xref: /linux/drivers/media/pci/ngene/ngene-core.c (revision c8bfe3fad4f86a029da7157bae9699c816f0c309)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ngene.c: nGene PCIe bridge driver
4  *
5  * Copyright (C) 2005-2007 Micronas
6  *
7  * Copyright (C) 2008-2009 Ralph Metzler <rjkm@metzlerbros.de>
8  *                         Modifications for new nGene firmware,
9  *                         support for EEPROM-copying,
10  *                         support for new dual DVB-S2 card prototype
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/delay.h>
16 #include <linux/poll.h>
17 #include <linux/io.h>
18 #include <asm/div64.h>
19 #include <linux/pci.h>
20 #include <linux/timer.h>
21 #include <linux/byteorder/generic.h>
22 #include <linux/firmware.h>
23 #include <linux/vmalloc.h>
24 
25 #include "ngene.h"
26 
27 static int one_adapter;
28 module_param(one_adapter, int, 0444);
29 MODULE_PARM_DESC(one_adapter, "Use only one adapter.");
30 
31 static int shutdown_workaround;
32 module_param(shutdown_workaround, int, 0644);
33 MODULE_PARM_DESC(shutdown_workaround, "Activate workaround for shutdown problem with some chipsets.");
34 
35 static int debug;
36 module_param(debug, int, 0444);
37 MODULE_PARM_DESC(debug, "Print debugging information.");
38 
39 DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
40 
41 #define ngwriteb(dat, adr)         writeb((dat), dev->iomem + (adr))
42 #define ngwritel(dat, adr)         writel((dat), dev->iomem + (adr))
43 #define ngwriteb(dat, adr)         writeb((dat), dev->iomem + (adr))
44 #define ngreadl(adr)               readl(dev->iomem + (adr))
45 #define ngreadb(adr)               readb(dev->iomem + (adr))
46 #define ngcpyto(adr, src, count)   memcpy_toio(dev->iomem + (adr), (src), (count))
47 #define ngcpyfrom(dst, adr, count) memcpy_fromio((dst), dev->iomem + (adr), (count))
48 
49 /****************************************************************************/
50 /* nGene interrupt handler **************************************************/
51 /****************************************************************************/
52 
53 static void event_tasklet(struct tasklet_struct *t)
54 {
55 	struct ngene *dev = from_tasklet(dev, t, event_tasklet);
56 
57 	while (dev->EventQueueReadIndex != dev->EventQueueWriteIndex) {
58 		struct EVENT_BUFFER Event =
59 			dev->EventQueue[dev->EventQueueReadIndex];
60 		dev->EventQueueReadIndex =
61 			(dev->EventQueueReadIndex + 1) & (EVENT_QUEUE_SIZE - 1);
62 
63 		if ((Event.UARTStatus & 0x01) && (dev->TxEventNotify))
64 			dev->TxEventNotify(dev, Event.TimeStamp);
65 		if ((Event.UARTStatus & 0x02) && (dev->RxEventNotify))
66 			dev->RxEventNotify(dev, Event.TimeStamp,
67 					   Event.RXCharacter);
68 	}
69 }
70 
71 static void demux_tasklet(struct tasklet_struct *t)
72 {
73 	struct ngene_channel *chan = from_tasklet(chan, t, demux_tasklet);
74 	struct device *pdev = &chan->dev->pci_dev->dev;
75 	struct SBufferHeader *Cur = chan->nextBuffer;
76 
77 	spin_lock_irq(&chan->state_lock);
78 
79 	while (Cur->ngeneBuffer.SR.Flags & 0x80) {
80 		if (chan->mode & NGENE_IO_TSOUT) {
81 			u32 Flags = chan->DataFormatFlags;
82 			if (Cur->ngeneBuffer.SR.Flags & 0x20)
83 				Flags |= BEF_OVERFLOW;
84 			if (chan->pBufferExchange) {
85 				if (!chan->pBufferExchange(chan,
86 							   Cur->Buffer1,
87 							   chan->Capture1Length,
88 							   Cur->ngeneBuffer.SR.
89 							   Clock, Flags)) {
90 					/*
91 					   We didn't get data
92 					   Clear in service flag to make sure we
93 					   get called on next interrupt again.
94 					   leave fill/empty (0x80) flag alone
95 					   to avoid hardware running out of
96 					   buffers during startup, we hold only
97 					   in run state ( the source may be late
98 					   delivering data )
99 					*/
100 
101 					if (chan->HWState == HWSTATE_RUN) {
102 						Cur->ngeneBuffer.SR.Flags &=
103 							~0x40;
104 						break;
105 						/* Stop processing stream */
106 					}
107 				} else {
108 					/* We got a valid buffer,
109 					   so switch to run state */
110 					chan->HWState = HWSTATE_RUN;
111 				}
112 			} else {
113 				dev_err(pdev, "OOPS\n");
114 				if (chan->HWState == HWSTATE_RUN) {
115 					Cur->ngeneBuffer.SR.Flags &= ~0x40;
116 					break;	/* Stop processing stream */
117 				}
118 			}
119 			if (chan->AudioDTOUpdated) {
120 				dev_info(pdev, "Update AudioDTO = %d\n",
121 					 chan->AudioDTOValue);
122 				Cur->ngeneBuffer.SR.DTOUpdate =
123 					chan->AudioDTOValue;
124 				chan->AudioDTOUpdated = 0;
125 			}
126 		} else {
127 			if (chan->HWState == HWSTATE_RUN) {
128 				u32 Flags = chan->DataFormatFlags;
129 				IBufferExchange *exch1 = chan->pBufferExchange;
130 				IBufferExchange *exch2 = chan->pBufferExchange2;
131 				if (Cur->ngeneBuffer.SR.Flags & 0x01)
132 					Flags |= BEF_EVEN_FIELD;
133 				if (Cur->ngeneBuffer.SR.Flags & 0x20)
134 					Flags |= BEF_OVERFLOW;
135 				spin_unlock_irq(&chan->state_lock);
136 				if (exch1)
137 					exch1(chan, Cur->Buffer1,
138 						chan->Capture1Length,
139 						Cur->ngeneBuffer.SR.Clock,
140 						Flags);
141 				if (exch2)
142 					exch2(chan, Cur->Buffer2,
143 						chan->Capture2Length,
144 						Cur->ngeneBuffer.SR.Clock,
145 						Flags);
146 				spin_lock_irq(&chan->state_lock);
147 			} else if (chan->HWState != HWSTATE_STOP)
148 				chan->HWState = HWSTATE_RUN;
149 		}
150 		Cur->ngeneBuffer.SR.Flags = 0x00;
151 		Cur = Cur->Next;
152 	}
153 	chan->nextBuffer = Cur;
154 
155 	spin_unlock_irq(&chan->state_lock);
156 }
157 
158 static irqreturn_t irq_handler(int irq, void *dev_id)
159 {
160 	struct ngene *dev = (struct ngene *)dev_id;
161 	struct device *pdev = &dev->pci_dev->dev;
162 	u32 icounts = 0;
163 	irqreturn_t rc = IRQ_NONE;
164 	u32 i = MAX_STREAM;
165 	u8 *tmpCmdDoneByte;
166 
167 	if (dev->BootFirmware) {
168 		icounts = ngreadl(NGENE_INT_COUNTS);
169 		if (icounts != dev->icounts) {
170 			ngwritel(0, FORCE_NMI);
171 			dev->cmd_done = 1;
172 			wake_up(&dev->cmd_wq);
173 			dev->icounts = icounts;
174 			rc = IRQ_HANDLED;
175 		}
176 		return rc;
177 	}
178 
179 	ngwritel(0, FORCE_NMI);
180 
181 	spin_lock(&dev->cmd_lock);
182 	tmpCmdDoneByte = dev->CmdDoneByte;
183 	if (tmpCmdDoneByte &&
184 	    (*tmpCmdDoneByte ||
185 	    (dev->ngenetohost[0] == 1 && dev->ngenetohost[1] != 0))) {
186 		dev->CmdDoneByte = NULL;
187 		dev->cmd_done = 1;
188 		wake_up(&dev->cmd_wq);
189 		rc = IRQ_HANDLED;
190 	}
191 	spin_unlock(&dev->cmd_lock);
192 
193 	if (dev->EventBuffer->EventStatus & 0x80) {
194 		u8 nextWriteIndex =
195 			(dev->EventQueueWriteIndex + 1) &
196 			(EVENT_QUEUE_SIZE - 1);
197 		if (nextWriteIndex != dev->EventQueueReadIndex) {
