1 /* 2 * Omnivision OV9650/OV9652 CMOS Image Sensor driver 3 * 4 * Copyright (C) 2013, Sylwester Nawrocki <sylvester.nawrocki@gmail.com> 5 * 6 * Register definitions and initial settings based on a driver written 7 * by Vladimir Fonov. 8 * Copyright (c) 2010, Vladimir Fonov 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License version 2 as 12 * published by the Free Software Foundation. 13 */ 14 #include <linux/delay.h> 15 #include <linux/gpio.h> 16 #include <linux/i2c.h> 17 #include <linux/kernel.h> 18 #include <linux/media.h> 19 #include <linux/module.h> 20 #include <linux/ratelimit.h> 21 #include <linux/slab.h> 22 #include <linux/string.h> 23 #include <linux/videodev2.h> 24 25 #include <media/media-entity.h> 26 #include <media/v4l2-ctrls.h> 27 #include <media/v4l2-device.h> 28 #include <media/v4l2-event.h> 29 #include <media/v4l2-image-sizes.h> 30 #include <media/v4l2-subdev.h> 31 #include <media/v4l2-mediabus.h> 32 #include <media/ov9650.h> 33 34 static int debug; 35 module_param(debug, int, 0644); 36 MODULE_PARM_DESC(debug, "Debug level (0-2)"); 37 38 #define DRIVER_NAME "OV9650" 39 40 /* 41 * OV9650/OV9652 register definitions 42 */ 43 #define REG_GAIN 0x00 /* Gain control, AGC[7:0] */ 44 #define REG_BLUE 0x01 /* AWB - Blue chanel gain */ 45 #define REG_RED 0x02 /* AWB - Red chanel gain */ 46 #define REG_VREF 0x03 /* [7:6] - AGC[9:8], [5:3]/[2:0] */ 47 #define VREF_GAIN_MASK 0xc0 /* - VREF end/start low 3 bits */ 48 #define REG_COM1 0x04 49 #define COM1_CCIR656 0x40 50 #define REG_B_AVE 0x05 51 #define REG_GB_AVE 0x06 52 #define REG_GR_AVE 0x07 53 #define REG_R_AVE 0x08 54 #define REG_COM2 0x09 55 #define REG_PID 0x0a /* Product ID MSB */ 56 #define REG_VER 0x0b /* Product ID LSB */ 57 #define REG_COM3 0x0c 58 #define COM3_SWAP 0x40 59 #define COM3_VARIOPIXEL1 0x04 60 #define REG_COM4 0x0d /* Vario Pixels */ 61 #define COM4_VARIOPIXEL2 0x80 62 #define REG_COM5 0x0e /* System clock options */ 63 #define COM5_SLAVE_MODE 0x10 64 #define COM5_SYSTEMCLOCK48MHZ 0x80 65 #define REG_COM6 0x0f /* HREF & ADBLC options */ 66 #define REG_AECH 0x10 /* Exposure value, AEC[9:2] */ 67 #define REG_CLKRC 0x11 /* Clock control */ 68 #define CLK_EXT 0x40 /* Use external clock directly */ 69 #define CLK_SCALE 0x3f /* Mask for internal clock scale */ 70 #define REG_COM7 0x12 /* SCCB reset, output format */ 71 #define COM7_RESET 0x80 72 #define COM7_FMT_MASK 0x38 73 #define COM7_FMT_VGA 0x40 74 #define COM7_FMT_CIF 0x20 75 #define COM7_FMT_QVGA 0x10 76 #define COM7_FMT_QCIF 0x08 77 #define COM7_RGB 0x04 78 #define COM7_YUV 0x00 79 #define COM7_BAYER 0x01 80 #define COM7_PBAYER 0x05 81 #define REG_COM8 0x13 /* AGC/AEC options */ 82 #define COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */ 83 #define COM8_AECSTEP 0x40 /* Unlimited AEC step size */ 84 #define COM8_BFILT 0x20 /* Band filter enable */ 85 #define COM8_AGC 0x04 /* Auto gain enable */ 86 #define COM8_AWB 0x02 /* White balance enable */ 87 #define COM8_AEC 0x01 /* Auto exposure enable */ 88 #define REG_COM9 0x14 /* Gain ceiling */ 89 #define COM9_GAIN_CEIL_MASK 0x70 /* */ 90 #define REG_COM10 0x15 /* PCLK, HREF, HSYNC signals polarity */ 91 #define COM10_HSYNC 0x40 /* HSYNC instead of HREF */ 92 #define COM10_PCLK_HB 0x20 /* Suppress PCLK on horiz blank */ 93 #define COM10_HREF_REV 0x08 /* Reverse HREF */ 94 #define COM10_VS_LEAD 0x04 /* VSYNC on clock leading edge */ 95 #define COM10_VS_NEG 0x02 /* VSYNC negative */ 96 #define COM10_HS_NEG 0x01 /* HSYNC negative */ 97 #define REG_HSTART 0x17 /* Horiz start high bits */ 98 #define REG_HSTOP 0x18 /* Horiz stop high bits */ 99 #define REG_VSTART 0x19 /* Vert start high bits */ 100 #define REG_VSTOP 0x1a /* Vert stop high bits */ 101 #define REG_PSHFT 0x1b /* Pixel delay after HREF */ 102 #define REG_MIDH 0x1c /* Manufacturer ID MSB */ 103 #define REG_MIDL 0x1d /* Manufufacturer ID LSB */ 104 #define REG_MVFP 0x1e /* Image mirror/flip */ 105 #define MVFP_MIRROR 0x20 /* Mirror image */ 106 #define MVFP_FLIP 0x10 /* Vertical flip */ 107 #define REG_BOS 0x20 /* B channel Offset */ 108 #define REG_GBOS 0x21 /* Gb channel Offset */ 109 #define REG_GROS 0x22 /* Gr channel Offset */ 110 #define REG_ROS 0x23 /* R channel Offset */ 111 #define REG_AEW 0x24 /* AGC upper limit */ 112 #define REG_AEB 0x25 /* AGC lower limit */ 113 #define REG_VPT 0x26 /* AGC/AEC fast mode op region */ 114 #define REG_BBIAS 0x27 /* B channel output bias */ 115 #define REG_GBBIAS 0x28 /* Gb channel output bias */ 116 #define REG_GRCOM 0x29 /* Analog BLC & regulator */ 117 #define REG_EXHCH 0x2a /* Dummy pixel insert MSB */ 118 #define REG_EXHCL 0x2b /* Dummy pixel insert LSB */ 119 #define REG_RBIAS 0x2c /* R channel output bias */ 120 #define REG_ADVFL 0x2d /* LSB of dummy line insert */ 121 #define REG_ADVFH 0x2e /* MSB of dummy line insert */ 122 #define REG_YAVE 0x2f /* Y/G channel average value */ 123 #define REG_HSYST 0x30 /* HSYNC rising edge delay LSB*/ 124 #define REG_HSYEN 0x31 /* HSYNC falling edge delay LSB*/ 125 #define REG_HREF 0x32 /* HREF pieces */ 126 #define REG_CHLF 0x33 /* reserved */ 127 #define REG_ADC 0x37 /* reserved */ 128 #define REG_ACOM 0x38 /* reserved */ 129 #define REG_OFON 0x39 /* Power down register */ 130 #define OFON_PWRDN 0x08 /* Power down bit */ 131 #define REG_TSLB 0x3a /* YUVU format */ 132 #define TSLB_YUYV_MASK 0x0c /* UYVY or VYUY - see com13 */ 133 #define REG_COM11 0x3b /* Night mode, banding filter enable */ 134 #define COM11_NIGHT 0x80 /* Night mode enable */ 135 #define COM11_NMFR 0x60 /* Two bit NM frame rate */ 136 #define COM11_BANDING 0x01 /* Banding filter */ 137 #define COM11_AEC_REF_MASK 0x18 /* AEC reference area selection */ 138 #define REG_COM12 0x3c /* HREF option, UV average */ 139 #define COM12_HREF 0x80 /* HREF always */ 140 #define REG_COM13 0x3d /* Gamma selection, Color matrix