1 /* 2 * Copyright (C) 2011-2013 Freescale Semiconductor, Inc. All Rights Reserved. 3 * Copyright (C) 2014-2017 Mentor Graphics Inc. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 */ 10 11 #include <linux/clk.h> 12 #include <linux/clk-provider.h> 13 #include <linux/clkdev.h> 14 #include <linux/ctype.h> 15 #include <linux/delay.h> 16 #include <linux/device.h> 17 #include <linux/gpio/consumer.h> 18 #include <linux/i2c.h> 19 #include <linux/init.h> 20 #include <linux/module.h> 21 #include <linux/of_device.h> 22 #include <linux/regulator/consumer.h> 23 #include <linux/slab.h> 24 #include <linux/types.h> 25 #include <media/v4l2-async.h> 26 #include <media/v4l2-ctrls.h> 27 #include <media/v4l2-device.h> 28 #include <media/v4l2-event.h> 29 #include <media/v4l2-fwnode.h> 30 #include <media/v4l2-subdev.h> 31 32 /* min/typical/max system clock (xclk) frequencies */ 33 #define OV5640_XCLK_MIN 6000000 34 #define OV5640_XCLK_MAX 54000000 35 36 #define OV5640_DEFAULT_SLAVE_ID 0x3c 37 38 #define OV5640_REG_SYS_RESET02 0x3002 39 #define OV5640_REG_SYS_CLOCK_ENABLE02 0x3006 40 #define OV5640_REG_SYS_CTRL0 0x3008 41 #define OV5640_REG_CHIP_ID 0x300a 42 #define OV5640_REG_IO_MIPI_CTRL00 0x300e 43 #define OV5640_REG_PAD_OUTPUT_ENABLE01 0x3017 44 #define OV5640_REG_PAD_OUTPUT_ENABLE02 0x3018 45 #define OV5640_REG_PAD_OUTPUT00 0x3019 46 #define OV5640_REG_SYSTEM_CONTROL1 0x302e 47 #define OV5640_REG_SC_PLL_CTRL0 0x3034 48 #define OV5640_REG_SC_PLL_CTRL1 0x3035 49 #define OV5640_REG_SC_PLL_CTRL2 0x3036 50 #define OV5640_REG_SC_PLL_CTRL3 0x3037 51 #define OV5640_REG_SLAVE_ID 0x3100 52 #define OV5640_REG_SCCB_SYS_CTRL1 0x3103 53 #define OV5640_REG_SYS_ROOT_DIVIDER 0x3108 54 #define OV5640_REG_AWB_R_GAIN 0x3400 55 #define OV5640_REG_AWB_G_GAIN 0x3402 56 #define OV5640_REG_AWB_B_GAIN 0x3404 57 #define OV5640_REG_AWB_MANUAL_CTRL 0x3406 58 #define OV5640_REG_AEC_PK_EXPOSURE_HI 0x3500 59 #define OV5640_REG_AEC_PK_EXPOSURE_MED 0x3501 60 #define OV5640_REG_AEC_PK_EXPOSURE_LO 0x3502 61 #define OV5640_REG_AEC_PK_MANUAL 0x3503 62 #define OV5640_REG_AEC_PK_REAL_GAIN 0x350a 63 #define OV5640_REG_AEC_PK_VTS 0x350c 64 #define OV5640_REG_TIMING_DVPHO 0x3808 65 #define OV5640_REG_TIMING_DVPVO 0x380a 66 #define OV5640_REG_TIMING_HTS 0x380c 67 #define OV5640_REG_TIMING_VTS 0x380e 68 #define OV5640_REG_TIMING_TC_REG20 0x3820 69 #define OV5640_REG_TIMING_TC_REG21 0x3821 70 #define OV5640_REG_AEC_CTRL00 0x3a00 71 #define OV5640_REG_AEC_B50_STEP 0x3a08 72 #define OV5640_REG_AEC_B60_STEP 0x3a0a 73 #define OV5640_REG_AEC_CTRL0D 0x3a0d 74 #define OV5640_REG_AEC_CTRL0E 0x3a0e 75 #define OV5640_REG_AEC_CTRL0F 0x3a0f 76 #define OV5640_REG_AEC_CTRL10 0x3a10 77 #define OV5640_REG_AEC_CTRL11 0x3a11 78 #define OV5640_REG_AEC_CTRL1B 0x3a1b 79 #define OV5640_REG_AEC_CTRL1E 0x3a1e 80 #define OV5640_REG_AEC_CTRL1F 0x3a1f 81 #define OV5640_REG_HZ5060_CTRL00 0x3c00 82 #define OV5640_REG_HZ5060_CTRL01 0x3c01 83 #define OV5640_REG_SIGMADELTA_CTRL0C 0x3c0c 84 #define OV5640_REG_FRAME_CTRL01 0x4202 85 #define OV5640_REG_FORMAT_CONTROL00 0x4300 86 #define OV5640_REG_POLARITY_CTRL00 0x4740 87 #define OV5640_REG_MIPI_CTRL00 0x4800 88 #define OV5640_REG_DEBUG_MODE 0x4814 89 #define OV5640_REG_ISP_FORMAT_MUX_CTRL 0x501f 90 #define OV5640_REG_PRE_ISP_TEST_SET1 0x503d 91 #define OV5640_REG_SDE_CTRL0 0x5580 92 #define OV5640_REG_SDE_CTRL1 0x5581 93 #define OV5640_REG_SDE_CTRL3 0x5583 94 #define OV5640_REG_SDE_CTRL4 0x5584 95 #define OV5640_REG_SDE_CTRL5 0x5585 96 #define OV5640_REG_AVG_READOUT 0x56a1 97 98 enum ov5640_mode_id { 99 OV5640_MODE_QCIF_176_144 = 0, 100 OV5640_MODE_QVGA_320_240, 101 OV5640_MODE_VGA_640_480, 102 OV5640_MODE_NTSC_720_480, 103 OV5640_MODE_PAL_720_576, 104 OV5640_MODE_XGA_1024_768, 105 OV5640_MODE_720P_1280_720, 106 OV5640_MODE_1080P_1920_1080, 107 OV5640_MODE_QSXGA_2592_1944, 108 OV5640_NUM_MODES, 109 }; 110 111 enum ov5640_frame_rate { 112 OV5640_15_FPS = 0, 113 OV5640_30_FPS, 114 OV5640_60_FPS, 115 OV5640_NUM_FRAMERATES, 116 }; 117 118 struct ov5640_pixfmt { 119 u32 code; 120 u32 colorspace; 121 }; 122 123 static const struct ov5640_pixfmt ov5640_formats[] = { 124 { MEDIA_BUS_FMT_JPEG_1X8, V4L2_COLORSPACE_JPEG, }, 125 { MEDIA_BUS_FMT_UYVY8_2X8, V4L2_COLORSPACE_SRGB, }, 126 { MEDIA_BUS_FMT_YUYV8_2X8, V4L2_COLORSPACE_SRGB, }, 127 { MEDIA_BUS_FMT_RGB565_2X8_LE, V4L2_COLORSPACE_SRGB, }, 128 { MEDIA_BUS_FMT_RGB565_2X8_BE, V4L2_COLORSPACE_SRGB, }, 129 }; 130 131 /* 132 * FIXME: remove this when a subdev API becomes available 133 * to set the MIPI CSI-2 virtual channel. 134 */ 135 static unsigned int virtual_channel; 136 module_param(virtual_channel, uint, 0444); 137 MODULE_PARM_DESC(virtual_channel, 138 "MIPI CSI-2 virtual channel (0..3), default 0"); 139 140 static const int ov5640_framerates[] = { 141 [OV5640_15_FPS] = 15, 142 [OV5640_30_FPS] = 30, 143 [OV5640_60_FPS] = 60, 144 }; 145 146 /* regulator supplies */ 147 static const char * const ov5640_supply_name[] = { 148 "DOVDD", /* Digital I/O (1.8V) supply */ 149 "DVDD", /* Digital Core (1.5V) supply */ 150 "AVDD", /* Analog (2.8V) supply */ 151 }; 152 153 #define OV5640_NUM_SUPPLIES ARRAY_SIZE(ov5640_supply_name) 154 155 /* 156 * Image size under 1280 * 960 are SUBSAMPLING 157 * Image size upper 1280 * 960 are SCALING 158 */ 159 enum ov5640_downsize_mode { 160 SUBSAMPLING, 161 SCALING, 162 }; 163 164 struct reg_value { 165 u16 reg_addr; 166 u8 val; 167 u8 mask; 168 u32 delay_ms; 169 }; 170 171 struct ov5640_mode_info { 172 enum ov5640_mode_id id; 173 enum ov5640_downsize_mode dn_mode; 174 u32 hact; 175 u32 htot; 176 u32 vact; 177 u32 vtot; 178 const struct reg_value *reg_data; 179 u32 reg_data_size; 180 }; 181 182 struct ov5640_ctrls { 183 struct v4l2_ctrl_handler handler; 184 struct { 185 struct v4l2_ctrl *auto_exp; 186 struct v4l2_ctrl *exposure; 187 }; 188 struct { 189 struct v4l2_ctrl *auto_wb; 190 struct v4l2_ctrl *blue_balance; 191 struct v4l2_ctrl *red_balance; 192 }; 193 struct { 194 struct v4l2_ctrl *auto_gain; 195 struct v4l2_ctrl *gain; 196 }; 197 struct v4l2_ctrl *brightness; 198 struct v4l2_ctrl *light_freq; 199 struct v4l2_ctrl *saturation; 200 struct v4l2_ctrl *contrast; 201 struct v4l2_ctrl *hue; 202 struct v4l2_ctrl *test_pattern; 203 struct v4l2_ctrl *hflip; 204 struct v4l2_ctrl *vflip; 205 }; 206 207 struct ov5640_dev { 208 struct i2c_client *i2c_client; 209 struct v4l2_subdev sd; 210 struct media_pad pad; 211 struct v4l2_fwnode_endpoint ep; /* the parsed DT endpoint info */ 212 struct clk *xclk; /* system clock to OV5640 */ 213 u32 xclk_freq; 214 215 struct regulator_bulk_data supplies[OV5640_NUM_SUPPLIES]; 216 struct gpio_desc *reset_gpio; 217 struct gpio_desc *pwdn_gpio; 218 bool upside_down; 219 220 /* lock to protect all members below */ 221 struct mutex lock; 222 223 int power_count; 224 225 struct v4l2_mbus_framefmt fmt; 226 bool pending_fmt_change; 227 228 const struct ov5640_mode_info *current_mode; 229 const struct ov5640_mode_info *last_mode; 230 enum ov5640_frame_rate current_fr; 231 struct v4l2_fract frame_interval; 232 233 struct ov5640_ctrls ctrls; 234 235 u32 prev_sysclk, prev_hts; 236 u32 ae_low, ae_high, ae_target; 237 238 bool pending_mode_change; 239 bool streaming; 240 }; 241 242 static inline struct ov5640_dev *to_ov5640_dev(struct v4l2_subdev *sd) 243 { 244 return container_of(sd, struct ov5640_dev, sd); 245 } 246 247 static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl) 248 { 249 return &container_of(ctrl->handler, struct ov5640_dev, 250 ctrls.handler)->sd; 251 } 252 253 /* 254 * FIXME: all of these register tables are likely filled with 255 * entries that set the register to their power-on default values, 256 * and which are otherwise not touched by this driver. Those entries 257 * should be identified and removed to speed register load time 258 * over i2c. 259 */ 260 /* YUV422 UYVY VGA@30fps */ 261 static const struct reg_value ov5640_init_setting_30fps_VGA[] = { 262 {0x3103, 0x11, 0, 0}, {0x3008, 0x82, 0, 5}, {0x3008, 0x42, 0, 0}, 263 {0x3103, 0x03, 0, 0}, {0x3017, 0x00, 0, 0}, {0x3018, 0x00, 0, 0}, 264 {0x3630, 0x36, 0, 0}, 265 {0x3631, 0x0e, 0, 0}, {0x3632, 0xe2, 0, 0}, {0x3633, 0x12, 0, 0}, 266 {0x3621, 0xe0, 0, 0}, {0x3704, 0xa0, 0, 0}, {0x3703, 0x5a, 0, 0}, 267 {0x3715, 0x78, 0, 0}, {0x3717, 0x01, 0, 0}, {0x370b, 0x60, 0, 0}, 268 {0x3705, 0x1a, 0, 0}, {0x3905, 0x02, 0, 0}, {0x3906, 0x10, 0, 0}, 269 {0x3901, 0x0a, 0, 0}, {0x3731, 0x12, 0, 0}, {0x3600, 0x08, 0, 0}, 270 {0x3601, 0x33, 0, 0}, {0x302d, 0x60, 0, 0}, {0x3620, 0x52, 0, 0}, 271 {0x371b, 0x20, 0, 0}, {0x471c, 0x50, 0, 0}, {0x3a13, 0x43, 0, 0}, 272 {0x3a18, 0x00, 0, 0}, {0x3a19, 0xf8, 0, 0}, {0x3635, 0x13, 0, 0}, 273 {0x3636, 0x03, 0, 0}, {0x3634, 0x40, 0, 0}, {0x3622, 0x01, 0, 0}, 274 {0x3c01, 0xa4, 0, 0}, {0x3c04, 0x28, 0, 0}, {0x3c05, 0x98, 0, 0}, 275 {0x3c06, 0x00, 0, 0}, {0x3c07, 0x08, 0, 0}, {0x3c08, 0x00, 0, 0}, 276 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 277 {0x3820, 0x41, 0, 0}, {0x3821, 0x07, 0, 0}, {0x3814, 0x31, 0, 0}, 278 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 279 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 280 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 281 {0x3810, 0x00, 0, 0}, 282 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 283 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 284 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 285 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 286 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 287 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 288 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x3000, 0x00, 0, 0}, 289 {0x3002, 0x1c, 0, 0}, {0x3004, 0xff, 0, 0}, {0x3006, 0xc3, 0, 0}, 290 {0x302e, 0x08, 0, 0}, {0x4300, 0x3f, 0, 0}, 291 {0x501f, 0x00, 0, 0}, {0x4713, 0x03, 0, 0}, {0x4407, 0x04, 0, 0}, 292 {0x440e, 0x00, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 293 {0x4837, 0x0a, 0, 0}, {0x3824, 0x02, 0, 0}, 294 {0x5000, 0xa7, 0, 0}, {0x5001, 0xa3, 0, 0}, {0x5180, 0xff, 0, 0}, 295 {0x5181, 0xf2, 0, 0}, {0x5182, 0x00, 0, 0}, {0x5183, 0x14, 0, 0}, 296 {0x5184, 0x25, 0, 0}, {0x5185, 0x24, 0, 0}, {0x5186, 0x09, 0, 0}, 297 {0x5187, 0x09, 0, 0}, {0x5188, 0x09, 0, 0}, {0x5189, 0x88, 0, 0}, 298 {0x518a, 0x54, 0, 0}, {0x518b, 0xee, 0, 0}, {0x518c, 0xb2, 0, 0}, 299 {0x518d, 0x50, 0, 0}, {0x518e, 0x34, 0, 0}, {0x518f, 0x6b, 0, 0}, 300 {0x5190, 0x46, 0, 0}, {0x5191, 0xf8, 0, 0}, {0x5192, 0x04, 0, 0}, 301 {0x5193, 0x70, 0, 0}, {0x5194, 0xf0, 0, 0}, {0x5195, 0xf0, 0, 0}, 302 {0x5196, 0x03, 0, 0}, {0x5197, 0x01, 0, 0}, {0x5198, 0x04, 0, 0}, 303 {0x5199, 0x6c, 0, 0}, {0x519a, 0x04, 0, 0}, {0x519b, 0x00, 0, 0}, 304 {0x519c, 0x09, 0, 0}, {0x519d, 0x2b, 0, 0}, {0x519e, 0x38, 0, 0}, 305 {0x5381, 0x1e, 0, 0}, {0x5382, 0x5b, 0, 0}, {0x5383, 0x08, 0, 0}, 306 {0x5384, 0x0a, 0, 0}, {0x5385, 0x7e, 0, 0}, {0x5386, 0x88, 0, 0}, 307 {0x5387, 0x7c, 0, 0}, {0x5388, 0x6c, 0, 0}, {0x5389, 0x10, 0, 0}, 308 {0x538a, 0x01, 0, 0}, {0x538b, 0x98, 0, 0}, {0x5300, 0x08, 0, 0}, 309 {0x5301, 0x30, 0, 0}, {0x5302, 0x10, 0, 0}, {0x5303, 0x00, 0, 0}, 310 {0x5304, 0x08, 0, 0}, {0x5305, 0x30, 0, 0}, {0x5306, 0x08, 0, 0}, 311 {0x5307, 0x16, 0, 0}, {0x5309, 0x08, 0, 0}, {0x530a, 0x30, 0, 0}, 312 {0x530b, 0x04, 0, 0}, {0x530c, 0x06, 0, 0}, {0x5480, 0x01, 0, 0}, 313 {0x5481, 0x08, 0, 0}, {0x5482, 0x14, 0, 0}, {0x5483, 0x28, 0, 0}, 314 {0x5484, 0x51, 0, 0}, {0x5485, 0x65, 0, 0}, {0x5486, 0x71, 0, 0}, 315 {0x5487, 0x7d, 0, 