198 			dev->EventQueue[dev->EventQueueWriteIndex] =
199 				*(dev->EventBuffer);
200 			dev->EventQueueWriteIndex = nextWriteIndex;
201 		} else {
202 			dev_err(pdev, "event overflow\n");
203 			dev->EventQueueOverflowCount += 1;
204 			dev->EventQueueOverflowFlag = 1;
205 		}
206 		dev->EventBuffer->EventStatus &= ~0x80;
207 		tasklet_schedule(&dev->event_tasklet);
208 		rc = IRQ_HANDLED;
209 	}
210 
211 	while (i > 0) {
212 		i--;
213 		spin_lock(&dev->channel[i].state_lock);
214 		/* if (dev->channel[i].State>=KSSTATE_RUN) { */
215 		if (dev->channel[i].nextBuffer) {
216 			if ((dev->channel[i].nextBuffer->
217 			     ngeneBuffer.SR.Flags & 0xC0) == 0x80) {
218 				dev->channel[i].nextBuffer->
219 					ngeneBuffer.SR.Flags |= 0x40;
220 				tasklet_schedule(
221 					&dev->channel[i].demux_tasklet);
222 				rc = IRQ_HANDLED;
223 			}
224 		}
225 		spin_unlock(&dev->channel[i].state_lock);
226 	}
227 
228 	/* Request might have been processed by a previous call. */
229 	return IRQ_HANDLED;
230 }
231 
232 /****************************************************************************/
233 /* nGene command interface **************************************************/
234 /****************************************************************************/
235 
236 static void dump_command_io(struct ngene *dev)
237 {
238 	struct device *pdev = &dev->pci_dev->dev;
239 	u8 buf[8], *b;
240 
241 	ngcpyfrom(buf, HOST_TO_NGENE, 8);
242 	dev_err(pdev, "host_to_ngene (%04x): %*ph\n", HOST_TO_NGENE, 8, buf);
243 
244 	ngcpyfrom(buf, NGENE_TO_HOST, 8);
245 	dev_err(pdev, "ngene_to_host (%04x): %*ph\n", NGENE_TO_HOST, 8, buf);
246 
247 	b = dev->hosttongene;
248 	dev_err(pdev, "dev->hosttongene (%p): %*ph\n", b, 8, b);
249 
250 	b = dev->ngenetohost;
251 	dev_err(pdev, "dev->ngenetohost (%p): %*ph\n", b, 8, b);
252 }
253 
254 static int ngene_command_mutex(struct ngene *dev, struct ngene_command *com)
255 {
256 	struct device *pdev = &dev->pci_dev->dev;
257 	int ret;
258 	u8 *tmpCmdDoneByte;
259 
260 	dev->cmd_done = 0;
261 
262 	if (com->cmd.hdr.Opcode == CMD_FWLOAD_PREPARE) {
263 		dev->BootFirmware = 1;
264 		dev->icounts = ngreadl(NGENE_INT_COUNTS);
265 		ngwritel(0, NGENE_COMMAND);
266 		ngwritel(0, NGENE_COMMAND_HI);
267 		ngwritel(0, NGENE_STATUS);
268 		ngwritel(0, NGENE_STATUS_HI);
269 		ngwritel(0, NGENE_EVENT);
270 		ngwritel(0, NGENE_EVENT_HI);
271 	} else if (com->cmd.hdr.Opcode == CMD_FWLOAD_FINISH) {
272 		u64 fwio = dev->PAFWInterfaceBuffer;
273 
274 		ngwritel(fwio & 0xffffffff, NGENE_COMMAND);
275 		ngwritel(fwio >> 32, NGENE_COMMAND_HI);
276 		ngwritel((fwio + 256) & 0xffffffff, NGENE_STATUS);
277 		ngwritel((fwio + 256) >> 32, NGENE_STATUS_HI);
278 		ngwritel((fwio + 512) & 0xffffffff, NGENE_EVENT);
279 		ngwritel((fwio + 512) >> 32, NGENE_EVENT_HI);
280 	}
281 
282 	memcpy(dev->FWInterfaceBuffer, com->cmd.raw8, com->in_len + 2);
283 
284 	if (dev->BootFirmware)
285 		ngcpyto(HOST_TO_NGENE, com->cmd.raw8, com->in_len + 2);
286 
287 	spin_lock_irq(&dev->cmd_lock);
288 	tmpCmdDoneByte = dev->ngenetohost + com->out_len;
289 	if (!com->out_len)
290 		tmpCmdDoneByte++;
291 	*tmpCmdDoneByte = 0;
292 	dev->ngenetohost[0] = 0;
293 	dev->ngenetohost[1] = 0;
294 	dev->CmdDoneByte = tmpCmdDoneByte;
295 	spin_unlock_irq(&dev->cmd_lock);
296 
297 	/* Notify 8051. */
298 	ngwritel(1, FORCE_INT);
299 
300 	ret = wait_event_timeout(dev->cmd_wq, dev->cmd_done == 1, 2 * HZ);
301 	if (!ret) {
302 		/*ngwritel(0, FORCE_NMI);*/
303 
304 		dev_err(pdev, "Command timeout cmd=%02x prev=%02x\n",
305 			com->cmd.hdr.Opcode, dev->prev_cmd);
306 		dump_command_io(dev);
307 		return -1;
308 	}
309 	if (com->cmd.hdr.Opcode == CMD_FWLOAD_FINISH)
310 		dev->BootFirmware = 0;
311 
312 	dev->prev_cmd = com->cmd.hdr.Opcode;
313 
314 	if (!com->out_len)
315 		return 0;
316 
317 	memcpy(com->cmd.raw8, dev->ngenetohost, com->out_len);
318 
319 	return 0;
320 }
321 
322 int ngene_command(struct ngene *dev, struct ngene_command *com)
323 {
324 	int result;
325 
326 	mutex_lock(&dev->cmd_mutex);
327 	result = ngene_command_mutex(dev, com);
328 	mutex_unlock(&dev->cmd_mutex);
329 	return result;
330 }
331 
332 
333 static int ngene_command_load_firmware(struct ngene *dev,
334 				       u8 *ngene_fw, u32 size)
335 {
336 #define FIRSTCHUNK (1024)
337 	u32 cleft;
338 	struct ngene_command com;
339 
340 	com.cmd.hdr.Opcode = CMD_FWLOAD_PREPARE;
341 	com.cmd.hdr.Length = 0;
342 	com.in_len = 0;
343 	com.out_len = 0;
344 
345 	ngene_command(dev, &com);
346 
347 	cleft = (size + 3) & ~3;
348 	if (cleft > FIRSTCHUNK) {
349 		ngcpyto(PROGRAM_SRAM + FIRSTCHUNK, ngene_fw + FIRSTCHUNK,
350 			cleft - FIRSTCHUNK);
351 		cleft = FIRSTCHUNK;
352 	}
353 	ngcpyto(DATA_FIFO_AREA, ngene_fw, cleft);
354 
355 	memset(&com, 0, sizeof(struct ngene_command));
356 	com.cmd.hdr.Opcode = CMD_FWLOAD_FINISH;
357 	com.cmd.hdr.Length = 4;
358 	com.cmd.FWLoadFinish.Address = DATA_FIFO_AREA;
359 	com.cmd.FWLoadFinish.Length = (unsigned short)cleft;
360 	com.in_len = 4;
361 	com.out_len = 0;
362 
363 	return ngene_command(dev, &com);
364 }
365 
366 
367 static int ngene_command_config_buf(struct ngene *dev, u8 config)
368 {
369 	struct ngene_command com;
370 
371 	com.cmd.hdr.Opcode = CMD_CONFIGURE_BUFFER;
372 	com.cmd.hdr.Length = 1;
373 	com.cmd.ConfigureBuffers.config = config;
374 	com.in_len = 1;
375 	com.out_len = 0;
376 
377 	if (ngene_command(dev, &com) < 0)
378 		return -EIO;
379 	return 0;
380 }
381 
382 static int ngene_command_config_free_buf(struct ngene *dev, u8 *config)
383 {
384 	struct ngene_command com;
385 
386 	com.cmd.hdr.Opcode = CMD_CONFIGURE_FREE_BUFFER;
387 	com.cmd.hdr.Length = 6;
388 	memcpy(&com.cmd.ConfigureFreeBuffers.config, config, 6);
389 	com.in_len = 6;
390 	com.out_len = 0;
391 
392 	if (ngene_command(dev, &com) < 0)
393 		return -EIO;
394 
395 	return 0;
396 }
397 
398 int ngene_command_gpio_set(struct ngene *dev, u8 select, u8 level)
399 {
400 	struct ngene_command com;
401 
402 	com.cmd.hdr.Opcode = CMD_SET_GPIO_PIN;
403 	com.cmd.hdr.Length = 1;
404 	com.cmd.SetGpioPin.select = select | (level << 7);
405 	com.in_len = 1;
406 	com.out_len = 0;
407 
408 	return ngene_command(dev, &com);
409 }
410 
411 
412 /*
413  02000640 is sample on rising edge.
414  02000740 is sample on falling edge.
415  02000040 is ignore "valid" signal
416 
417  0: FD_CTL1 Bit 7,6 must be 0,1
418     7   disable(fw controlled)
419     6   0-AUX,1-TS
420     5   0-par,1-ser
421     4   0-lsb/1-msb
422     3,2 reserved
423     1,0 0-no sync, 1-use ext. start, 2-use 0x47, 3-both
424  1: FD_CTL2 has 3-valid must be hi, 2-use valid, 1-edge
425  2: FD_STA is read-only. 0-sync
426  3: FD_INSYNC is number of 47s to trigger "in sync".
