1 /* 2 * Driver for the Conexant CX23885/7/8 PCIe bridge 3 * 4 * CX23888 Integrated Consumer Infrared Controller 5 * 6 * Copyright (C) 2009 Andy Walls <awalls@md.metrocast.net> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 2 11 * of the License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 21 * 02110-1301, USA. 22 */ 23 24 #include <linux/kfifo.h> 25 #include <linux/slab.h> 26 27 #include <media/v4l2-device.h> 28 #include <media/v4l2-chip-ident.h> 29 #include <media/rc-core.h> 30 31 #include "cx23885.h" 32 33 static unsigned int ir_888_debug; 34 module_param(ir_888_debug, int, 0644); 35 MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]"); 36 37 #define CX23888_IR_REG_BASE 0x170000 38 /* 39 * These CX23888 register offsets have a straightforward one to one mapping 40 * to the CX23885 register offsets of 0x200 through 0x218 41 */ 42 #define CX23888_IR_CNTRL_REG 0x170000 43 #define CNTRL_WIN_3_3 0x00000000 44 #define CNTRL_WIN_4_3 0x00000001 45 #define CNTRL_WIN_3_4 0x00000002 46 #define CNTRL_WIN_4_4 0x00000003 47 #define CNTRL_WIN 0x00000003 48 #define CNTRL_EDG_NONE 0x00000000 49 #define CNTRL_EDG_FALL 0x00000004 50 #define CNTRL_EDG_RISE 0x00000008 51 #define CNTRL_EDG_BOTH 0x0000000C 52 #define CNTRL_EDG 0x0000000C 53 #define CNTRL_DMD 0x00000010 54 #define CNTRL_MOD 0x00000020 55 #define CNTRL_RFE 0x00000040 56 #define CNTRL_TFE 0x00000080 57 #define CNTRL_RXE 0x00000100 58 #define CNTRL_TXE 0x00000200 59 #define CNTRL_RIC 0x00000400 60 #define CNTRL_TIC 0x00000800 61 #define CNTRL_CPL 0x00001000 62 #define CNTRL_LBM 0x00002000 63 #define CNTRL_R 0x00004000 64 /* CX23888 specific control flag */ 65 #define CNTRL_IVO 0x00008000 66 67 #define CX23888_IR_TXCLK_REG 0x170004 68 #define TXCLK_TCD 0x0000FFFF 69 70 #define CX23888_IR_RXCLK_REG 0x170008 71 #define RXCLK_RCD 0x0000FFFF 72 73 #define CX23888_IR_CDUTY_REG 0x17000C 74 #define CDUTY_CDC 0x0000000F 75 76 #define CX23888_IR_STATS_REG 0x170010 77 #define STATS_RTO 0x00000001 78 #define STATS_ROR 0x00000002 79 #define STATS_RBY 0x00000004 80 #define STATS_TBY 0x00000008 81 #define STATS_RSR 0x00000010 82 #define STATS_TSR 0x00000020 83 84 #define CX23888_IR_IRQEN_REG 0x170014 85 #define IRQEN_RTE 0x00000001 86 #define IRQEN_ROE 0x00000002 87 #define IRQEN_RSE 0x00000010 88 #define IRQEN_TSE 0x00000020 89 90 #define CX23888_IR_FILTR_REG 0x170018 91 #define FILTR_LPF 0x0000FFFF 92 93 /* This register doesn't follow the pattern; it's 0x23C on a CX23885 */ 94 #define CX23888_IR_FIFO_REG 0x170040 95 #define FIFO_RXTX 0x0000FFFF 96 #define FIFO_RXTX_LVL 0x00010000 97 #define FIFO_RXTX_RTO 0x0001FFFF 98 #define FIFO_RX_NDV 0x00020000 99 #define FIFO_RX_DEPTH 8 100 #define FIFO_TX_DEPTH 8 101 102 /* CX23888 unique registers */ 103 #define CX23888_IR_SEEDP_REG 0x17001C 104 #define CX23888_IR_TIMOL_REG 0x170020 105 #define CX23888_IR_WAKE0_REG 0x170024 106 #define CX23888_IR_WAKE1_REG 0x170028 107 #define CX23888_IR_WAKE2_REG 0x17002C 108 #define CX23888_IR_MASK0_REG 0x170030 109 #define CX23888_IR_MASK1_REG 0x170034 110 #define CX23888_IR_MAKS2_REG 0x170038 111 #define CX23888_IR_DPIPG_REG 0x17003C 112 #define CX23888_IR_LEARN_REG 0x170044 113 114 #define CX23888_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */ 115 #define CX23888_IR_REFCLK_FREQ (CX23888_VIDCLK_FREQ / 2) 116 117 /* 118 * We use this union internally for convenience, but callers to tx_write 119 * and rx_read will be expecting records of type struct ir_raw_event. 120 * Always ensure the size of this union is dictated by struct ir_raw_event. 121 */ 122 union cx23888_ir_fifo_rec { 123 u32 hw_fifo_data; 124 struct ir_raw_event ir_core_data; 125 }; 126 127 #define CX23888_IR_RX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec)) 128 #define CX23888_IR_TX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec)) 129 130 struct cx23888_ir_state { 131 struct v4l2_subdev sd; 132 struct cx23885_dev *dev; 133 u32 id; 134 u32 rev; 135 136 struct v4l2_subdev_ir_parameters rx_params; 137 struct mutex rx_params_lock; 138 atomic_t rxclk_divider; 139 atomic_t rx_invert; 140 141 struct kfifo rx_kfifo; 142 spinlock_t rx_kfifo_lock; 143 144 struct v4l2_subdev_ir_parameters tx_params; 145 struct mutex tx_params_lock; 146 atomic_t txclk_divider; 147 }; 148 149 static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd) 150 { 151 return v4l2_get_subdevdata(sd); 152 } 153 154 /* 155 * IR register block read and write functions 156 */ 157 static 158 inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value) 159 { 160 cx_write(addr, value); 161 return 0; 162 } 163 164 static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr) 165 { 166 return cx_read(addr); 167 } 168 169 static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr, 170 u32 and_mask, u32 or_value) 171 { 172 cx_andor(addr, ~and_mask, or_value); 173 return 0; 174 } 175 176 /* 177 * Rx and Tx Clock Divider register computations 178 * 179 * Note the largest clock divider value of 0xffff corresponds to: 180 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns 181 * which fits in 21 bits, so we'll use unsigned int for time arguments. 