0}, {0x5488, 0x87, 0, 0}, {0x5489, 0x91, 0, 0}, 316 {0x548a, 0x9a, 0, 0}, {0x548b, 0xaa, 0, 0}, {0x548c, 0xb8, 0, 0}, 317 {0x548d, 0xcd, 0, 0}, {0x548e, 0xdd, 0, 0}, {0x548f, 0xea, 0, 0}, 318 {0x5490, 0x1d, 0, 0}, {0x5580, 0x02, 0, 0}, {0x5583, 0x40, 0, 0}, 319 {0x5584, 0x10, 0, 0}, {0x5589, 0x10, 0, 0}, {0x558a, 0x00, 0, 0}, 320 {0x558b, 0xf8, 0, 0}, {0x5800, 0x23, 0, 0}, {0x5801, 0x14, 0, 0}, 321 {0x5802, 0x0f, 0, 0}, {0x5803, 0x0f, 0, 0}, {0x5804, 0x12, 0, 0}, 322 {0x5805, 0x26, 0, 0}, {0x5806, 0x0c, 0, 0}, {0x5807, 0x08, 0, 0}, 323 {0x5808, 0x05, 0, 0}, {0x5809, 0x05, 0, 0}, {0x580a, 0x08, 0, 0}, 324 {0x580b, 0x0d, 0, 0}, {0x580c, 0x08, 0, 0}, {0x580d, 0x03, 0, 0}, 325 {0x580e, 0x00, 0, 0}, {0x580f, 0x00, 0, 0}, {0x5810, 0x03, 0, 0}, 326 {0x5811, 0x09, 0, 0}, {0x5812, 0x07, 0, 0}, {0x5813, 0x03, 0, 0}, 327 {0x5814, 0x00, 0, 0}, {0x5815, 0x01, 0, 0}, {0x5816, 0x03, 0, 0}, 328 {0x5817, 0x08, 0, 0}, {0x5818, 0x0d, 0, 0}, {0x5819, 0x08, 0, 0}, 329 {0x581a, 0x05, 0, 0}, {0x581b, 0x06, 0, 0}, {0x581c, 0x08, 0, 0}, 330 {0x581d, 0x0e, 0, 0}, {0x581e, 0x29, 0, 0}, {0x581f, 0x17, 0, 0}, 331 {0x5820, 0x11, 0, 0}, {0x5821, 0x11, 0, 0}, {0x5822, 0x15, 0, 0}, 332 {0x5823, 0x28, 0, 0}, {0x5824, 0x46, 0, 0}, {0x5825, 0x26, 0, 0}, 333 {0x5826, 0x08, 0, 0}, {0x5827, 0x26, 0, 0}, {0x5828, 0x64, 0, 0}, 334 {0x5829, 0x26, 0, 0}, {0x582a, 0x24, 0, 0}, {0x582b, 0x22, 0, 0}, 335 {0x582c, 0x24, 0, 0}, {0x582d, 0x24, 0, 0}, {0x582e, 0x06, 0, 0}, 336 {0x582f, 0x22, 0, 0}, {0x5830, 0x40, 0, 0}, {0x5831, 0x42, 0, 0}, 337 {0x5832, 0x24, 0, 0}, {0x5833, 0x26, 0, 0}, {0x5834, 0x24, 0, 0}, 338 {0x5835, 0x22, 0, 0}, {0x5836, 0x22, 0, 0}, {0x5837, 0x26, 0, 0}, 339 {0x5838, 0x44, 0, 0}, {0x5839, 0x24, 0, 0}, {0x583a, 0x26, 0, 0}, 340 {0x583b, 0x28, 0, 0}, {0x583c, 0x42, 0, 0}, {0x583d, 0xce, 0, 0}, 341 {0x5025, 0x00, 0, 0}, {0x3a0f, 0x30, 0, 0}, {0x3a10, 0x28, 0, 0}, 342 {0x3a1b, 0x30, 0, 0}, {0x3a1e, 0x26, 0, 0}, {0x3a11, 0x60, 0, 0}, 343 {0x3a1f, 0x14, 0, 0}, {0x3008, 0x02, 0, 0}, {0x3c00, 0x04, 0, 300}, 344 }; 345 346 static const struct reg_value ov5640_setting_VGA_640_480[] = { 347 {0x3c07, 0x08, 0, 0}, 348 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 349 {0x3814, 0x31, 0, 0}, 350 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 351 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 352 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 353 {0x3810, 0x00, 0, 0}, 354 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 355 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 356 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 357 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 358 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 359 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 360 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x4713, 0x03, 0, 0}, 361 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 362 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 363 }; 364 365 static const struct reg_value ov5640_setting_XGA_1024_768[] = { 366 {0x3c07, 0x08, 0, 0}, 367 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 368 {0x3814, 0x31, 0, 0}, 369 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 370 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 371 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 372 {0x3810, 0x00, 0, 0}, 373 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 374 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 375 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 376 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 377 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 378 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 379 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x4713, 0x03, 0, 0}, 380 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 381 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 382 }; 383 384 static const struct reg_value ov5640_setting_QVGA_320_240[] = { 385 {0x3c07, 0x08, 0, 0}, 386 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 387 {0x3814, 0x31, 0, 0}, 388 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 389 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 390 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 391 {0x3810, 0x00, 0, 0}, 392 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 393 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 394 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 395 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 396 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 397 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 398 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x4713, 0x03, 0, 0}, 399 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 400 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 401 }; 402 403 static const struct reg_value ov5640_setting_QCIF_176_144[] = { 404 {0x3c07, 0x08, 0, 0}, 405 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 406 {0x3814, 0x31, 0, 0}, 407 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 408 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 409 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 410 {0x3810, 0x00, 0, 0}, 411 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 412 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 413 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 414 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 415 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 416 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 417 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x4713, 0x03, 0, 0}, 418 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 419 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 420 }; 421 422 static const struct reg_value ov5640_setting_NTSC_720_480[] = { 423 {0x3c07, 0x08, 0, 0}, 424 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 425 {0x3814, 0x31, 0, 0}, 426 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 427 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 428 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 429 {0x3810, 0x00, 0, 0}, 430 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x3c, 0, 0}, 431 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 432 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 433 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 434 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 435 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 436 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x4713, 0x03, 0, 0}, 437 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 438 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 439 }; 440 441 static const struct reg_value ov5640_setting_PAL_720_576[] = { 442 {0x3c07, 0x08, 0, 0}, 443 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 444 {0x3814, 0x31, 0, 0}, 445 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 446 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 447 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 448 {0x3810, 0x00, 0, 0}, 449 {0x3811, 0x38, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 450 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 451 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 452 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 453 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 454 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 455 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x4713, 0x03, 0, 0}, 456 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 457 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 458 }; 459 460 static const struct reg_value ov5640_setting_720P_1280_720[] = { 461 {0x3c07, 0x07, 0, 0}, 462 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 463 {0x3814, 0x31, 0, 0}, 464 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 465 {0x3802, 0x00, 0, 0}, {0x3803, 0xfa, 0, 0}, {0x3804, 0x0a, 0, 0}, 466 {0x3805, 0x3f, 0, 0}, {0x3806, 0x06, 0, 0}, {0x3807, 0xa9, 0, 0}, 467 {0x3810, 0x00, 0, 0}, 468 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0}, 469 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 470 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x02, 0, 0}, 471 {0x3a03, 0xe4, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0xbc, 0, 0}, 472 {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x72, 0, 0}, {0x3a0e, 0x01, 0, 0}, 473 {0x3a0d, 0x02, 0, 0}, {0x3a14, 0x02, 0, 0}, {0x3a15, 0xe4, 0, 0}, 474 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x4713, 0x03, 0, 0}, 475 {0x4407, 0x04, 0, 0}, {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0}, 476 {0x3824, 0x04, 0, 0}, {0x5001, 0x83, 0, 0}, 477 }; 478 479 static const struct reg_value ov5640_setting_1080P_1920_1080[] = { 480 {0x3008, 0x42, 0, 0}, 481 {0x3c07, 0x08, 0, 0}, 482 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 483 {0x3814, 0x11, 0, 0}, 484 {0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 485 {0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0}, 486 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0}, 487 {0x3810, 0x00, 0, 0}, 488 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0}, 489 {0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0}, 490 {0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0}, 491 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 492 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 493 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 494 {0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0}, {0x4713, 0x03, 0, 0}, 495 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 496 {0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 0}, 497 {0x3c07, 0x07, 0, 0}, {0x3c08, 0x00, 0, 0}, 498 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 499 {0x3800, 0x01, 0, 0}, {0x3801, 0x50, 0, 0}, {0x3802, 0x01, 0, 0}, 500 {0x3803, 0xb2, 0, 0}, {0x3804, 0x08, 0, 0}, {0x3805, 0xef, 0, 0}, 501 {0x3806, 0x05, 0, 0}, {0x3807, 0xf1, 0, 0}, 502 {0x3612, 0x2b, 0, 0}, {0x3708, 0x64, 0, 0}, 503 {0x3a02, 0x04, 0, 0}, {0x3a03, 0x60, 0, 0}, {0x3a08, 0x01, 0, 0}, 504 {0x3a09, 0x50, 0, 0}, {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x18, 0, 0}, 505 {0x3a0e, 0x03, 0, 0}, {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x04, 0, 0}, 506 {0x3a15, 0x60, 0, 0}, {0x4713, 0x02, 0, 0}, {0x4407, 0x04, 0, 0}, 507 {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0}, {0x3824, 0x04, 0, 0}, 508 {0x4005, 0x1a, 0, 0}, {0x3008, 0x02, 0, 0}, 509 }; 510 511 static const struct reg_value ov5640_setting_QSXGA_2592_1944[] = { 512 {0x3c07, 0x08, 0, 0}, 513 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 514 {0x3814, 0x11, 0, 0}, 515 {0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 516 {0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0}, 517 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0}, 518 {0x3810, 0x00, 0, 0}, 519 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0}, 520 {0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0}, 521 {0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0}, 522 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 523 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 524 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 525 {0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0}, {0x4713, 0x03, 0, 0}, 526 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 