427  4: FD_OUTSYNC is number of 47s to trigger "out of sync".
428  5: FD_MAXBYTE1 is low-order of bytes per packet.
429  6: FD_MAXBYTE2 is high-order of bytes per packet.
430  7: Top byte is unused.
431 */
432 
433 /****************************************************************************/
434 
435 static u8 TSFeatureDecoderSetup[8 * 5] = {
436 	0x42, 0x00, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00,
437 	0x40, 0x06, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00,	/* DRXH */
438 	0x71, 0x07, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00,	/* DRXHser */
439 	0x72, 0x00, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00,	/* S2ser */
440 	0x40, 0x07, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* LGDT3303 */
441 };
442 
443 /* Set NGENE I2S Config to 16 bit packed */
444 static u8 I2SConfiguration[] = {
445 	0x00, 0x10, 0x00, 0x00,
446 	0x80, 0x10, 0x00, 0x00,
447 };
448 
449 static u8 SPDIFConfiguration[10] = {
450 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
451 };
452 
453 /* Set NGENE I2S Config to transport stream compatible mode */
454 
455 static u8 TS_I2SConfiguration[4] = { 0x3E, 0x18, 0x00, 0x00 };
456 
457 static u8 TS_I2SOutConfiguration[4] = { 0x80, 0x04, 0x00, 0x00 };
458 
459 static u8 ITUDecoderSetup[4][16] = {
460 	{0x1c, 0x13, 0x01, 0x68, 0x3d, 0x90, 0x14, 0x20,  /* SDTV */
461 	 0x00, 0x00, 0x01, 0xb0, 0x9c, 0x00, 0x00, 0x00},
462 	{0x9c, 0x03, 0x23, 0xC0, 0x60, 0x0E, 0x13, 0x00,
463 	 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
464 	{0x9f, 0x00, 0x23, 0xC0, 0x60, 0x0F, 0x13, 0x00,  /* HDTV 1080i50 */
465 	 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
466 	{0x9c, 0x01, 0x23, 0xC0, 0x60, 0x0E, 0x13, 0x00,  /* HDTV 1080i60 */
467 	 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
468 };
469 
470 /*
471  * 50 48 60 gleich
472  * 27p50 9f 00 22 80 42 69 18 ...
473  * 27p60 93 00 22 80 82 69 1c ...
474  */
475 
476 /* Maxbyte to 1144 (for raw data) */
477 static u8 ITUFeatureDecoderSetup[8] = {
478 	0x00, 0x00, 0x00, 0x00, 0x00, 0x78, 0x04, 0x00
479 };
480 
481 void FillTSBuffer(void *Buffer, int Length, u32 Flags)
482 {
483 	u32 *ptr = Buffer;
484 
485 	memset(Buffer, TS_FILLER, Length);
486 	while (Length > 0) {
487 		if (Flags & DF_SWAP32)
488 			*ptr = 0x471FFF10;
489 		else
490 			*ptr = 0x10FF1F47;
491 		ptr += (188 / 4);
492 		Length -= 188;
493 	}
494 }
495 
496 
497 static void flush_buffers(struct ngene_channel *chan)
498 {
499 	u8 val;
500 
501 	do {
502 		msleep(1);
503 		spin_lock_irq(&chan->state_lock);
504 		val = chan->nextBuffer->ngeneBuffer.SR.Flags & 0x80;
505 		spin_unlock_irq(&chan->state_lock);
506 	} while (val);
507 }
508 
509 static void clear_buffers(struct ngene_channel *chan)
510 {
511 	struct SBufferHeader *Cur = chan->nextBuffer;
512 
513 	do {
514 		memset(&Cur->ngeneBuffer.SR, 0, sizeof(Cur->ngeneBuffer.SR));
515 		if (chan->mode & NGENE_IO_TSOUT)
516 			FillTSBuffer(Cur->Buffer1,
517 				     chan->Capture1Length,
518 				     chan->DataFormatFlags);
519 		Cur = Cur->Next;
520 	} while (Cur != chan->nextBuffer);
521 
522 	if (chan->mode & NGENE_IO_TSOUT) {
523 		chan->nextBuffer->ngeneBuffer.SR.DTOUpdate =
524 			chan->AudioDTOValue;
525 		chan->AudioDTOUpdated = 0;
526 
527 		Cur = chan->TSIdleBuffer.Head;
528 
529 		do {
530 			memset(&Cur->ngeneBuffer.SR, 0,
531 			       sizeof(Cur->ngeneBuffer.SR));
532 			FillTSBuffer(Cur->Buffer1,
533 				     chan->Capture1Length,
534 				     chan->DataFormatFlags);
535 			Cur = Cur->Next;
536 		} while (Cur != chan->TSIdleBuffer.Head);
537 	}
538 }
539 
540 static int ngene_command_stream_control(struct ngene *dev, u8 stream,
541 					u8 control, u8 mode, u8 flags)
542 {
543 	struct device *pdev = &dev->pci_dev->dev;
544 	struct ngene_channel *chan = &dev->channel[stream];
545 	struct ngene_command com;
546 	u16 BsUVI = ((stream & 1) ? 0x9400 : 0x9300);
547 	u16 BsSDI = ((stream & 1) ? 0x9600 : 0x9500);
548 	u16 BsSPI = ((stream & 1) ? 0x9800 : 0x9700);
549 	u16 BsSDO = 0x9B00;
550 
551 	memset(&com, 0, sizeof(com));
552 	com.cmd.hdr.Opcode = CMD_CONTROL;
553 	com.cmd.hdr.Length = sizeof(struct FW_STREAM_CONTROL) - 2;
554 	com.cmd.StreamControl.Stream = stream | (control ? 8 : 0);
555 	if (chan->mode & NGENE_IO_TSOUT)
556 		com.cmd.StreamControl.Stream |= 0x07;
557 	com.cmd.StreamControl.Control = control |
558 		(flags & SFLAG_ORDER_LUMA_CHROMA);
559 	com.cmd.StreamControl.Mode = mode;
560 	com.in_len = sizeof(struct FW_STREAM_CONTROL);
561 	com.out_len = 0;
562 
563 	dev_dbg(pdev, "Stream=%02x, Control=%02x, Mode=%02x\n",
564 		com.cmd.StreamControl.Stream, com.cmd.StreamControl.Control,
565 		com.cmd.StreamControl.Mode);
566 
567 	chan->Mode = mode;
568 
569 	if (!(control & 0x80)) {
570 		spin_lock_irq(&chan->state_lock);
571 		if (chan->State == KSSTATE_RUN) {
572 			chan->State = KSSTATE_ACQUIRE;
573 			chan->HWState = HWSTATE_STOP;
574 			spin_unlock_irq(&chan->state_lock);
575 			if (ngene_command(dev, &com) < 0)
576 				return -1;
577 			/* clear_buffers(chan); */
578 			flush_buffers(chan);
579 			return 0;
580 		}
581 		spin_unlock_irq(&chan->state_lock);
582 		return 0;
583 	}
584 
585 	if (mode & SMODE_AUDIO_CAPTURE) {
586 		com.cmd.StreamControl.CaptureBlockCount =
587 			chan->Capture1Length / AUDIO_BLOCK_SIZE;
588 		com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead;
589 	} else if (mode & SMODE_TRANSPORT_STREAM) {
590 		com.cmd.StreamControl.CaptureBlockCount =
591 			chan->Capture1Length / TS_BLOCK_SIZE;
592 		com.cmd.StreamControl.MaxLinesPerField =
593 			chan->Capture1Length / TS_BLOCK_SIZE;
594 		com.cmd.StreamControl.Buffer_Address =
595 			chan->TSRingBuffer.PAHead;
596 		if (chan->mode & NGENE_IO_TSOUT) {
597 			com.cmd.StreamControl.BytesPerVBILine =
598 				chan->Capture1Length / TS_BLOCK_SIZE;
599 			com.cmd.StreamControl.Stream |= 0x07;
600 		}
601 	} else {
602 		com.cmd.StreamControl.BytesPerVideoLine = chan->nBytesPerLine;
603 		com.cmd.StreamControl.MaxLinesPerField = chan->nLines;
604 		com.cmd.StreamControl.MinLinesPerField = 100;
605 		com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead;
606 
607 		if (mode & SMODE_VBI_CAPTURE) {