182 */ 183 static inline u16 count_to_clock_divider(unsigned int d) 184 { 185 if (d > RXCLK_RCD + 1) 186 d = RXCLK_RCD; 187 else if (d < 2) 188 d = 1; 189 else 190 d--; 191 return (u16) d; 192 } 193 194 static inline u16 ns_to_clock_divider(unsigned int ns) 195 { 196 return count_to_clock_divider( 197 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000)); 198 } 199 200 static inline unsigned int clock_divider_to_ns(unsigned int divider) 201 { 202 /* Period of the Rx or Tx clock in ns */ 203 return DIV_ROUND_CLOSEST((divider + 1) * 1000, 204 CX23888_IR_REFCLK_FREQ / 1000000); 205 } 206 207 static inline u16 carrier_freq_to_clock_divider(unsigned int freq) 208 { 209 return count_to_clock_divider( 210 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16)); 211 } 212 213 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider) 214 { 215 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16); 216 } 217 218 static inline u16 freq_to_clock_divider(unsigned int freq, 219 unsigned int rollovers) 220 { 221 return count_to_clock_divider( 222 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * rollovers)); 223 } 224 225 static inline unsigned int clock_divider_to_freq(unsigned int divider, 226 unsigned int rollovers) 227 { 228 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, 229 (divider + 1) * rollovers); 230 } 231 232 /* 233 * Low Pass Filter register calculations 234 * 235 * Note the largest count value of 0xffff corresponds to: 236 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns 237 * which fits in 21 bits, so we'll use unsigned int for time arguments. 238 */ 239 static inline u16 count_to_lpf_count(unsigned int d) 240 { 241 if (d > FILTR_LPF) 242 d = FILTR_LPF; 243 else if (d < 4) 244 d = 0; 245 return (u16) d; 246 } 247 248 static inline u16 ns_to_lpf_count(unsigned int ns) 249 { 250 return count_to_lpf_count( 251 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000)); 252 } 253 254 static inline unsigned int lpf_count_to_ns(unsigned int count) 255 { 256 /* Duration of the Low Pass Filter rejection window in ns */ 257 return DIV_ROUND_CLOSEST(count * 1000, 258 CX23888_IR_REFCLK_FREQ / 1000000); 259 } 260 261 static inline unsigned int lpf_count_to_us(unsigned int count) 262 { 263 /* Duration of the Low Pass Filter rejection window in us */ 264 return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000); 265 } 266 267 /* 268 * FIFO register pulse width count compuations 269 */ 270 static u32 clock_divider_to_resolution(u16 divider) 271 { 272 /* 273 * Resolution is the duration of 1 tick of the readable portion of 274 * of the pulse width counter as read from the FIFO. The two lsb's are 275 * not readable, hence the << 2. This function returns ns. 276 */ 277 return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000, 278 CX23888_IR_REFCLK_FREQ / 1000000); 279 } 280 281 static u64 pulse_width_count_to_ns(u16 count, u16 divider) 282 { 283 u64 n; 284 u32 rem; 285 286 /* 287 * The 2 lsb's of the pulse width timer count are not readable, hence 288 * the (count << 2) | 0x3 289 */ 290 n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */ 291 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */ 292 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2) 293 n++; 294 return n; 295 } 296 297 static unsigned int pulse_width_count_to_us(u16 count, u16 divider) 298 { 299 u64 n; 300 u32 rem; 301 302 /* 303 * The 2 lsb's of the pulse width timer count are not readable, hence 304 * the (count << 2) | 0x3 305 */ 306 n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */ 307 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */ 308 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2) 309 n++; 310 return (unsigned int) n; 311 } 312 313 /* 314 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts 315 * 316 * The total pulse clock count is an 18 bit pulse width timer count as the most 317 * significant part and (up to) 16 bit clock divider count as a modulus. 