527 {0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 70}, 528 }; 529 530 /* power-on sensor init reg table */ 531 static const struct ov5640_mode_info ov5640_mode_init_data = { 532 0, SUBSAMPLING, 640, 1896, 480, 984, 533 ov5640_init_setting_30fps_VGA, 534 ARRAY_SIZE(ov5640_init_setting_30fps_VGA), 535 }; 536 537 static const struct ov5640_mode_info 538 ov5640_mode_data[OV5640_NUM_MODES] = { 539 {OV5640_MODE_QCIF_176_144, SUBSAMPLING, 540 176, 1896, 144, 984, 541 ov5640_setting_QCIF_176_144, 542 ARRAY_SIZE(ov5640_setting_QCIF_176_144)}, 543 {OV5640_MODE_QVGA_320_240, SUBSAMPLING, 544 320, 1896, 240, 984, 545 ov5640_setting_QVGA_320_240, 546 ARRAY_SIZE(ov5640_setting_QVGA_320_240)}, 547 {OV5640_MODE_VGA_640_480, SUBSAMPLING, 548 640, 1896, 480, 1080, 549 ov5640_setting_VGA_640_480, 550 ARRAY_SIZE(ov5640_setting_VGA_640_480)}, 551 {OV5640_MODE_NTSC_720_480, SUBSAMPLING, 552 720, 1896, 480, 984, 553 ov5640_setting_NTSC_720_480, 554 ARRAY_SIZE(ov5640_setting_NTSC_720_480)}, 555 {OV5640_MODE_PAL_720_576, SUBSAMPLING, 556 720, 1896, 576, 984, 557 ov5640_setting_PAL_720_576, 558 ARRAY_SIZE(ov5640_setting_PAL_720_576)}, 559 {OV5640_MODE_XGA_1024_768, SUBSAMPLING, 560 1024, 1896, 768, 1080, 561 ov5640_setting_XGA_1024_768, 562 ARRAY_SIZE(ov5640_setting_XGA_1024_768)}, 563 {OV5640_MODE_720P_1280_720, SUBSAMPLING, 564 1280, 1892, 720, 740, 565 ov5640_setting_720P_1280_720, 566 ARRAY_SIZE(ov5640_setting_720P_1280_720)}, 567 {OV5640_MODE_1080P_1920_1080, SCALING, 568 1920, 2500, 1080, 1120, 569 ov5640_setting_1080P_1920_1080, 570 ARRAY_SIZE(ov5640_setting_1080P_1920_1080)}, 571 {OV5640_MODE_QSXGA_2592_1944, SCALING, 572 2592, 2844, 1944, 1968, 573 ov5640_setting_QSXGA_2592_1944, 574 ARRAY_SIZE(ov5640_setting_QSXGA_2592_1944)}, 575 }; 576 577 static int ov5640_init_slave_id(struct ov5640_dev *sensor) 578 { 579 struct i2c_client *client = sensor->i2c_client; 580 struct i2c_msg msg; 581 u8 buf[3]; 582 int ret; 583 584 if (client->addr == OV5640_DEFAULT_SLAVE_ID) 585 return 0; 586 587 buf[0] = OV5640_REG_SLAVE_ID >> 8; 588 buf[1] = OV5640_REG_SLAVE_ID & 0xff; 589 buf[2] = client->addr << 1; 590 591 msg.addr = OV5640_DEFAULT_SLAVE_ID; 592 msg.flags = 0; 593 msg.buf = buf; 594 msg.len = sizeof(buf); 595 596 ret = i2c_transfer(client->adapter, &msg, 1); 597 if (ret < 0) { 598 dev_err(&client->dev, "%s: failed with %d\n", __func__, ret); 599 return ret; 600 } 601 602 return 0; 603 } 604 605 static int ov5640_write_reg(struct ov5640_dev *sensor, u16 reg, u8 val) 606 { 607 struct i2c_client *client = sensor->i2c_client; 608 struct i2c_msg msg; 609 u8 buf[3]; 610 int ret; 611 612 buf[0] = reg >> 8; 613 buf[1] = reg & 0xff; 614 buf[2] = val; 615 616 msg.addr = client->addr; 617 msg.flags = client->flags; 618 msg.buf = buf; 619 msg.len = sizeof(buf); 620 621 ret = i2c_transfer(client->adapter, &msg, 1); 622 if (ret < 0) { 623 dev_err(&client->dev, "%s: error: reg=%x, val=%x\n", 624 __func__, reg, val); 625 return ret; 626 } 627 628 return 0; 629 } 630 631 static int ov5640_read_reg(struct ov5640_dev *sensor, u16 reg, u8 *val) 632 { 633 struct i2c_client *client = sensor->i2c_client; 634 struct i2c_msg msg[2]; 635 u8 buf[2]; 636 int ret; 637 638 buf[0] = reg >> 8; 639 buf[1] = reg & 0xff; 640 641 msg[0].addr = client->addr; 642 msg[0].flags = client->flags; 643 msg[0].buf = buf; 644 msg[0].len = sizeof(buf); 645 646 msg[1].addr = client->addr; 647 msg[1].flags = client->flags | I2C_M_RD; 648 msg[1].buf = buf; 649 msg[1].len = 1; 650 651 ret = i2c_transfer(client->adapter, msg, 2); 652 if (ret < 0) { 653 dev_err(&client->dev, "%s: error: reg=%x\n", 654 __func__, reg); 655 return ret; 656 } 657 658 *val = buf[0]; 659 return 0; 660 } 661 662 static int ov5640_read_reg16(struct ov5640_dev *sensor, u16 reg, u16 *val) 663 { 664 u8 hi, lo; 665 int ret; 666 667 ret = ov5640_read_reg(sensor, reg, &hi); 668 if (ret) 669 return ret; 670 ret = ov5640_read_reg(sensor, reg + 1, &lo); 671 if (ret) 672 return ret; 673 674 *val = ((u16)hi << 8) | (u16)lo; 675 return 0; 676 } 677 678 static int ov5640_write_reg16(struct ov5640_dev *sensor, u16 reg, u16 val) 679 { 680 int ret; 681 682 ret = ov5640_write_reg(sensor, reg, val >> 8); 683 if (ret) 684 return ret; 685 686 return ov5640_write_reg(sensor, reg + 1, val & 0xff); 687 } 688 689 static int ov5640_mod_reg(struct ov5640_dev *sensor, u16 reg, 690 u8 mask, u8 val) 691 { 692 u8 readval; 693 int ret; 694 695 ret = ov5640_read_reg(sensor, reg, &readval); 696 if (ret) 697 return ret; 698 699 readval &= ~mask; 700 val &= mask; 701 val |= readval; 702 703 return ov5640_write_reg(sensor, reg, val); 704 } 705 706 /* 707 * After trying the various combinations, reading various 708 * documentations spreaded around the net, and from the various 709 * feedback, the clock tree is probably as follows: 710 * 711 * +--------------+ 712 * | Ext. Clock | 713 * +-+------------+ 714 * | +----------+ 715 * +->| PLL1 | - reg 0x3036, for the multiplier 716 * +-+--------+ - reg 0x3037, bits 0-3 for the pre-divider 717 * | +--------------+ 718 * +->| System Clock | - reg 0x3035, bits 4-7 719 * +-+------------+ 720 * | +--------------+ 721 * +->| MIPI Divider | - reg 0x3035, bits 0-3 722 * | +-+------------+ 723 * | +----------------> MIPI SCLK 724 * | + +-----+ 725 * | +->| / 2 |-------> MIPI BIT CLK 726 * | +-----+ 727 * | +--------------+ 728 * +->| PLL Root Div | - reg 0x3037, bit 4 729 * +-+------------+ 730 * | +---------+ 731 * +->| Bit Div | - reg 0x3035, bits 0-3 732 * +-+-------+ 733 * | +-------------+ 734 * +->| SCLK Div | - reg 0x3108, bits 0-1 735 * | +-+-----------+ 736 * | +---------------> SCLK 737 * | +-------------+ 738 * +->| SCLK 2X Div | - reg 0x3108, bits 2-3 739 * | +-+-----------+ 740 * | +---------------> SCLK 2X 741 * | +-------------+ 742 * +->| PCLK Div | - reg 0x3108, bits 4-5 743 * ++------------+ 744 * + +-----------+ 745 * +->| P_DIV | - reg 0x3035, bits 0-3 746 * +-----+-----+ 747 * +------------> PCLK 748 * 749 * This is deviating from the datasheet at least for the register 750 * 0x3108, since it's said here that the PCLK would be clocked from 751 * the PLL. 752 * 753 * There seems to be also (unverified) constraints: 754 * - the PLL pre-divider output rate should be in the 4-27MHz range 755 * - the PLL multiplier output rate should be in the 500-1000MHz range 756 * - PCLK >= SCLK * 2 in YUV, >= SCLK in Raw or JPEG 757 * 758 * In the two latter cases, these constraints are met since our 759 * factors are hardcoded. If we were to change that, we would need to 760 * take this into account. The only varying parts are the PLL 761 * multiplier and the system clock divider, which are shared between 762 * all these clocks so won't cause any issue. 763 */ 764 765 /* 766 * This is supposed to be ranging from 1 to 8, but the value is always 767 * set to 3 in the vendor kernels. 768 */ 769 #define OV5640_PLL_PREDIV 3 770 771 #define OV5640_PLL_MULT_MIN 4 772 #define OV5640_PLL_MULT_MAX 252 773 774 /* 775 * This is supposed to be ranging from 1 to 16, but the value is 776 * always set to either 1 or 2 in the vendor kernels. 777 */ 778 #define OV5640_SYSDIV_MIN 1 779 #define OV5640_SYSDIV_MAX 16 780 781 /* 782 * Hardcode these values for scaler and non-scaler modes. 783 * FIXME: to be re-calcualted for 1 data lanes setups 784 */ 785 #define OV5640_MIPI_DIV_PCLK 2 786 #define OV5640_MIPI_DIV_SCLK 1 787 788 /* 789 * This is supposed to be ranging from 1 to 2, but the value is always 790 * set to 2 in the vendor kernels. 791 */ 792 #define OV5640_PLL_ROOT_DIV 2 793 #define OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 BIT(4) 794 795 /* 796 * We only supports 8-bit formats at the moment 797 */ 798 #define OV5640_BIT_DIV 2 799 #define OV5640_PLL_CTRL0_MIPI_MODE_8BIT 0x08 800 801 /* 802 * This is supposed to be ranging from 1 to 8, but the value is always 803 * set to 2 in the vendor kernels. 804 */ 805 #define OV5640_SCLK_ROOT_DIV 2 806 807 /* 808 * This is hardcoded so that the consistency is maintained between SCLK and 809 * SCLK 2x. 810 */ 811 #define OV5640_SCLK2X_ROOT_DIV (OV5640_SCLK_ROOT_DIV / 2) 812 813 /* 814 * This is supposed to be ranging from 1 to 8, but the value is always 815 * set to 1 in the vendor kernels. 816 */ 817 #define OV5640_PCLK_ROOT_DIV 1 818 #define OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS 0x00 819 820 static unsigned long ov5640_compute_sys_clk(struct ov5640_dev *sensor, 821 u8 pll_prediv, u8 pll_mult, 822 u8 sysdiv) 823 { 824 unsigned long sysclk = sensor->xclk_freq / pll_prediv * pll_mult; 825 826 /* PLL1 output cannot exceed 1GHz. */ 827 if (sysclk / 1000000 > 1000) 828 return 0; 829 830 return sysclk / sysdiv; 831 } 832 833 static unsigned long ov5640_calc_sys_clk(struct ov5640_dev *sensor, 834 unsigned long rate, 835 u8 *pll_prediv, u8 *pll_mult, 836 u8 *sysdiv) 837 { 838 unsigned long best = ~0; 839 u8 best_sysdiv = 1, best_mult = 1; 840 u8 _sysdiv, _pll_mult; 841 842 for (_sysdiv = OV5640_SYSDIV_MIN; 843 _sysdiv <= OV5640_SYSDIV_MAX; 844 _sysdiv++) { 845 for (_pll_mult = OV5640_PLL_MULT_MIN; 846 _pll_mult <= OV5640_PLL_MULT_MAX; 847 _pll_mult++) { 848 unsigned long _rate; 849 850 /* 851 * The PLL multiplier cannot be odd if above 852 * 127. 853 */ 854 if (_pll_mult > 127 && (_pll_mult % 2)) 855 continue; 856 857 _rate = ov5640_compute_sys_clk(sensor, 858 OV5640_PLL_PREDIV, 859 _pll_mult, _sysdiv); 860 861 /* 862 * We have reached the maximum allowed PLL1 output, 863 * increase sysdiv. 864 */ 865 if (!rate) 866 break; 867 868 /* 869 * Prefer rates above the expected clock rate than 870 * below, even if that means being less precise. 871 */ 872 if (_rate < rate) 873 continue; 874 875 if (abs(rate - _rate) < abs(rate - best)) { 876 best = _rate; 877 best_sysdiv = _sysdiv; 878 best_mult = _pll_mult; 879 } 880 881 if (_rate == rate) 882 goto out; 883 } 884 } 885 886 out: 887 *sysdiv = best_sysdiv; 888 *pll_prediv = OV5640_PLL_PREDIV; 889 *pll_mult = best_mult; 890 891 return best; 892 } 893 894 /* 895 * ov5640_set_mipi_pclk() - Calculate the clock tree configuration values 896 * for the MIPI CSI-2 output. 897 * 898 * @rate: The requested bandwidth per lane in bytes per second. 899 * 'Bandwidth Per Lane' is calculated as: 900 * bpl = HTOT * VTOT * FPS * bpp / num_lanes; 901 * 902 * This function use the requested bandwidth to calculate: 903 * - sample_rate = bpl / (bpp / num_lanes); 904 * = bpl / (PLL_RDIV * BIT_DIV * PCLK_DIV * MIPI_DIV / num_lanes); 905 * 906 * - mipi_sclk = bpl / MIPI_DIV / 2; ( / 2 is for CSI-2 DDR) 907 * 908 * with these fixed parameters: 909 * PLL_RDIV = 2; 910 * BIT_DIVIDER = 2; (MIPI_BIT_MODE == 8 ? 2 : 2,5); 911 * PCLK_DIV = 1; 912 * 913 * The MIPI clock generation differs for modes that use the scaler and modes 914 * that do not. In case the scaler is in use, the MIPI_SCLK generates the MIPI 915 * BIT CLk, and thus: 916 * 917 * - mipi_sclk = bpl / MIPI_DIV / 2; 918 * MIPI_DIV = 1; 919 * 920 * For modes that do not go through the scaler, the MIPI BIT CLOCK is generated 921 * from the pixel clock, and thus: 922 * 923 * - sample_rate = bpl / (bpp / num_lanes); 924 * = bpl / (2 * 2 * 1 * MIPI_DIV / num_lanes); 925 * = bpl / (4 * MIPI_DIV / num_lanes); 926 * - MIPI_DIV = bpp / (4 * num_lanes); 927 * 928 * FIXME: this have been tested with 16bpp and 2 lanes setup only. 929 * MIPI_DIV is fixed to value 2, but it -might- be changed according to the 930 * above formula for setups with 1 lane or image formats with different bpp. 931 * 932 * FIXME: this deviates from the sensor manual documentation which is quite 933 * thin on the MIPI clock tree generation part. 934 */ 935 static int ov5640_set_mipi_pclk(struct ov5640_dev *sensor, 936 unsigned long rate) 937 { 938 const struct ov5640_mode_info *mode = sensor->current_mode; 939 u8 prediv, mult, sysdiv; 940 u8 mipi_div; 941 int ret; 942 943 /* 944 * 1280x720 is reported to use 'SUBSAMPLING' only, 945 * but according to the sensor manual it goes through the 946 * scaler before subsampling. 