xref: /linux/drivers/media/pci/ivtv/ivtv-i2c.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2     I2C functions
3     Copyright (C) 2003-2004  Kevin Thayer <nufan_wfk at yahoo.com>
4     Copyright (C) 2005-2007  Hans Verkuil <hverkuil@xs4all.nl>
5 
6     This program is free software; you can redistribute it and/or modify
7     it under the terms of the GNU General Public License as published by
8     the Free Software Foundation; either version 2 of the License, or
9     (at your option) any later version.
10 
11     This program is distributed in the hope that it will be useful,
12     but WITHOUT ANY WARRANTY; without even the implied warranty of
13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14     GNU General Public License for more details.
15 
16     You should have received a copy of the GNU General Public License
17     along with this program; if not, write to the Free Software
18     Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  */
20 
21 /*
22     This file includes an i2c implementation that was reverse engineered
23     from the Hauppauge windows driver.  Older ivtv versions used i2c-algo-bit,
24     which whilst fine under most circumstances, had trouble with the Zilog
25     CPU on the PVR-150 which handles IR functions (occasional inability to
26     communicate with the chip until it was reset) and also with the i2c
27     bus being completely unreachable when multiple PVR cards were present.
28 
29     The implementation is very similar to i2c-algo-bit, but there are enough
30     subtle differences that the two are hard to merge.  The general strategy
31     employed by i2c-algo-bit is to use udelay() to implement the timing
32     when putting out bits on the scl/sda lines.  The general strategy taken
33     here is to poll the lines for state changes (see ivtv_waitscl and
34     ivtv_waitsda).  In addition there are small delays at various locations
35     which poll the SCL line 5 times (ivtv_scldelay).  I would guess that
36     since this is memory mapped I/O that the length of those delays is tied
37     to the PCI bus clock.  There is some extra code to do with recovery
38     and retries.  Since it is not known what causes the actual i2c problems
39     in the first place, the only goal if one was to attempt to use
40     i2c-algo-bit would be to try to make it follow the same code path.
41     This would be a lot of work, and I'm also not convinced that it would
42     provide a generic benefit to i2c-algo-bit.  Therefore consider this
43     an engineering solution -- not pretty, but it works.
44 
45     Some more general comments about what we are doing:
46 
47     The i2c bus is a 2 wire serial bus, with clock (SCL) and data (SDA)
48     lines.  To communicate on the bus (as a master, we don't act as a slave),
49     we first initiate a start condition (ivtv_start).  We then write the
50     address of the device that we want to communicate with, along with a flag
51     that indicates whether this is a read or a write.  The slave then issues
52     an ACK signal (ivtv_ack), which tells us that it is ready for reading /
53     writing.  We then proceed with reading or writing (ivtv_read/ivtv_write),
54     and finally issue a stop condition (ivtv_stop) to make the bus available
55     to other masters.
56 
57     There is an additional form of transaction where a write may be
58     immediately followed by a read.  In this case, there is no intervening
59     stop condition.  (Only the msp3400 chip uses this method of data transfer).
60  */
61 
62 #include "ivtv-driver.h"
63 #include "ivtv-cards.h"
64 #include "ivtv-gpio.h"
65 #include "ivtv-i2c.h"
66 #include <media/drv-intf/cx25840.h>
67 
68 /* i2c implementation for cx23415/6 chip, ivtv project.
