xref: /linux/drivers/media/pci/netup_unidvb/netup_unidvb_spi.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * netup_unidvb_spi.c
3  *
4  * Internal SPI driver for NetUP Universal Dual DVB-CI
5  *
6  * Copyright (C) 2014 NetUP Inc.
7  * Copyright (C) 2014 Sergey Kozlov <serjk@netup.ru>
8  * Copyright (C) 2014 Abylay Ospan <aospan@netup.ru>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  */
20 
21 #include "netup_unidvb.h"
22 #include <linux/spi/spi.h>
23 #include <linux/spi/flash.h>
24 #include <linux/mtd/partitions.h>
25 #include <mtd/mtd-abi.h>
26 
27 #define NETUP_SPI_CTRL_IRQ	0x1000
28 #define NETUP_SPI_CTRL_IMASK	0x2000
29 #define NETUP_SPI_CTRL_START	0x8000
30 #define NETUP_SPI_CTRL_LAST_CS	0x4000
31 
32 #define NETUP_SPI_TIMEOUT	6000
33 
34 enum netup_spi_state {
35 	SPI_STATE_START,
36 	SPI_STATE_DONE,
37 };
38 
39 struct netup_spi_regs {
40 	__u8	data[1024];
41 	__le16	control_stat;
42 	__le16	clock_divider;
43 } __packed __aligned(1);
44 
45 struct netup_spi {
46 	struct device			*dev;
47 	struct spi_master		*master;
48 	struct netup_spi_regs __iomem	*regs;
49 	u8 __iomem			*mmio;
50 	spinlock_t			lock;
51 	wait_queue_head_t		waitq;
52 	enum netup_spi_state		state;
53 };
54 
55 static char netup_spi_name[64] = "fpga";
56 
57 static struct mtd_partition netup_spi_flash_partitions = {
58 	.name = netup_spi_name,
59 	.size = 0x1000000, /* 16MB */
60 	.offset = 0,
61 	.mask_flags = MTD_CAP_ROM
62 };
63 
64 static struct flash_platform_data spi_flash_data = {
65 	.name = "netup0_m25p128",
66 	.parts = &netup_spi_flash_partitions,
67 	.nr_parts = 1,
68 };
69 
70 static struct spi_board_info netup_spi_board = {
71 	.modalias = "m25p128",
72 	.max_speed_hz = 11000000,
73 	.chip_select = 0,
74 	.mode = SPI_MODE_0,
75 	.platform_data = &spi_flash_data,
76 };
77 
78 irqreturn_t netup_spi_interrupt(struct netup_spi *spi)
79 {
80 	u16 reg;
81 	unsigned long flags;
82 
83 	if (!spi)
84 		return IRQ_NONE;
85 
86 	spin_lock_irqsave(&spi->lock, flags);
87 	reg = readw(&spi->regs->control_stat);
88 	if (!(reg & NETUP_SPI_CTRL_IRQ)) {
89 		spin_unlock_irqrestore(&spi->lock, flags);
90 		dev_dbg(&spi->master->dev,
91 			"%s(): not mine interrupt\n", __func__);
92 		return IRQ_NONE;
93 	}
94 	writew(reg | NETUP_SPI_CTRL_IRQ, &spi->regs->control_stat);
95 	reg = readw(&spi->regs->control_stat);
96 	writew(reg & ~NETUP_SPI_CTRL_IMASK, &spi->regs->control_stat);
97 	spi->state = SPI_STATE_DONE;
98 	wake_up(&spi->waitq);
99 	spin_unlock_irqrestore(&spi->lock, flags);
100 	dev_dbg(&spi->master->dev,
101 		"%s(): SPI interrupt handled\n", __func__);
102 	return IRQ_HANDLED;
103 }
104 
105 static int netup_spi_transfer(struct spi_master *master,
106 			      struct spi_message *msg)
107 {
108 	struct netup_spi *spi = spi_master_get_devdata(master);
109 	struct spi_transfer *t;
110 	int result = 0;
111 	u32 tr_size;
112 
113 	/* reset CS */
114 	writew(NETUP_SPI_CTRL_LAST_CS, &spi->regs->control_stat);
115 	writew(0, &spi->regs->control_stat);
116 	list_for_each_entry(t, &msg->transfers, transfer_list) {
117 		tr_size = t->len;
118 		while (tr_size) {
119 			u32 frag_offset = t->len - tr_size;
120 			u32 frag_size = (tr_size > sizeof(spi->regs->data)) ?