947 */ 948 if (mode->dn_mode == SCALING || 949 (mode->id == OV5640_MODE_720P_1280_720)) 950 mipi_div = OV5640_MIPI_DIV_SCLK; 951 else 952 mipi_div = OV5640_MIPI_DIV_PCLK; 953 954 ov5640_calc_sys_clk(sensor, rate, &prediv, &mult, &sysdiv); 955 956 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0, 957 0x0f, OV5640_PLL_CTRL0_MIPI_MODE_8BIT); 958 959 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1, 960 0xff, sysdiv << 4 | mipi_div); 961 if (ret) 962 return ret; 963 964 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2, 0xff, mult); 965 if (ret) 966 return ret; 967 968 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3, 969 0x1f, OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 | prediv); 970 if (ret) 971 return ret; 972 973 return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 974 0x30, OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS); 975 } 976 977 static unsigned long ov5640_calc_pclk(struct ov5640_dev *sensor, 978 unsigned long rate, 979 u8 *pll_prediv, u8 *pll_mult, u8 *sysdiv, 980 u8 *pll_rdiv, u8 *bit_div, u8 *pclk_div) 981 { 982 unsigned long _rate = rate * OV5640_PLL_ROOT_DIV * OV5640_BIT_DIV * 983 OV5640_PCLK_ROOT_DIV; 984 985 _rate = ov5640_calc_sys_clk(sensor, _rate, pll_prediv, pll_mult, 986 sysdiv); 987 *pll_rdiv = OV5640_PLL_ROOT_DIV; 988 *bit_div = OV5640_BIT_DIV; 989 *pclk_div = OV5640_PCLK_ROOT_DIV; 990 991 return _rate / *pll_rdiv / *bit_div / *pclk_div; 992 } 993 994 static int ov5640_set_dvp_pclk(struct ov5640_dev *sensor, unsigned long rate) 995 { 996 u8 prediv, mult, sysdiv, pll_rdiv, bit_div, pclk_div; 997 int ret; 998 999 ov5640_calc_pclk(sensor, rate, &prediv, &mult, &sysdiv, &pll_rdiv, 1000 &bit_div, &pclk_div); 1001 1002 if (bit_div == 2) 1003 bit_div = 8; 1004 1005 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0, 1006 0x0f, bit_div); 1007 if (ret) 1008 return ret; 1009 1010 /* 1011 * We need to set sysdiv according to the clock, and to clear 1012 * the MIPI divider. 1013 */ 1014 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1, 1015 0xff, sysdiv << 4); 1016 if (ret) 1017 return ret; 1018 1019 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2, 1020 0xff, mult); 1021 if (ret) 1022 return ret; 1023 1024 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3, 1025 0x1f, prediv | ((pll_rdiv - 1) << 4)); 1026 if (ret) 1027 return ret; 1028 1029 return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x30, 1030 (ilog2(pclk_div) << 4)); 1031 } 1032 1033 /* download ov5640 settings to sensor through i2c */ 1034 static int ov5640_set_timings(struct ov5640_dev *sensor, 1035 const struct ov5640_mode_info *mode) 1036 { 1037 int ret; 1038 1039 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPHO, mode->hact); 1040 if (ret < 0) 1041 return ret; 1042 1043 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPVO, mode->vact); 1044 if (ret < 0) 1045 return ret; 1046 1047 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_HTS, mode->htot); 1048 if (ret < 0) 1049 return ret; 1050 1051 return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, mode->vtot); 1052 } 1053 1054 static int ov5640_load_regs(struct ov5640_dev *sensor, 1055 const struct ov5640_mode_info *mode) 1056 { 1057 const struct reg_value *regs = mode->reg_data; 1058 unsigned int i; 1059 u32 delay_ms; 1060 u16 reg_addr; 1061 u8 mask, val; 1062 int ret = 0; 1063 1064 for (i = 0; i < mode->reg_data_size; ++i, ++regs) { 1065 delay_ms = regs->delay_ms; 1066 reg_addr = regs->reg_addr; 1067 val = regs->val; 1068 mask = regs->mask; 1069 1070 if (mask) 1071 ret = ov5640_mod_reg(sensor, reg_addr, mask, val); 1072 else 1073 ret = ov5640_write_reg(sensor, reg_addr, val); 1074 if (ret) 1075 break; 1076 1077 if (delay_ms) 1078 usleep_range(1000 * delay_ms, 1000 * delay_ms + 100); 1079 } 1080 1081 return ov5640_set_timings(sensor, mode); 1082 } 1083 1084 static int ov5640_set_autoexposure(struct ov5640_dev *sensor, bool on) 1085 { 1086 return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL, 1087 BIT(0), on ? 0 : BIT(0)); 1088 } 1089 1090 /* read exposure, in number of line periods */ 1091 static int ov5640_get_exposure(struct ov5640_dev *sensor) 1092 { 1093 int exp, ret; 1094 u8 temp; 1095 1096 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_HI, &temp); 1097 if (ret) 1098 return ret; 1099 exp = ((int)temp & 0x0f) << 16; 1100 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_MED, &temp); 1101 if (ret) 1102 return ret; 1103 exp |= ((int)temp << 8); 1104 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_LO, &temp); 1105 if (ret) 1106 return ret; 1107 exp |= (int)temp; 1108 1109 return exp >> 4; 1110 } 1111 1112 /* write exposure, given number of line periods */ 1113 static int ov5640_set_exposure(struct ov5640_dev *sensor, u32 exposure) 1114 { 1115 int ret; 1116 1117 exposure <<= 4; 1118 1119 ret = ov5640_write_reg(sensor, 1120 OV5640_REG_AEC_PK_EXPOSURE_LO, 1121 exposure & 0xff); 1122 if (ret) 1123 return ret; 1124 ret = ov5640_write_reg(sensor, 1125 OV5640_REG_AEC_PK_EXPOSURE_MED, 1126 (exposure >> 8) & 0xff); 1127 if (ret) 1128 return ret; 1129 return ov5640_write_reg(sensor, 1130 OV5640_REG_AEC_PK_EXPOSURE_HI, 1131 (exposure >> 16) & 0x0f); 1132 } 1133 1134 static int ov5640_get_gain(struct ov5640_dev *sensor) 1135 { 1136 u16 gain; 1137 int ret; 1138 1139 ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN, &gain); 1140 if (ret) 1141 return ret; 1142 1143 return gain & 0x3ff; 1144 } 1145 1146 static int ov5640_set_gain(struct ov5640_dev *sensor, int gain) 1147 { 1148 return ov5640_write_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN, 1149 (u16)gain & 0x3ff); 1150 } 1151 1152 static int ov5640_set_autogain(struct ov5640_dev *sensor, bool on) 1153 { 1154 return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL, 1155 BIT(1), on ? 0 : BIT(1)); 1156 } 1157 1158 static int ov5640_set_stream_dvp(struct ov5640_dev *sensor, bool on) 1159 { 1160 int ret; 1161 unsigned int flags = sensor->ep.bus.parallel.flags; 1162 u8 pclk_pol = 0; 1163 u8 hsync_pol = 0; 1164 u8 vsync_pol = 0; 1165 1166 /* 1167 * Note about parallel port configuration. 1168 * 1169 * When configured in parallel mode, the OV5640 will 1170 * output 10 bits data on DVP data lines [9:0]. 1171 * If only 8 bits data are wanted, the 8 bits data lines 1172 * of the camera interface must be physically connected 1173 * on the DVP data lines [9:2]. 1174 * 1175 * Control lines polarity can be configured through 1176 * devicetree endpoint control lines properties. 1177 * If no endpoint control lines properties are set, 1178 * polarity will be as below: 1179 * - VSYNC: active high 1180 * - HREF: active low 1181 * - PCLK: active low 1182 */ 1183 1184 if (on) { 1185 /* 1186 * configure parallel port control lines polarity 1187 * 1188 * POLARITY CTRL0 1189 * - [5]: PCLK polarity (0: active low, 1: active high) 1190 * - [1]: HREF polarity (0: active low, 1: active high) 1191 * - [0]: VSYNC polarity (mismatch here between 1192 * datasheet and hardware, 0 is active high 1193 * and 1 is active low...) 1194 */ 1195 if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING) 1196 pclk_pol = 1; 1197 if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH) 1198 hsync_pol = 1; 1199 if (flags & V4L2_MBUS_VSYNC_ACTIVE_LOW) 1200 vsync_pol = 1; 1201 1202 ret = ov5640_write_reg(sensor, 1203 OV5640_REG_POLARITY_CTRL00, 1204 (pclk_pol << 5) | 1205 (hsync_pol << 1) | 1206 vsync_pol); 1207 1208 if (ret) 1209 return ret; 1210 } 1211 1212 /* 1213 * powerdown MIPI TX/RX PHY & disable MIPI 1214 * 1215 * MIPI CONTROL 00 1216 * 4: PWDN PHY TX 1217 * 3: PWDN PHY RX 1218 * 2: MIPI enable 1219 */ 1220 ret = ov5640_write_reg(sensor, 1221 OV5640_REG_IO_MIPI_CTRL00, on ? 0x18 : 0); 1222 if (ret) 1223 return ret; 1224 1225 /* 1226 * enable VSYNC/HREF/PCLK DVP control lines 1227 * & D[9:6] DVP data lines 1228 * 1229 * PAD OUTPUT ENABLE 01 1230 * - 6: VSYNC output enable 1231 * - 5: HREF output enable 1232 * - 4: PCLK output enable 1233 * - [3:0]: D[9:6] output enable 1234 */ 1235 ret = ov5640_write_reg(sensor, 1236 OV5640_REG_PAD_OUTPUT_ENABLE01, 1237 on ? 0x7f : 0); 1238 if (ret) 1239 return ret; 1240 1241 /* 1242 * enable D[5:0] DVP data lines 1243 * 1244 * PAD OUTPUT ENABLE 02 1245 * - [7:2]: D[5:0] output enable 1246 */ 1247 return ov5640_write_reg(sensor, 1248 OV5640_REG_PAD_OUTPUT_ENABLE02, 1249 on ? 0xfc : 0); 1250 } 1251 1252 static int ov5640_set_stream_mipi(struct ov5640_dev *sensor, bool on) 1253 { 1254 int ret; 1255 1256 /* 1257 * Enable/disable the MIPI interface 1258 * 1259 * 0x300e = on ? 0x45 : 0x40 1260 * 1261 * FIXME: the sensor manual (version 2.03) reports 1262 * [7:5] = 000 : 1 data lane mode 1263 * [7:5] = 001 : 2 data lanes mode 1264 * But this settings do not work, while the following ones 1265 * have been validated for 2 data lanes mode. 1266 * 1267 * [7:5] = 010 : 2 data lanes mode 1268 * [4] = 0 : Power up MIPI HS Tx 1269 * [3] = 0 : Power up MIPI LS Rx 1270 * [2] = 1/0 : MIPI interface enable/disable 1271 * [1:0] = 01/00: FIXME: 'debug' 1272 */ 1273 ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 1274 on ? 0x45 : 0x40); 1275 if (ret) 1276 return ret; 1277 1278 return ov5640_write_reg(sensor, OV5640_REG_FRAME_CTRL01, 1279 on ? 