318 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse 319 * width timer count's least significant bit. 320 */ 321 static u64 ns_to_pulse_clocks(u32 ns) 322 { 323 u64 clocks; 324 u32 rem; 325 clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */ 326 rem = do_div(clocks, 1000); /* /1000 = cycles */ 327 if (rem >= 1000 / 2) 328 clocks++; 329 return clocks; 330 } 331 332 static u16 pulse_clocks_to_clock_divider(u64 count) 333 { 334 do_div(count, (FIFO_RXTX << 2) | 0x3); 335 336 /* net result needs to be rounded down and decremented by 1 */ 337 if (count > RXCLK_RCD + 1) 338 count = RXCLK_RCD; 339 else if (count < 2) 340 count = 1; 341 else 342 count--; 343 return (u16) count; 344 } 345 346 /* 347 * IR Control Register helpers 348 */ 349 enum tx_fifo_watermark { 350 TX_FIFO_HALF_EMPTY = 0, 351 TX_FIFO_EMPTY = CNTRL_TIC, 352 }; 353 354 enum rx_fifo_watermark { 355 RX_FIFO_HALF_FULL = 0, 356 RX_FIFO_NOT_EMPTY = CNTRL_RIC, 357 }; 358 359 static inline void control_tx_irq_watermark(struct cx23885_dev *dev, 360 enum tx_fifo_watermark level) 361 { 362 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level); 363 } 364 365 static inline void control_rx_irq_watermark(struct cx23885_dev *dev, 366 enum rx_fifo_watermark level) 367 { 368 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level); 369 } 370 371 static inline void control_tx_enable(struct cx23885_dev *dev, bool enable) 372 { 373 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE), 374 enable ? (CNTRL_TXE | CNTRL_TFE) : 0); 375 } 376 377 static inline void control_rx_enable(struct cx23885_dev *dev, bool enable) 378 { 379 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE), 380 enable ? (CNTRL_RXE | CNTRL_RFE) : 0); 381 } 382 383 static inline void control_tx_modulation_enable(struct cx23885_dev *dev, 384 bool enable) 385 { 386 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD, 387 enable ? CNTRL_MOD : 0); 388 } 389 390 static inline void control_rx_demodulation_enable(struct cx23885_dev *dev, 391 bool enable) 392 { 393 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD, 394 enable ? CNTRL_DMD : 0); 395 } 396 397 static inline void control_rx_s_edge_detection(struct cx23885_dev *dev, 398 u32 edge_types) 399 { 400 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH, 401 edge_types & CNTRL_EDG_BOTH); 402 } 403 404 static void control_rx_s_carrier_window(struct cx23885_dev *dev, 405 unsigned int carrier, 406 unsigned int *carrier_range_low, 407 unsigned int *carrier_range_high) 408 { 409 u32 v; 410 unsigned int c16 = carrier * 16; 411 412 if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) { 413 v = CNTRL_WIN_3_4; 414 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4); 415 } else { 416 v = CNTRL_WIN_3_3; 417 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3); 418 } 419 420 if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) { 421 v |= CNTRL_WIN_4_3; 422 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4); 423 } else { 424 v |= CNTRL_WIN_3_3; 425 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3); 426 } 427 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v); 428 } 429 430 static inline void control_tx_polarity_invert(struct cx23885_dev *dev, 431 bool invert) 432 { 433 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL, 434 invert ? CNTRL_CPL : 0); 435 } 436 437 static inline void control_tx_level_invert(struct cx23885_dev *dev, 438 bool invert) 439 { 440 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_IVO, 441 invert ? CNTRL_IVO : 0); 442 } 443 444 /* 445 * IR Rx & Tx Clock Register helpers 446 */ 447 static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev, 448 unsigned int freq, 449 u16 *divider) 450 { 451 *divider = carrier_freq_to_clock_divider(freq); 452 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider); 453 return clock_divider_to_carrier_freq(*divider); 454 } 455 456 static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev, 457 unsigned int freq, 458 u16 *divider) 459 { 460 *divider = carrier_freq_to_clock_divider(freq); 461 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider); 462 return clock_divider_to_carrier_freq(*divider); 463 } 464 465 static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns, 466 u16 *divider) 467 { 468 u64 pulse_clocks; 469 470 if (ns > IR_MAX_DURATION) 471 ns = IR_MAX_DURATION; 472 pulse_clocks = ns_to_pulse_clocks(ns); 473 *divider = pulse_clocks_to_clock_divider(pulse_clocks); 474 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider); 475 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider); 476 } 477 478 static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns, 479 u16 *divider) 480 { 481 u64 pulse_clocks; 482 483 if (ns > IR_MAX_DURATION) 484 ns = IR_MAX_DURATION; 485 pulse_clocks = ns_to_pulse_clocks(ns); 486 *divider = pulse_clocks_to_clock_divider(pulse_clocks); 487 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider); 488 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider); 489 } 490 491 /* 492 * IR Tx Carrier Duty Cycle register helpers 493 */ 494 static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev, 495 unsigned int duty_cycle) 496 { 497 u32 n; 498 n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */ 499 if (n != 0) 500 n--; 501 if (n > 15) 502 n = 15; 503 cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n); 504 return DIV_ROUND_CLOSEST((n + 1) * 100, 16); 505 } 506 507 /* 508 * IR Filter Register helpers 509 */ 510 static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns) 511 { 512 u32 count = ns_to_lpf_count(min_width_ns); 513 cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count); 514 return lpf_count_to_ns(count); 515 } 516 517 /* 518 * IR IRQ Enable Register helpers 519 */ 520 static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask) 521 { 522 mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE); 523 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, 524 ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask); 525 } 526 527 static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask) 528 { 529 mask &= IRQEN_TSE; 530 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask); 531 } 532 533 /* 534 * V4L2 Subdevice IR Ops 535 */ 536 static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status, 537 bool *handled) 538 { 539 struct cx23888_ir_state *state = to_state(sd); 540 struct cx23885_dev *dev = state->dev; 541 unsigned long flags; 542 543 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG); 544 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG); 545 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG); 546 547 union cx23888_ir_fifo_rec rx_data[FIFO_RX_DEPTH]; 548 unsigned int i, j, k; 549 u32 events, v; 550 int tsr, rsr, rto, ror, tse, rse, rte, roe, kror; 551 552 tsr = stats & STATS_TSR; /* Tx FIFO Service Request */ 553 rsr = stats & STATS_RSR; /* Rx FIFO Service Request */ 554 rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */ 555 ror = stats & STATS_ROR; /* Rx FIFO Over Run */ 556 557 tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */ 558 rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */ 559 rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */ 560 roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */ 561 562 *handled = false; 563 v4l2_dbg(2, ir_888_debug, sd, "IRQ Status: %s %s %s %s %s %s\n", 564 tsr ? "tsr" : " ", rsr ? "rsr" : " ", 565 rto ? "rto" : " ", ror ? "ror" : " ", 566 stats & STATS_TBY ? "tby" : " ", 567 stats & STATS_RBY ? "rby" : " "); 568 569 v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n", 570 tse ? "tse" : " ", rse ? "rse" : " ", 571 rte ? "rte" : " ", roe ? "roe" : " "); 572 573 /* 574 * Transmitter interrupt service 575 */ 576 if (tse && tsr) { 577 /* 578 * TODO: 579 * Check the watermark threshold setting 580 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo 581 * Push the data to the hardware FIFO. 582 * If there was nothing more to send in the tx_kfifo, disable 583 * the TSR IRQ and notify the v4l2_device. 584 * If there was something in the tx_kfifo, check the tx_kfifo 585 * level and notify the v4l2_device, if it is low. 586 */ 587 /* For now, inhibit TSR interrupt until Tx is implemented */ 588 irqenable_tx(dev, 0); 589 events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ; 590 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events); 591 *handled = true; 592 } 593 594 /* 595 * Receiver interrupt service 596 */ 597 kror = 0; 598 if ((rse && rsr) || (rte && rto)) { 599 /* 600 * Receive data on RSR to clear the STATS_RSR. 601 * Receive data on RTO, since we may not have yet hit the RSR 602 * watermark when we receive the RTO. 603 */ 604 for (i = 0, v = FIFO_RX_NDV; 605 (v & FIFO_RX_NDV) && !kror; i = 0) { 606 for (j = 0; 607 (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) { 608 v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG); 609 rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV; 610 i++; 611 } 612 if (i == 0) 613 break; 614 j = i * sizeof(union cx23888_ir_fifo_rec); 615 k = kfifo_in_locked(&state->rx_kfifo, 616 (unsigned char *) rx_data, j, 617 &state->rx_kfifo_lock); 618 if (k != j) 619 kror++; /* rx_kfifo over run */ 620 } 621 *handled = true; 622 } 623 624 events = 0; 625 v = 0; 626 if (kror) { 627 events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN; 628 v4l2_err(sd, "IR receiver software FIFO overrun\n"); 629 } 630 if (roe && ror) { 631 /* 632 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear 633 * the Rx FIFO Over Run status (STATS_ROR) 634 */ 635 v |= CNTRL_RFE; 636 events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN; 637 v4l2_err(sd, "IR receiver hardware FIFO overrun\n"); 638 } 639 if (rte && rto) { 640 /* 641 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear 642 * the Rx Pulse Width Timer Time Out (STATS_RTO) 643 */ 644 v |= CNTRL_RXE; 645 events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED; 646 } 647 if (v) { 648 /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */ 649 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v); 650 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl); 651 *handled = true; 652 } 653 654 spin_lock_irqsave(&state->rx_kfifo_lock, flags); 655 if (kfifo_len(&state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2) 656 events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ; 657 spin_unlock_irqrestore(&state->rx_kfifo_lock, flags); 658 659 if (events) 660 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events); 