608 			com.cmd.StreamControl.MaxVBILinesPerField =
609 				chan->nVBILines;
610 			com.cmd.StreamControl.MinVBILinesPerField = 0;
611 			com.cmd.StreamControl.BytesPerVBILine =
612 				chan->nBytesPerVBILine;
613 		}
614 		if (flags & SFLAG_COLORBAR)
615 			com.cmd.StreamControl.Stream |= 0x04;
616 	}
617 
618 	spin_lock_irq(&chan->state_lock);
619 	if (mode & SMODE_AUDIO_CAPTURE) {
620 		chan->nextBuffer = chan->RingBuffer.Head;
621 		if (mode & SMODE_AUDIO_SPDIF) {
622 			com.cmd.StreamControl.SetupDataLen =
623 				sizeof(SPDIFConfiguration);
624 			com.cmd.StreamControl.SetupDataAddr = BsSPI;
625 			memcpy(com.cmd.StreamControl.SetupData,
626 			       SPDIFConfiguration, sizeof(SPDIFConfiguration));
627 		} else {
628 			com.cmd.StreamControl.SetupDataLen = 4;
629 			com.cmd.StreamControl.SetupDataAddr = BsSDI;
630 			memcpy(com.cmd.StreamControl.SetupData,
631 			       I2SConfiguration +
632 			       4 * dev->card_info->i2s[stream], 4);
633 		}
634 	} else if (mode & SMODE_TRANSPORT_STREAM) {
635 		chan->nextBuffer = chan->TSRingBuffer.Head;
636 		if (stream >= STREAM_AUDIOIN1) {
637 			if (chan->mode & NGENE_IO_TSOUT) {
638 				com.cmd.StreamControl.SetupDataLen =
639 					sizeof(TS_I2SOutConfiguration);
640 				com.cmd.StreamControl.SetupDataAddr = BsSDO;
641 				memcpy(com.cmd.StreamControl.SetupData,
642 				       TS_I2SOutConfiguration,
643 				       sizeof(TS_I2SOutConfiguration));
644 			} else {
645 				com.cmd.StreamControl.SetupDataLen =
646 					sizeof(TS_I2SConfiguration);
647 				com.cmd.StreamControl.SetupDataAddr = BsSDI;
648 				memcpy(com.cmd.StreamControl.SetupData,
649 				       TS_I2SConfiguration,
650 				       sizeof(TS_I2SConfiguration));
651 			}
652 		} else {
653 			com.cmd.StreamControl.SetupDataLen = 8;
654 			com.cmd.StreamControl.SetupDataAddr = BsUVI + 0x10;
655 			memcpy(com.cmd.StreamControl.SetupData,
656 			       TSFeatureDecoderSetup +
657 			       8 * dev->card_info->tsf[stream], 8);
658 		}
659 	} else {
660 		chan->nextBuffer = chan->RingBuffer.Head;
661 		com.cmd.StreamControl.SetupDataLen =
662 			16 + sizeof(ITUFeatureDecoderSetup);
663 		com.cmd.StreamControl.SetupDataAddr = BsUVI;
664 		memcpy(com.cmd.StreamControl.SetupData,
665 		       ITUDecoderSetup[chan->itumode], 16);
666 		memcpy(com.cmd.StreamControl.SetupData + 16,
667 		       ITUFeatureDecoderSetup, sizeof(ITUFeatureDecoderSetup));
668 	}
669 	clear_buffers(chan);
670 	chan->State = KSSTATE_RUN;
671 	if (mode & SMODE_TRANSPORT_STREAM)
672 		chan->HWState = HWSTATE_RUN;
673 	else
674 		chan->HWState = HWSTATE_STARTUP;
675 	spin_unlock_irq(&chan->state_lock);
676 
677 	if (ngene_command(dev, &com) < 0)
678 		return -1;
679 
680 	return 0;
681 }
682 
683 void set_transfer(struct ngene_channel *chan, int state)
684 {
685 	struct device *pdev = &chan->dev->pci_dev->dev;
686 	u8 control = 0, mode = 0, flags = 0;
687 	struct ngene *dev = chan->dev;
688 	int ret;
689 
690 	/*
691 	dev_info(pdev, "st %d\n", state);
692 	msleep(100);
693 	*/
694 
695 	if (state) {
696 		if (chan->running) {
697 			dev_info(pdev, "already running\n");
698 			return;
699 		}
700 	} else {
701 		if (!chan->running) {
702 			dev_info(pdev, "already stopped\n");
703 			return;
704 		}
705 	}
706 
707 	if (dev->card_info->switch_ctrl)
708 		dev->card_info->switch_ctrl(chan, 1, state ^ 1);
709 
710 	if (state) {
711 		spin_lock_irq(&chan->state_lock);
712 
713 		/* dev_info(pdev, "lock=%08x\n",
714 			  ngreadl(0x9310)); */
715 		dvb_ringbuffer_flush(&dev->tsout_rbuf);
716 		control = 0x80;
717 		if (chan->mode & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
718 			chan->Capture1Length = 512 * 188;
719 			mode = SMODE_TRANSPORT_STREAM;
720 		}
721 		if (chan->mode & NGENE_IO_TSOUT) {
722 			chan->pBufferExchange = tsout_exchange;
723 			/* 0x66666666 = 50MHz *2^33 /250MHz */
724 			chan->AudioDTOValue = 0x80000000;
725 			chan->AudioDTOUpdated = 1;
726 		}
727 		if (chan->mode & NGENE_IO_TSIN)
728 			chan->pBufferExchange = tsin_exchange;
729 		spin_unlock_irq(&chan->state_lock);
730 	}
731 		/* else dev_info(pdev, "lock=%08x\n",
732 			   ngreadl(0x9310)); */
733 
734 	mutex_lock(&dev->stream_mutex);
735 	ret = ngene_command_stream_control(dev, chan->number,
736 					   control, mode, flags);
737 	mutex_unlock(&dev->stream_mutex);
738 
739 	if (!ret)
740 		chan->running = state;
741 	else
742 		dev_err(pdev, "%s %d failed\n", __func__, state);
743 	if (!state) {
744 		spin_lock_irq(&chan->state_lock);
745 		chan->pBufferExchange = NULL;
746 		dvb_ringbuffer_flush(&dev->tsout_rbuf);
747 		spin_unlock_irq(&chan->state_lock);
748 	}
749 }
750 
751 
752 /****************************************************************************/
753 /* nGene hardware init and release functions ********************************/
754 /****************************************************************************/
755 
756 static void free_ringbuffer(struct ngene *dev, struct SRingBufferDescriptor *rb)
757 {
758 	struct SBufferHeader *Cur = rb->Head;
759 	u32 j;
760 
761 	if (!Cur)
762 		return;
763 
764 	for (j = 0; j < rb->NumBuffers; j++, Cur = Cur->Next) {
765 		if (Cur->Buffer1)
766 			dma_free_coherent(&dev->pci_dev->dev,
767 					  rb->Buffer1Length, Cur->Buffer1,
768 					  Cur->scList1->Address);
769 
770 		if (Cur->Buffer2)
771 			dma_free_coherent(&dev->pci_dev->dev,
772 					  rb->Buffer2Length, Cur->Buffer2,
773 					  Cur->scList2->Address);
774 	}
775 
776 	if (rb->SCListMem)
777 		dma_free_coherent(&dev->pci_dev->dev, rb->SCListMemSize,
778 				  rb->SCListMem, rb->PASCListMem);
779 
780 	dma_free_coherent(&dev->pci_dev->dev, rb->MemSize, rb->Head,
781 			  rb->PAHead);
782 }
783 
784 static void free_idlebuffer(struct ngene *dev,
785 		     struct SRingBufferDescriptor *rb,
786 		     struct SRingBufferDescriptor *tb)
787 {
788 	int j;
789 	struct SBufferHeader *Cur = tb->Head;
790 
791 	if (!rb->Head)
792 		return;
793 	free_ringbuffer(dev, rb);
794 	for (j = 0; j < tb->NumBuffers; j++, Cur = Cur->Next) {
795 		Cur->Buffer2 = NULL;
796 		Cur->scList2 = NULL;
797 		Cur->ngeneBuffer.Address_of_first_entry_2 = 0;
798 		Cur->ngeneBuffer.Number_of_entries_2 = 0;
799 	}
800 }
801 