69  * Author: Kevin Thayer (nufan_wfk at yahoo.com)
70  */
71 /* i2c stuff */
72 #define IVTV_REG_I2C_SETSCL_OFFSET 0x7000
73 #define IVTV_REG_I2C_SETSDA_OFFSET 0x7004
74 #define IVTV_REG_I2C_GETSCL_OFFSET 0x7008
75 #define IVTV_REG_I2C_GETSDA_OFFSET 0x700c
76 
77 #define IVTV_CS53L32A_I2C_ADDR		0x11
78 #define IVTV_M52790_I2C_ADDR		0x48
79 #define IVTV_CX25840_I2C_ADDR 		0x44
80 #define IVTV_SAA7115_I2C_ADDR 		0x21
81 #define IVTV_SAA7127_I2C_ADDR 		0x44
82 #define IVTV_SAA717x_I2C_ADDR 		0x21
83 #define IVTV_MSP3400_I2C_ADDR 		0x40
84 #define IVTV_HAUPPAUGE_I2C_ADDR 	0x50
85 #define IVTV_WM8739_I2C_ADDR 		0x1a
86 #define IVTV_WM8775_I2C_ADDR		0x1b
87 #define IVTV_TEA5767_I2C_ADDR		0x60
88 #define IVTV_UPD64031A_I2C_ADDR 	0x12
89 #define IVTV_UPD64083_I2C_ADDR 		0x5c
90 #define IVTV_VP27SMPX_I2C_ADDR      	0x5b
91 #define IVTV_M52790_I2C_ADDR      	0x48
92 #define IVTV_AVERMEDIA_IR_RX_I2C_ADDR	0x40
93 #define IVTV_HAUP_EXT_IR_RX_I2C_ADDR 	0x1a
94 #define IVTV_HAUP_INT_IR_RX_I2C_ADDR 	0x18
95 #define IVTV_Z8F0811_IR_TX_I2C_ADDR	0x70
96 #define IVTV_Z8F0811_IR_RX_I2C_ADDR	0x71
97 #define IVTV_ADAPTEC_IR_ADDR		0x6b
98 
99 /* This array should match the IVTV_HW_ defines */
100 static const u8 hw_addrs[] = {
101 	IVTV_CX25840_I2C_ADDR,
102 	IVTV_SAA7115_I2C_ADDR,
103 	IVTV_SAA7127_I2C_ADDR,
104 	IVTV_MSP3400_I2C_ADDR,
105 	0,
106 	IVTV_WM8775_I2C_ADDR,
107 	IVTV_CS53L32A_I2C_ADDR,
108 	0,
109 	IVTV_SAA7115_I2C_ADDR,
110 	IVTV_UPD64031A_I2C_ADDR,
111 	IVTV_UPD64083_I2C_ADDR,
112 	IVTV_SAA717x_I2C_ADDR,
113 	IVTV_WM8739_I2C_ADDR,
114 	IVTV_VP27SMPX_I2C_ADDR,
115 	IVTV_M52790_I2C_ADDR,
116 	0,				/* IVTV_HW_GPIO dummy driver ID */
117 	IVTV_AVERMEDIA_IR_RX_I2C_ADDR,	/* IVTV_HW_I2C_IR_RX_AVER */
118 	IVTV_HAUP_EXT_IR_RX_I2C_ADDR,	/* IVTV_HW_I2C_IR_RX_HAUP_EXT */
119 	IVTV_HAUP_INT_IR_RX_I2C_ADDR,	/* IVTV_HW_I2C_IR_RX_HAUP_INT */
120 	IVTV_Z8F0811_IR_TX_I2C_ADDR,	/* IVTV_HW_Z8F0811_IR_TX_HAUP */
121 	IVTV_Z8F0811_IR_RX_I2C_ADDR,	/* IVTV_HW_Z8F0811_IR_RX_HAUP */
122 	IVTV_ADAPTEC_IR_ADDR,		/* IVTV_HW_I2C_IR_RX_ADAPTEC */
123 };
124 
125 /* This array should match the IVTV_HW_ defines */
126 static const char * const hw_devicenames[] = {
127 	"cx25840",
128 	"saa7115",
129 	"saa7127_auto",	/* saa7127 or saa7129 */
130 	"msp3400",
131 	"tuner",
132 	"wm8775",
133 	"cs53l32a",
134 	"tveeprom",
135 	"saa7114",
136 	"upd64031a",
137 	"upd64083",
138 	"saa717x",
139 	"wm8739",
140 	"vp27smpx",
141 	"m52790",
142 	"gpio",
143 	"ir_video",		/* IVTV_HW_I2C_IR_RX_AVER */
144 	"ir_video",		/* IVTV_HW_I2C_IR_RX_HAUP_EXT */
145 	"ir_video",		/* IVTV_HW_I2C_IR_RX_HAUP_INT */
146 	"ir_tx_z8f0811_haup",	/* IVTV_HW_Z8F0811_IR_TX_HAUP */
147 	"ir_rx_z8f0811_haup",	/* IVTV_HW_Z8F0811_IR_RX_HAUP */
148 	"ir_video",		/* IVTV_HW_I2C_IR_RX_ADAPTEC */
149 };
150 
151 static int get_key_adaptec(struct IR_i2c *ir, enum rc_type *protocol,