en. */ 141 #define COM13_GAMMA 0x80 /* Gamma enable */ 142 #define COM13_UVSAT 0x40 /* UV saturation auto adjustment */ 143 #define COM13_UVSWAP 0x01 /* V before U - w/TSLB */ 144 #define REG_COM14 0x3e /* Edge enhancement options */ 145 #define COM14_EDGE_EN 0x02 146 #define COM14_EEF_X2 0x01 147 #define REG_EDGE 0x3f /* Edge enhancement factor */ 148 #define EDGE_FACTOR_MASK 0x0f 149 #define REG_COM15 0x40 /* Output range, RGB 555/565 */ 150 #define COM15_R10F0 0x00 /* Data range 10 to F0 */ 151 #define COM15_R01FE 0x80 /* 01 to FE */ 152 #define COM15_R00FF 0xc0 /* 00 to FF */ 153 #define COM15_RGB565 0x10 /* RGB565 output */ 154 #define COM15_RGB555 0x30 /* RGB555 output */ 155 #define COM15_SWAPRB 0x04 /* Swap R&B */ 156 #define REG_COM16 0x41 /* Color matrix coeff options */ 157 #define REG_COM17 0x42 /* Single frame out, banding filter */ 158 /* n = 1...9, 0x4f..0x57 */ 159 #define REG_MTX(__n) (0x4f + (__n) - 1) 160 #define REG_MTXS 0x58 161 /* Lens Correction Option 1...5, __n = 0...5 */ 162 #define REG_LCC(__n) (0x62 + (__n) - 1) 163 #define LCC5_LCC_ENABLE 0x01 /* LCC5, enable lens correction */ 164 #define LCC5_LCC_COLOR 0x04 165 #define REG_MANU 0x67 /* Manual U value */ 166 #define REG_MANV 0x68 /* Manual V value */ 167 #define REG_HV 0x69 /* Manual banding filter MSB */ 168 #define REG_MBD 0x6a /* Manual banding filter value */ 169 #define REG_DBLV 0x6b /* reserved */ 170 #define REG_GSP 0x6c /* Gamma curve */ 171 #define GSP_LEN 15 172 #define REG_GST 0x7c /* Gamma curve */ 173 #define GST_LEN 15 174 #define REG_COM21 0x8b 175 #define REG_COM22 0x8c /* Edge enhancement, denoising */ 176 #define COM22_WHTPCOR 0x02 /* White pixel correction enable */ 177 #define COM22_WHTPCOROPT 0x01 /* White pixel correction option */ 178 #define COM22_DENOISE 0x10 /* White pixel correction option */ 179 #define REG_COM23 0x8d /* Color bar test, color gain */ 180 #define COM23_TEST_MODE 0x10 181 #define REG_DBLC1 0x8f /* Digital BLC */ 182 #define REG_DBLC_B 0x90 /* Digital BLC B channel offset */ 183 #define REG_DBLC_R 0x91 /* Digital BLC R channel offset */ 184 #define REG_DM_LNL 0x92 /* Dummy line low 8 bits */ 185 #define REG_DM_LNH 0x93 /* Dummy line high 8 bits */ 186 #define REG_LCCFB 0x9d /* Lens Correction B channel */ 187 #define REG_LCCFR 0x9e /* Lens Correction R channel */ 188 #define REG_DBLC_GB 0x9f /* Digital BLC GB chan offset */ 189 #define REG_DBLC_GR 0xa0 /* Digital BLC GR chan offset */ 190 #define REG_AECHM 0xa1 /* Exposure value - bits AEC[15:10] */ 191 #define REG_BD50ST 0xa2 /* Banding filter value for 50Hz */ 192 #define REG_BD60ST 0xa3 /* Banding filter value for 60Hz */ 193 #define REG_NULL 0xff /* Array end token */ 194 195 #define DEF_CLKRC 0x80 196 197 #define OV965X_ID(_msb, _lsb) ((_msb) << 8 | (_lsb)) 198 #define OV9650_ID 0x9650 199 #define OV9652_ID 0x9652 200 201 struct ov965x_ctrls { 202 struct v4l2_ctrl_handler handler; 203 struct { 204 struct v4l2_ctrl *auto_exp; 205 struct v4l2_ctrl *exposure; 206 }; 207 struct { 208 struct v4l2_ctrl *auto_wb; 209 struct v4l2_ctrl *blue_balance; 210 struct v4l2_ctrl *red_balance; 211 }; 212 struct { 213 struct v4l2_ctrl *hflip; 214 struct v4l2_ctrl *vflip; 215 }; 216 struct { 217 struct v4l2_ctrl *auto_gain; 218 struct v4l2_ctrl *gain; 219 }; 220 struct v4l2_ctrl *brightness; 221 struct v4l2_ctrl *saturation; 222 struct v4l2_ctrl *sharpness; 223 struct v4l2_ctrl *light_freq; 224 u8 update; 225 }; 226 227 struct ov965x_framesize { 228 u16 width; 229 u16 height; 230 u16 max_exp_lines; 231 const u8 *regs; 232 }; 233 234 struct ov965x_interval { 235 struct v4l2_fract interval; 236 /* Maximum resolution for this interval */ 237 struct v4l2_frmsize_discrete size; 238 u8 clkrc_div; 239 }; 240 241 enum gpio_id { 242 GPIO_PWDN, 243 GPIO_RST, 244 NUM_GPIOS, 245 }; 246 247 struct ov965x { 248 struct v4l2_subdev sd; 249 struct media_pad pad; 250 enum v4l2_mbus_type bus_type; 251 int gpios[NUM_GPIOS]; 252 /* External master clock frequency */ 253 unsigned long mclk_frequency; 254 255 /* Protects the struct fields below */ 256 struct mutex lock; 257 258 struct i2c_client *client; 259 260 /* Exposure row interval in us */ 261 unsigned int exp_row_interval; 262 263 unsigned short id; 264 const struct ov965x_framesize *frame_size; 265 /* YUYV sequence (pixel format) control register */ 266 u8 tslb_reg; 267 struct v4l2_mbus_framefmt format; 268 269 struct ov965x_ctrls ctrls; 270 /* Pointer to frame rate control data structure */ 271 const struct ov965x_interval *fiv; 272 273 int streaming; 274 int power; 275 276 u8 apply_frame_fmt; 277 }; 278 279 struct i2c_rv { 280 u8 addr; 281 u8 value; 282 }; 283 284 static const struct i2c_rv ov965x_init_regs[] = { 285 { REG_COM2, 0x10 }, /* Set soft sleep mode */ 286 { REG_COM5, 0x00 }, /* System clock options */ 287 { REG_COM2, 0x01 }, /* Output drive, soft sleep mode */ 288 { REG_COM10, 0x00 }, /* Slave mode, HREF vs HSYNC, signals negate */ 289 { REG_EDGE, 0xa6 }, /* Edge enhancement treshhold and factor */ 290 { REG_COM16, 0x02 }, /* Color matrix coeff double option */ 291 { REG_COM17, 0x08 }, /* Single frame out, banding filter */ 292 { 0x16, 0x06 }, 293 { REG_CHLF, 0xc0 }, /* Reserved */ 294 { 0x34, 0xbf }, 295 { 0xa8, 0x80 }, 296 { 0x96, 0x04 }, 297 { 0x8e, 0x00 }, 298 { REG_COM12, 0x77 }, /* HREF option, UV average */ 299 { 0x8b, 0x06 }, 300 { 0x35, 0x91 }, 301 { 0x94, 0x88 }, 302 { 0x95, 0x88 }, 303 { REG_COM15, 0xc1 }, /* Output range, RGB 555/565 */ 304 { REG_GRCOM, 0x2f }, /* Analog BLC & regulator */ 305 { REG_COM6, 0x43 }, /* HREF & ADBLC options */ 306 { REG_COM8, 0xe5 }, /* AGC/AEC options */ 307 { REG_COM13, 0x90 }, /* Gamma selection, colour matrix, UV delay */ 308 { REG_HV, 0x80 }, /* Manual banding filter MSB */ 309 { 0x5c, 0x96 }, /* Reserved up to 0xa5 */ 310 { 0x5d, 0x96 }, 311 { 0x5e, 0x10 }, 