802 static void free_common_buffers(struct ngene *dev)
803 {
804 	u32 i;
805 	struct ngene_channel *chan;
806 
807 	for (i = STREAM_VIDEOIN1; i < MAX_STREAM; i++) {
808 		chan = &dev->channel[i];
809 		free_idlebuffer(dev, &chan->TSIdleBuffer, &chan->TSRingBuffer);
810 		free_ringbuffer(dev, &chan->RingBuffer);
811 		free_ringbuffer(dev, &chan->TSRingBuffer);
812 	}
813 
814 	if (dev->OverflowBuffer)
815 		dma_free_coherent(&dev->pci_dev->dev, OVERFLOW_BUFFER_SIZE,
816 				  dev->OverflowBuffer, dev->PAOverflowBuffer);
817 
818 	if (dev->FWInterfaceBuffer)
819 		dma_free_coherent(&dev->pci_dev->dev, 4096,
820 				  dev->FWInterfaceBuffer,
821 				  dev->PAFWInterfaceBuffer);
822 }
823 
824 /****************************************************************************/
825 /* Ring buffer handling *****************************************************/
826 /****************************************************************************/
827 
828 static int create_ring_buffer(struct pci_dev *pci_dev,
829 		       struct SRingBufferDescriptor *descr, u32 NumBuffers)
830 {
831 	dma_addr_t tmp;
832 	struct SBufferHeader *Head;
833 	u32 i;
834 	u32 MemSize = SIZEOF_SBufferHeader * NumBuffers;
835 	u64 PARingBufferHead;
836 	u64 PARingBufferCur;
837 	u64 PARingBufferNext;
838 	struct SBufferHeader *Cur, *Next;
839 
840 	descr->Head = NULL;
841 	descr->MemSize = 0;
842 	descr->PAHead = 0;
843 	descr->NumBuffers = 0;
844 
845 	if (MemSize < 4096)
846 		MemSize = 4096;
847 
848 	Head = dma_alloc_coherent(&pci_dev->dev, MemSize, &tmp, GFP_KERNEL);
849 	PARingBufferHead = tmp;
850 
851 	if (!Head)
852 		return -ENOMEM;
853 
854 	PARingBufferCur = PARingBufferHead;
855 	Cur = Head;
856 
857 	for (i = 0; i < NumBuffers - 1; i++) {
858 		Next = (struct SBufferHeader *)
859 			(((u8 *) Cur) + SIZEOF_SBufferHeader);
860 		PARingBufferNext = PARingBufferCur + SIZEOF_SBufferHeader;
861 		Cur->Next = Next;
862 		Cur->ngeneBuffer.Next = PARingBufferNext;
863 		Cur = Next;
864 		PARingBufferCur = PARingBufferNext;
865 	}
866 	/* Last Buffer points back to first one */
867 	Cur->Next = Head;
868 	Cur->ngeneBuffer.Next = PARingBufferHead;
869 
870 	descr->Head       = Head;
871 	descr->MemSize    = MemSize;
872 	descr->PAHead     = PARingBufferHead;
873 	descr->NumBuffers = NumBuffers;
874 
875 	return 0;
876 }
877 
878 static int AllocateRingBuffers(struct pci_dev *pci_dev,
879 			       dma_addr_t of,
880 			       struct SRingBufferDescriptor *pRingBuffer,
881 			       u32 Buffer1Length, u32 Buffer2Length)
882 {
883 	dma_addr_t tmp;
884 	u32 i, j;
885 	u32 SCListMemSize = pRingBuffer->NumBuffers
886 		* ((Buffer2Length != 0) ? (NUM_SCATTER_GATHER_ENTRIES * 2) :
887 		    NUM_SCATTER_GATHER_ENTRIES)
888 		* sizeof(struct HW_SCATTER_GATHER_ELEMENT);
889 
890 	u64 PASCListMem;
891 	struct HW_SCATTER_GATHER_ELEMENT *SCListEntry;
892 	u64 PASCListEntry;
893 	struct SBufferHeader *Cur;
894 	void *SCListMem;
895 
896 	if (SCListMemSize < 4096)
897 		SCListMemSize = 4096;
898 
899 	SCListMem = dma_alloc_coherent(&pci_dev->dev, SCListMemSize, &tmp,
900 				       GFP_KERNEL);
901 
902 	PASCListMem = tmp;
903 	if (SCListMem == NULL)
904 		return -ENOMEM;
905 
906 	pRingBuffer->SCListMem = SCListMem;
907 	pRingBuffer->PASCListMem = PASCListMem;
908 	pRingBuffer->SCListMemSize = SCListMemSize;
909 	pRingBuffer->Buffer1Length = Buffer1Length;
910 	pRingBuffer->Buffer2Length = Buffer2Length;
911 
912 	SCListEntry = SCListMem;
913 	PASCListEntry = PASCListMem;
914 	Cur = pRingBuffer->Head;
915 
916 	for (i = 0; i < pRingBuffer->NumBuffers; i += 1, Cur = Cur->Next) {
917 		u64 PABuffer;
918 
919 		void *Buffer = dma_alloc_coherent(&pci_dev->dev,
920 						  Buffer1Length, &tmp, GFP_KERNEL);
921 		PABuffer = tmp;
922 
923 		if (Buffer == NULL)
924 			return -ENOMEM;
925 
926 		Cur->Buffer1 = Buffer;
927 
928 		SCListEntry->Address = PABuffer;
929 		SCListEntry->Length  = Buffer1Length;
930 
931 		Cur->scList1 = SCListEntry;
932 		Cur->ngeneBuffer.Address_of_first_entry_1 = PASCListEntry;
933 		Cur->ngeneBuffer.Number_of_entries_1 =
934 			NUM_SCATTER_GATHER_ENTRIES;
935 
936 		SCListEntry += 1;
937 		PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT);
938 
939 #if NUM_SCATTER_GATHER_ENTRIES > 1
940 		for (j = 0; j < NUM_SCATTER_GATHER_ENTRIES - 1; j += 1) {
941 			SCListEntry->Address = of;
942 			SCListEntry->Length = OVERFLOW_BUFFER_SIZE;
943 			SCListEntry += 1;
944 			PASCListEntry +=
945 				sizeof(struct HW_SCATTER_GATHER_ELEMENT);
946 		}
947 #endif
948 
949 		if (!Buffer2Length)
950 			continue;
951 
952 		Buffer = dma_alloc_coherent(&pci_dev->dev, Buffer2Length,
953 					    &tmp, GFP_KERNEL);
954 		PABuffer = tmp;
955 
956 		if (Buffer == NULL)
957 			return -ENOMEM;
958 
959 		Cur->Buffer2 = Buffer;
960 
961 		SCListEntry->Address = PABuffer;
962 		SCListEntry->Length  = Buffer2Length;
963 
964 		Cur->scList2 = SCListEntry;
965 		Cur->ngeneBuffer.Address_of_first_entry_2 = PASCListEntry;
966 		Cur->ngeneBuffer.Number_of_entries_2 =
967 			NUM_SCATTER_GATHER_ENTRIES;
968 
969 		SCListEntry   += 1;
970 		PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT);
971 
972 #if NUM_SCATTER_GATHER_ENTRIES > 1
973 		for (j = 0; j < NUM_SCATTER_GATHER_ENTRIES - 1; j++) {
974 			SCListEntry->Address = of;
975 			SCListEntry->Length = OVERFLOW_BUFFER_SIZE;
976 			SCListEntry += 1;
977 			PASCListEntry +=
978 				sizeof(struct HW_SCATTER_GATHER_ELEMENT);
979 		}
980 #endif
981 
982 	}
983 
984 	return 0;
985 }
986 
987 static int FillTSIdleBuffer(struct SRingBufferDescriptor *pIdleBuffer,
988 			    struct SRingBufferDescriptor *pRingBuffer)
989 {
990 	/* Copy pointer to scatter gather list in TSRingbuffer
991 	   structure for buffer 2
992 	   Load number of buffer
993 	*/
994 	u32 n = pRingBuffer->NumBuffers;
995 
996 	/* Point to first buffer entry */
997 	struct SBufferHeader *Cur = pRingBuffer->Head;
998 	int i;
999 	/* Loop through all buffer and set Buffer 2 pointers to TSIdlebuffer */
1000 	for (i = 0; i < n; i++) {
1001 		Cur->Buffer2 = pIdleBuffer->Head->Buffer1;
1002 		Cur->scList2 = pIdleBuffer->Head->scList1;
1003 		Cur->ngeneBuffer.Address_of_first_entry_2 =
1004 			pIdleBuffer->Head->ngeneBuffer.
