { 924 v4l2_ctrl_handler_free(hdl); 925 return hdl->error; 926 } 927 dev->v4l2_dev.ctrl_handler = hdl; 928 v4l2_ctrl_handler_setup(hdl); 929 return 0; 930 } 931 932 int tw68_video_init2(struct tw68_dev *dev, int video_nr) 933 { 934 int ret; 935 936 set_tvnorm(dev, &tvnorms[0]); 937 938 dev->fmt = format_by_fourcc(V4L2_PIX_FMT_BGR24); 939 dev->width = 720; 940 dev->height = 576; 941 dev->field = V4L2_FIELD_INTERLACED; 942 943 INIT_LIST_HEAD(&dev->active); 944 dev->vidq.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; 945 dev->vidq.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC; 946 dev->vidq.io_modes = VB2_MMAP | VB2_USERPTR | VB2_READ | VB2_DMABUF; 947 dev->vidq.ops = &tw68_video_qops; 948 dev->vidq.mem_ops = &vb2_dma_sg_memops; 949 dev->vidq.drv_priv = dev; 950 dev->vidq.gfp_flags = __GFP_DMA32 | __GFP_KSWAPD_RECLAIM; 951 dev->vidq.buf_struct_size = sizeof(struct tw68_buf); 952 dev->vidq.lock = &dev->lock; 953 dev->vidq.min_queued_buffers = 2; 954 dev->vidq.dev = &dev->pci->dev; 955 ret = vb2_queue_init(&dev->vidq); 956 if (ret) 957 return ret; 958 dev->vdev = tw68_video_template; 959 dev->vdev.v4l2_dev = &dev->v4l2_dev; 960 dev->vdev.lock = &dev->lock; 961 dev->vdev.queue = &dev->vidq; 962 video_set_drvdata(&dev->vdev, dev); 963 return video_register_device(&dev->vdev, VFL_TYPE_VIDEO, video_nr); 964 } 965 966 /* 967 * tw68_irq_video_done 968 */ 969 void tw68_irq_video_done(struct tw68_dev *dev, unsigned long status) 970 { 971 __u32 reg; 972 973 /* reset interrupts handled by this routine */ 974 tw_writel(TW68_INTSTAT, status); 975 /* 976 * Check most likely first 977 * 978 * DMAPI shows we have reached the end of the risc code 979 * for the current buffer. 980 */ 981 if (status & TW68_DMAPI) { 982 struct tw68_buf *buf; 983 984 spin_lock(&dev->slock); 985 buf = list_entry(dev->active.next, struct tw68_buf, list); 986 list_del(&buf->list); 987 spin_unlock(&dev->slock); 988 buf->vb.vb2_buf.timestamp = ktime_get_ns(); 989 buf->vb.field = dev->field; 990 buf->vb.sequence = dev->seqnr++; 991 vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_DONE); 992 status &= ~(TW68_DMAPI); 993 if (0 == status) 994 return; 995 } 996 if (status & (TW68_VLOCK | TW68_HLOCK)) 997 dev_dbg(&dev->pci->dev, "Lost sync\n"); 998 if (status & TW68_PABORT) 999 dev_err(&dev->pci->dev, "PABORT interrupt\n"); 1000 if (status & TW68_DMAPERR) 1001 dev_err(&dev->pci->dev, "DMAPERR interrupt\n"); 1002 /* 1003 * On TW6800, FDMIS is apparently generated if video input is switched 1004 * during operation. Therefore, it is not enabled for that chip. 1005 */ 1006 if (status & TW68_FDMIS) 1007 dev_dbg(&dev->pci->dev, "FDMIS interrupt\n"); 1008 if (status & TW68_FFOF) { 1009 /* probably a logic error */ 1010 reg = tw_readl(TW68_DMAC) & TW68_FIFO_EN; 1011 tw_clearl(TW68_DMAC, TW68_FIFO_EN); 1012 dev_dbg(&dev->pci->dev, "FFOF interrupt\n"); 1013 tw_setl(TW68_DMAC, reg); 1014 } 1015 if (status & TW68_FFERR) 1016 dev_dbg(&dev->pci->dev, "FFERR interrupt\n"); 1017 } 1018