152 			   u32 *scancode, u8 *toggle)
153 {
154 	unsigned char keybuf[4];
155 
156 	keybuf[0] = 0x00;
157 	i2c_master_send(ir->c, keybuf, 1);
158 	/* poll IR chip */
159 	if (i2c_master_recv(ir->c, keybuf, sizeof(keybuf)) != sizeof(keybuf)) {
160 		return 0;
161 	}
162 
163 	/* key pressed ? */
164 	if (keybuf[2] == 0xff)
165 		return 0;
166 
167 	/* remove repeat bit */
168 	keybuf[2] &= 0x7f;
169 	keybuf[3] |= 0x80;
170 
171 	*protocol = RC_TYPE_UNKNOWN;
172 	*scancode = keybuf[3] | keybuf[2] << 8 | keybuf[1] << 16 |keybuf[0] << 24;
173 	*toggle = 0;
174 	return 1;
175 }
176 
177 static int ivtv_i2c_new_ir(struct ivtv *itv, u32 hw, const char *type, u8 addr)
178 {
179 	struct i2c_board_info info;
180 	struct i2c_adapter *adap = &itv->i2c_adap;
181 	struct IR_i2c_init_data *init_data = &itv->ir_i2c_init_data;
182 	unsigned short addr_list[2] = { addr, I2C_CLIENT_END };
183 
184 	/* Only allow one IR transmitter to be registered per board */
185 	if (hw & IVTV_HW_IR_TX_ANY) {
186 		if (itv->hw_flags & IVTV_HW_IR_TX_ANY)
187 			return -1;
188 		memset(&info, 0, sizeof(struct i2c_board_info));
189 		strlcpy(info.type, type, I2C_NAME_SIZE);
190 		return i2c_new_probed_device(adap, &info, addr_list, NULL)
191 							   == NULL ? -1 : 0;
192 	}
193 
194 	/* Only allow one IR receiver to be registered per board */
195 	if (itv->hw_flags & IVTV_HW_IR_RX_ANY)
196 		return -1;
197 
198 	/* Our default information for ir-kbd-i2c.c to use */
199 	switch (hw) {
200 	case IVTV_HW_I2C_IR_RX_AVER:
201 		init_data->ir_codes = RC_MAP_AVERMEDIA_CARDBUS;
202 		init_data->internal_get_key_func =
203 					IR_KBD_GET_KEY_AVERMEDIA_CARDBUS;
204 		init_data->type = RC_BIT_OTHER;
205 		init_data->name = "AVerMedia AVerTV card";
206 		break;
207 	case IVTV_HW_I2C_IR_RX_HAUP_EXT:
208 	case IVTV_HW_I2C_IR_RX_HAUP_INT:
209 		init_data->ir_codes = RC_MAP_HAUPPAUGE;
210 		init_data->internal_get_key_func = IR_KBD_GET_KEY_HAUP;
211 		init_data->type = RC_BIT_RC5;
212 		init_data->name = itv->card_name;
213 		break;
214 	case IVTV_HW_Z8F0811_IR_RX_HAUP:
215 		/* Default to grey remote */
216 		init_data->ir_codes = RC_MAP_HAUPPAUGE;
217 		init_data->internal_get_key_func = IR_KBD_GET_KEY_HAUP_XVR;
218 		init_data->type = RC_BIT_RC5;
219 		init_data->name = itv->card_name;
220 		break;
221 	case IVTV_HW_I2C_IR_RX_ADAPTEC:
222 		init_data->get_key = get_key_adaptec;
223 		init_data->name = itv->card_name;
224 		/* FIXME: The protocol and RC_MAP needs to be corrected */
225 		init_data->ir_codes = RC_MAP_EMPTY;
226 		init_data->type = RC_BIT_UNKNOWN;
227 		break;
228 	}
229 
230 	memset(&info, 0, sizeof(struct i2c_board_info));
231 	info.platform_data = init_data;
232 	strlcpy(info.type, type, I2C_NAME_SIZE);
233 
234 	return i2c_new_probed_device(adap, &info, addr_list, NULL) == NULL ?