1005 			Address_of_first_entry_1;
1006 		Cur->ngeneBuffer.Number_of_entries_2 =
1007 			pIdleBuffer->Head->ngeneBuffer.Number_of_entries_1;
1008 		Cur = Cur->Next;
1009 	}
1010 	return 0;
1011 }
1012 
1013 static u32 RingBufferSizes[MAX_STREAM] = {
1014 	RING_SIZE_VIDEO,
1015 	RING_SIZE_VIDEO,
1016 	RING_SIZE_AUDIO,
1017 	RING_SIZE_AUDIO,
1018 	RING_SIZE_AUDIO,
1019 };
1020 
1021 static u32 Buffer1Sizes[MAX_STREAM] = {
1022 	MAX_VIDEO_BUFFER_SIZE,
1023 	MAX_VIDEO_BUFFER_SIZE,
1024 	MAX_AUDIO_BUFFER_SIZE,
1025 	MAX_AUDIO_BUFFER_SIZE,
1026 	MAX_AUDIO_BUFFER_SIZE
1027 };
1028 
1029 static u32 Buffer2Sizes[MAX_STREAM] = {
1030 	MAX_VBI_BUFFER_SIZE,
1031 	MAX_VBI_BUFFER_SIZE,
1032 	0,
1033 	0,
1034 	0
1035 };
1036 
1037 
1038 static int AllocCommonBuffers(struct ngene *dev)
1039 {
1040 	int status = 0, i;
1041 
1042 	dev->FWInterfaceBuffer = dma_alloc_coherent(&dev->pci_dev->dev, 4096,
1043 						    &dev->PAFWInterfaceBuffer,
1044 						    GFP_KERNEL);
1045 	if (!dev->FWInterfaceBuffer)
1046 		return -ENOMEM;
1047 	dev->hosttongene = dev->FWInterfaceBuffer;
1048 	dev->ngenetohost = dev->FWInterfaceBuffer + 256;
1049 	dev->EventBuffer = dev->FWInterfaceBuffer + 512;
1050 
1051 	dev->OverflowBuffer = dma_alloc_coherent(&dev->pci_dev->dev,
1052 						 OVERFLOW_BUFFER_SIZE,
1053 						 &dev->PAOverflowBuffer, GFP_KERNEL);
1054 	if (!dev->OverflowBuffer)
1055 		return -ENOMEM;
1056 
1057 	for (i = STREAM_VIDEOIN1; i < MAX_STREAM; i++) {
1058 		int type = dev->card_info->io_type[i];
1059 
1060 		dev->channel[i].State = KSSTATE_STOP;
1061 
1062 		if (type & (NGENE_IO_TV | NGENE_IO_HDTV | NGENE_IO_AIN)) {
1063 			status = create_ring_buffer(dev->pci_dev,
1064 						    &dev->channel[i].RingBuffer,
1065 						    RingBufferSizes[i]);
1066 			if (status < 0)
1067 				break;
1068 
1069 			if (type & (NGENE_IO_TV | NGENE_IO_AIN)) {
1070 				status = AllocateRingBuffers(dev->pci_dev,
1071 							     dev->
1072 							     PAOverflowBuffer,
1073 							     &dev->channel[i].
1074 							     RingBuffer,
1075 							     Buffer1Sizes[i],
1076 							     Buffer2Sizes[i]);
1077 				if (status < 0)
1078 					break;
1079 			} else if (type & NGENE_IO_HDTV) {
1080 				status = AllocateRingBuffers(dev->pci_dev,
1081 							     dev->
1082 							     PAOverflowBuffer,
1083 							     &dev->channel[i].
1084 							     RingBuffer,
1085 							   MAX_HDTV_BUFFER_SIZE,
1086 							     0);
1087 				if (status < 0)
1088 					break;
1089 			}
1090 		}
1091 
1092 		if (type & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
1093 
1094 			status = create_ring_buffer(dev->pci_dev,
1095 						    &dev->channel[i].
1096 						    TSRingBuffer, RING_SIZE_TS);
1097 			if (status < 0)
1098 				break;
1099 
1100 			status = AllocateRingBuffers(dev->pci_dev,
1101 						     dev->PAOverflowBuffer,
1102 						     &dev->channel[i].
1103 						     TSRingBuffer,
1104 						     MAX_TS_BUFFER_SIZE, 0);
1105 			if (status)
1106 				break;
1107 		}
1108 
1109 		if (type & NGENE_IO_TSOUT) {
1110 			status = create_ring_buffer(dev->pci_dev,
1111 						    &dev->channel[i].
1112 						    TSIdleBuffer, 1);
1113 			if (status < 0)
1114 				break;
1115 			status = AllocateRingBuffers(dev->pci_dev,
1116 						     dev->PAOverflowBuffer,
1117 						     &dev->channel[i].
1118 						     TSIdleBuffer,
1119 						     MAX_TS_BUFFER_SIZE, 0);
1120 			if (status)
1121 				break;
1122 			FillTSIdleBuffer(&dev->channel[i].TSIdleBuffer,
1123 					 &dev->channel[i].TSRingBuffer);
1124 		}
1125 	}
1126 	return status;
1127 }
1128 
1129 static void ngene_release_buffers(struct ngene *dev)
1130 {
1131 	if (dev->iomem)
1132 		iounmap(dev->iomem);
1133 	free_common_buffers(dev);
1134 	vfree(dev->tsout_buf);
1135 	vfree(dev->tsin_buf);
1136 	vfree(dev->ain_buf);
1137 	vfree(dev->vin_buf);
1138 	vfree(dev);
1139 }
1140 
1141 static int ngene_get_buffers(struct ngene *dev)
1142 {
1143 	if (AllocCommonBuffers(dev))
1144 		return -ENOMEM;
1145 	if (dev->card_info->io_type[4] & NGENE_IO_TSOUT) {
1146 		dev->tsout_buf = vmalloc(TSOUT_BUF_SIZE);
1147 		if (!dev->tsout_buf)
1148 			return -ENOMEM;
1149 		dvb_ringbuffer_init(&dev->tsout_rbuf,
1150 				    dev->tsout_buf, TSOUT_BUF_SIZE);
1151 	}
1152 	if (dev->card_info->io_type[2]&NGENE_IO_TSIN) {
1153 		dev->tsin_buf = vmalloc(TSIN_BUF_SIZE);
1154 		if (!dev->tsin_buf)
1155 			return -ENOMEM;
1156 		dvb_ringbuffer_init(&dev->tsin_rbuf,
1157 				    dev->tsin_buf, TSIN_BUF_SIZE);
1158 	}
1159 	if (dev->card_info->io_type[2] & NGENE_IO_AIN) {
1160 		dev->ain_buf = vmalloc(AIN_BUF_SIZE);
1161 		if (!dev->ain_buf)
1162 			return -ENOMEM;
1163 		dvb_ringbuffer_init(&dev->ain_rbuf, dev->ain_buf, AIN_BUF_SIZE);
1164 	}
1165 	if (dev->card_info->io_type[0] & NGENE_IO_HDTV) {
1166 		dev->vin_buf = vmalloc(VIN_BUF_SIZE);
1167 		if (!dev->vin_buf)
1168 			return -ENOMEM;
1169 		dvb_ringbuffer_init(&dev->vin_rbuf, dev->vin_buf, VIN_BUF_SIZE);
1170 	}
1171 	dev->iomem = ioremap(pci_resource_start(dev->pci_dev, 0),
1172 			     pci_resource_len(dev->pci_dev, 0));
1173 	if (!dev->iomem)
1174 		return -ENOMEM;
1175 
1176 	return 0;
1177 }
1178 
1179 static void ngene_init(struct ngene *dev)
1180 {
1181 	struct device *pdev = &dev->pci_dev->dev;
1182 	int i;
1183 
1184 	tasklet_setup(&dev->event_tasklet, event_tasklet);
1185 
1186 	memset_io(dev->iomem + 0xc000, 0x00, 0x220);
1187 	memset_io(dev->iomem + 0xc400, 0x00, 0x100);
1188 
1189 	for (i = 0; i < MAX_STREAM; i++) {
1190 		dev->channel[i].dev = dev;
1191 		dev->channel[i].number = i;
1192 	}
1193 
1194 	dev->fw_interface_version = 0;
1195 
1196 	ngwritel(0, NGENE_INT_ENABLE);
1197 
1198 	dev->icounts = ngreadl(NGENE_INT_COUNTS);
1199 
1200 	dev->device_version = ngreadl(DEV_VER) & 0x0f;
1201 	dev_info(pdev, "Device version %d\n", dev->device_version);
1202 }
1203 
1204 static int ngene_load_firm(struct ngene *dev)
1205 {
1206 	struct device *pdev = &dev->pci_dev->dev;
1207 	u32 size;
1208 	const struct firmware *fw = NULL;
1209 	u8 *ngene_fw;
1210 	char *fw_name;
1211 	int err, version;
1212 
1213 	version = dev->card_info->fw_version;
1214 
1215 	switch (version) {
1216 	default:
1217 	case 15:
1218 		version = 15;
1219 		size = 23466;
1220 		fw_name = "ngene_15.fw";
1221 		dev->cmd_timeout_workaround = true;
1222 		break;
1223 	case 16:
1224 		size = 23498;
1225 		fw_name = "ngene_16.fw";
1226 		dev->cmd_timeout_workaround = true;
1227 		break;
1228 	case 17:
1229 		size = 24446;
1230 		fw_name = "ngene_17.fw";
1231 		dev->cmd_timeout_workaround = true;
1232 		break;
1233 	case 18:
1234 		size = 0;
1235 		fw_name = "ngene_18.fw";
1236 		break;
1237 	}
1238 
1239 	if (request_firmware(&fw, fw_name, &dev->pci_dev->dev) < 0) {