0x00 : 0x0f); 1280 } 1281 1282 static int ov5640_get_sysclk(struct ov5640_dev *sensor) 1283 { 1284 /* calculate sysclk */ 1285 u32 xvclk = sensor->xclk_freq / 10000; 1286 u32 multiplier, prediv, VCO, sysdiv, pll_rdiv; 1287 u32 sclk_rdiv_map[] = {1, 2, 4, 8}; 1288 u32 bit_div2x = 1, sclk_rdiv, sysclk; 1289 u8 temp1, temp2; 1290 int ret; 1291 1292 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL0, &temp1); 1293 if (ret) 1294 return ret; 1295 temp2 = temp1 & 0x0f; 1296 if (temp2 == 8 || temp2 == 10) 1297 bit_div2x = temp2 / 2; 1298 1299 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL1, &temp1); 1300 if (ret) 1301 return ret; 1302 sysdiv = temp1 >> 4; 1303 if (sysdiv == 0) 1304 sysdiv = 16; 1305 1306 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL2, &temp1); 1307 if (ret) 1308 return ret; 1309 multiplier = temp1; 1310 1311 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL3, &temp1); 1312 if (ret) 1313 return ret; 1314 prediv = temp1 & 0x0f; 1315 pll_rdiv = ((temp1 >> 4) & 0x01) + 1; 1316 1317 ret = ov5640_read_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, &temp1); 1318 if (ret) 1319 return ret; 1320 temp2 = temp1 & 0x03; 1321 sclk_rdiv = sclk_rdiv_map[temp2]; 1322 1323 if (!prediv || !sysdiv || !pll_rdiv || !bit_div2x) 1324 return -EINVAL; 1325 1326 VCO = xvclk * multiplier / prediv; 1327 1328 sysclk = VCO / sysdiv / pll_rdiv * 2 / bit_div2x / sclk_rdiv; 1329 1330 return sysclk; 1331 } 1332 1333 static int ov5640_set_night_mode(struct ov5640_dev *sensor) 1334 { 1335 /* read HTS from register settings */ 1336 u8 mode; 1337 int ret; 1338 1339 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_CTRL00, &mode); 1340 if (ret) 1341 return ret; 1342 mode &= 0xfb; 1343 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL00, mode); 1344 } 1345 1346 static int ov5640_get_hts(struct ov5640_dev *sensor) 1347 { 1348 /* read HTS from register settings */ 1349 u16 hts; 1350 int ret; 1351 1352 ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_HTS, &hts); 1353 if (ret) 1354 return ret; 1355 return hts; 1356 } 1357 1358 static int ov5640_get_vts(struct ov5640_dev *sensor) 1359 { 1360 u16 vts; 1361 int ret; 1362 1363 ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_VTS, &vts); 1364 if (ret) 1365 return ret; 1366 return vts; 1367 } 1368 1369 static int ov5640_set_vts(struct ov5640_dev *sensor, int vts) 1370 { 1371 return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, vts); 1372 } 1373 1374 static int ov5640_get_light_freq(struct ov5640_dev *sensor) 1375 { 1376 /* get banding filter value */ 1377 int ret, light_freq = 0; 1378 u8 temp, temp1; 1379 1380 ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL01, &temp); 1381 if (ret) 1382 return ret; 1383 1384 if (temp & 0x80) { 1385 /* manual */ 1386 ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL00, 1387 &temp1); 1388 if (ret) 1389 return ret; 1390 if (temp1 & 0x04) { 1391 /* 50Hz */ 1392 light_freq = 50; 1393 } else { 1394 /* 60Hz */ 1395 light_freq = 60; 1396 } 1397 } else { 1398 /* auto */ 1399 ret = ov5640_read_reg(sensor, OV5640_REG_SIGMADELTA_CTRL0C, 1400 &temp1); 1401 if (ret) 1402 return ret; 1403 1404 if (temp1 & 0x01) { 1405 /* 50Hz */ 1406 light_freq = 50; 1407 } else { 1408 /* 60Hz */ 1409 } 1410 } 1411 1412 return light_freq; 1413 } 1414 1415 static int ov5640_set_bandingfilter(struct ov5640_dev *sensor) 1416 { 1417 u32 band_step60, max_band60, band_step50, max_band50, prev_vts; 1418 int ret; 1419 1420 /* read preview PCLK */ 1421 ret = ov5640_get_sysclk(sensor); 1422 if (ret < 0) 1423 return ret; 1424 if (ret == 0) 1425 return -EINVAL; 1426 sensor->prev_sysclk = ret; 1427 /* read preview HTS */ 1428 ret = ov5640_get_hts(sensor); 1429 if (ret < 0) 1430 return ret; 1431 if (ret == 0) 1432 return -EINVAL; 1433 sensor->prev_hts = ret; 1434 1435 /* read preview VTS */ 1436 ret = ov5640_get_vts(sensor); 1437 if (ret < 0) 1438 return ret; 1439 prev_vts = ret; 1440 1441 /* calculate banding filter */ 1442 /* 60Hz */ 1443 band_step60 = sensor->prev_sysclk * 100 / sensor->prev_hts * 100 / 120; 1444 ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B60_STEP, band_step60); 1445 if (ret) 1446 return ret; 1447 if (!band_step60) 1448 return -EINVAL; 1449 max_band60 = (int)((prev_vts - 4) / band_step60); 1450 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0D, max_band60); 1451 if (ret) 1452 return ret; 1453 1454 /* 50Hz */ 1455 band_step50 = sensor->prev_sysclk * 100 / sensor->prev_hts; 1456 ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B50_STEP, band_step50); 1457 if (ret) 1458 return ret; 1459 if (!band_step50) 1460 return -EINVAL; 1461 max_band50 = (int)((prev_vts - 4) / band_step50); 1462 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0E, max_band50); 1463 } 1464 1465 static int ov5640_set_ae_target(struct ov5640_dev *sensor, int target) 1466 { 1467 /* stable in high */ 1468 u32 fast_high, fast_low; 1469 int ret; 1470 1471 sensor->ae_low = target * 23 / 25; /* 0.92 */ 1472 sensor->ae_high = target * 27 / 25; /* 1.08 */ 1473 1474 fast_high = sensor->ae_high << 1; 1475 if (fast_high > 255) 1476 fast_high = 255; 1477 1478 fast_low = sensor->ae_low >> 1; 1479 1480 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0F, sensor->ae_high); 1481 if (ret) 1482 return ret; 1483 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL10, sensor->ae_low); 1484 if (ret) 1485 return ret; 1486 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1B, sensor->ae_high); 1487 if (ret) 1488 return ret; 1489 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1E, sensor->ae_low); 1490 if (ret) 1491 return ret; 1492 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL11, fast_high); 1493 if (ret) 1494 return ret; 1495 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1F, fast_low); 1496 } 1497 1498 static int ov5640_get_binning(struct ov5640_dev *sensor) 1499 { 1500 u8 temp; 1501 int ret; 1502 1503 ret = ov5640_read_reg(sensor, OV5640_REG_TIMING_TC_REG21, &temp); 1504 if (ret) 1505 return ret; 1506 1507 return temp & BIT(0); 1508 } 1509 1510 static int ov5640_set_binning(struct ov5640_dev *sensor, bool enable) 1511 { 1512 int ret; 1513 1514 /* 1515 * TIMING TC REG21: 1516 * - [0]: Horizontal binning enable 1517 */ 1518 ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21, 1519 BIT(0), enable ? BIT(0) : 0); 1520 if (ret) 1521 return ret; 1522 /* 1523 * TIMING TC REG20: 1524 * - [0]: Undocumented, but hardcoded init sequences 1525 * are always setting REG21/REG20 bit 0 to same value... 1526 */ 1527 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20, 1528 BIT(0), enable ? BIT(0) : 0); 1529 } 1530 1531 static int ov5640_set_virtual_channel(struct ov5640_dev *sensor) 1532 { 1533 struct i2c_client *client = sensor->i2c_client; 1534 u8 temp, channel = virtual_channel; 1535 int ret; 1536 1537 if (channel > 3) { 1538 dev_err(&client->dev, 1539 "%s: wrong virtual_channel parameter, expected (0..3), got %d\n", 1540 __func__, channel); 1541 return -EINVAL; 1542 } 1543 1544 ret = ov5640_read_reg(sensor, OV5640_REG_DEBUG_MODE, &temp); 1545 if (ret) 1546 return ret; 1547 temp &= ~(3 << 6); 1548 temp |= (channel << 6); 1549 return ov5640_write_reg(sensor, OV5640_REG_DEBUG_MODE, temp); 1550 } 1551 1552 static const struct ov5640_mode_info * 1553 ov5640_find_mode(struct ov5640_dev *sensor, enum ov5640_frame_rate fr, 1554 int width, int height, bool nearest) 1555 { 1556 const struct ov5640_mode_info *mode; 1557 1558 mode = v4l2_find_nearest_size(ov5640_mode_data, 1559 ARRAY_SIZE(ov5640_mode_data), 1560 hact, vact, 1561 width, height); 1562 1563 if (!mode || 1564 (!nearest && (mode->hact != width || mode->vact != height))) 1565 return NULL; 1566 1567 /* Only 640x480 can operate at 60fps (for now) */ 1568 if (fr == OV5640_60_FPS && 1569 !(mode->hact == 640 && mode->vact == 480)) 1570 return NULL; 1571 1572 return mode; 1573 } 1574 1575 /* 1576 * sensor changes between scaling and subsampling, go through 1577 * exposure calculation 1578 */ 1579 static int ov5640_set_mode_exposure_calc(struct ov5640_dev *sensor, 1580 const struct ov5640_mode_info *mode) 1581 { 1582 u32 prev_shutter, prev_gain16; 1583 u32 cap_shutter, cap_gain16; 1584 u32 cap_sysclk, cap_hts, cap_vts; 1585 u32 light_freq, cap_bandfilt, cap_maxband; 1586 u32 cap_gain16_shutter; 1587 u8 average; 1588 int ret; 1589 1590 if (!mode->reg_data) 1591 return -EINVAL; 1592 1593 /* read preview shutter */ 1594 ret = ov5640_get_exposure(sensor); 1595 if (ret < 0) 1596 return ret; 1597 prev_shutter = ret; 1598 ret = ov5640_get_binning(sensor); 1599 if (ret < 0) 1600 return ret; 1601 if (ret && mode->id != OV5640_MODE_720P_1280_720 && 1602 mode->id != OV5640_MODE_1080P_1920_1080) 1603 prev_shutter *= 2; 1604 1605 /* read preview gain */ 1606 ret = ov5640_get_gain(sensor); 1607 if (ret < 0) 1608 return ret; 1609 prev_gain16 = ret; 1610 1611 /* get average */ 1612 ret = ov5640_read_reg(sensor, OV5640_REG_AVG_READOUT, &average); 1613 if (ret) 1614 return ret; 1615 1616 /* turn off night mode for capture */ 1617 ret = ov5640_set_night_mode(sensor); 1618 if (ret < 0) 1619 return ret; 1620 1621 /* Write capture setting */ 1622 ret = ov5640_load_regs(sensor, mode); 1623 if (ret < 0) 1624 return ret; 1625 1626 /* read capture VTS */ 1627 ret = ov5640_get_vts(sensor); 1628 if (ret < 0) 1629 return ret; 1630 cap_vts = ret; 1631 ret = ov5640_get_hts(sensor); 1632 if (ret < 0) 1633 return ret; 1634 if (ret == 0) 1635 return -EINVAL; 1636 cap_hts = ret; 1637 1638 ret = ov5640_get_sysclk(sensor); 1639 if (ret < 0) 1640 return ret; 1641 if (ret == 0) 1642 return -EINVAL; 1643 cap_sysclk = ret; 1644 1645 /* calculate capture banding filter */ 1646 ret = ov5640_get_light_freq(sensor); 1647 if (ret < 0) 1648 return ret; 1649 light_freq = ret; 1650 1651 if (light_freq == 60) { 1652 /* 60Hz */ 1653 cap_bandfilt = cap_sysclk * 100 / cap_hts * 100 / 120; 1654 } else { 1655 /* 50Hz */ 1656 cap_bandfilt = cap_sysclk * 100 / cap_hts; 1657 } 1658 1659 if (!sensor->prev_sysclk) { 1660 ret = ov5640_get_sysclk(sensor); 1661 if (ret < 0) 1662 return ret; 1663 if (ret == 0) 1664 return -EINVAL; 1665 sensor->prev_sysclk = ret; 1666 } 1667 1668 if (!cap_bandfilt) 1669 return -EINVAL; 1670 1671 cap_maxband = (int)((cap_vts - 4) / cap_bandfilt); 1672 1673 /* calculate capture shutter/gain16 */ 1674 if (average > sensor->ae_low && average < sensor->ae_high) { 1675 /* in stable range */ 1676 cap_gain16_shutter = 1677 prev_gain16 * prev_shutter * 1678 cap_sysclk / sensor->prev_sysclk * 1679 sensor->prev_hts / cap_hts * 1680 sensor->ae_target / average; 1681 } else { 1682 cap_gain16_shutter = 1683 prev_gain16 * prev_shutter * 1684 cap_sysclk / sensor->prev_sysclk * 1685 sensor->prev_hts / cap_hts; 1686 } 1687 1688 /* gain to shutter */ 1689 if (cap_gain16_shutter < (cap_bandfilt * 16)) { 1690 /* shutter < 1/100 */ 1691 cap_shutter = cap_gain16_shutter / 16; 1692 if (cap_shutter < 1) 1693 cap_shutter = 1; 1694 1695 cap_gain16 = cap_gain16_shutter / cap_shutter; 1696 if (cap_gain16 < 16) 1697 cap_gain16 = 16; 1698 } else { 1699 if (cap_gain16_shutter > (cap_bandfilt * cap_maxband * 16)) { 1700 /* exposure reach max */ 1701 cap_shutter = cap_bandfilt * cap_maxband; 1702 if (!cap_shutter) 1703 return -EINVAL; 1704 1705 cap_gain16 = cap_gain16_shutter / cap_shutter; 1706 } else { 1707 /* 1/100 < (cap_shutter = n/100) =< max */ 1708 cap_shutter = 1709 ((int)(cap_gain16_shutter / 16 / cap_bandfilt)) 1710 * cap_bandfilt; 1711 if (!cap_shutter) 1712 return -EINVAL; 1713 1714 cap_gain16 = cap_gain16_shutter / cap_shutter; 1715 } 1716 } 1717 1718 /* set capture gain */ 1719 ret = ov5640_set_gain(sensor, cap_gain16); 1720 if (ret) 1721 return ret; 1722 1723 /* write capture shutter */ 1724 if (cap_shutter > (cap_vts - 4)) { 1725 cap_vts = cap_shutter + 4; 1726 ret = ov5640_set_vts(sensor, cap_vts); 1727 if (ret < 0) 1728 return ret; 1729 } 1730 1731 /* set exposure */ 1732 return ov5640_set_exposure(sensor, cap_shutter); 1733 } 1734 1735 /* 1736 * if sensor changes inside scaling or subsampling 1737 * change mode directly 1738 */ 1739 static int ov5640_set_mode_direct(struct ov5640_dev *sensor, 1740 const struct ov5640_mode_info *mode) 1741 { 1742 if (!mode->reg_data) 1743 return -EINVAL; 1744 1745 /* Write capture setting */ 1746 return ov5640_load_regs(sensor, mode); 1747 } 1748 1749 static int ov5640_set_mode(struct ov5640_dev *sensor) 1750 { 1751 const struct ov5640_mode_info *mode = sensor->current_mode; 1752 const struct ov5640_mode_info *orig_mode = sensor->last_mode; 1753 enum ov5640_downsize_mode dn_mode, orig_dn_mode; 1754 bool auto_gain = sensor->ctrls.auto_gain->val == 1; 1755 bool auto_exp = sensor->ctrls.auto_exp->val == V4L2_EXPOSURE_AUTO; 1756 unsigned long rate; 1757 int ret; 1758 1759 dn_mode = mode->dn_mode; 1760 orig_dn_mode = orig_mode->dn_mode; 1761 1762 /* auto gain and exposure must be turned off when changing modes */ 1763 if (auto_gain) { 1764 ret = ov5640_set_autogain(sensor, false); 