121 					sizeof(spi->regs->data) : tr_size;
122 			int frag_last = 0;
123 
124 			if (list_is_last(&t->transfer_list,
125 					&msg->transfers) &&
126 					frag_offset + frag_size == t->len) {
127 				frag_last = 1;
128 			}
129 			if (t->tx_buf) {
130 				memcpy_toio(spi->regs->data,
131 					t->tx_buf + frag_offset,
132 					frag_size);
133 			} else {
134 				memset_io(spi->regs->data,
135 					0, frag_size);
136 			}
137 			spi->state = SPI_STATE_START;
138 			writew((frag_size & 0x3ff) |
139 				NETUP_SPI_CTRL_IMASK |
140 				NETUP_SPI_CTRL_START |
141 				(frag_last ? NETUP_SPI_CTRL_LAST_CS : 0),
142 				&spi->regs->control_stat);
143 			dev_dbg(&spi->master->dev,
144 				"%s(): control_stat 0x%04x\n",
145 				__func__, readw(&spi->regs->control_stat));
146 			wait_event_timeout(spi->waitq,
147 				spi->state != SPI_STATE_START,
148 				msecs_to_jiffies(NETUP_SPI_TIMEOUT));
149 			if (spi->state == SPI_STATE_DONE) {
150 				if (t->rx_buf) {
151 					memcpy_fromio(t->rx_buf + frag_offset,
152 						spi->regs->data, frag_size);
153 				}
154 			} else {
155 				if (spi->state == SPI_STATE_START) {
156 					dev_dbg(&spi->master->dev,
157 						"%s(): transfer timeout\n",
158 						__func__);
159 				} else {
160 					dev_dbg(&spi->master->dev,
161 						"%s(): invalid state %d\n",
162 						__func__, spi->state);
163 				}
164 				result = -EIO;
165 				goto done;
166 			}
167 			tr_size -= frag_size;
168 			msg->actual_length += frag_size;
169 		}
170 	}
171 done:
172 	msg->status = result;
173 	spi_finalize_current_message(master);
174 	return result;
175 }
176 
177 static int netup_spi_setup(struct spi_device *spi)
178 {
179 	return 0;
180 }
181 
182 int netup_spi_init(struct netup_unidvb_dev *ndev)
183 {
184 	struct spi_master *master;
185 	struct netup_spi *nspi;
186 
187 	master = spi_alloc_master(&ndev->pci_dev->dev,
188 		sizeof(struct netup_spi));
189 	if (!master) {
190 		dev_err(&ndev->pci_dev->dev,
191 			"%s(): unable to alloc SPI master\n", __func__);
192 		return -EINVAL;
193 	}
194 	nspi = spi_master_get_devdata(master);
195 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
196 	master->bus_num = -1;
197 	master->num_chipselect = 1;
198 	master->transfer_one_message = netup_spi_transfer;
199 	master->setup = netup_spi_setup;
200 	spin_lock_init(&nspi->lock);
201 	init_waitqueue_head(&nspi->waitq);
202 	nspi->master = master;
203 	nspi->regs = (struct netup_spi_regs __iomem *)(ndev->bmmio0 + 0x4000);
204 	writew(2, &nspi->regs->clock_divider);
205 	writew(NETUP_UNIDVB_IRQ_SPI, ndev->bmmio0 + REG_IMASK_SET);
206 	ndev->spi = nspi;
207 	if (spi_register_master(master)) {
208 		ndev->spi = NULL;
209 		dev_err(&ndev->pci_dev->dev,
210 			"%s(): unable to register SPI bus\n", __func__);
211 		return -EINVAL;
212 	}
213 	snprintf(netup_spi_name,
214 		sizeof(netup_spi_name),
215 		"fpga_%02x:%02x.%01x",
216 		ndev->pci_bus,
217 		ndev->pci_slot,
218 		ndev->pci_func);
219 	if (!spi_new_device(master, &netup_spi_board)) {
220 		ndev->spi = NULL;
221 		dev_err(&ndev->pci_dev->dev,
222 			"%s(): unable to create SPI device\n", __func__);
223 		return -EINVAL;
224 	}
225 	dev_dbg(&ndev->pci_dev->dev, "%s(): SPI init OK\n", __func__);
226 	return 0;
227 }
228 
229 void netup_spi_release(struct netup_unidvb_dev *ndev)
230 {
231 	u16 reg;
232 	unsigned long flags;
233 	struct netup_spi *spi = ndev->spi;
234 
235 	if (!spi)
236 		return;
237 
238 	spin_lock_irqsave(&spi->lock, flags);
239 	reg = readw(&spi->regs->control_stat);
240 	writew(reg | NETUP_SPI_CTRL_IRQ, &spi->regs->control_stat);
241 	reg = readw(&spi->regs->control_stat);
242 	writew(reg & ~NETUP_SPI_CTRL_IMASK, &spi->regs->control_stat);
243 	spin_unlock_irqrestore(&spi->lock, flags);
244 	spi_unregister_master(spi->master);
245 	ndev->spi = NULL;
246 }
247 
248 
249