661 return 0; 662 } 663 664 /* Receiver */ 665 static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count, 666 ssize_t *num) 667 { 668 struct cx23888_ir_state *state = to_state(sd); 669 bool invert = (bool) atomic_read(&state->rx_invert); 670 u16 divider = (u16) atomic_read(&state->rxclk_divider); 671 672 unsigned int i, n; 673 union cx23888_ir_fifo_rec *p; 674 unsigned u, v, w; 675 676 n = count / sizeof(union cx23888_ir_fifo_rec) 677 * sizeof(union cx23888_ir_fifo_rec); 678 if (n == 0) { 679 *num = 0; 680 return 0; 681 } 682 683 n = kfifo_out_locked(&state->rx_kfifo, buf, n, &state->rx_kfifo_lock); 684 685 n /= sizeof(union cx23888_ir_fifo_rec); 686 *num = n * sizeof(union cx23888_ir_fifo_rec); 687 688 for (p = (union cx23888_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) { 689 690 if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) { 691 /* Assume RTO was because of no IR light input */ 692 u = 0; 693 w = 1; 694 } else { 695 u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0; 696 if (invert) 697 u = u ? 0 : 1; 698 w = 0; 699 } 700 701 v = (unsigned) pulse_width_count_to_ns( 702 (u16) (p->hw_fifo_data & FIFO_RXTX), divider); 703 if (v > IR_MAX_DURATION) 704 v = IR_MAX_DURATION; 705 706 init_ir_raw_event(&p->ir_core_data); 707 p->ir_core_data.pulse = u; 708 p->ir_core_data.duration = v; 709 p->ir_core_data.timeout = w; 710 711 v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns %s %s\n", 712 v, u ? "mark" : "space", w ? "(timed out)" : ""); 713 if (w) 714 v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n"); 715 } 716 return 0; 717 } 718 719 static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd, 720 struct v4l2_subdev_ir_parameters *p) 721 { 722 struct cx23888_ir_state *state = to_state(sd); 723 mutex_lock(&state->rx_params_lock); 724 memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters)); 725 mutex_unlock(&state->rx_params_lock); 726 return 0; 727 } 728 729 static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd) 730 { 731 struct cx23888_ir_state *state = to_state(sd); 732 struct cx23885_dev *dev = state->dev; 733 734 mutex_lock(&state->rx_params_lock); 735 736 /* Disable or slow down all IR Rx circuits and counters */ 737 irqenable_rx(dev, 0); 738 control_rx_enable(dev, false); 739 control_rx_demodulation_enable(dev, false); 740 control_rx_s_edge_detection(dev, CNTRL_EDG_NONE); 741 filter_rx_s_min_width(dev, 0); 742 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD); 743 744 state->rx_params.shutdown = true; 745 746 mutex_unlock(&state->rx_params_lock); 747 return 0; 748 } 749 750 static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd, 751 struct v4l2_subdev_ir_parameters *p) 752 { 753 struct cx23888_ir_state *state = to_state(sd); 754 struct cx23885_dev *dev = state->dev; 755 struct v4l2_subdev_ir_parameters *o = &state->rx_params; 756 u16 rxclk_divider; 757 758 if (p->shutdown) 759 return cx23888_ir_rx_shutdown(sd); 760 761 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH) 762 return -ENOSYS; 763 764 mutex_lock(&state->rx_params_lock); 765 766 o->shutdown = p->shutdown; 767 768 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH; 769 770 o->bytes_per_data_element = p->bytes_per_data_element 771 = sizeof(union cx23888_ir_fifo_rec); 772 773 /* Before we tweak the hardware, we have to disable the receiver */ 774 irqenable_rx(dev, 0); 775 control_rx_enable(dev, false); 776 777 control_rx_demodulation_enable(dev, p->modulation); 778 o->modulation = p->modulation; 779 780 if (p->modulation) { 781 p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq, 782 &rxclk_divider); 783 784 o->carrier_freq = p->carrier_freq; 785 786 o->duty_cycle = p->duty_cycle = 50; 787 788 control_rx_s_carrier_window(dev, p->carrier_freq, 789 &p->carrier_range_lower, 790 &p->carrier_range_upper); 791 o->carrier_range_lower = p->carrier_range_lower; 792 o->carrier_range_upper = p->carrier_range_upper; 793 794 p->max_pulse_width = 795 (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider); 796 } else { 797 p->max_pulse_width = 798 rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width, 799 &rxclk_divider); 800 } 801 o->max_pulse_width = p->max_pulse_width; 802 atomic_set(&state->rxclk_divider, rxclk_divider); 803 804 p->noise_filter_min_width = 805 filter_rx_s_min_width(dev, p->noise_filter_min_width); 806 o->noise_filter_min_width = p->noise_filter_min_width; 807 808 p->resolution = clock_divider_to_resolution(rxclk_divider); 809 o->resolution = p->resolution; 810 811 /* FIXME - make this dependent on resolution for better performance */ 812 control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL); 813 814 control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH); 815 816 o->invert_level = p->invert_level; 817 atomic_set(&state->rx_invert, p->invert_level); 818 819 o->interrupt_enable = p->interrupt_enable; 820 