1240 		dev_err(pdev, "Could not load firmware file %s.\n", fw_name);
1241 		dev_info(pdev, "Copy %s to your hotplug directory!\n",
1242 			 fw_name);
1243 		return -1;
1244 	}
1245 	if (size == 0)
1246 		size = fw->size;
1247 	if (size != fw->size) {
1248 		dev_err(pdev, "Firmware %s has invalid size!", fw_name);
1249 		err = -1;
1250 	} else {
1251 		dev_info(pdev, "Loading firmware file %s.\n", fw_name);
1252 		ngene_fw = (u8 *) fw->data;
1253 		err = ngene_command_load_firmware(dev, ngene_fw, size);
1254 	}
1255 
1256 	release_firmware(fw);
1257 
1258 	return err;
1259 }
1260 
1261 static void ngene_stop(struct ngene *dev)
1262 {
1263 	mutex_destroy(&dev->cmd_mutex);
1264 	i2c_del_adapter(&(dev->channel[0].i2c_adapter));
1265 	i2c_del_adapter(&(dev->channel[1].i2c_adapter));
1266 	ngwritel(0, NGENE_INT_ENABLE);
1267 	ngwritel(0, NGENE_COMMAND);
1268 	ngwritel(0, NGENE_COMMAND_HI);
1269 	ngwritel(0, NGENE_STATUS);
1270 	ngwritel(0, NGENE_STATUS_HI);
1271 	ngwritel(0, NGENE_EVENT);
1272 	ngwritel(0, NGENE_EVENT_HI);
1273 	free_irq(dev->pci_dev->irq, dev);
1274 #ifdef CONFIG_PCI_MSI
1275 	if (dev->msi_enabled)
1276 		pci_disable_msi(dev->pci_dev);
1277 #endif
1278 }
1279 
1280 static int ngene_buffer_config(struct ngene *dev)
1281 {
1282 	int stat;
1283 
1284 	if (dev->card_info->fw_version >= 17) {
1285 		u8 tsin12_config[6]   = { 0x60, 0x60, 0x00, 0x00, 0x00, 0x00 };
1286 		u8 tsin1234_config[6] = { 0x30, 0x30, 0x00, 0x30, 0x30, 0x00 };
1287 		u8 tsio1235_config[6] = { 0x30, 0x30, 0x00, 0x28, 0x00, 0x38 };
1288 		u8 *bconf = tsin12_config;
1289 
1290 		if (dev->card_info->io_type[2]&NGENE_IO_TSIN &&
1291 		    dev->card_info->io_type[3]&NGENE_IO_TSIN) {
1292 			bconf = tsin1234_config;
1293 			if (dev->card_info->io_type[4]&NGENE_IO_TSOUT &&
1294 			    dev->ci.en)
1295 				bconf = tsio1235_config;
1296 		}
1297 		stat = ngene_command_config_free_buf(dev, bconf);
1298 	} else {
1299 		int bconf = BUFFER_CONFIG_4422;
1300 
1301 		if (dev->card_info->io_type[3] == NGENE_IO_TSIN)
1302 			bconf = BUFFER_CONFIG_3333;
1303 		stat = ngene_command_config_buf(dev, bconf);
1304 	}
1305 	return stat;
1306 }
1307 
1308 
1309 static int ngene_start(struct ngene *dev)
1310 {
1311 	int stat;
1312 	int i;
1313 
1314 	pci_set_master(dev->pci_dev);
1315 	ngene_init(dev);
1316 
1317 	stat = request_irq(dev->pci_dev->irq, irq_handler,
1318 			   IRQF_SHARED, "nGene",
1319 			   (void *)dev);
1320 	if (stat < 0)
1321 		return stat;
1322 
1323 	init_waitqueue_head(&dev->cmd_wq);
1324 	init_waitqueue_head(&dev->tx_wq);
1325 	init_waitqueue_head(&dev->rx_wq);
1326 	mutex_init(&dev->cmd_mutex);
1327 	mutex_init(&dev->stream_mutex);
1328 	sema_init(&dev->pll_mutex, 1);
1329 	mutex_init(&dev->i2c_switch_mutex);
1330 	spin_lock_init(&dev->cmd_lock);
1331 	for (i = 0; i < MAX_STREAM; i++)
1332 		spin_lock_init(&dev->channel[i].state_lock);
1333 	ngwritel(1, TIMESTAMPS);
1334 
1335 	ngwritel(1, NGENE_INT_ENABLE);
1336 
1337 	stat = ngene_load_firm(dev);
1338 	if (stat < 0)
1339 		goto fail;
1340 
1341 #ifdef CONFIG_PCI_MSI
1342 	/* enable MSI if kernel and card support it */
1343 	if (pci_msi_enabled() && dev->card_info->msi_supported) {
1344 		struct device *pdev = &dev->pci_dev->dev;
1345 		unsigned long flags;
1346 
1347 		ngwritel(0, NGENE_INT_ENABLE);
1348 		free_irq(dev->pci_dev->irq, dev);
1349 		stat = pci_enable_msi(dev->pci_dev);
1350 		if (stat) {
1351 			dev_info(pdev, "MSI not available\n");
1352 			flags = IRQF_SHARED;
1353 		} else {
1354 			flags = 0;
1355 			dev->msi_enabled = true;
1356 		}
1357 		stat = request_irq(dev->pci_dev->irq, irq_handler,
1358 					flags, "nGene", dev);
1359 		if (stat < 0)
1360 			goto fail2;
1361 		ngwritel(1, NGENE_INT_ENABLE);
1362 	}
1363 #endif
1364 
1365 	stat = ngene_i2c_init(dev, 0);
1366 	if (stat < 0)
1367 		goto fail;
1368 
1369 	stat = ngene_i2c_init(dev, 1);
1370 	if (stat < 0)
1371 		goto fail;
1372 
1373 	return 0;
1374 
1375 fail:
1376 	ngwritel(0, NGENE_INT_ENABLE);
1377 	free_irq(dev->pci_dev->irq, dev);
1378 #ifdef CONFIG_PCI_MSI
1379 fail2:
1380 	if (dev->msi_enabled)
1381 		pci_disable_msi(dev->pci_dev);
1382 #endif
1383 	return stat;
1384 }
1385 
1386 /****************************************************************************/
1387 /****************************************************************************/
1388 /****************************************************************************/
1389 
1390 static void release_channel(struct ngene_channel *chan)
1391 {
1392 	struct dvb_demux *dvbdemux = &chan->demux;
1393 	struct ngene *dev = chan->dev;
1394 
1395 	if (chan->running)
1396 		set_transfer(chan, 0);
1397 
1398 	tasklet_kill(&chan->demux_tasklet);
1399 
1400 	if (chan->ci_dev) {
1401 		dvb_unregister_device(chan->ci_dev);
1402 		chan->ci_dev = NULL;
1403 	}
1404 
1405 	if (chan->fe2)
1406 		dvb_unregister_frontend(chan->fe2);
1407 
1408 	if (chan->fe) {
1409 		dvb_unregister_frontend(chan->fe);
1410 
1411 		/* release I2C client (tuner) if needed */
1412 		if (chan->i2c_client_fe) {
1413 			dvb_module_release(chan->i2c_client[0]);
1414 			chan->i2c_client[0] = NULL;
1415 		}
1416 
1417 		dvb_frontend_detach(chan->fe);
1418 		chan->fe = NULL;
1419 	}
1420 
1421 	if (chan->has_demux) {
1422 		dvb_net_release(&chan->dvbnet);
1423 		dvbdemux->dmx.close(&dvbdemux->dmx);
1424 		dvbdemux->dmx.remove_frontend(&dvbdemux->dmx,
1425 					      &chan->hw_frontend);
1426 		dvbdemux->dmx.remove_frontend(&dvbdemux->dmx,
1427 					      &chan->mem_frontend);
1428 		dvb_dmxdev_release(&chan->dmxdev);
1429 		dvb_dmx_release(&chan->demux);
1430 		chan->has_demux = false;
1431 	}
1432 
1433 	if (chan->has_adapter) {
1434 		dvb_unregister_adapter(&dev->adapter[chan->number]);
1435 		chan->has_adapter = false;
1436 	}
1437 }
1438 
1439 static int init_channel(struct ngene_channel *chan)
1440 {
1441 	int ret = 0, nr = chan->number;
1442 	struct dvb_adapter *adapter = NULL;
1443 	struct dvb_demux *dvbdemux = &chan->demux;
1444 	struct ngene *dev = chan->dev;
1445 	struct ngene_info *ni = dev->card_info;
1446 	int io = ni->io_type[nr];
1447 
1448 	tasklet_setup(&chan->demux_tasklet, demux_tasklet);
1449 	chan->users = 0;
1450 	chan->type = io;
1451 	chan->mode = chan->type;	/* for now only one mode */
1452 	chan->i2c_client_fe = 0;	/* be sure this is set to zero */
1453 
1454 	if (io & NGENE_IO_TSIN) {
1455 		chan->fe = NULL;
1456 		if (ni->demod_attach[nr]) {
1457 			ret = ni->demod_attach[nr](chan);
1458 			if (ret < 0)
1459 				goto err;
1460 		}
1461 		if (chan->fe && ni->tuner_attach[nr]) {
1462 			ret = ni->tuner_attach[nr](chan);
1463 			if (ret < 0)
1464 				goto err;