312 { 0x59, 0xeb }, 313 { 0x5a, 0x9c }, 314 { 0x5b, 0x55 }, 315 { 0x43, 0xf0 }, 316 { 0x44, 0x10 }, 317 { 0x45, 0x55 }, 318 { 0x46, 0x86 }, 319 { 0x47, 0x64 }, 320 { 0x48, 0x86 }, 321 { 0x5f, 0xe0 }, 322 { 0x60, 0x8c }, 323 { 0x61, 0x20 }, 324 { 0xa5, 0xd9 }, 325 { 0xa4, 0x74 }, /* reserved */ 326 { REG_COM23, 0x02 }, /* Color gain analog/_digital_ */ 327 { REG_COM8, 0xe7 }, /* Enable AEC, AWB, AEC */ 328 { REG_COM22, 0x23 }, /* Edge enhancement, denoising */ 329 { 0xa9, 0xb8 }, 330 { 0xaa, 0x92 }, 331 { 0xab, 0x0a }, 332 { REG_DBLC1, 0xdf }, /* Digital BLC */ 333 { REG_DBLC_B, 0x00 }, /* Digital BLC B chan offset */ 334 { REG_DBLC_R, 0x00 }, /* Digital BLC R chan offset */ 335 { REG_DBLC_GB, 0x00 }, /* Digital BLC GB chan offset */ 336 { REG_DBLC_GR, 0x00 }, 337 { REG_COM9, 0x3a }, /* Gain ceiling 16x */ 338 { REG_NULL, 0 } 339 }; 340 341 #define NUM_FMT_REGS 14 342 /* 343 * COM7, COM3, COM4, HSTART, HSTOP, HREF, VSTART, VSTOP, VREF, 344 * EXHCH, EXHCL, ADC, OCOM, OFON 345 */ 346 static const u8 frame_size_reg_addr[NUM_FMT_REGS] = { 347 0x12, 0x0c, 0x0d, 0x17, 0x18, 0x32, 0x19, 0x1a, 0x03, 348 0x2a, 0x2b, 0x37, 0x38, 0x39, 349 }; 350 351 static const u8 ov965x_sxga_regs[NUM_FMT_REGS] = { 352 0x00, 0x00, 0x00, 0x1e, 0xbe, 0xbf, 0x01, 0x81, 0x12, 353 0x10, 0x34, 0x81, 0x93, 0x51, 354 }; 355 356 static const u8 ov965x_vga_regs[NUM_FMT_REGS] = { 357 0x40, 0x04, 0x80, 0x26, 0xc6, 0xed, 0x01, 0x3d, 0x00, 358 0x10, 0x40, 0x91, 0x12, 0x43, 359 }; 360 361 /* Determined empirically. */ 362 static const u8 ov965x_qvga_regs[NUM_FMT_REGS] = { 363 0x10, 0x04, 0x80, 0x25, 0xc5, 0xbf, 0x00, 0x80, 0x12, 364 0x10, 0x40, 0x91, 0x12, 0x43, 365 }; 366 367 static const struct ov965x_framesize ov965x_framesizes[] = { 368 { 369 .width = SXGA_WIDTH, 370 .height = SXGA_HEIGHT, 371 .regs = ov965x_sxga_regs, 372 .max_exp_lines = 1048, 373 }, { 374 .width = VGA_WIDTH, 375 .height = VGA_HEIGHT, 376 .regs = ov965x_vga_regs, 377 .max_exp_lines = 498, 378 }, { 379 .width = QVGA_WIDTH, 380 .height = QVGA_HEIGHT, 381 .regs = ov965x_qvga_regs, 382 .max_exp_lines = 248, 383 }, 384 }; 385 386 struct ov965x_pixfmt { 387 u32 code; 388 u32 colorspace; 389 /* REG_TSLB value, only bits [3:2] may be set. */ 390 u8 tslb_reg; 391 }; 392 393 static const struct ov965x_pixfmt ov965x_formats[] = { 394 { MEDIA_BUS_FMT_YUYV8_2X8, V4L2_COLORSPACE_JPEG, 0x00}, 395 { MEDIA_BUS_FMT_YVYU8_2X8, V4L2_COLORSPACE_JPEG, 0x04}, 396 { MEDIA_BUS_FMT_UYVY8_2X8, V4L2_COLORSPACE_JPEG, 0x0c}, 397 { MEDIA_BUS_FMT_VYUY8_2X8, V4L2_COLORSPACE_JPEG, 0x08}, 398 }; 399 400 /* 401 * This table specifies possible frame resolution and interval 402 * combinations. Default CLKRC[5:0] divider values are valid 403 * only for 24 MHz external clock frequency. 404 */ 405 static struct ov965x_interval ov965x_intervals[] = { 406 {{ 100, 625 }, { SXGA_WIDTH, SXGA_HEIGHT }, 0 }, /* 6.25 fps */ 407 {{ 10, 125 }, { VGA_WIDTH, VGA_HEIGHT }, 1 }, /* 12.5 fps */ 408 {{ 10, 125 }, { QVGA_WIDTH, QVGA_HEIGHT }, 3 }, /* 12.5 fps */ 409 {{ 1, 25 }, { VGA_WIDTH, VGA_HEIGHT }, 0 }, /* 25 fps */ 410 {{ 1, 25 }, { QVGA_WIDTH, QVGA_HEIGHT }, 1 }, /* 25 fps */ 411 }; 412 413 static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl) 414 { 415 return &container_of(ctrl->handler, struct ov965x, ctrls.handler)->sd; 416 } 417 418 static inline struct ov965x *to_ov965x(struct v4l2_subdev *sd) 419 { 420 return container_of(sd, struct ov965x, sd); 421 } 422 423 static int ov965x_read(struct i2c_client *client, u8 addr, u8 *val) 424 { 425 u8 buf = addr; 426 struct i2c_msg msg = { 427 .addr = client->addr, 428 .flags = 0, 429 .len = 1, 430 .buf = &buf 431 }; 432 int ret; 433 434 ret = i2c_transfer(client->adapter, &msg, 1); 435 if (ret == 1) { 436 msg.flags = I2C_M_RD; 437 ret = i2c_transfer(client->adapter, &msg, 1); 438 439 if (ret == 1) 440 *val = buf; 441 } 442 443 v4l2_dbg(2, debug, client, "%s: 0x%02x @ 0x%02x. (%d)\n", 444 __func__, *val, addr, ret); 445 446 return ret == 1 ? 0 : ret; 447 } 448 449 static int ov965x_write(struct i2c_client *client, u8 addr, u8 val) 450 { 451 u8 buf[2] = { addr, val }; 452 453 int ret = i2c_master_send(client, buf, 2); 454 455 v4l2_dbg(2, debug, client, "%s: 0x%02x @ 0x%02X (%d)\n", 456 __func__, val, addr, ret); 457 458 return ret == 2 ? 0 : ret; 459 } 460 461 static int ov965x_write_array(struct i2c_client *client, 462 const struct i2c_rv *regs) 463 { 464 int i, ret = 0; 465 466 for (i = 0; ret == 0 && regs[i].addr != REG_NULL; i++) 467 ret = ov965x_write(client, regs[i].addr, regs[i].value); 468 469 return ret; 470 } 471 472 static int ov965x_set_default_gamma_curve(struct ov965x *ov965x) 473 { 474 static const u8 gamma_curve[] = { 475 /* Values taken from OV application note. */ 476 0x40, 0x30, 0x4b, 0x60, 0x70, 0x70, 0x70, 0x70, 477 0x60, 0x60, 0x50, 0x48, 0x3a, 0x2e, 0x28, 0x22, 478 0x04, 0x07, 0x10, 0x28, 0x36, 0x44, 0x52, 0x60, 479 0x6c, 0x78, 0x8c, 0x9e, 0xbb, 0xd2, 0xe6 480 }; 481 u8 addr = REG_GSP; 482 unsigned int i; 483 484 for (i = 0; i < ARRAY_SIZE(gamma_curve); i++) { 485 int ret = ov965x_write(ov965x->client, addr, gamma_curve[i]); 486 if (ret < 0) 487 return ret; 488 addr++; 489 } 490 491 return 0; 492 }; 493 494 static int ov965x_set_color_matrix(struct ov965x *ov965x) 495 { 496 static const u8 mtx[] = { 497 /* MTX1..MTX9, MTXS */ 498 0x3a, 0x3d, 0x03, 0x12, 0x26, 0x38, 0x40, 0x40, 0x40, 0x0d 499 }; 500 u8 addr = REG_MTX(1); 501 unsigned int i; 502 503 for (i = 0; i < ARRAY_SIZE(mtx); i++) { 504 int ret = ov965x_write(ov965x->client, addr, mtx[i]); 505 if (ret < 0) 506 return ret; 507 addr++; 508 } 509 510 return 0; 511 } 512 513 static void ov965x_gpio_set(int gpio, int val) 514 { 515 if (gpio_is_valid(gpio)) 516 gpio_set_value(gpio, val); 517 } 518 519 static void __ov965x_set_power(struct ov965x *ov965x, int on) 520 { 521 if (on) { 522 ov965x_gpio_set(ov965x->gpios[GPIO_PWDN], 0); 523 ov965x_gpio_set(ov965x->gpios[GPIO_RST], 0); 524 usleep_range(25000, 26000); 525 } else { 526 ov965x_gpio_set(ov965x->gpios[GPIO_RST], 1); 527 ov965x_gpio_set(ov965x->gpios[GPIO_PWDN], 1); 528 } 529 530 ov965x->streaming = 0; 531 } 532 533 static int ov965x_s_power(struct v4l2_subdev *sd, int on) 534 { 535 struct ov965x *ov965x = to_ov965x(sd); 536 struct i2c_client *client = ov965x->client; 537 int ret = 0; 538 539 v4l2_dbg(1, debug, client, "%s: on: %d\n", __func__, on); 540 541 mutex_lock(&ov965x->lock); 542 if (ov965x->power == !on) { 543 __ov965x_set_power(ov965x, on); 544 if (on) { 545 ret = ov965x_write_array(client, 546 ov965x_init_regs); 547 ov965x->apply_frame_fmt = 1; 548 ov965x->ctrls.update = 1; 549 } 550 } 551 if (!ret) 552 ov965x->power += on ? 