1765 if (ret) 1766 return ret; 1767 } 1768 1769 if (auto_exp) { 1770 ret = ov5640_set_autoexposure(sensor, false); 1771 if (ret) 1772 goto restore_auto_gain; 1773 } 1774 1775 /* 1776 * All the formats we support have 16 bits per pixel, seems to require 1777 * the same rate than YUV, so we can just use 16 bpp all the time. 1778 */ 1779 rate = mode->vtot * mode->htot * 16; 1780 rate *= ov5640_framerates[sensor->current_fr]; 1781 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) { 1782 rate = rate / sensor->ep.bus.mipi_csi2.num_data_lanes; 1783 ret = ov5640_set_mipi_pclk(sensor, rate); 1784 } else { 1785 rate = rate / sensor->ep.bus.parallel.bus_width; 1786 ret = ov5640_set_dvp_pclk(sensor, rate); 1787 } 1788 1789 if (ret < 0) 1790 return 0; 1791 1792 if ((dn_mode == SUBSAMPLING && orig_dn_mode == SCALING) || 1793 (dn_mode == SCALING && orig_dn_mode == SUBSAMPLING)) { 1794 /* 1795 * change between subsampling and scaling 1796 * go through exposure calculation 1797 */ 1798 ret = ov5640_set_mode_exposure_calc(sensor, mode); 1799 } else { 1800 /* 1801 * change inside subsampling or scaling 1802 * download firmware directly 1803 */ 1804 ret = ov5640_set_mode_direct(sensor, mode); 1805 } 1806 if (ret < 0) 1807 goto restore_auto_exp_gain; 1808 1809 /* restore auto gain and exposure */ 1810 if (auto_gain) 1811 ov5640_set_autogain(sensor, true); 1812 if (auto_exp) 1813 ov5640_set_autoexposure(sensor, true); 1814 1815 ret = ov5640_set_binning(sensor, dn_mode != SCALING); 1816 if (ret < 0) 1817 return ret; 1818 ret = ov5640_set_ae_target(sensor, sensor->ae_target); 1819 if (ret < 0) 1820 return ret; 1821 ret = ov5640_get_light_freq(sensor); 1822 if (ret < 0) 1823 return ret; 1824 ret = ov5640_set_bandingfilter(sensor); 1825 if (ret < 0) 1826 return ret; 1827 ret = ov5640_set_virtual_channel(sensor); 1828 if (ret < 0) 1829 return ret; 1830 1831 sensor->pending_mode_change = false; 1832 sensor->last_mode = mode; 1833 1834 return 0; 1835 1836 restore_auto_exp_gain: 1837 if (auto_exp) 1838 ov5640_set_autoexposure(sensor, true); 1839 restore_auto_gain: 1840 if (auto_gain) 1841 ov5640_set_autogain(sensor, true); 1842 1843 return ret; 1844 } 1845 1846 static int ov5640_set_framefmt(struct ov5640_dev *sensor, 1847 struct v4l2_mbus_framefmt *format); 1848 1849 /* restore the last set video mode after chip power-on */ 1850 static int ov5640_restore_mode(struct ov5640_dev *sensor) 1851 { 1852 int ret; 1853 1854 /* first load the initial register values */ 1855 ret = ov5640_load_regs(sensor, &ov5640_mode_init_data); 1856 if (ret < 0) 1857 return ret; 1858 sensor->last_mode = &ov5640_mode_init_data; 1859 1860 ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x3f, 1861 (ilog2(OV5640_SCLK2X_ROOT_DIV) << 2) | 1862 ilog2(OV5640_SCLK_ROOT_DIV)); 1863 if (ret) 1864 return ret; 1865 1866 /* now restore the last capture mode */ 1867 ret = ov5640_set_mode(sensor); 1868 if (ret < 0) 1869 return ret; 1870 1871 return ov5640_set_framefmt(sensor, &sensor->fmt); 1872 } 1873 1874 static void ov5640_power(struct ov5640_dev *sensor, bool enable) 1875 { 1876 gpiod_set_value_cansleep(sensor->pwdn_gpio, enable ? 0 : 1); 1877 } 1878 1879 static void ov5640_reset(struct ov5640_dev *sensor) 1880 { 1881 if (!sensor->reset_gpio) 1882 return; 1883 1884 gpiod_set_value_cansleep(sensor->reset_gpio, 0); 1885 1886 /* camera power cycle */ 1887 ov5640_power(sensor, false); 1888 usleep_range(5000, 10000); 1889 ov5640_power(sensor, true); 1890 usleep_range(5000, 10000); 1891 1892 gpiod_set_value_cansleep(sensor->reset_gpio, 1); 1893 usleep_range(1000, 2000); 1894 1895 gpiod_set_value_cansleep(sensor->reset_gpio, 0); 1896 usleep_range(5000, 10000); 1897 } 1898 1899 static int ov5640_set_power_on(struct ov5640_dev *sensor) 1900 { 1901 struct i2c_client *client = sensor->i2c_client; 1902 int ret; 1903 1904 ret = clk_prepare_enable(sensor->xclk); 1905 if (ret) { 1906 dev_err(&client->dev, "%s: failed to enable clock\n", 1907 __func__); 1908 return ret; 1909 } 1910 1911 ret = regulator_bulk_enable(OV5640_NUM_SUPPLIES, 1912 sensor->supplies); 1913 if (ret) { 1914 dev_err(&client->dev, "%s: failed to enable regulators\n", 1915 __func__); 1916 goto xclk_off; 1917 } 1918 1919 ov5640_reset(sensor); 1920 ov5640_power(sensor, true); 1921 1922 ret = ov5640_init_slave_id(sensor); 1923 if (ret) 1924 goto power_off; 1925 1926 return 0; 1927 1928 power_off: 1929 ov5640_power(sensor, false); 1930 regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies); 1931 xclk_off: 1932 clk_disable_unprepare(sensor->xclk); 1933 return ret; 1934 } 1935 1936 static void ov5640_set_power_off(struct ov5640_dev *sensor) 1937 { 1938 ov5640_power(sensor, false); 1939 regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies); 1940 clk_disable_unprepare(sensor->xclk); 1941 } 1942 1943 static int ov5640_set_power(struct ov5640_dev *sensor, bool on) 1944 { 1945 int ret = 0; 1946 1947 if (on) { 1948 ret = ov5640_set_power_on(sensor); 1949 if (ret) 1950 return ret; 1951 1952 ret = ov5640_restore_mode(sensor); 1953 if (ret) 1954 goto power_off; 1955 1956 /* We're done here for DVP bus, while CSI-2 needs setup. */ 1957 if (sensor->ep.bus_type != V4L2_MBUS_CSI2_DPHY) 1958 return 0; 1959 1960 /* 1961 * Power up MIPI HS Tx and LS Rx; 2 data lanes mode 1962 * 1963 * 0x300e = 0x40 1964 * [7:5] = 010 : 2 data lanes mode (see FIXME note in 1965 * "ov5640_set_stream_mipi()") 1966 * [4] = 0 : Power up MIPI HS Tx 1967 * [3] = 0 : Power up MIPI LS Rx 1968 * [2] = 0 : MIPI interface disabled 1969 */ 1970 ret = ov5640_write_reg(sensor, 1971 OV5640_REG_IO_MIPI_CTRL00, 0x40); 1972 if (ret) 1973 goto power_off; 1974 1975 /* 1976 * Gate clock and set LP11 in 'no packets mode' (idle) 1977 * 1978 * 0x4800 = 0x24 1979 * [5] = 1 : Gate clock when 'no packets' 1980 * [2] = 1 : MIPI bus in LP11 when 'no packets' 1981 */ 1982 ret = ov5640_write_reg(sensor, 1983 OV5640_REG_MIPI_CTRL00, 0x24); 1984 if (ret) 1985 goto power_off; 1986 1987 /* 1988 * Set data lanes and clock in LP11 when 'sleeping' 1989 * 1990 * 0x3019 = 0x70 1991 * [6] = 1 : MIPI data lane 2 in LP11 when 'sleeping' 1992 * [5] = 1 : MIPI data lane 1 in LP11 when 'sleeping' 1993 * [4] = 1 : MIPI clock lane in LP11 when 'sleeping' 1994 */ 1995 ret = ov5640_write_reg(sensor, 1996 OV5640_REG_PAD_OUTPUT00, 0x70); 1997 if (ret) 1998 goto power_off; 1999 2000 /* Give lanes some time to coax into LP11 state. */ 2001 usleep_range(500, 1000); 2002 2003 } else { 2004 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) { 2005 /* Reset MIPI bus settings to their default values. */ 2006 ov5640_write_reg(sensor, 2007 OV5640_REG_IO_MIPI_CTRL00, 0x58); 2008 ov5640_write_reg(sensor, 2009 OV5640_REG_MIPI_CTRL00, 0x04); 2010 ov5640_write_reg(sensor, 2011 OV5640_REG_PAD_OUTPUT00, 0x00); 2012 } 2013 2014 ov5640_set_power_off(sensor); 2015 } 2016 2017 return 0; 2018 2019 power_off: 2020 ov5640_set_power_off(sensor); 2021 return ret; 2022 } 2023 2024 /* --------------- Subdev Operations --------------- */ 2025 2026 static int ov5640_s_power(struct v4l2_subdev *sd, int on) 2027 { 2028 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2029 int ret = 0; 2030 2031 mutex_lock(&sensor->lock); 2032 2033 /* 2034 * If the power count is modified from 0 to != 0 or from != 0 to 0, 2035 * update the power state. 2036 */ 2037 if (sensor->power_count == !on) { 2038 ret = ov5640_set_power(sensor, !!on); 2039 if (ret) 2040 goto out; 2041 } 2042 2043 /* Update the power count. */ 2044 sensor->power_count += on ? 1 : -1; 2045 WARN_ON(sensor->power_count < 0); 2046 out: 2047 mutex_unlock(&sensor->lock); 2048 2049 if (on && !ret && sensor->power_count == 1) { 2050 /* restore controls */ 2051 ret = v4l2_ctrl_handler_setup(&sensor->ctrls.handler); 2052 } 2053 2054 return ret; 2055 } 2056 2057 static int ov5640_try_frame_interval(struct ov5640_dev *sensor, 2058 struct v4l2_fract *fi, 2059 u32 width, u32 height) 2060 { 2061 const struct ov5640_mode_info *mode; 2062 enum ov5640_frame_rate rate = OV5640_30_FPS; 2063 int minfps, maxfps, best_fps, fps; 2064 int i; 2065 2066 minfps = ov5640_framerates[OV5640_15_FPS]; 2067 maxfps = ov5640_framerates[OV5640_60_FPS]; 2068 2069 if (fi->numerator == 0) { 2070 fi->denominator = maxfps; 2071 fi->numerator = 1; 2072 rate = OV5640_60_FPS; 2073 goto find_mode; 2074 } 2075 2076 fps = clamp_val(DIV_ROUND_CLOSEST(fi->denominator, fi->numerator), 2077 minfps, maxfps); 2078 2079 best_fps = minfps; 2080 for (i = 0; i < ARRAY_SIZE(ov5640_framerates); i++) { 2081 int curr_fps = ov5640_framerates[i]; 2082 2083 if (abs(curr_fps - fps) < abs(best_fps - fps)) { 2084 best_fps = curr_fps; 2085 rate = i; 2086 } 2087 } 2088 2089 fi->numerator = 1; 2090 fi->denominator = best_fps; 2091 2092 find_mode: 2093 mode = ov5640_find_mode(sensor, rate, width, height, false); 2094 return mode ? rate : -EINVAL; 2095 } 2096 2097 static int ov5640_get_fmt(struct v4l2_subdev *sd, 2098 struct v4l2_subdev_pad_config *cfg, 2099 struct v4l2_subdev_format *format) 2100 { 2101 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2102 struct v4l2_mbus_framefmt *fmt; 2103 2104 if (format->pad != 0) 2105 return -EINVAL; 2106 2107 mutex_lock(&sensor->lock); 2108 2109 if (format->which == V4L2_SUBDEV_FORMAT_TRY) 2110 fmt = v4l2_subdev_get_try_format(&sensor->sd, cfg, 2111 format->pad); 2112 else 2113 fmt = &sensor->fmt; 2114 2115 format->format = *fmt; 2116 2117 mutex_unlock(&sensor->lock); 2118 2119 return 0; 2120 } 2121 2122 static int ov5640_try_fmt_internal(struct v4l2_subdev *sd, 2123 struct v4l2_mbus_framefmt *fmt, 2124 enum ov5640_frame_rate fr, 2125 const struct ov5640_mode_info **new_mode) 2126 { 2127 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2128 const struct ov5640_mode_info *mode; 2129 int i; 2130 2131 mode = ov5640_find_mode(sensor, fr, fmt->width, fmt->height, true); 2132 if (!mode) 2133 return -EINVAL; 2134 fmt->width = mode->hact; 2135 fmt->height = mode->vact; 2136 2137 if (new_mode) 2138 *new_mode = mode; 2139 2140 for (i = 0; i < ARRAY_SIZE(ov5640_formats); i++) 2141 if (ov5640_formats[i].code == fmt->code) 2142 break; 2143 if (i >= ARRAY_SIZE(ov5640_formats)) 2144 i = 0; 2145 2146 fmt->code = ov5640_formats[i].code; 2147 fmt->colorspace = ov5640_formats[i].colorspace; 2148 fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace); 2149 fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE; 2150 fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace); 2151 2152 return 0; 2153 } 2154 2155 static int ov5640_set_fmt(struct v4l2_subdev *sd, 2156 struct v4l2_subdev_pad_config *cfg, 2157 struct v4l2_subdev_format *format) 2158 { 2159 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2160 const struct ov5640_mode_info *new_mode; 2161 struct v4l2_mbus_framefmt *mbus_fmt = &format->format; 2162 struct v4l2_mbus_framefmt *fmt; 2163 int ret; 2164 2165 if (format->pad != 0) 2166 return -EINVAL; 2167 2168 mutex_lock(&sensor->lock); 2169 2170 if (sensor->streaming) { 2171 ret = -EBUSY; 2172 goto out; 2173 } 2174 2175 ret = ov5640_try_fmt_internal(sd, mbus_fmt, 2176 sensor->current_fr, &new_mode); 2177 if (ret) 2178 goto out; 2179 2180 if (format->which == V4L2_SUBDEV_FORMAT_TRY) 2181 fmt = v4l2_subdev_get_try_format(sd, cfg, 0); 2182 else 2183 fmt = &sensor->fmt; 2184 2185 *fmt = *mbus_fmt; 2186 2187 if (new_mode != sensor->current_mode) { 2188 sensor->current_mode = new_mode; 2189 sensor->pending_mode_change = true; 2190 } 2191 if (mbus_fmt->code != sensor->fmt.code) 2192 sensor->pending_fmt_change = true; 2193 2194 out: 2195 mutex_unlock(&sensor->lock); 2196 return ret; 2197 } 2198 2199 static int ov5640_set_framefmt(struct ov5640_dev *sensor, 2200 struct v4l2_mbus_framefmt *format) 2201 { 2202 int ret = 0; 2203 bool is_rgb = false; 2204 bool is_jpeg = false; 2205 u8 val; 2206 2207 switch (format->code) { 2208 case MEDIA_BUS_FMT_UYVY8_2X8: 2209 /* YUV422, UYVY */ 2210 val = 0x3f; 2211 break; 2212 case MEDIA_BUS_FMT_YUYV8_2X8: 2213 /* YUV422, YUYV */ 2214 val = 0x30; 2215 break; 2216 case MEDIA_BUS_FMT_RGB565_2X8_LE: 2217 /* RGB565 {g[2:0],b[4:0]},{r[4:0],g[5:3]} */ 2218 val = 0x6F; 2219 is_rgb = true; 2220 break; 2221 case MEDIA_BUS_FMT_RGB565_2X8_BE: 2222 /* RGB565 {r[4:0],g[5:3]},{g[2:0],b[4:0]} */ 2223 val = 0x61; 2224 is_rgb = true; 2225 break; 2226 case MEDIA_BUS_FMT_JPEG_1X8: 2227 /* YUV422, YUYV */ 2228 val = 0x30; 2229 is_jpeg = true; 2230 break; 2231 default: 2232 return -EINVAL; 2233 } 2234 2235 /* FORMAT CONTROL00: YUV and RGB formatting */ 2236 ret = ov5640_write_reg(sensor, OV5640_REG_FORMAT_CONTROL00, val); 2237 if (ret) 2238 return ret; 2239 2240 /* FORMAT MUX CONTROL: ISP YUV or RGB */ 2241 ret = ov5640_write_reg(sensor, OV5640_REG_ISP_FORMAT_MUX_CTRL, 2242 is_rgb ? 