235 	       -1 : 0;
236 }
237 
238 /* Instantiate the IR receiver device using probing -- undesirable */
239 struct i2c_client *ivtv_i2c_new_ir_legacy(struct ivtv *itv)
240 {
241 	struct i2c_board_info info;
242 	/*
243 	 * The external IR receiver is at i2c address 0x34.
244 	 * The internal IR receiver is at i2c address 0x30.
245 	 *
246 	 * In theory, both can be fitted, and Hauppauge suggests an external
247 	 * overrides an internal.  That's why we probe 0x1a (~0x34) first. CB
248 	 *
249 	 * Some of these addresses we probe may collide with other i2c address
250 	 * allocations, so this function must be called after all other i2c
251 	 * devices we care about are registered.
252 	 */
253 	const unsigned short addr_list[] = {
254 		0x1a,	/* Hauppauge IR external - collides with WM8739 */
255 		0x18,	/* Hauppauge IR internal */
256 		I2C_CLIENT_END
257 	};
258 
259 	memset(&info, 0, sizeof(struct i2c_board_info));
260 	strlcpy(info.type, "ir_video", I2C_NAME_SIZE);
261 	return i2c_new_probed_device(&itv->i2c_adap, &info, addr_list, NULL);
262 }
263 
264 int ivtv_i2c_register(struct ivtv *itv, unsigned idx)
265 {
266 	struct v4l2_subdev *sd;
267 	struct i2c_adapter *adap = &itv->i2c_adap;
268 	const char *type = hw_devicenames[idx];
269 	u32 hw = 1 << idx;
270 
271 	if (hw == IVTV_HW_TUNER) {
272 		/* special tuner handling */
273 		sd = v4l2_i2c_new_subdev(&itv->v4l2_dev, adap, type, 0,
274 				itv->card_i2c->radio);
275 		if (sd)
276 			sd->grp_id = 1 << idx;
277 		sd = v4l2_i2c_new_subdev(&itv->v4l2_dev, adap, type, 0,
278 				itv->card_i2c->demod);
279 		if (sd)
280 			sd->grp_id = 1 << idx;
281 		sd = v4l2_i2c_new_subdev(&itv->v4l2_dev, adap, type, 0,
282 				itv->card_i2c->tv);
283 		if (sd)
284 			sd->grp_id = 1 << idx;
285 		return sd ? 0 : -1;
286 	}
287 
288 	if (hw & IVTV_HW_IR_ANY)
289 		return ivtv_i2c_new_ir(itv, hw, type, hw_addrs[idx]);
290 
291 	/* Is it not an I2C device or one we do not wish to register? */
292 	if (!hw_addrs[idx])
293 		return -1;
294 
295 	/* It's an I2C device other than an analog tuner or IR chip */
296 	if (hw == IVTV_HW_UPD64031A || hw == IVTV_HW_UPD6408X) {
297 		sd = v4l2_i2c_new_subdev(&itv->v4l2_dev,
298 				adap, type, 0, I2C_ADDRS(hw_addrs[idx]));
299 	} else if (hw == IVTV_HW_CX25840) {
300 		struct cx25840_platform_data pdata;
301 		struct i2c_board_info cx25840_info = {
302 			.type = "cx25840",
303 			.addr = hw_addrs[idx],
304 			.platform_data = &pdata,
305 		};
306 
307 		pdata.pvr150_workaround = itv->pvr150_workaround;
308 		sd = v4l2_i2c_new_subdev_board(&itv->v4l2_dev, adap,
309 				&cx25840_info, NULL);
310 	} else {
311 		sd = v4l2_i2c_new_subdev(&itv->v4l2_dev,
312 				adap, type, hw_addrs[idx], NULL);
313 	}
314 	if (sd)
315 		sd->grp_id = 1 << idx;
316 	return sd ? 0 : -1;
317 }
318 
319 struct v4l2_subdev *ivtv_find_hw(struct ivtv *itv, u32 hw)
320 {
321 	struct v4l2_subdev *result = NULL;
322 	struct v4l2_subdev *sd;
323 
324 	spin_lock(&itv->v4l2_dev.lock);