1 : -1; 553 554 WARN_ON(ov965x->power < 0); 555 mutex_unlock(&ov965x->lock); 556 return ret; 557 } 558 559 /* 560 * V4L2 controls 561 */ 562 563 static void ov965x_update_exposure_ctrl(struct ov965x *ov965x) 564 { 565 struct v4l2_ctrl *ctrl = ov965x->ctrls.exposure; 566 unsigned long fint, trow; 567 int min, max, def; 568 u8 clkrc; 569 570 mutex_lock(&ov965x->lock); 571 if (WARN_ON(!ctrl || !ov965x->frame_size)) { 572 mutex_unlock(&ov965x->lock); 573 return; 574 } 575 clkrc = DEF_CLKRC + ov965x->fiv->clkrc_div; 576 /* Calculate internal clock frequency */ 577 fint = ov965x->mclk_frequency * ((clkrc >> 7) + 1) / 578 ((2 * ((clkrc & 0x3f) + 1))); 579 /* and the row interval (in us). */ 580 trow = (2 * 1520 * 1000000UL) / fint; 581 max = ov965x->frame_size->max_exp_lines * trow; 582 ov965x->exp_row_interval = trow; 583 mutex_unlock(&ov965x->lock); 584 585 v4l2_dbg(1, debug, &ov965x->sd, "clkrc: %#x, fi: %lu, tr: %lu, %d\n", 586 clkrc, fint, trow, max); 587 588 /* Update exposure time range to match current frame format. */ 589 min = (trow + 100) / 100; 590 max = (max - 100) / 100; 591 def = min + (max - min) / 2; 592 593 if (v4l2_ctrl_modify_range(ctrl, min, max, 1, def)) 594 v4l2_err(&ov965x->sd, "Exposure ctrl range update failed\n"); 595 } 596 597 static int ov965x_set_banding_filter(struct ov965x *ov965x, int value) 598 { 599 unsigned long mbd, light_freq; 600 int ret; 601 u8 reg; 602 603 ret = ov965x_read(ov965x->client, REG_COM8, ®); 604 if (!ret) { 605 if (value == V4L2_CID_POWER_LINE_FREQUENCY_DISABLED) 606 reg &= ~COM8_BFILT; 607 else 608 reg |= COM8_BFILT; 609 ret = ov965x_write(ov965x->client, REG_COM8, reg); 610 } 611 if (value == V4L2_CID_POWER_LINE_FREQUENCY_DISABLED) 612 return 0; 613 if (WARN_ON(ov965x->fiv == NULL)) 614 return -EINVAL; 615 /* Set minimal exposure time for 50/60 HZ lighting */ 616 if (value == V4L2_CID_POWER_LINE_FREQUENCY_50HZ) 617 light_freq = 50; 618 else 619 light_freq = 60; 620 mbd = (1000UL * ov965x->fiv->interval.denominator * 621 ov965x->frame_size->max_exp_lines) / 622 ov965x->fiv->interval.numerator; 623 mbd = ((mbd / (light_freq * 2)) + 500) / 1000UL; 624 625 return ov965x_write(ov965x->client, REG_MBD, mbd); 626 } 627 628 static int ov965x_set_white_balance(struct ov965x *ov965x, int awb) 629 { 630 int ret; 631 u8 reg; 632 633 ret = ov965x_read(ov965x->client, REG_COM8, ®); 634 if (!ret) { 635 reg = awb ? reg | REG_COM8 : reg & ~REG_COM8; 636 ret = ov965x_write(ov965x->client, REG_COM8, reg); 637 } 638 if (!ret && !awb) { 639 ret = ov965x_write(ov965x->client, REG_BLUE, 640 ov965x->ctrls.blue_balance->val); 641 if (ret < 0) 642 return ret; 643 ret = ov965x_write(ov965x->client, REG_RED, 644 ov965x->ctrls.red_balance->val); 645 } 646 return ret; 647 } 648 649 #define NUM_BR_LEVELS 7 650 #define NUM_BR_REGS 3 651 652 static int ov965x_set_brightness(struct ov965x *ov965x, int val) 653 { 654 static const u8 regs[NUM_BR_LEVELS + 1][NUM_BR_REGS] = { 655 { REG_AEW, REG_AEB, REG_VPT }, 656 { 0x1c, 0x12, 0x50 }, /* -3 */ 657 { 0x3d, 0x30, 0x71 }, /* -2 */ 658 { 0x50, 0x44, 0x92 }, /* -1 */ 659 { 0x70, 0x64, 0xc3 }, /* 0 */ 660 { 0x90, 0x84, 0xd4 }, /* +1 */ 661 { 0xc4, 0xbf, 0xf9 }, /* +2 */ 662 { 0xd8, 0xd0, 0xfa }, /* +3 */ 663 }; 664 int i, ret = 0; 665 666 val += (NUM_BR_LEVELS / 2 + 1); 667 if (val > NUM_BR_LEVELS) 668 return -EINVAL; 669 670 for (i = 0; i < NUM_BR_REGS && !ret; i++) 671 ret = ov965x_write(ov965x->client, regs[0][i], 672 regs[val][i]); 673 return ret; 674 } 675 676 static int ov965x_set_gain(struct ov965x *ov965x, int auto_gain) 677 { 678 struct i2c_client *client = ov965x->client; 679 struct ov965x_ctrls *ctrls = &ov965x->ctrls; 680 int ret = 0; 681 u8 reg; 682 /* 683 * For manual mode we need to disable AGC first, so 684 * gain value in REG_VREF, REG_GAIN is not overwritten. 685 */ 686 if (ctrls->auto_gain->is_new) { 687 ret = ov965x_read(client, REG_COM8, ®); 688 if (ret < 0) 689 return ret; 690 if (ctrls->auto_gain->val) 691 reg |= COM8_AGC; 692 else 693 reg &= ~COM8_AGC; 694 ret = ov965x_write(client, REG_COM8, reg); 695 if (ret < 0) 696 return ret; 697 } 698 699 if (ctrls->gain->is_new && !auto_gain) { 700 unsigned int gain = ctrls->gain->val; 701 unsigned int rgain; 702 int m; 703 /* 704 * Convert gain control value to the sensor's gain 705 * registers (VREF[7:6], GAIN[7:0]) format. 