0x01 : 0x00); 2243 if (ret) 2244 return ret; 2245 2246 /* 2247 * TIMING TC REG21: 2248 * - [5]: JPEG enable 2249 */ 2250 ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21, 2251 BIT(5), is_jpeg ? BIT(5) : 0); 2252 if (ret) 2253 return ret; 2254 2255 /* 2256 * SYSTEM RESET02: 2257 * - [4]: Reset JFIFO 2258 * - [3]: Reset SFIFO 2259 * - [2]: Reset JPEG 2260 */ 2261 ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_RESET02, 2262 BIT(4) | BIT(3) | BIT(2), 2263 is_jpeg ? 0 : (BIT(4) | BIT(3) | BIT(2))); 2264 if (ret) 2265 return ret; 2266 2267 /* 2268 * CLOCK ENABLE02: 2269 * - [5]: Enable JPEG 2x clock 2270 * - [3]: Enable JPEG clock 2271 */ 2272 return ov5640_mod_reg(sensor, OV5640_REG_SYS_CLOCK_ENABLE02, 2273 BIT(5) | BIT(3), 2274 is_jpeg ? (BIT(5) | BIT(3)) : 0); 2275 } 2276 2277 /* 2278 * Sensor Controls. 2279 */ 2280 2281 static int ov5640_set_ctrl_hue(struct ov5640_dev *sensor, int value) 2282 { 2283 int ret; 2284 2285 if (value) { 2286 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, 2287 BIT(0), BIT(0)); 2288 if (ret) 2289 return ret; 2290 ret = ov5640_write_reg16(sensor, OV5640_REG_SDE_CTRL1, value); 2291 } else { 2292 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(0), 0); 2293 } 2294 2295 return ret; 2296 } 2297 2298 static int ov5640_set_ctrl_contrast(struct ov5640_dev *sensor, int value) 2299 { 2300 int ret; 2301 2302 if (value) { 2303 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, 2304 BIT(2), BIT(2)); 2305 if (ret) 2306 return ret; 2307 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL5, 2308 value & 0xff); 2309 } else { 2310 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(2), 0); 2311 } 2312 2313 return ret; 2314 } 2315 2316 static int ov5640_set_ctrl_saturation(struct ov5640_dev *sensor, int value) 2317 { 2318 int ret; 2319 2320 if (value) { 2321 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, 2322 BIT(1), BIT(1)); 2323 if (ret) 2324 return ret; 2325 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL3, 2326 value & 0xff); 2327 if (ret) 2328 return ret; 2329 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL4, 2330 value & 0xff); 2331 } else { 2332 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(1), 0); 2333 } 2334 2335 return ret; 2336 } 2337 2338 static int ov5640_set_ctrl_white_balance(struct ov5640_dev *sensor, int awb) 2339 { 2340 int ret; 2341 2342 ret = ov5640_mod_reg(sensor, OV5640_REG_AWB_MANUAL_CTRL, 2343 BIT(0), awb ? 0 : 1); 2344 if (ret) 2345 return ret; 2346 2347 if (!awb) { 2348 u16 red = (u16)sensor->ctrls.red_balance->val; 2349 u16 blue = (u16)sensor->ctrls.blue_balance->val; 2350 2351 ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_R_GAIN, red); 2352 if (ret) 2353 return ret; 2354 ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_B_GAIN, blue); 2355 } 2356 2357 return ret; 2358 } 2359 2360 static int ov5640_set_ctrl_exposure(struct ov5640_dev *sensor, 2361 enum v4l2_exposure_auto_type auto_exposure) 2362 { 2363 struct ov5640_ctrls *ctrls = &sensor->ctrls; 2364 bool auto_exp = (auto_exposure == V4L2_EXPOSURE_AUTO); 2365 int ret = 0; 2366 2367 if (ctrls->auto_exp->is_new) { 2368 ret = ov5640_set_autoexposure(sensor, auto_exp); 2369 if (ret) 2370 return ret; 2371 } 2372 2373 if (!auto_exp && ctrls->exposure->is_new) { 2374 u16 max_exp; 2375 2376 ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_VTS, 2377 &max_exp); 2378 if (ret) 2379 return ret; 2380 ret = ov5640_get_vts(sensor); 2381 if (ret < 0) 2382 return ret; 2383 max_exp += ret; 2384 ret = 0; 2385 2386 if (ctrls->exposure->val < max_exp) 2387 ret = ov5640_set_exposure(sensor, ctrls->exposure->val); 2388 } 2389 2390 return ret; 2391 } 2392 2393 static int ov5640_set_ctrl_gain(struct ov5640_dev *sensor, bool auto_gain) 2394 { 2395 struct ov5640_ctrls *ctrls = &sensor->ctrls; 2396 int ret = 0; 2397 2398 if (ctrls->auto_gain->is_new) { 2399 ret = ov5640_set_autogain(sensor, auto_gain); 2400 if (ret) 2401 return ret; 2402 } 2403 2404 if (!auto_gain && ctrls->gain->is_new) 2405 ret = ov5640_set_gain(sensor, ctrls->gain->val); 2406 2407 return ret; 2408 } 2409 2410 static int ov5640_set_ctrl_test_pattern(struct ov5640_dev *sensor, int value) 2411 { 2412 return ov5640_mod_reg(sensor, OV5640_REG_PRE_ISP_TEST_SET1, 2413 0xa4, value ? 0xa4 : 0); 2414 } 2415 2416 static int ov5640_set_ctrl_light_freq(struct ov5640_dev *sensor, int value) 2417 { 2418 int ret; 2419 2420 ret = ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL01, BIT(7), 2421 (value == V4L2_CID_POWER_LINE_FREQUENCY_AUTO) ? 2422 0 : BIT(7)); 2423 if (ret) 2424 return ret; 2425 2426 return ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL00, BIT(2), 2427 (value == V4L2_CID_POWER_LINE_FREQUENCY_50HZ) ? 2428 BIT(2) : 0); 2429 } 2430 2431 static int ov5640_set_ctrl_hflip(struct ov5640_dev *sensor, int value) 2432 { 2433 /* 2434 * If sensor is mounted upside down, mirror logic is inversed. 2435 * 2436 * Sensor is a BSI (Back Side Illuminated) one, 2437 * so image captured is physically mirrored. 2438 * This is why mirror logic is inversed in 2439 * order to cancel this mirror effect. 2440 */ 2441 2442 /* 2443 * TIMING TC REG21: 2444 * - [2]: ISP mirror 2445 * - [1]: Sensor mirror 2446 */ 2447 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21, 2448 BIT(2) | BIT(1), 2449 (!(value ^ sensor->upside_down)) ? 2450 (BIT(2) | BIT(1)) : 0); 2451 } 2452 2453 static int ov5640_set_ctrl_vflip(struct ov5640_dev *sensor, int value) 2454 { 2455 /* If sensor is mounted upside down, flip logic is inversed */ 2456 2457 /* 2458 * TIMING TC REG20: 2459 * - [2]: ISP vflip 2460 * - [1]: Sensor vflip 2461 */ 2462 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20, 2463 BIT(2) | BIT(1), 2464 (value ^ sensor->upside_down) ? 2465 (BIT(2) | BIT(1)) : 0); 2466 } 2467 2468 static int ov5640_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 2469 { 2470 struct v4l2_subdev *sd = ctrl_to_sd(ctrl); 2471 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2472 int val; 2473 2474 /* v4l2_ctrl_lock() locks our own mutex */ 2475 2476 switch (ctrl->id) { 2477 case V4L2_CID_AUTOGAIN: 2478 val = ov5640_get_gain(sensor); 2479 if (val < 0) 2480 return val; 2481 sensor->ctrls.gain->val = val; 2482 break; 2483 case V4L2_CID_EXPOSURE_AUTO: 2484 val = ov5640_get_exposure(sensor); 2485 if (val < 0) 2486 return val; 2487 sensor->ctrls.exposure->val = val; 2488 break; 2489 } 2490 2491 return 0; 2492 } 2493 2494 static int ov5640_s_ctrl(struct v4l2_ctrl *ctrl) 2495 { 2496 struct v4l2_subdev *sd = ctrl_to_sd(ctrl); 2497 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2498 int ret; 2499 2500 /* v4l2_ctrl_lock() locks our own mutex */ 2501 2502 /* 2503 * If the device is not powered up by the host driver do 2504 * not apply any controls to H/W at this time. Instead 2505 * the controls will be restored right after power-up. 2506 */ 2507 if (sensor->power_count == 0) 2508 return 0; 2509 2510 switch (ctrl->id) { 2511 case V4L2_CID_AUTOGAIN: 2512 ret = ov5640_set_ctrl_gain(sensor, ctrl->val); 2513 break; 2514 case V4L2_CID_EXPOSURE_AUTO: 2515 ret = ov5640_set_ctrl_exposure(sensor, ctrl->val); 2516 break; 2517 case V4L2_CID_AUTO_WHITE_BALANCE: 2518 ret = ov5640_set_ctrl_white_balance(sensor, ctrl->val); 2519 break; 2520 case V4L2_CID_HUE: 2521 ret = ov5640_set_ctrl_hue(sensor, ctrl->val); 2522 break; 2523 case V4L2_CID_CONTRAST: 2524 ret = ov5640_set_ctrl_contrast(sensor, ctrl->val); 2525 break; 2526 case V4L2_CID_SATURATION: 2527 ret = ov5640_set_ctrl_saturation(sensor, ctrl->val); 2528 break; 2529 case V4L2_CID_TEST_PATTERN: 2530 ret = ov5640_set_ctrl_test_pattern(sensor, ctrl->val); 2531 break; 2532 case V4L2_CID_POWER_LINE_FREQUENCY: 2533 ret = ov5640_set_ctrl_light_freq(sensor, ctrl->val); 2534 break; 2535 case V4L2_CID_HFLIP: 2536 ret = ov5640_set_ctrl_hflip(sensor, ctrl->val); 2537 break; 2538 case V4L2_CID_VFLIP: 2539 ret = ov5640_set_ctrl_vflip(sensor, ctrl->val); 2540 break; 2541 default: 2542 ret = -EINVAL; 2543 break; 2544 } 2545 2546 return ret; 2547 } 2548 2549 static const struct v4l2_ctrl_ops ov5640_ctrl_ops = { 2550 .g_volatile_ctrl = ov5640_g_volatile_ctrl, 2551 .s_ctrl = ov5640_s_ctrl, 2552 }; 2553 2554 static const char * const test_pattern_menu[] = { 2555 "Disabled", 2556 "Color bars", 2557 }; 2558 2559 static int ov5640_init_controls(struct ov5640_dev *sensor) 2560 { 2561 const struct v4l2_ctrl_ops *ops = &ov5640_ctrl_ops; 2562 struct ov5640_ctrls *ctrls = &sensor->ctrls; 2563 struct v4l2_ctrl_handler *hdl = &ctrls->handler; 2564 int ret; 2565 2566 v4l2_ctrl_handler_init(hdl, 32); 2567 2568 /* we can use our own mutex for the ctrl lock */ 2569 hdl->lock = &sensor->lock; 2570 2571 /* Auto/manual white balance */ 2572 ctrls->auto_wb = v4l2_ctrl_new_std(hdl, ops, 2573 V4L2_CID_AUTO_WHITE_BALANCE, 2574 0, 1, 1, 1); 2575 ctrls->blue_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE, 2576 0, 4095, 1, 0); 2577 ctrls->red_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE, 2578 0, 4095, 1, 0); 2579 /* Auto/manual exposure */ 2580 ctrls->auto_exp = v4l2_ctrl_new_std_menu(hdl, ops, 2581 V4L2_CID_EXPOSURE_AUTO, 2582 V4L2_EXPOSURE_MANUAL, 0, 2583 V4L2_EXPOSURE_AUTO); 2584 ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE, 2585 0, 65535, 1, 0); 2586 /* Auto/manual gain */ 2587 ctrls->auto_gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTOGAIN, 2588 0, 1, 1, 1); 2589 ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN, 2590 0, 1023, 1, 0); 2591 2592 ctrls->saturation = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SATURATION, 2593 0, 255, 1, 64); 2594 ctrls->hue = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HUE, 2595 0, 359, 1, 0); 2596 ctrls->contrast = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_CONTRAST, 2597 0, 255, 1, 0); 2598 ctrls->test_pattern = 2599 v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN, 2600 ARRAY_SIZE(test_pattern_menu) - 1, 2601 0, 0, test_pattern_menu); 2602 ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP, 2603 0, 1, 1, 0); 2604 ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP, 2605 0, 1, 1, 0); 2606 2607 