325 	v4l2_device_for_each_subdev(sd, &itv->v4l2_dev) {
326 		if (sd->grp_id == hw) {
327 			result = sd;
328 			break;
329 		}
330 	}
331 	spin_unlock(&itv->v4l2_dev.lock);
332 	return result;
333 }
334 
335 /* Set the serial clock line to the desired state */
336 static void ivtv_setscl(struct ivtv *itv, int state)
337 {
338 	/* write them out */
339 	/* write bits are inverted */
340 	write_reg(~state, IVTV_REG_I2C_SETSCL_OFFSET);
341 }
342 
343 /* Set the serial data line to the desired state */
344 static void ivtv_setsda(struct ivtv *itv, int state)
345 {
346 	/* write them out */
347 	/* write bits are inverted */
348 	write_reg(~state & 1, IVTV_REG_I2C_SETSDA_OFFSET);
349 }
350 
351 /* Read the serial clock line */
352 static int ivtv_getscl(struct ivtv *itv)
353 {
354 	return read_reg(IVTV_REG_I2C_GETSCL_OFFSET) & 1;
355 }
356 
357 /* Read the serial data line */
358 static int ivtv_getsda(struct ivtv *itv)
359 {
360 	return read_reg(IVTV_REG_I2C_GETSDA_OFFSET) & 1;
361 }
362 
363 /* Implement a short delay by polling the serial clock line */
364 static void ivtv_scldelay(struct ivtv *itv)
365 {
366 	int i;
367 
368 	for (i = 0; i < 5; ++i)
369 		ivtv_getscl(itv);
370 }
371 
372 /* Wait for the serial clock line to become set to a specific value */
373 static int ivtv_waitscl(struct ivtv *itv, int val)
374 {
375 	int i;
376 
377 	ivtv_scldelay(itv);
378 	for (i = 0; i < 1000; ++i) {
379 		if (ivtv_getscl(itv) == val)
380 			return 1;
381 	}
382 	return 0;
383 }
384 
385 /* Wait for the serial data line to become set to a specific value */
386 static int ivtv_waitsda(struct ivtv *itv, int val)
387 {
388 	int i;
389 
390 	ivtv_scldelay(itv);
391 	for (i = 0; i < 1000; ++i) {
392 		if (ivtv_getsda(itv) == val)
393 			return 1;
394 	}
395 	return 0;
396 }
397 
398 /* Wait for the slave to issue an ACK */
399 static int ivtv_ack(struct ivtv *itv)
400 {
401 	int ret = 0;
402 
403 	if (ivtv_getscl(itv) == 1) {
404 		IVTV_DEBUG_HI_I2C("SCL was high starting an ack\n");
405 		ivtv_setscl(itv, 0);
406 		if (!ivtv_waitscl(itv, 0)) {
407 			IVTV_DEBUG_I2C("Could not set SCL low starting an ack\n");
408 			return -EREMOTEIO;
409 		}
410 	}
411 	ivtv_setsda(itv, 1);
412 	ivtv_scldelay(itv);
413 	ivtv_setscl(itv, 1);
414 	if (!ivtv_waitsda(itv, 0)) {
415 		IVTV_DEBUG_I2C("Slave did not ack\n");
416 		ret = -EREMOTEIO;
417 	}
418 	ivtv_setscl(itv, 0);
419 	if (!ivtv_waitscl(itv, 0)) {
420 		IVTV_DEBUG_I2C("Failed to set SCL low after ACK\n");
421 		ret = -EREMOTEIO;
422 	}
423 	return ret;
424 }
425 
426 /* Write a single byte to the i2c bus and wait for the slave to ACK */
427 static int ivtv_sendbyte(struct ivtv *itv, unsigned char byte)
428 {
429 	int i, bit;
430 
431 	IVTV_DEBUG_HI_I2C("write %x\n",byte);
432 	for (i = 0; i < 8; ++i, byte<<=1) {
433 		ivtv_setscl(itv, 0);
434 		if (!ivtv_waitscl(itv, 0)) {
435 			IVTV_DEBUG_I2C("Error setting SCL low\n");
436 			return -EREMOTEIO;
437 		}
438 		bit = (byte>>7)&1;
439 		ivtv_setsda(itv, bit);