706 */ 707 for (m = 6; m >= 0; m--) 708 if (gain >= (1 << m) * 16) 709 break; 710 rgain = (gain - ((1 << m) * 16)) / (1 << m); 711 rgain |= (((1 << m) - 1) << 4); 712 713 ret = ov965x_write(client, REG_GAIN, rgain & 0xff); 714 if (ret < 0) 715 return ret; 716 ret = ov965x_read(client, REG_VREF, ®); 717 if (ret < 0) 718 return ret; 719 reg &= ~VREF_GAIN_MASK; 720 reg |= (((rgain >> 8) & 0x3) << 6); 721 ret = ov965x_write(client, REG_VREF, reg); 722 if (ret < 0) 723 return ret; 724 /* Return updated control's value to userspace */ 725 ctrls->gain->val = (1 << m) * (16 + (rgain & 0xf)); 726 } 727 728 return ret; 729 } 730 731 static int ov965x_set_sharpness(struct ov965x *ov965x, unsigned int value) 732 { 733 u8 com14, edge; 734 int ret; 735 736 ret = ov965x_read(ov965x->client, REG_COM14, &com14); 737 if (ret < 0) 738 return ret; 739 ret = ov965x_read(ov965x->client, REG_EDGE, &edge); 740 if (ret < 0) 741 return ret; 742 com14 = value ? com14 | COM14_EDGE_EN : com14 & ~COM14_EDGE_EN; 743 value--; 744 if (value > 0x0f) { 745 com14 |= COM14_EEF_X2; 746 value >>= 1; 747 } else { 748 com14 &= ~COM14_EEF_X2; 749 } 750 ret = ov965x_write(ov965x->client, REG_COM14, com14); 751 if (ret < 0) 752 return ret; 753 754 edge &= ~EDGE_FACTOR_MASK; 755 edge |= ((u8)value & 0x0f); 756 757 return ov965x_write(ov965x->client, REG_EDGE, edge); 758 } 759 760 static int ov965x_set_exposure(struct ov965x *ov965x, int exp) 761 { 762 struct i2c_client *client = ov965x->client; 763 struct ov965x_ctrls *ctrls = &ov965x->ctrls; 764 bool auto_exposure = (exp == V4L2_EXPOSURE_AUTO); 765 int ret; 766 u8 reg; 767 768 if (ctrls->auto_exp->is_new) { 769 ret = ov965x_read(client, REG_COM8, ®); 770 if (ret < 0) 771 return ret; 772 if (auto_exposure) 773 reg |= (COM8_AEC | COM8_AGC); 774 else 775 reg &= ~(COM8_AEC | COM8_AGC); 776 ret = ov965x_write(client, REG_COM8, reg); 777 if (ret < 0) 778 return ret; 779 } 780 781 if (!auto_exposure && ctrls->exposure->is_new) { 782 unsigned int exposure = (ctrls->exposure->val * 100) 783 / ov965x->exp_row_interval; 784 /* 785 * Manual exposure value 786 * [b15:b0] - AECHM (b15:b10), AECH (b9:b2), COM1 (b1:b0) 787 */ 788 ret = ov965x_write(client, REG_COM1, exposure & 0x3); 789 if (!ret) 790 ret = ov965x_write(client, REG_AECH, 791 (exposure >> 2) & 0xff); 792 if (!ret) 793 ret = ov965x_write(client, REG_AECHM, 794 (exposure >> 10) & 0x3f); 795 /* Update the value to minimize rounding errors */ 796 ctrls->exposure->val = ((exposure * ov965x->exp_row_interval) 797 + 50) / 100; 798 if (ret < 0) 799 return ret; 800 } 801 802 v4l2_ctrl_activate(ov965x->ctrls.brightness, !exp); 803 return 0; 804 } 805 806 static int ov965x_set_flip(struct ov965x *ov965x) 807 { 808 u8 mvfp = 0; 809 810 if (ov965x->ctrls.hflip->val) 811 mvfp |= MVFP_MIRROR; 812 813 if (ov965x->ctrls.vflip->val) 814 mvfp |= MVFP_FLIP; 815 816 return ov965x_write(ov965x->client, REG_MVFP, mvfp); 817 } 818 819 #define NUM_SAT_LEVELS 5 820 #define NUM_SAT_REGS 6 821 822 static int ov965x_set_saturation(struct ov965x *ov965x, int val) 823 { 824 static const u8 regs[NUM_SAT_LEVELS][NUM_SAT_REGS] = { 825 /* MTX(1)...MTX(6) */ 826 { 0x1d, 0x1f, 0x02, 0x09, 0x13, 0x1c }, /* -2 */ 827 { 0x2e, 0x31, 0x02, 0x0e, 0x1e, 0x2d }, /* -1 */ 828 { 0x3a, 0x3d, 0x03, 0x12, 0x26, 0x38 }, /* 0 */ 829 { 0x46, 0x49, 0x04, 0x16, 0x2e, 0x43 }, /* +1 */ 830 { 0x57, 0x5c, 0x05, 0x1b, 0x39, 0x54 }, /* +2 */ 831 }; 832 u8 addr = REG_MTX(1); 833 int i, ret = 0; 834 835 val += (NUM_SAT_LEVELS / 2); 836 if (val >= NUM_SAT_LEVELS) 837 return -EINVAL; 838 839 for (i = 0; i < NUM_SAT_REGS && !ret; i++) 840 ret = ov965x_write(ov965x->client, addr + i, regs[val][i]); 841 842 return ret; 843 } 844 845 static int ov965x_set_test_pattern(struct ov965x *ov965x, int value) 846 { 847 int ret; 848 u8 reg; 849 850 ret = ov965x_read(ov965x->client, REG_COM23, ®); 851 if (ret < 0) 852 return ret; 853 reg = value ? reg | COM23_TEST_MODE : reg & ~COM23_TEST_MODE; 854 return ov965x_write(ov965x->client, REG_COM23, reg); 855 } 856 857 static int __g_volatile_ctrl(struct ov965x *ov965x, struct v4l2_ctrl *ctrl) 858 { 859 struct i2c_client *client = ov965x->client; 860 unsigned int exposure, gain, m; 861 u8 reg0, reg1, reg2; 862 int ret; 863 864 if (!ov965x->power) 865 return 0; 866 867 switch (ctrl->id) { 868 case V4L2_CID_AUTOGAIN: 869 if (!ctrl->val) 870 return 0; 871 ret = ov965x_read(client, REG_GAIN, ®0); 872 if (ret < 0) 873 return ret; 874 ret = ov965x_read(client, REG_VREF, ®1); 875 if (ret < 0) 876 return ret; 877 gain = ((reg1 >> 6) << 8) | reg0; 878 m = 0x01 << fls(gain >> 4); 879 ov965x->ctrls.gain->val = m * (16 + (gain & 0xf)); 880 break; 881 882 case V4L2_CID_EXPOSURE_AUTO: 883 if (ctrl->val == V4L2_EXPOSURE_MANUAL) 884 return 0; 885 ret = ov965x_read(client, REG_COM1, ®0); 886 if (!ret) 887 ret = ov965x_read(client, REG_AECH, ®1); 888 if (!ret) 889 ret = ov965x_read(client, REG_AECHM, ®2); 890 if (ret < 0) 891 return ret; 892 exposure = ((reg2 & 0x3f) << 10) | (reg1 << 2) | 893 (reg0 & 0x3); 894 ov965x->ctrls.exposure->val = ((exposure * 895 ov965x->exp_row_interval) + 50) / 100; 896 break; 897 } 898 899 return 0; 900 } 901 902 static int ov965x_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 903 { 904 struct v4l2_subdev *sd = ctrl_to_sd(ctrl); 905 struct ov965x *ov965x = to_ov965x(sd); 906 int ret; 907 908 v4l2_dbg(1, debug, sd, "g_ctrl: %s\n", ctrl->name); 909 910 mutex_lock(&ov965x->lock); 911 ret = __g_volatile_ctrl(ov965x, ctrl); 912 mutex_unlock(&ov965x->lock); 913 return ret; 914 } 915 916 static int ov965x_s_ctrl(struct v4l2_ctrl *ctrl) 917 { 918 struct v4l2_subdev *sd = ctrl_to_sd(ctrl); 919 struct ov965x *ov965x = to_ov965x(sd); 920 int ret = -EINVAL; 921 922 v4l2_dbg(1, debug, sd, "s_ctrl: %s, value: %d. power: %d\n", 923 ctrl->name, ctrl->val, ov965x->power); 924 925 mutex_lock(&ov965x->lock); 926 /* 927 * If the device is not powered up now postpone applying control's 928 * value to the hardware, until it is ready to accept commands. 