1465 		}
1466 	}
1467 
1468 	if (!dev->ci.en && (io & NGENE_IO_TSOUT))
1469 		return 0;
1470 
1471 	if (io & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
1472 		if (nr >= STREAM_AUDIOIN1)
1473 			chan->DataFormatFlags = DF_SWAP32;
1474 
1475 		if (nr == 0 || !one_adapter || dev->first_adapter == NULL) {
1476 			adapter = &dev->adapter[nr];
1477 			ret = dvb_register_adapter(adapter, "nGene",
1478 						   THIS_MODULE,
1479 						   &chan->dev->pci_dev->dev,
1480 						   adapter_nr);
1481 			if (ret < 0)
1482 				goto err;
1483 			if (dev->first_adapter == NULL)
1484 				dev->first_adapter = adapter;
1485 			chan->has_adapter = true;
1486 		} else
1487 			adapter = dev->first_adapter;
1488 	}
1489 
1490 	if (dev->ci.en && (io & NGENE_IO_TSOUT)) {
1491 		dvb_ca_en50221_init(adapter, dev->ci.en, 0, 1);
1492 		set_transfer(chan, 1);
1493 		chan->dev->channel[2].DataFormatFlags = DF_SWAP32;
1494 		set_transfer(&chan->dev->channel[2], 1);
1495 		dvb_register_device(adapter, &chan->ci_dev,
1496 				    &ngene_dvbdev_ci, (void *) chan,
1497 				    DVB_DEVICE_SEC, 0);
1498 		if (!chan->ci_dev)
1499 			goto err;
1500 	}
1501 
1502 	if (chan->fe) {
1503 		if (dvb_register_frontend(adapter, chan->fe) < 0)
1504 			goto err;
1505 		chan->has_demux = true;
1506 	}
1507 	if (chan->fe2) {
1508 		if (dvb_register_frontend(adapter, chan->fe2) < 0)
1509 			goto err;
1510 		if (chan->fe) {
1511 			chan->fe2->tuner_priv = chan->fe->tuner_priv;
1512 			memcpy(&chan->fe2->ops.tuner_ops,
1513 			       &chan->fe->ops.tuner_ops,
1514 			       sizeof(struct dvb_tuner_ops));
1515 		}
1516 	}
1517 
1518 	if (chan->has_demux) {
1519 		ret = my_dvb_dmx_ts_card_init(dvbdemux, "SW demux",
1520 					      ngene_start_feed,
1521 					      ngene_stop_feed, chan);
1522 		ret = my_dvb_dmxdev_ts_card_init(&chan->dmxdev, &chan->demux,
1523 						 &chan->hw_frontend,
1524 						 &chan->mem_frontend, adapter);
1525 		ret = dvb_net_init(adapter, &chan->dvbnet, &chan->demux.dmx);
1526 	}
1527 
1528 	return ret;
1529 
1530 err:
1531 	if (chan->fe) {
1532 		dvb_frontend_detach(chan->fe);
1533 		chan->fe = NULL;
1534 	}
1535 	release_channel(chan);
1536 	return 0;
1537 }
1538 
1539 static int init_channels(struct ngene *dev)
1540 {
1541 	int i, j;
1542 
1543 	for (i = 0; i < MAX_STREAM; i++) {
1544 		dev->channel[i].number = i;
1545 		if (init_channel(&dev->channel[i]) < 0) {
1546 			for (j = i - 1; j >= 0; j--)
1547 				release_channel(&dev->channel[j]);
1548 			return -1;
1549 		}
1550 	}
1551 	return 0;
1552 }
1553 
1554 static const struct cxd2099_cfg cxd_cfgtmpl = {
1555 	.bitrate = 62000,
1556 	.polarity = 0,
1557 	.clock_mode = 0,
1558 };
1559 
1560 static void cxd_attach(struct ngene *dev)
1561 {
1562 	struct device *pdev = &dev->pci_dev->dev;
1563 	struct ngene_ci *ci = &dev->ci;
1564 	struct cxd2099_cfg cxd_cfg = cxd_cfgtmpl;
1565 	struct i2c_client *client;
1566 	int ret;
1567 	u8 type;
1568 
1569 	/* check for CXD2099AR presence before attaching */
1570 	ret = ngene_port_has_cxd2099(&dev->channel[0].i2c_adapter, &type);
1571 	if (!ret) {
1572 		dev_dbg(pdev, "No CXD2099AR found\n");
1573 		return;
1574 	}
1575 
1576 	if (type != 1) {
1577 		dev_warn(pdev, "CXD2099AR is uninitialized!\n");
1578 		return;
1579 	}
1580 
1581 	cxd_cfg.en = &ci->en;
1582 	client = dvb_module_probe("cxd2099", NULL,
1583 				  &dev->channel[0].i2c_adapter,
1584 				  0x40, &cxd_cfg);
1585 	if (!client)
1586 		goto err;
1587 
1588 	ci->dev = dev;
1589 	dev->channel[0].i2c_client[0] = client;
1590 	return;
1591 
1592 err:
1593 	dev_err(pdev, "CXD2099AR attach failed\n");
1594 	return;
1595 }
1596 
1597 static void cxd_detach(struct ngene *dev)
1598 {
1599 	struct ngene_ci *ci = &dev->ci;
1600 
1601 	dvb_ca_en50221_release(ci->en);
1602 
1603 	dvb_module_release(dev->channel[0].i2c_client[0]);
1604 	dev->channel[0].i2c_client[0] = NULL;
1605 	ci->en = NULL;
1606 }
1607 
1608 /***********************************/
1609 /* workaround for shutdown failure */
1610 /***********************************/
1611 
1612 static void ngene_unlink(struct ngene *dev)
1613 {
1614 	struct ngene_command com;
1615 
1616 	com.cmd.hdr.Opcode = CMD_MEM_WRITE;
1617 	com.cmd.hdr.Length = 3;
1618 	com.cmd.MemoryWrite.address = 0x910c;
1619 	com.cmd.MemoryWrite.data = 0xff;
1620 	com.in_len = 3;
1621 	com.out_len = 1;
1622 
1623 	mutex_lock(&dev->cmd_mutex);
1624 	ngwritel(0, NGENE_INT_ENABLE);
1625 	ngene_command_mutex(dev, &com);
1626 	mutex_unlock(&dev->cmd_mutex);
1627 }
1628 
1629 void ngene_shutdown(struct pci_dev *pdev)
1630 {
1631 	struct ngene *dev = pci_get_drvdata(pdev);
1632 
1633 	if (!dev || !shutdown_workaround)
1634 		return;
1635 
1636 	dev_info(&pdev->dev, "shutdown workaround...\n");
1637 	ngene_unlink(dev);
1638 	pci_disable_device(pdev);
1639 }
1640 
1641 /****************************************************************************/
1642 /* device probe/remove calls ************************************************/
1643 /****************************************************************************/
1644 
1645 void ngene_remove(struct pci_dev *pdev)
1646 {
1647 	struct ngene *dev = pci_get_drvdata(pdev);
1648 	int i;
1649 
1650 	tasklet_kill(&dev->event_tasklet);
1651 	for (i = MAX_STREAM - 1; i >= 0; i--)
1652 		release_channel(&dev->channel[i]);
1653 	if (dev->ci.en)
1654 		cxd_detach(dev);
1655 	ngene_stop(dev);
1656 	ngene_release_buffers(dev);
1657 	pci_disable_device(pdev);
1658 }
1659 
1660 int ngene_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
1661 {
1662 	struct ngene *dev;
1663 	int stat = 0;
1664 
1665 	if (pci_enable_device(pci_dev) < 0)
1666 		return -ENODEV;
1667 
1668 	dev = vzalloc(sizeof(struct ngene));
1669 	if (dev == NULL) {
1670 		stat = -ENOMEM;
1671 		goto fail0;
1672 	}
1673 
1674 	dev->pci_dev = pci_dev;
1675 	dev->card_info = (struct ngene_info *)id->driver_data;
1676 	dev_info(&pci_dev->dev, "Found %s\n", dev->card_info->name);
1677 
1678 	pci_set_drvdata(pci_dev, dev);
1679 
1680 	/* Alloc buffers and start nGene */
1681 	stat = ngene_get_buffers(dev);
1682 	if (stat < 0)
1683 		goto fail1;
1684 	stat = ngene_start(dev);
1685 	if (stat < 0)
1686 		goto fail1;
1687 
1688 	cxd_attach(dev);
1689 
1690 	stat = ngene_buffer_config(dev);
1691 	if (stat < 0)
1692 		goto fail1;
1693 
1694 
1695 	dev->i2c_current_bus = -1;
1696 
1697 	/* Register DVB adapters and devices for both channels */
1698 	stat = init_channels(dev);
1699 	if (stat < 0)
1700 		goto fail2;
1701 
1702 	return 0;
1703 
1704 fail2:
1705 	ngene_stop(dev);
1706 fail1:
1707 	ngene_release_buffers(dev);
1708 fail0:
1709 	pci_disable_device(pci_dev);
1710 	return stat;
1711 }
1712