440 		if (!ivtv_waitsda(itv, bit)) {
441 			IVTV_DEBUG_I2C("Error setting SDA\n");
442 			return -EREMOTEIO;
443 		}
444 		ivtv_setscl(itv, 1);
445 		if (!ivtv_waitscl(itv, 1)) {
446 			IVTV_DEBUG_I2C("Slave not ready for bit\n");
447 			return -EREMOTEIO;
448 		}
449 	}
450 	ivtv_setscl(itv, 0);
451 	if (!ivtv_waitscl(itv, 0)) {
452 		IVTV_DEBUG_I2C("Error setting SCL low\n");
453 		return -EREMOTEIO;
454 	}
455 	return ivtv_ack(itv);
456 }
457 
458 /* Read a byte from the i2c bus and send a NACK if applicable (i.e. for the
459    final byte) */
460 static int ivtv_readbyte(struct ivtv *itv, unsigned char *byte, int nack)
461 {
462 	int i;
463 
464 	*byte = 0;
465 
466 	ivtv_setsda(itv, 1);
467 	ivtv_scldelay(itv);
468 	for (i = 0; i < 8; ++i) {
469 		ivtv_setscl(itv, 0);
470 		ivtv_scldelay(itv);
471 		ivtv_setscl(itv, 1);
472 		if (!ivtv_waitscl(itv, 1)) {
473 			IVTV_DEBUG_I2C("Error setting SCL high\n");
474 			return -EREMOTEIO;
475 		}
476 		*byte = ((*byte)<<1)|ivtv_getsda(itv);
477 	}
478 	ivtv_setscl(itv, 0);
479 	ivtv_scldelay(itv);
480 	ivtv_setsda(itv, nack);
481 	ivtv_scldelay(itv);
482 	ivtv_setscl(itv, 1);
483 	ivtv_scldelay(itv);
484 	ivtv_setscl(itv, 0);
485 	ivtv_scldelay(itv);
486 	IVTV_DEBUG_HI_I2C("read %x\n",*byte);
487 	return 0;
488 }
489 
490 /* Issue a start condition on the i2c bus to alert slaves to prepare for
491    an address write */
492 static int ivtv_start(struct ivtv *itv)
493 {
494 	int sda;
495 
496 	sda = ivtv_getsda(itv);
497 	if (sda != 1) {
498 		IVTV_DEBUG_HI_I2C("SDA was low at start\n");
499 		ivtv_setsda(itv, 1);
500 		if (!ivtv_waitsda(itv, 1)) {
501 			IVTV_DEBUG_I2C("SDA stuck low\n");
502 			return -EREMOTEIO;
503 		}
504 	}
505 	if (ivtv_getscl(itv) != 1) {
506 		ivtv_setscl(itv, 1);
507 		if (!ivtv_waitscl(itv, 1)) {
508 			IVTV_DEBUG_I2C("SCL stuck low at start\n");
509 			return -EREMOTEIO;
510 		}
511 	}
512 	ivtv_setsda(itv, 0);
513 	ivtv_scldelay(itv);
514 	return 0;
515 }
516 
517 /* Issue a stop condition on the i2c bus to release it */
518 static int ivtv_stop(struct ivtv *itv)
519 {
520 	int i;
521 
522 	if (ivtv_getscl(itv) != 0) {
523 		IVTV_DEBUG_HI_I2C("SCL not low when stopping\n");
524 		ivtv_setscl(itv, 0);
525 		if (!ivtv_waitscl(itv, 0)) {
526 			IVTV_DEBUG_I2C("SCL could not be set low\n");
527 		}
528 	}
529 	ivtv_setsda(itv, 0);
530 	ivtv_scldelay(itv);
531 	ivtv_setscl(itv, 1);
532 	if (!ivtv_waitscl(itv, 1)) {
533 		IVTV_DEBUG_I2C("SCL could not be set high\n");
534 		return -EREMOTEIO;
535 	}
536 	ivtv_scldelay(itv);
537 	ivtv_setsda(itv, 1);
538 	if (!ivtv_waitsda(itv, 1)) {
539 		IVTV_DEBUG_I2C("resetting I2C\n");
540 		for (i = 0; i < 16; ++i) {
541 			ivtv_setscl(itv, 0);
542 			ivtv_scldelay(itv);
543 			ivtv_setscl(itv, 1);
544 			ivtv_scldelay(itv);
545 			ivtv_setsda(itv, 1);
546 		}
547 		ivtv_waitsda(itv, 1);
548 		return -EREMOTEIO;
549 	}
550 	return 0;
551 }
552 
553 /* Write a message to the given i2c slave.  do_stop may be 0 to prevent