929 */ 930 if (ov965x->power == 0) { 931 mutex_unlock(&ov965x->lock); 932 return 0; 933 } 934 935 switch (ctrl->id) { 936 case V4L2_CID_AUTO_WHITE_BALANCE: 937 ret = ov965x_set_white_balance(ov965x, ctrl->val); 938 break; 939 940 case V4L2_CID_BRIGHTNESS: 941 ret = ov965x_set_brightness(ov965x, ctrl->val); 942 break; 943 944 case V4L2_CID_EXPOSURE_AUTO: 945 ret = ov965x_set_exposure(ov965x, ctrl->val); 946 break; 947 948 case V4L2_CID_AUTOGAIN: 949 ret = ov965x_set_gain(ov965x, ctrl->val); 950 break; 951 952 case V4L2_CID_HFLIP: 953 ret = ov965x_set_flip(ov965x); 954 break; 955 956 case V4L2_CID_POWER_LINE_FREQUENCY: 957 ret = ov965x_set_banding_filter(ov965x, ctrl->val); 958 break; 959 960 case V4L2_CID_SATURATION: 961 ret = ov965x_set_saturation(ov965x, ctrl->val); 962 break; 963 964 case V4L2_CID_SHARPNESS: 965 ret = ov965x_set_sharpness(ov965x, ctrl->val); 966 break; 967 968 case V4L2_CID_TEST_PATTERN: 969 ret = ov965x_set_test_pattern(ov965x, ctrl->val); 970 break; 971 } 972 973 mutex_unlock(&ov965x->lock); 974 return ret; 975 } 976 977 static const struct v4l2_ctrl_ops ov965x_ctrl_ops = { 978 .g_volatile_ctrl = ov965x_g_volatile_ctrl, 979 .s_ctrl = ov965x_s_ctrl, 980 }; 981 982 static const char * const test_pattern_menu[] = { 983 "Disabled", 984 "Color bars", 985 NULL 986 }; 987 988 static int ov965x_initialize_controls(struct ov965x *ov965x) 989 { 990 const struct v4l2_ctrl_ops *ops = &ov965x_ctrl_ops; 991 struct ov965x_ctrls *ctrls = &ov965x->ctrls; 992 struct v4l2_ctrl_handler *hdl = &ctrls->handler; 993 int ret; 994 995 ret = v4l2_ctrl_handler_init(hdl, 16); 996 if (ret < 0) 997 return ret; 998 999 /* Auto/manual white balance */ 1000 ctrls->auto_wb = v4l2_ctrl_new_std(hdl, ops, 1001 V4L2_CID_AUTO_WHITE_BALANCE, 1002 0, 1, 1, 1); 1003 ctrls->blue_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE, 1004 0, 0xff, 1, 0x80); 1005 ctrls->red_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE, 1006 0, 0xff, 1, 0x80); 1007 /* Auto/manual exposure */ 1008 ctrls->auto_exp = v4l2_ctrl_new_std_menu(hdl, ops, 1009 V4L2_CID_EXPOSURE_AUTO, 1010 V4L2_EXPOSURE_MANUAL, 0, V4L2_EXPOSURE_AUTO); 1011 /* Exposure time, in 100 us units. min/max is updated dynamically. */ 1012 ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, 1013 V4L2_CID_EXPOSURE_ABSOLUTE, 1014 2, 1500, 1, 500); 1015 /* Auto/manual gain */ 1016 ctrls->auto_gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTOGAIN, 1017 0, 1, 1, 1); 1018 ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN, 1019 16, 64 * (16 + 15), 1, 64 * 16); 1020 1021 ctrls->saturation = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SATURATION, 1022 -2, 2, 1, 0); 1023 ctrls->brightness = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BRIGHTNESS, 1024 -3, 3, 1, 0); 1025 ctrls->sharpness = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SHARPNESS, 1026 0, 32, 1, 6); 1027 1028 ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP, 0, 1, 1, 0); 1029 ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP, 0, 1, 1, 0); 1030 1031 ctrls->light_freq = v4l2_ctrl_new_std_menu(hdl, ops, 1032 V4L2_CID_POWER_LINE_FREQUENCY, 1033 V4L2_CID_POWER_LINE_FREQUENCY_60HZ, ~0x7, 1034 V4L2_CID_POWER_LINE_FREQUENCY_50HZ); 1035 1036 v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN, 1037 ARRAY_SIZE(test_pattern_menu) - 1, 0, 0, 1038 test_pattern_menu); 1039 if (hdl->error) { 1040 ret = hdl->error; 1041 v4l2_ctrl_handler_free(hdl); 1042 return ret; 1043 } 1044 1045 ctrls->gain->flags |= V4L2_CTRL_FLAG_VOLATILE; 1046 ctrls->exposure->flags |= V4L2_CTRL_FLAG_VOLATILE; 1047 1048 v4l2_ctrl_auto_cluster(3, &ctrls->auto_wb, 0, false); 1049 v4l2_ctrl_auto_cluster(3, &ctrls->auto_gain, 0, true); 1050 v4l2_ctrl_auto_cluster(3, &ctrls->auto_exp, 1, true); 1051 v4l2_ctrl_cluster(2, &ctrls->hflip); 1052 1053 ov965x->sd.ctrl_handler = hdl; 1054 return 0; 1055 } 1056 1057 /* 1058 * V4L2 subdev video and pad level operations 1059 */ 1060 static void ov965x_get_default_format(struct v4l2_mbus_framefmt *mf) 1061 { 1062 mf->width = ov965x_framesizes[0].width; 1063 mf->height = ov965x_framesizes[0].height; 1064 mf->colorspace = ov965x_formats[0].colorspace; 1065 mf->code = ov965x_formats[0].code; 1066 mf->field = V4L2_FIELD_NONE; 1067 } 1068 1069 static int ov965x_enum_mbus_code(struct v4l2_subdev *sd, 1070 struct v4l2_subdev_fh *fh, 1071 struct v4l2_subdev_mbus_code_enum *code) 1072 { 1073 if (code->index >= ARRAY_SIZE(ov965x_formats)) 1074 return -EINVAL; 1075 1076 code->code = ov965x_formats[code->index].code; 1077 return 0; 1078 } 1079 1080 static int ov965x_enum_frame_sizes(struct v4l2_subdev *sd, 1081 struct v4l2_subdev_fh *fh, 1082 struct v4l2_subdev_frame_size_enum *fse) 1083 { 1084 int i = ARRAY_SIZE(ov965x_formats); 1085 1086 if (fse->index >= ARRAY_SIZE(ov965x_framesizes)) 1087 return -EINVAL; 1088 1089 while (--i) 1090 if (fse->code == ov965x_formats[i].code) 1091 break; 1092 1093 fse->code = ov965x_formats[i].code; 1094 1095 fse->min_width = ov965x_framesizes[fse->index].width; 1096 fse->max_width = fse->min_width; 1097 fse->max_height = ov965x_framesizes[fse->index].height; 1098 fse->min_height = fse->max_height; 1099 1100 return 0; 1101 } 1102 1103 static int ov965x_g_frame_interval(struct v4l2_subdev *sd, 1104 struct v4l2_subdev_frame_interval *fi) 1105 { 1106 struct ov965x *ov965x = to_ov965x(sd); 1107 1108 mutex_lock(&ov965x->lock); 1109 fi->interval = ov965x->fiv->interval; 1110 mutex_unlock(&ov965x->lock); 1111 1112 return 0; 1113 } 1114 1115 static int __ov965x_set_frame_interval(struct ov965x *ov965x, 1116 struct v4l2_subdev_frame_interval *fi) 1117 { 1118 struct v4l2_mbus_framefmt *mbus_fmt = &ov965x->format; 1119 const struct ov965x_interval *fiv = &ov965x_intervals[0]; 1120 u64 req_int, err, min_err = ~0ULL; 1121 unsigned int i; 1122 1123 1124 if (fi->interval.denominator == 0) 1125 return -EINVAL; 1126 1127 req_int = (u64)(fi->interval.numerator * 10000) / 1128 fi->interval.denominator; 1129 1130 for (i = 0; i < ARRAY_SIZE(ov965x_intervals); i++) { 1131 const struct ov965x_interval *iv = &ov965x_intervals[i]; 1132 1133 if (mbus_fmt->width != iv->size.width || 1134 mbus_fmt->height != iv->size.height) 1135 continue; 1136 err = abs64((u64)(iv->interval.numerator * 10000) / 1137 iv->interval.denominator - req_int); 1138 if (err < min_err) { 1139 fiv = iv; 1140 min_err = err; 1141 } 1142 } 1143 