o->enable = p->enable; 821 if (p->enable) { 822 unsigned long flags; 823 824 spin_lock_irqsave(&state->rx_kfifo_lock, flags); 825 kfifo_reset(&state->rx_kfifo); 826 /* reset tx_fifo too if there is one... */ 827 spin_unlock_irqrestore(&state->rx_kfifo_lock, flags); 828 if (p->interrupt_enable) 829 irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE); 830 control_rx_enable(dev, p->enable); 831 } 832 833 mutex_unlock(&state->rx_params_lock); 834 return 0; 835 } 836 837 /* Transmitter */ 838 static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count, 839 ssize_t *num) 840 { 841 struct cx23888_ir_state *state = to_state(sd); 842 struct cx23885_dev *dev = state->dev; 843 /* For now enable the Tx FIFO Service interrupt & pretend we did work */ 844 irqenable_tx(dev, IRQEN_TSE); 845 *num = count; 846 return 0; 847 } 848 849 static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd, 850 struct v4l2_subdev_ir_parameters *p) 851 { 852 struct cx23888_ir_state *state = to_state(sd); 853 mutex_lock(&state->tx_params_lock); 854 memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters)); 855 mutex_unlock(&state->tx_params_lock); 856 return 0; 857 } 858 859 static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd) 860 { 861 struct cx23888_ir_state *state = to_state(sd); 862 struct cx23885_dev *dev = state->dev; 863 864 mutex_lock(&state->tx_params_lock); 865 866 /* Disable or slow down all IR Tx circuits and counters */ 867 irqenable_tx(dev, 0); 868 control_tx_enable(dev, false); 869 control_tx_modulation_enable(dev, false); 870 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD); 871 872 state->tx_params.shutdown = true; 873 874 mutex_unlock(&state->tx_params_lock); 875 return 0; 876 } 877 878 static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd, 879 struct v4l2_subdev_ir_parameters *p) 880 { 881 struct cx23888_ir_state *state = to_state(sd); 882 struct cx23885_dev *dev = state->dev; 883 struct v4l2_subdev_ir_parameters *o = &state->tx_params; 884 u16 txclk_divider; 885 886 if (p->shutdown) 887 return cx23888_ir_tx_shutdown(sd); 888 889 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH) 890 return -ENOSYS; 891 892 mutex_lock(&state->tx_params_lock); 893 894 o->shutdown = p->shutdown; 895 896 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH; 897 898 o->bytes_per_data_element = p->bytes_per_data_element 899 = sizeof(union cx23888_ir_fifo_rec); 900 901 /* Before we tweak the hardware, we have to disable the transmitter */ 902 irqenable_tx(dev, 0); 903 control_tx_enable(dev, false); 904 905 control_tx_modulation_enable(dev, p->modulation); 906 o->modulation = p->modulation; 907 908 if (p->modulation) { 909 p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq, 910 &txclk_divider); 911 o->carrier_freq = p->carrier_freq; 912 913 p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle); 914 o->duty_cycle = p->duty_cycle; 915 916 p->max_pulse_width = 917 (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider); 918 } else { 919 p->max_pulse_width = 920 txclk_tx_s_max_pulse_width(dev, p->max_pulse_width, 921 &txclk_divider); 922 } 923 o->max_pulse_width = p->max_pulse_width; 924 atomic_set(&state->txclk_divider, txclk_divider); 925 926 p->resolution = clock_divider_to_resolution(txclk_divider); 927 o->resolution = p->resolution; 928 929 /* FIXME - make this dependent on resolution for better performance */ 930 control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY); 931 932 control_tx_polarity_invert(dev, p->invert_carrier_sense); 933 o->invert_carrier_sense = p->invert_carrier_sense; 934 935 control_tx_level_invert(dev, p->invert_level); 936 o->invert_level = p->invert_level; 937 938 o->interrupt_enable = p->interrupt_enable; 939 o->enable = p->enable; 940 if (p->enable) { 941 if (p->interrupt_enable) 942 irqenable_tx(dev, IRQEN_TSE); 943 control_tx_enable(dev, p->enable); 944 } 945 946 mutex_unlock(&state->tx_params_lock); 947 return 0; 948 } 949 950 951 /* 952 * V4L2 Subdevice Core Ops 953 */ 954 static int cx23888_ir_log_status(struct v4l2_subdev *sd) 955 { 956 struct cx23888_ir_state *state = to_state(sd); 957 struct cx23885_dev *dev = state->dev; 958 char *s; 959 int i, j; 960 961 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG); 962 u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD; 963 u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD; 964 u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC; 965 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG); 966 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG); 967 u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF; 968 969 v4l2_info(sd, "IR Receiver:\n"); 970 v4l2_info(sd, "\tEnabled: %s\n", 971 cntrl & CNTRL_RXE ? "yes" : "no"); 972 v4l2_info(sd, "\tDemodulation from a carrier: %s\n", 973 cntrl & CNTRL_DMD ? "enabled" : "disabled"); 974 v4l2_info(sd, "\tFIFO: %s\n", 975 cntrl & CNTRL_RFE ? "enabled" : "disabled"); 976 switch (cntrl & CNTRL_EDG) { 977 case CNTRL_EDG_NONE: 978 s = "disabled"; 979 break; 980 case CNTRL_EDG_FALL: 981 s = "falling edge"; 982 break; 983 case CNTRL_EDG_RISE: 984 s = "rising edge"; 985 break; 986 case CNTRL_EDG_BOTH: 987 s = "rising & falling edges"; 988 break; 989 default: 990 s = "??? edge"; 991 break; 992 } 993 v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s); 994 v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n", 995 cntrl & CNTRL_R ? "not loaded" : "overflow marker"); 996 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n", 997 cntrl & CNTRL_RIC ? "not empty" : "half full or greater"); 998 v4l2_info(sd, "\tLoopback mode: %s\n", 999 cntrl & CNTRL_LBM ? "loopback active" : "normal receive"); 1000 if (cntrl & CNTRL_DMD) { 1001 v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n", 1002 clock_divider_to_carrier_freq(rxclk)); 1003 switch (cntrl & CNTRL_WIN) { 1004 case CNTRL_WIN_3_3: 1005 i = 3; 1006 j = 3; 1007 break; 1008 case CNTRL_WIN_4_3: 1009 i = 4; 1010 j = 3; 1011 break; 1012 case CNTRL_WIN_3_4: 1013 i = 3; 1014 j = 4; 1015 break; 1016 case CNTRL_WIN_4_4: 1017 i = 4; 1018 j = 4; 1019 break; 1020 default: 1021 i = 0; 1022 j = 0; 1023 break; 1024 } 1025 v4l2_info(sd, "\tNext carrier edge window: 16 clocks " 1026 "-%1d/+%1d, %u to %u Hz\n", i, j, 1027 clock_divider_to_freq(rxclk, 16 + j), 1028 clock_divider_to_freq(rxclk, 16 - i)); 1029 } 1030 v4l2_info(sd, "\tMax measurable pulse width: %u us, %llu ns\n", 1031 pulse_width_count_to_us(FIFO_RXTX, rxclk), 1032 pulse_width_count_to_ns(FIFO_RXTX, rxclk)); 1033 v4l2_info(sd, "\tLow pass filter: %s\n", 1034 filtr ? "enabled" : "disabled"); 1035 if (filtr) 1036 v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, " 1037 "%u ns\n", 1038 lpf_count_to_us(filtr), 1039 lpf_count_to_ns(filtr)); 1040 v4l2_info(sd, "\tPulse width timer timed-out: %s\n", 1041 stats & STATS_RTO ? "yes" : "no"); 1042 v4l2_info(sd, "\tPulse width timer time-out intr: %s\n", 1043 irqen & IRQEN_RTE ? "enabled" : "disabled"); 1044 v4l2_info(sd, "\tFIFO overrun: %s\n", 1045 stats & STATS_ROR ? "yes" : "no"); 1046 v4l2_info(sd, "\tFIFO overrun interrupt: %s\n", 1047 irqen & IRQEN_ROE ? "enabled" : "disabled"); 1048 v4l2_info(sd, "\tBusy: %s\n", 1049 stats & STATS_RBY ? "yes" : "no"); 1050 v4l2_info(sd, "\tFIFO service requested: %s\n", 1051 stats & STATS_RSR ? "yes" : "no"); 1052 v4l2_info(sd, "\tFIFO service request interrupt: %s\n", 1053 irqen & IRQEN_RSE ? "enabled" : "disabled"); 1054 1055 v4l2_info(sd, "IR Transmitter:\n"); 1056 v4l2_info(sd, "\tEnabled: %s\n", 1057 cntrl & CNTRL_TXE ? "yes" : "no"); 1058 v4l2_info(sd, "\tModulation onto a carrier: %s\n", 1059 cntrl & CNTRL_MOD ? "enabled" : "disabled"); 1060 v4l2_info(sd, "\tFIFO: %s\n", 1061 cntrl & CNTRL_TFE ? "enabled" : "disabled"); 1062 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n", 1063 cntrl & CNTRL_TIC ? "not empty" : "half full or less"); 1064 v4l2_info(sd, "\tOutput pin level inversion %s\n", 1065 cntrl & CNTRL_IVO ? "yes" : "no"); 1066 v4l2_info(sd, "\tCarrier polarity: %s\n", 1067 cntrl & CNTRL_CPL ? "space:burst mark:noburst" 1068 : "space:noburst mark:burst"); 1069 if (cntrl & CNTRL_MOD) { 1070 v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n", 1071 clock_divider_to_carrier_freq(txclk)); 1072 v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n", 1073 cduty + 1); 1074 } 1075 v4l2_info(sd, "\tMax pulse width: %u us, %llu ns\n", 1076 pulse_width_count_to_us(FIFO_RXTX, txclk), 1077 pulse_width_count_to_ns(FIFO_RXTX, txclk)); 1078 v4l2_info(sd, "\tBusy: %s\n", 1079 stats & STATS_TBY ? "yes" : "no"); 1080 v4l2_info(sd, "\tFIFO service requested: %s\n", 1081 stats & STATS_TSR ? "yes" : "no"); 1082 v4l2_info(sd, "\tFIFO service request interrupt: %s\n", 1083 irqen & IRQEN_TSE ? "enabled" : "disabled"); 1084 1085 return 0; 1086 } 1087 1088 static inline int cx23888_ir_dbg_match(const struct v4l2_dbg_match *match) 1089 { 1090 return match->type == V4L2_CHIP_MATCH_HOST && match->addr == 2; 1091 } 1092 1093 static int cx23888_ir_g_chip_ident(struct v4l2_subdev *sd, 1094 struct v4l2_dbg_chip_ident *chip) 1095 { 1096 struct cx23888_ir_state *state = to_state(sd); 1097 1098 if (cx23888_ir_dbg_match(&chip->match)) { 1099 chip->ident = state->id; 1100 chip->revision = state->rev; 1101 } 1102 return 0; 1103 } 1104 1105 #ifdef CONFIG_VIDEO_ADV_DEBUG 1106 static int cx23888_ir_g_register(struct v4l2_subdev *sd, 1107 struct v4l2_dbg_register *reg) 1108 { 1109 struct cx23888_ir_state *state = to_state(sd); 1110 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg; 1111 1112 if (!cx23888_ir_dbg_match(®->match)) 1113 return -EINVAL; 1114 if ((addr & 0x3) != 0) 1115 return -EINVAL; 1116 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG) 1117 return -EINVAL; 1118 if (!capable(CAP_SYS_ADMIN)) 1119 return -EPERM; 1120 reg->size = 4; 1121 