554    issuing the i2c stop condition (when following with a read) */
555 static int ivtv_write(struct ivtv *itv, unsigned char addr, unsigned char *data, u32 len, int do_stop)
556 {
557 	int retry, ret = -EREMOTEIO;
558 	u32 i;
559 
560 	for (retry = 0; ret != 0 && retry < 8; ++retry) {
561 		ret = ivtv_start(itv);
562 
563 		if (ret == 0) {
564 			ret = ivtv_sendbyte(itv, addr<<1);
565 			for (i = 0; ret == 0 && i < len; ++i)
566 				ret = ivtv_sendbyte(itv, data[i]);
567 		}
568 		if (ret != 0 || do_stop) {
569 			ivtv_stop(itv);
570 		}
571 	}
572 	if (ret)
573 		IVTV_DEBUG_I2C("i2c write to %x failed\n", addr);
574 	return ret;
575 }
576 
577 /* Read data from the given i2c slave.  A stop condition is always issued. */
578 static int ivtv_read(struct ivtv *itv, unsigned char addr, unsigned char *data, u32 len)
579 {
580 	int retry, ret = -EREMOTEIO;
581 	u32 i;
582 
583 	for (retry = 0; ret != 0 && retry < 8; ++retry) {
584 		ret = ivtv_start(itv);
585 		if (ret == 0)
586 			ret = ivtv_sendbyte(itv, (addr << 1) | 1);
587 		for (i = 0; ret == 0 && i < len; ++i) {
588 			ret = ivtv_readbyte(itv, &data[i], i == len - 1);
589 		}
590 		ivtv_stop(itv);
591 	}
592 	if (ret)
593 		IVTV_DEBUG_I2C("i2c read from %x failed\n", addr);
594 	return ret;
595 }
596 
597 /* Kernel i2c transfer implementation.  Takes a number of messages to be read
598    or written.  If a read follows a write, this will occur without an
599    intervening stop condition */
600 static int ivtv_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs, int num)
601 {
602 	struct v4l2_device *v4l2_dev = i2c_get_adapdata(i2c_adap);
603 	struct ivtv *itv = to_ivtv(v4l2_dev);
604 	int retval;
605 	int i;
606 
607 	mutex_lock(&itv->i2c_bus_lock);
608 	for (i = retval = 0; retval == 0 && i < num; i++) {
609 		if (msgs[i].flags & I2C_M_RD)
610 			retval = ivtv_read(itv, msgs[i].addr, msgs[i].buf, msgs[i].len);
611 		else {
612 			/* if followed by a read, don't stop */
613 			int stop = !(i + 1 < num && msgs[i + 1].flags == I2C_M_RD);
614 
615 			retval = ivtv_write(itv, msgs[i].addr, msgs[i].buf, msgs[i].len, stop);
616 		}
617 	}
618 	mutex_unlock(&itv->i2c_bus_lock);
619 	return retval ? retval : num;
620 }
621 
622 /* Kernel i2c capabilities */
623 static u32 ivtv_functionality(struct i2c_adapter *adap)
624 {
625 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
626 }
627 
628 static struct i2c_algorithm ivtv_algo = {
629 	.master_xfer   = ivtv_xfer,
630 	.functionality = ivtv_functionality,
631 };
632 
633 /* template for our-bit banger */
634 static struct i2c_adapter ivtv_i2c_adap_hw_template = {
635 	.name = "ivtv i2c driver",
636 	.algo = &ivtv_algo,
637 	.algo_data = NULL,			/* filled from template */
638 	.owner = THIS_MODULE,
639 };
640 
641 static void ivtv_setscl_old(void *data, int state)
642 {
643 	struct ivtv *itv = (struct ivtv *)data;
644 
645 	if (state)
646 		itv->i2c_state |= 0x01;
647 	else
648 		itv->i2c_state &= ~0x01;
649 
650 	/* write them out */
651 	/* write bits are inverted */