ov965x->fiv = fiv; 1144 1145 v4l2_dbg(1, debug, &ov965x->sd, "Changed frame interval to %u us\n", 1146 fiv->interval.numerator * 1000000 / fiv->interval.denominator); 1147 1148 return 0; 1149 } 1150 1151 static int ov965x_s_frame_interval(struct v4l2_subdev *sd, 1152 struct v4l2_subdev_frame_interval *fi) 1153 { 1154 struct ov965x *ov965x = to_ov965x(sd); 1155 int ret; 1156 1157 v4l2_dbg(1, debug, sd, "Setting %d/%d frame interval\n", 1158 fi->interval.numerator, fi->interval.denominator); 1159 1160 mutex_lock(&ov965x->lock); 1161 ret = __ov965x_set_frame_interval(ov965x, fi); 1162 ov965x->apply_frame_fmt = 1; 1163 mutex_unlock(&ov965x->lock); 1164 return ret; 1165 } 1166 1167 static int ov965x_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh, 1168 struct v4l2_subdev_format *fmt) 1169 { 1170 struct ov965x *ov965x = to_ov965x(sd); 1171 struct v4l2_mbus_framefmt *mf; 1172 1173 if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { 1174 mf = v4l2_subdev_get_try_format(fh, 0); 1175 fmt->format = *mf; 1176 return 0; 1177 } 1178 1179 mutex_lock(&ov965x->lock); 1180 fmt->format = ov965x->format; 1181 mutex_unlock(&ov965x->lock); 1182 1183 return 0; 1184 } 1185 1186 static void __ov965x_try_frame_size(struct v4l2_mbus_framefmt *mf, 1187 const struct ov965x_framesize **size) 1188 { 1189 const struct ov965x_framesize *fsize = &ov965x_framesizes[0], 1190 *match = NULL; 1191 int i = ARRAY_SIZE(ov965x_framesizes); 1192 unsigned int min_err = UINT_MAX; 1193 1194 while (i--) { 1195 int err = abs(fsize->width - mf->width) 1196 + abs(fsize->height - mf->height); 1197 if (err < min_err) { 1198 min_err = err; 1199 match = fsize; 1200 } 1201 fsize++; 1202 } 1203 if (!match) 1204 match = &ov965x_framesizes[0]; 1205 mf->width = match->width; 1206 mf->height = match->height; 1207 if (size) 1208 *size = match; 1209 } 1210 1211 static int ov965x_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh, 1212 struct v4l2_subdev_format *fmt) 1213 { 1214 unsigned int index = ARRAY_SIZE(ov965x_formats); 1215 struct v4l2_mbus_framefmt *mf = &fmt->format; 1216 struct ov965x *ov965x = to_ov965x(sd); 1217 const struct ov965x_framesize *size = NULL; 1218 int ret = 0; 1219 1220 __ov965x_try_frame_size(mf, &size); 1221 1222 while (--index) 1223 if (ov965x_formats[index].code == mf->code) 1224 break; 1225 1226 mf->colorspace = V4L2_COLORSPACE_JPEG; 1227 mf->code = ov965x_formats[index].code; 1228 mf->field = V4L2_FIELD_NONE; 1229 1230 mutex_lock(&ov965x->lock); 1231 1232 if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { 1233 if (fh != NULL) { 1234 mf = v4l2_subdev_get_try_format(fh, fmt->pad); 1235 *mf = fmt->format; 1236 } 1237 } else { 1238 if (ov965x->streaming) { 1239 ret = -EBUSY; 1240 } else { 1241 ov965x->frame_size = size; 1242 ov965x->format = fmt->format; 1243 ov965x->tslb_reg = ov965x_formats[index].tslb_reg; 1244 ov965x->apply_frame_fmt = 1; 1245 } 1246 } 1247 1248 if (!ret && fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) { 1249 struct v4l2_subdev_frame_interval fiv = { 1250 .interval = { 0, 1 } 1251 }; 1252 /* Reset to minimum possible frame interval */ 1253 __ov965x_set_frame_interval(ov965x, &fiv); 1254 } 1255 mutex_unlock(&ov965x->lock); 1256 1257 if (!ret) 1258 ov965x_update_exposure_ctrl(ov965x); 1259 1260 return ret; 1261 } 1262 1263 static int ov965x_set_frame_size(struct ov965x *ov965x) 1264 { 1265 int i, ret = 0; 1266 1267 for (i = 0; ret == 0 && i < NUM_FMT_REGS; i++) 1268 ret = ov965x_write(ov965x->client, frame_size_reg_addr[i], 1269 ov965x->frame_size->regs[i]); 1270 return ret; 1271 } 1272 1273 static int __ov965x_set_params(struct ov965x *ov965x) 1274 { 1275 struct i2c_client *client = ov965x->client; 1276 struct ov965x_ctrls *ctrls = &ov965x->ctrls; 1277 int ret = 0; 1278 u8 reg; 1279 1280 if (ov965x->apply_frame_fmt) { 1281 reg = DEF_CLKRC + ov965x->fiv->clkrc_div; 1282 ret = ov965x_write(client, REG_CLKRC, reg); 1283 if (ret < 0) 1284 return ret; 1285 ret = ov965x_set_frame_size(ov965x); 1286 if (ret < 0) 1287 return ret; 1288 ret = ov965x_read(client, REG_TSLB, ®); 1289 if (ret < 0) 1290 return ret; 1291 reg &= ~TSLB_YUYV_MASK; 1292 reg |= ov965x->tslb_reg; 1293 ret = ov965x_write(client, REG_TSLB, reg); 1294 if (ret < 0) 1295 return ret; 1296 } 1297 ret = ov965x_set_default_gamma_curve(ov965x); 1298 if (ret < 0) 1299 return ret; 1300 ret = ov965x_set_color_matrix(ov965x); 1301 if (ret < 0) 1302 return ret; 1303 /* 1304 * Select manual banding filter, the filter will 1305 * be enabled further if required. 1306 */ 1307 ret = ov965x_read(client, REG_COM11, ®); 1308 if (!ret) 1309 reg |= COM11_BANDING; 1310 ret = ov965x_write(client, REG_COM11, reg); 1311 if (ret < 0) 1312 return ret; 1313 /* 1314 * Banding filter (REG_MBD value) needs to match selected 1315 * resolution and frame rate, so it's always updated here. 1316 */ 1317 return ov965x_set_banding_filter(ov965x, ctrls->light_freq->val); 1318 } 1319 1320 static int ov965x_s_stream(struct v4l2_subdev *sd, int on) 1321 { 1322 struct i2c_client *client = v4l2_get_subdevdata(sd); 1323 struct ov965x *ov965x = to_ov965x(sd); 1324 struct ov965x_ctrls *ctrls = &ov965x->ctrls; 1325 int ret = 0; 1326 1327 v4l2_dbg(1, debug, client, "%s: on: %d\n", __func__, on); 1328 1329 mutex_lock(&ov965x->lock); 1330 if (ov965x->streaming == !on) { 1331 if (on) 1332 ret = __ov965x_set_params(ov965x); 1333 1334 if (!ret && ctrls->update) { 1335 /* 1336 * ov965x_s_ctrl callback takes the mutex 1337 * so it needs to be released here. 1338 */ 1339 mutex_unlock(&ov965x->lock); 1340 ret = v4l2_ctrl_handler_setup(&ctrls->handler); 1341 1342 mutex_lock(&ov965x->lock); 1343 if (!ret) 1344 ctrls->update = 0; 1345 } 1346 if (!ret) 1347 ret = ov965x_write(client, REG_COM2, 1348 on ? 0x01 : 0x11); 1349 } 1350 if (!ret) 1351 ov965x->streaming += on ? 