reg->val = cx23888_ir_read4(state->dev, addr); 1122 return 0; 1123 } 1124 1125 static int cx23888_ir_s_register(struct v4l2_subdev *sd, 1126 struct v4l2_dbg_register *reg) 1127 { 1128 struct cx23888_ir_state *state = to_state(sd); 1129 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg; 1130 1131 if (!cx23888_ir_dbg_match(®->match)) 1132 return -EINVAL; 1133 if ((addr & 0x3) != 0) 1134 return -EINVAL; 1135 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG) 1136 return -EINVAL; 1137 if (!capable(CAP_SYS_ADMIN)) 1138 return -EPERM; 1139 cx23888_ir_write4(state->dev, addr, reg->val); 1140 return 0; 1141 } 1142 #endif 1143 1144 static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = { 1145 .g_chip_ident = cx23888_ir_g_chip_ident, 1146 .log_status = cx23888_ir_log_status, 1147 #ifdef CONFIG_VIDEO_ADV_DEBUG 1148 .g_register = cx23888_ir_g_register, 1149 .s_register = cx23888_ir_s_register, 1150 #endif 1151 .interrupt_service_routine = cx23888_ir_irq_handler, 1152 }; 1153 1154 static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = { 1155 .rx_read = cx23888_ir_rx_read, 1156 .rx_g_parameters = cx23888_ir_rx_g_parameters, 1157 .rx_s_parameters = cx23888_ir_rx_s_parameters, 1158 1159 .tx_write = cx23888_ir_tx_write, 1160 .tx_g_parameters = cx23888_ir_tx_g_parameters, 1161 .tx_s_parameters = cx23888_ir_tx_s_parameters, 1162 }; 1163 1164 static const struct v4l2_subdev_ops cx23888_ir_controller_ops = { 1165 .core = &cx23888_ir_core_ops, 1166 .ir = &cx23888_ir_ir_ops, 1167 }; 1168 1169 static const struct v4l2_subdev_ir_parameters default_rx_params = { 1170 .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec), 1171 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH, 1172 1173 .enable = false, 1174 .interrupt_enable = false, 1175 .shutdown = true, 1176 1177 .modulation = true, 1178 .carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */ 1179 1180 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */ 1181 /* RC-6A: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */ 1182 .noise_filter_min_width = 333333, /* ns */ 1183 .carrier_range_lower = 35000, 1184 .carrier_range_upper = 37000, 1185 .invert_level = false, 1186 }; 1187 1188 static const struct v4l2_subdev_ir_parameters default_tx_params = { 1189 .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec), 1190 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH, 1191 1192 .enable = false, 1193 .interrupt_enable = false, 1194 .shutdown = true, 1195 1196 .modulation = true, 1197 .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */ 1198 .duty_cycle = 25, /* 25 % - RC-5 carrier */ 1199 .invert_level = false, 1200 .invert_carrier_sense = false, 1201 }; 1202 1203 int cx23888_ir_probe(struct cx23885_dev *dev) 1204 { 1205 struct cx23888_ir_state *state; 1206 struct v4l2_subdev *sd; 1207 struct v4l2_subdev_ir_parameters default_params; 1208 int ret; 1209 1210 state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL); 1211 if (state == NULL) 1212 return -ENOMEM; 1213 1214 spin_lock_init(&state->rx_kfifo_lock); 1215 if (kfifo_alloc(&state->rx_kfifo, CX23888_IR_RX_KFIFO_SIZE, GFP_KERNEL)) 1216 return -ENOMEM; 1217 1218 state->dev = dev; 1219 state->id = V4L2_IDENT_CX23888_IR; 1220 state->rev = 0; 1221 sd = &state->sd; 1222 1223 v4l2_subdev_init(sd, &cx23888_ir_controller_ops); 1224 v4l2_set_subdevdata(sd, state); 1225 /* FIXME - fix the formatting of dev->v4l2_dev.name and use it */ 1226 snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name); 1227 sd->grp_id = CX23885_HW_888_IR; 1228 1229 ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd); 1230 if (ret == 0) { 1231 /* 1232 * Ensure no interrupts arrive from '888 specific conditions, 1233 * since we ignore them in this driver to have commonality with 1234 * similar IR controller cores. 1235 */ 1236 cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0); 1237 1238 mutex_init(&state->rx_params_lock); 1239 memcpy(&default_params, &default_rx_params, 1240 sizeof(struct v4l2_subdev_ir_parameters)); 1241 v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params); 1242 1243 mutex_init(&state->tx_params_lock); 1244 memcpy(&default_params, &default_tx_params, 1245 sizeof(struct v4l2_subdev_ir_parameters)); 1246 v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params); 1247 } else { 1248 kfifo_free(&state->rx_kfifo); 1249 } 1250 return ret; 1251 } 1252 1253 int cx23888_ir_remove(struct cx23885_dev *dev) 1254 { 1255 struct v4l2_subdev *sd; 1256 struct cx23888_ir_state *state; 1257 1258 sd = cx23885_find_hw(dev, CX23885_HW_888_IR); 1259 if (sd == NULL) 1260 return -ENODEV; 1261 1262 cx23888_ir_rx_shutdown(sd); 1263 cx23888_ir_tx_shutdown(sd); 1264 1265 state = to_state(sd); 1266 v4l2_device_unregister_subdev(sd); 1267 kfifo_free(&state->rx_kfifo); 1268 kfree(state); 1269 /* Nothing more to free() as state held the actual v4l2_subdev object */ 1270 return 0; 1271 } 1272