652 	write_reg(~itv->i2c_state, IVTV_REG_I2C_SETSCL_OFFSET);
653 }
654 
655 static void ivtv_setsda_old(void *data, int state)
656 {
657 	struct ivtv *itv = (struct ivtv *)data;
658 
659 	if (state)
660 		itv->i2c_state |= 0x01;
661 	else
662 		itv->i2c_state &= ~0x01;
663 
664 	/* write them out */
665 	/* write bits are inverted */
666 	write_reg(~itv->i2c_state, IVTV_REG_I2C_SETSDA_OFFSET);
667 }
668 
669 static int ivtv_getscl_old(void *data)
670 {
671 	struct ivtv *itv = (struct ivtv *)data;
672 
673 	return read_reg(IVTV_REG_I2C_GETSCL_OFFSET) & 1;
674 }
675 
676 static int ivtv_getsda_old(void *data)
677 {
678 	struct ivtv *itv = (struct ivtv *)data;
679 
680 	return read_reg(IVTV_REG_I2C_GETSDA_OFFSET) & 1;
681 }
682 
683 /* template for i2c-bit-algo */
684 static struct i2c_adapter ivtv_i2c_adap_template = {
685 	.name = "ivtv i2c driver",
686 	.algo = NULL,                   /* set by i2c-algo-bit */
687 	.algo_data = NULL,              /* filled from template */
688 	.owner = THIS_MODULE,
689 };
690 
691 #define IVTV_ALGO_BIT_TIMEOUT	(2)	/* seconds */
692 
693 static const struct i2c_algo_bit_data ivtv_i2c_algo_template = {
694 	.setsda		= ivtv_setsda_old,
695 	.setscl		= ivtv_setscl_old,
696 	.getsda		= ivtv_getsda_old,
697 	.getscl		= ivtv_getscl_old,
698 	.udelay		= IVTV_DEFAULT_I2C_CLOCK_PERIOD / 2,  /* microseconds */
699 	.timeout	= IVTV_ALGO_BIT_TIMEOUT * HZ,         /* jiffies */
700 };
701 
702 static struct i2c_client ivtv_i2c_client_template = {
703 	.name = "ivtv internal",
704 };
705 
706 /* init + register i2c adapter */
707 int init_ivtv_i2c(struct ivtv *itv)
708 {
709 	int retval;
710 
711 	IVTV_DEBUG_I2C("i2c init\n");
712 
713 	/* Sanity checks for the I2C hardware arrays. They must be the
714 	 * same size.
715 	 */
716 	if (ARRAY_SIZE(hw_devicenames) != ARRAY_SIZE(hw_addrs)) {
717 		IVTV_ERR("Mismatched I2C hardware arrays\n");
718 		return -ENODEV;
719 	}
720 	if (itv->options.newi2c > 0) {
721 		itv->i2c_adap = ivtv_i2c_adap_hw_template;
722 	} else {
723 		itv->i2c_adap = ivtv_i2c_adap_template;
724 		itv->i2c_algo = ivtv_i2c_algo_template;
725 	}
726 	itv->i2c_algo.udelay = itv->options.i2c_clock_period / 2;
727 	itv->i2c_algo.data = itv;
728 	itv->i2c_adap.algo_data = &itv->i2c_algo;
729 
730 	sprintf(itv->i2c_adap.name + strlen(itv->i2c_adap.name), " #%d",
731 		itv->instance);
732 	i2c_set_adapdata(&itv->i2c_adap, &itv->v4l2_dev);
733 
734 	itv->i2c_client = ivtv_i2c_client_template;
735 	itv->i2c_client.adapter = &itv->i2c_adap;
736 	itv->i2c_adap.dev.parent = &itv->pdev->dev;
737 
738 	IVTV_DEBUG_I2C("setting scl and sda to 1\n");
739 	ivtv_setscl(itv, 1);
740 	ivtv_setsda(itv, 1);
741 
742 	if (itv->options.newi2c > 0)
743 		retval = i2c_add_adapter(&itv->i2c_adap);
744 	else
745 		retval = i2c_bit_add_bus(&itv->i2c_adap);
746 
747 	return retval;
748 }
749 
750 void exit_ivtv_i2c(struct ivtv *itv)
751 {
752 	IVTV_DEBUG_I2C("i2c exit\n");
753 
754 	i2c_del_adapter(&itv->i2c_adap);
755 }
756