1 : -1; 1352 1353 WARN_ON(ov965x->streaming < 0); 1354 mutex_unlock(&ov965x->lock); 1355 1356 return ret; 1357 } 1358 1359 /* 1360 * V4L2 subdev internal operations 1361 */ 1362 static int ov965x_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) 1363 { 1364 struct v4l2_mbus_framefmt *mf = v4l2_subdev_get_try_format(fh, 0); 1365 1366 ov965x_get_default_format(mf); 1367 return 0; 1368 } 1369 1370 static const struct v4l2_subdev_pad_ops ov965x_pad_ops = { 1371 .enum_mbus_code = ov965x_enum_mbus_code, 1372 .enum_frame_size = ov965x_enum_frame_sizes, 1373 .get_fmt = ov965x_get_fmt, 1374 .set_fmt = ov965x_set_fmt, 1375 }; 1376 1377 static const struct v4l2_subdev_video_ops ov965x_video_ops = { 1378 .s_stream = ov965x_s_stream, 1379 .g_frame_interval = ov965x_g_frame_interval, 1380 .s_frame_interval = ov965x_s_frame_interval, 1381 1382 }; 1383 1384 static const struct v4l2_subdev_internal_ops ov965x_sd_internal_ops = { 1385 .open = ov965x_open, 1386 }; 1387 1388 static const struct v4l2_subdev_core_ops ov965x_core_ops = { 1389 .s_power = ov965x_s_power, 1390 .log_status = v4l2_ctrl_subdev_log_status, 1391 .subscribe_event = v4l2_ctrl_subdev_subscribe_event, 1392 .unsubscribe_event = v4l2_event_subdev_unsubscribe, 1393 }; 1394 1395 static const struct v4l2_subdev_ops ov965x_subdev_ops = { 1396 .core = &ov965x_core_ops, 1397 .pad = &ov965x_pad_ops, 1398 .video = &ov965x_video_ops, 1399 }; 1400 1401 /* 1402 * Reset and power down GPIOs configuration 1403 */ 1404 static int ov965x_configure_gpios(struct ov965x *ov965x, 1405 const struct ov9650_platform_data *pdata) 1406 { 1407 int ret, i; 1408 1409 ov965x->gpios[GPIO_PWDN] = pdata->gpio_pwdn; 1410 ov965x->gpios[GPIO_RST] = pdata->gpio_reset; 1411 1412 for (i = 0; i < ARRAY_SIZE(ov965x->gpios); i++) { 1413 int gpio = ov965x->gpios[i]; 1414 1415 if (!gpio_is_valid(gpio)) 1416 continue; 1417 ret = devm_gpio_request_one(&ov965x->client->dev, gpio, 1418 GPIOF_OUT_INIT_HIGH, "OV965X"); 1419 if (ret < 0) 1420 return ret; 1421 v4l2_dbg(1, debug, &ov965x->sd, "set gpio %d to 1\n", gpio); 1422 1423 gpio_set_value(gpio, 1); 1424 gpio_export(gpio, 0); 1425 ov965x->gpios[i] = gpio; 1426 } 1427 1428 return 0; 1429 } 1430 1431 static int ov965x_detect_sensor(struct v4l2_subdev *sd) 1432 { 1433 struct i2c_client *client = v4l2_get_subdevdata(sd); 1434 struct ov965x *ov965x = to_ov965x(sd); 1435 u8 pid, ver; 1436 int ret; 1437 1438 mutex_lock(&ov965x->lock); 1439 __ov965x_set_power(ov965x, 1); 1440 usleep_range(25000, 26000); 1441 1442 /* Check sensor revision */ 1443 ret = ov965x_read(client, REG_PID, &pid); 1444 if (!ret) 1445 ret = ov965x_read(client, REG_VER, &ver); 1446 1447 __ov965x_set_power(ov965x, 0); 1448 1449 if (!ret) { 1450 ov965x->id = OV965X_ID(pid, ver); 1451 if (ov965x->id == OV9650_ID || ov965x->id == OV9652_ID) { 1452 v4l2_info(sd, "Found OV%04X sensor\n", ov965x->id); 1453 } else { 1454 v4l2_err(sd, "Sensor detection failed (%04X, %d)\n", 1455 ov965x->id, ret); 1456 ret = -ENODEV; 1457 } 1458 } 1459 mutex_unlock(&ov965x->lock); 1460 1461 return ret; 1462 } 1463 1464 static int ov965x_probe(struct i2c_client *client, 1465 const struct i2c_device_id *id) 1466 { 1467 const struct ov9650_platform_data *pdata = client->dev.platform_data; 1468 struct v4l2_subdev *sd; 1469 struct ov965x *ov965x; 1470 int ret; 1471 1472 if (pdata == NULL) { 1473 dev_err(&client->dev, "platform data not specified\n"); 1474 return -EINVAL; 1475 } 1476 1477 if (pdata->mclk_frequency == 0) { 1478 dev_err(&client->dev, "MCLK frequency not specified\n"); 1479 return -EINVAL; 1480 } 1481 1482 ov965x = devm_kzalloc(&client->dev, sizeof(*ov965x), GFP_KERNEL); 1483 if (!ov965x) 1484 return -ENOMEM; 1485 1486 mutex_init(&ov965x->lock); 1487 ov965x->client = client; 1488 ov965x->mclk_frequency = pdata->mclk_frequency; 1489 1490 sd = &ov965x->sd; 1491 v4l2_i2c_subdev_init(sd, client, &ov965x_subdev_ops); 1492 strlcpy(sd->name, DRIVER_NAME, sizeof(sd->name)); 1493 1494 sd->internal_ops = &ov965x_sd_internal_ops; 1495 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | 1496 V4L2_SUBDEV_FL_HAS_EVENTS; 1497 1498 ret = ov965x_configure_gpios(ov965x, pdata); 1499 if (ret < 0) 1500 return ret; 1501 1502 ov965x->pad.flags = MEDIA_PAD_FL_SOURCE; 1503 sd->entity.type = MEDIA_ENT_T_V4L2_SUBDEV_SENSOR; 1504 ret = media_entity_init(&sd->entity, 1, &ov965x->pad, 0); 1505 if (ret < 0) 1506 return ret; 1507 1508 ret = ov965x_initialize_controls(ov965x); 1509 if (ret < 0) 1510 goto err_me; 1511 1512 ov965x_get_default_format(&ov965x->format); 1513 ov965x->frame_size = &ov965x_framesizes[0]; 1514 ov965x->fiv = &ov965x_intervals[0]; 1515 1516 ret = ov965x_detect_sensor(sd); 1517 if (ret < 0) 1518 goto err_ctrls; 1519 1520 /* Update exposure time min/max to match frame format */ 1521 ov965x_update_exposure_ctrl(ov965x); 1522 1523 return 0; 1524 err_ctrls: 1525 v4l2_ctrl_handler_free(sd->ctrl_handler); 1526 err_me: 1527 media_entity_cleanup(&sd->entity); 1528 return ret; 1529 } 1530 1531 static int ov965x_remove(struct i2c_client *client) 1532 { 1533 struct v4l2_subdev *sd = i2c_get_clientdata(client); 1534 1535 v4l2_device_unregister_subdev(sd); 1536 v4l2_ctrl_handler_free(sd->ctrl_handler); 1537 media_entity_cleanup(&sd->entity); 1538 1539 return 0; 1540 } 1541 1542 static const struct i2c_device_id ov965x_id[] = { 1543 { "OV9650", 0 }, 1544 { "OV9652", 0 }, 1545 { /* sentinel */ } 1546 }; 1547 MODULE_DEVICE_TABLE(i2c, ov965x_id); 1548 1549 static struct i2c_driver ov965x_i2c_driver = { 1550 .driver = { 1551 .name = DRIVER_NAME, 1552 }, 1553 .probe = ov965x_probe, 1554 .remove = ov965x_remove, 1555 .id_table = ov965x_id, 1556 }; 1557 1558 module_i2c_driver(ov965x_i2c_driver); 1559 1560 MODULE_AUTHOR("Sylwester Nawrocki <sylvester.nawrocki@gmail.com>"); 1561 MODULE_DESCRIPTION("OV9650/OV9652 CMOS Image Sensor driver"); 1562 MODULE_LICENSE("GPL"); 1563