ctrls->light_freq = 2608 v4l2_ctrl_new_std_menu(hdl, ops, 2609 V4L2_CID_POWER_LINE_FREQUENCY, 2610 V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0, 2611 V4L2_CID_POWER_LINE_FREQUENCY_50HZ); 2612 2613 if (hdl->error) { 2614 ret = hdl->error; 2615 goto free_ctrls; 2616 } 2617 2618 ctrls->gain->flags |= V4L2_CTRL_FLAG_VOLATILE; 2619 ctrls->exposure->flags |= V4L2_CTRL_FLAG_VOLATILE; 2620 2621 v4l2_ctrl_auto_cluster(3, &ctrls->auto_wb, 0, false); 2622 v4l2_ctrl_auto_cluster(2, &ctrls->auto_gain, 0, true); 2623 v4l2_ctrl_auto_cluster(2, &ctrls->auto_exp, 1, true); 2624 2625 sensor->sd.ctrl_handler = hdl; 2626 return 0; 2627 2628 free_ctrls: 2629 v4l2_ctrl_handler_free(hdl); 2630 return ret; 2631 } 2632 2633 static int ov5640_enum_frame_size(struct v4l2_subdev *sd, 2634 struct v4l2_subdev_pad_config *cfg, 2635 struct v4l2_subdev_frame_size_enum *fse) 2636 { 2637 if (fse->pad != 0) 2638 return -EINVAL; 2639 if (fse->index >= OV5640_NUM_MODES) 2640 return -EINVAL; 2641 2642 fse->min_width = 2643 ov5640_mode_data[fse->index].hact; 2644 fse->max_width = fse->min_width; 2645 fse->min_height = 2646 ov5640_mode_data[fse->index].vact; 2647 fse->max_height = fse->min_height; 2648 2649 return 0; 2650 } 2651 2652 static int ov5640_enum_frame_interval( 2653 struct v4l2_subdev *sd, 2654 struct v4l2_subdev_pad_config *cfg, 2655 struct v4l2_subdev_frame_interval_enum *fie) 2656 { 2657 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2658 struct v4l2_fract tpf; 2659 int ret; 2660 2661 if (fie->pad != 0) 2662 return -EINVAL; 2663 if (fie->index >= OV5640_NUM_FRAMERATES) 2664 return -EINVAL; 2665 2666 tpf.numerator = 1; 2667 tpf.denominator = ov5640_framerates[fie->index]; 2668 2669 ret = ov5640_try_frame_interval(sensor, &tpf, 2670 fie->width, fie->height); 2671 if (ret < 0) 2672 return -EINVAL; 2673 2674 fie->interval = tpf; 2675 return 0; 2676 } 2677 2678 static int ov5640_g_frame_interval(struct v4l2_subdev *sd, 2679 struct v4l2_subdev_frame_interval *fi) 2680 { 2681 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2682 2683 mutex_lock(&sensor->lock); 2684 fi->interval = sensor->frame_interval; 2685 mutex_unlock(&sensor->lock); 2686 2687 return 0; 2688 } 2689 2690 static int ov5640_s_frame_interval(struct v4l2_subdev *sd, 2691 struct v4l2_subdev_frame_interval *fi) 2692 { 2693 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2694 const struct ov5640_mode_info *mode; 2695 int frame_rate, ret = 0; 2696 2697 if (fi->pad != 0) 2698 return -EINVAL; 2699 2700 mutex_lock(&sensor->lock); 2701 2702 if (sensor->streaming) { 2703 ret = -EBUSY; 2704 goto out; 2705 } 2706 2707 mode = sensor->current_mode; 2708 2709 frame_rate = ov5640_try_frame_interval(sensor, &fi->interval, 2710 mode->hact, mode->vact); 2711 if (frame_rate < 0) { 2712 /* Always return a valid frame interval value */ 2713 fi->interval = sensor->frame_interval; 2714 goto out; 2715 } 2716 2717 mode = ov5640_find_mode(sensor, frame_rate, mode->hact, 2718 mode->vact, true); 2719 if (!mode) { 2720 ret = -EINVAL; 2721 goto out; 2722 } 2723 2724 if (mode != sensor->current_mode || 2725 frame_rate != sensor->current_fr) { 2726 sensor->current_fr = frame_rate; 2727 sensor->frame_interval = fi->interval; 2728 sensor->current_mode = mode; 2729 sensor->pending_mode_change = true; 2730 } 2731 out: 2732 mutex_unlock(&sensor->lock); 2733 return ret; 2734 } 2735 2736 static int ov5640_enum_mbus_code(struct v4l2_subdev *sd, 2737 struct v4l2_subdev_pad_config *cfg, 2738 struct v4l2_subdev_mbus_code_enum *code) 2739 { 2740 if (code->pad != 0) 2741 return -EINVAL; 2742 if (code->index >= ARRAY_SIZE(ov5640_formats)) 2743 return -EINVAL; 2744 2745 code->code = ov5640_formats[code->index].code; 2746 return 0; 2747 } 2748 2749 static int ov5640_s_stream(struct v4l2_subdev *sd, int enable) 2750 { 2751 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2752 int ret = 0; 2753 2754 mutex_lock(&sensor->lock); 2755 2756 if (sensor->streaming == !enable) { 2757 if (enable && sensor->pending_mode_change) { 2758 ret = ov5640_set_mode(sensor); 2759 if (ret) 2760 goto out; 2761 } 2762 2763 if (enable && sensor->pending_fmt_change) { 2764 ret = ov5640_set_framefmt(sensor, &sensor->fmt); 2765 if (ret) 2766 goto out; 2767 sensor->pending_fmt_change = false; 2768 } 2769 2770 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) 2771 ret = ov5640_set_stream_mipi(sensor, enable); 2772 else 2773 ret = ov5640_set_stream_dvp(sensor, enable); 2774 2775 if (!ret) 2776 sensor->streaming = enable; 2777 } 2778 out: 2779 mutex_unlock(&sensor->lock); 2780 return ret; 2781 } 2782 2783 static const struct v4l2_subdev_core_ops ov5640_core_ops = { 2784 .s_power = ov5640_s_power, 2785 .log_status = v4l2_ctrl_subdev_log_status, 2786 .subscribe_event = v4l2_ctrl_subdev_subscribe_event, 2787 .unsubscribe_event = v4l2_event_subdev_unsubscribe, 2788 }; 2789 2790 static const struct v4l2_subdev_video_ops ov5640_video_ops = { 2791 .g_frame_interval = ov5640_g_frame_interval, 2792 .s_frame_interval = ov5640_s_frame_interval, 2793 .s_stream = ov5640_s_stream, 2794 }; 2795 2796 static const struct v4l2_subdev_pad_ops ov5640_pad_ops = { 2797 .enum_mbus_code = ov5640_enum_mbus_code, 2798 .get_fmt = ov5640_get_fmt, 2799 .set_fmt = ov5640_set_fmt, 2800 .enum_frame_size = ov5640_enum_frame_size, 2801 .enum_frame_interval = ov5640_enum_frame_interval, 2802 }; 2803 2804 static const struct v4l2_subdev_ops ov5640_subdev_ops = { 2805 .core = &ov5640_core_ops, 2806 .video = &ov5640_video_ops, 2807 .pad = &ov5640_pad_ops, 2808 }; 2809 2810 static int ov5640_get_regulators(struct ov5640_dev *sensor) 2811 { 2812 int i; 2813 2814 for (i = 0; i < OV5640_NUM_SUPPLIES; i++) 2815 sensor->supplies[i].supply = ov5640_supply_name[i]; 2816 2817 return devm_regulator_bulk_get(&sensor->i2c_client->dev, 2818 OV5640_NUM_SUPPLIES, 2819 sensor->supplies); 2820 } 2821 2822 static int ov5640_check_chip_id(struct ov5640_dev *sensor) 2823 { 2824 struct i2c_client *client = sensor->i2c_client; 2825 int ret = 0; 2826 u16 chip_id; 2827 2828 ret = ov5640_set_power_on(sensor); 2829 if (ret) 2830 return ret; 2831 2832 ret = ov5640_read_reg16(sensor, OV5640_REG_CHIP_ID, &chip_id); 2833 if (ret) { 2834 dev_err(&client->dev, "%s: failed to read chip identifier\n", 2835 __func__); 2836 goto power_off; 2837 } 2838 2839 if (chip_id != 0x5640) { 2840 dev_err(&client->dev, "%s: wrong chip identifier, expected 0x5640, got 0x%x\n", 2841 __func__, chip_id); 2842 ret = -ENXIO; 2843 } 2844 2845 power_off: 2846 ov5640_set_power_off(sensor); 2847 return ret; 2848 } 2849 2850 static int ov5640_probe(struct i2c_client *client, 2851 const struct i2c_device_id *id) 2852 { 2853 struct device *dev = &client->dev; 2854 struct fwnode_handle *endpoint; 2855 struct ov5640_dev *sensor; 2856 struct v4l2_mbus_framefmt *fmt; 2857 u32 rotation; 2858 int ret; 2859 2860 sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL); 2861 if (!sensor) 2862 return -ENOMEM; 2863 2864 sensor->i2c_client = client; 2865 2866 /* 2867 * default init sequence initialize sensor to 2868 * YUV422 UYVY VGA@30fps 2869 */ 2870 fmt = &sensor->fmt; 2871 fmt->code = MEDIA_BUS_FMT_UYVY8_2X8; 2872 fmt->colorspace = V4L2_COLORSPACE_SRGB; 2873 fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace); 2874 fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE; 2875 fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace); 2876 fmt->width = 640; 2877 fmt->height = 480; 2878 fmt->field = V4L2_FIELD_NONE; 2879 sensor->frame_interval.numerator = 1; 2880 sensor->frame_interval.denominator = ov5640_framerates[OV5640_30_FPS]; 2881 sensor->current_fr = OV5640_30_FPS; 2882 sensor->current_mode = 2883 &ov5640_mode_data[OV5640_MODE_VGA_640_480]; 2884 sensor->last_mode = sensor->current_mode; 2885 2886 sensor->ae_target = 52; 2887 2888 /* optional indication of physical rotation of sensor */ 2889 ret = fwnode_property_read_u32(dev_fwnode(&client->dev), "rotation", 2890 &rotation); 2891 if (!ret) { 2892 switch (rotation) { 2893 case 180: 2894 sensor->upside_down = true; 2895 /* fall through */ 2896 case 0: 2897 break; 2898 default: 2899 dev_warn(dev, "%u degrees rotation is not supported, ignoring...\n", 2900 rotation); 2901 } 2902 } 2903 2904 endpoint = fwnode_graph_get_next_endpoint(dev_fwnode(&client->dev), 2905 NULL); 2906 if (!endpoint) { 2907 dev_err(dev, "endpoint node not found\n"); 2908 return -EINVAL; 2909 } 2910 2911 ret = v4l2_fwnode_endpoint_parse(endpoint, &sensor->ep); 2912 fwnode_handle_put(endpoint); 2913 if (ret) { 2914 dev_err(dev, "Could not parse endpoint\n"); 2915 return ret; 2916 } 2917 2918 /* get system clock (xclk) */ 2919 sensor->xclk = devm_clk_get(dev, "xclk"); 2920 if (IS_ERR(sensor->xclk)) { 2921 dev_err(dev, "failed to get xclk\n"); 2922 return PTR_ERR(sensor->xclk); 2923 } 2924 2925 sensor->xclk_freq = clk_get_rate(sensor->xclk); 2926 if (sensor->xclk_freq < OV5640_XCLK_MIN || 2927 sensor->xclk_freq > OV5640_XCLK_MAX) { 2928 dev_err(dev, "xclk frequency out of range: %d Hz\n", 2929 sensor->xclk_freq); 2930 return -EINVAL; 2931 } 2932 2933 /* request optional power down pin */ 2934 sensor->pwdn_gpio = devm_gpiod_get_optional(dev, "powerdown", 2935 GPIOD_OUT_HIGH); 2936 /* request optional reset pin */ 2937 sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset", 2938 GPIOD_OUT_HIGH); 2939 2940 v4l2_i2c_subdev_init(&sensor->sd, client, &ov5640_subdev_ops); 2941 2942 sensor->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | 2943 V4L2_SUBDEV_FL_HAS_EVENTS; 2944 sensor->pad.flags = MEDIA_PAD_FL_SOURCE; 2945 sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR; 2946 ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad); 2947 if (ret) 2948 return ret; 2949 2950 ret = ov5640_get_regulators(sensor); 2951 if (ret) 2952 return ret; 2953 2954 mutex_init(&sensor->lock); 2955 2956 ret = ov5640_check_chip_id(sensor); 2957 if (ret) 2958 goto entity_cleanup; 2959 2960 ret = ov5640_init_controls(sensor); 2961 if (ret) 2962 goto entity_cleanup; 2963 2964 ret = v4l2_async_register_subdev(&sensor->sd); 2965 if (ret) 2966 goto free_ctrls; 2967 2968 return 0; 2969 2970 free_ctrls: 2971 v4l2_ctrl_handler_free(&sensor->ctrls.handler); 2972 entity_cleanup: 2973 mutex_destroy(&sensor->lock); 2974 media_entity_cleanup(&sensor->sd.entity); 2975 return ret; 2976 } 2977 2978 static int ov5640_remove(struct i2c_client *client) 2979 { 2980 struct v4l2_subdev *sd = i2c_get_clientdata(client); 2981 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2982 2983 v4l2_async_unregister_subdev(&sensor->sd); 2984 mutex_destroy(&sensor->lock); 2985 media_entity_cleanup(&sensor->sd.entity); 2986 v4l2_ctrl_handler_free(&sensor->ctrls.handler); 2987 2988 return 0; 2989 } 2990 2991 static const struct i2c_device_id ov5640_id[] = { 2992 {"ov5640", 0}, 2993 {}, 2994 }; 2995 MODULE_DEVICE_TABLE(i2c, ov5640_id); 2996 2997 static const struct of_device_id ov5640_dt_ids[] = { 2998 { .compatible = "ovti,ov5640" }, 2999 { /* sentinel */ } 3000 }; 3001 MODULE_DEVICE_TABLE(of, ov5640_dt_ids); 3002 3003 static struct i2c_driver ov5640_i2c_driver = { 3004 .driver = { 3005 .name = "ov5640", 3006 .of_match_table = ov5640_dt_ids, 3007 }, 3008 .id_table = ov5640_id, 3009 .probe = ov5640_probe, 3010 .remove = ov5640_remove, 3011 }; 3012 3013 module_i2c_driver(ov5640_i2c_driver); 3014 3015 MODULE_DESCRIPTION("OV5640 MIPI Camera Subdev Driver"); 3016 MODULE_LICENSE("GPL"); 3017