1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2011-2013 Freescale Semiconductor, Inc. All Rights Reserved. 4 * Copyright (C) 2014-2017 Mentor Graphics Inc. 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/clk-provider.h> 9 #include <linux/clkdev.h> 10 #include <linux/ctype.h> 11 #include <linux/delay.h> 12 #include <linux/device.h> 13 #include <linux/gpio/consumer.h> 14 #include <linux/i2c.h> 15 #include <linux/init.h> 16 #include <linux/module.h> 17 #include <linux/of_device.h> 18 #include <linux/regulator/consumer.h> 19 #include <linux/slab.h> 20 #include <linux/types.h> 21 #include <media/v4l2-async.h> 22 #include <media/v4l2-ctrls.h> 23 #include <media/v4l2-device.h> 24 #include <media/v4l2-event.h> 25 #include <media/v4l2-fwnode.h> 26 #include <media/v4l2-subdev.h> 27 28 /* min/typical/max system clock (xclk) frequencies */ 29 #define OV5640_XCLK_MIN 6000000 30 #define OV5640_XCLK_MAX 54000000 31 32 #define OV5640_DEFAULT_SLAVE_ID 0x3c 33 34 #define OV5640_REG_SYS_RESET02 0x3002 35 #define OV5640_REG_SYS_CLOCK_ENABLE02 0x3006 36 #define OV5640_REG_SYS_CTRL0 0x3008 37 #define OV5640_REG_SYS_CTRL0_SW_PWDN 0x42 38 #define OV5640_REG_SYS_CTRL0_SW_PWUP 0x02 39 #define OV5640_REG_CHIP_ID 0x300a 40 #define OV5640_REG_IO_MIPI_CTRL00 0x300e 41 #define OV5640_REG_PAD_OUTPUT_ENABLE01 0x3017 42 #define OV5640_REG_PAD_OUTPUT_ENABLE02 0x3018 43 #define OV5640_REG_PAD_OUTPUT00 0x3019 44 #define OV5640_REG_SYSTEM_CONTROL1 0x302e 45 #define OV5640_REG_SC_PLL_CTRL0 0x3034 46 #define OV5640_REG_SC_PLL_CTRL1 0x3035 47 #define OV5640_REG_SC_PLL_CTRL2 0x3036 48 #define OV5640_REG_SC_PLL_CTRL3 0x3037 49 #define OV5640_REG_SLAVE_ID 0x3100 50 #define OV5640_REG_SCCB_SYS_CTRL1 0x3103 51 #define OV5640_REG_SYS_ROOT_DIVIDER 0x3108 52 #define OV5640_REG_AWB_R_GAIN 0x3400 53 #define OV5640_REG_AWB_G_GAIN 0x3402 54 #define OV5640_REG_AWB_B_GAIN 0x3404 55 #define OV5640_REG_AWB_MANUAL_CTRL 0x3406 56 #define OV5640_REG_AEC_PK_EXPOSURE_HI 0x3500 57 #define OV5640_REG_AEC_PK_EXPOSURE_MED 0x3501 58 #define OV5640_REG_AEC_PK_EXPOSURE_LO 0x3502 59 #define OV5640_REG_AEC_PK_MANUAL 0x3503 60 #define OV5640_REG_AEC_PK_REAL_GAIN 0x350a 61 #define OV5640_REG_AEC_PK_VTS 0x350c 62 #define OV5640_REG_TIMING_DVPHO 0x3808 63 #define OV5640_REG_TIMING_DVPVO 0x380a 64 #define OV5640_REG_TIMING_HTS 0x380c 65 #define OV5640_REG_TIMING_VTS 0x380e 66 #define OV5640_REG_TIMING_TC_REG20 0x3820 67 #define OV5640_REG_TIMING_TC_REG21 0x3821 68 #define OV5640_REG_AEC_CTRL00 0x3a00 69 #define OV5640_REG_AEC_B50_STEP 0x3a08 70 #define OV5640_REG_AEC_B60_STEP 0x3a0a 71 #define OV5640_REG_AEC_CTRL0D 0x3a0d 72 #define OV5640_REG_AEC_CTRL0E 0x3a0e 73 #define OV5640_REG_AEC_CTRL0F 0x3a0f 74 #define OV5640_REG_AEC_CTRL10 0x3a10 75 #define OV5640_REG_AEC_CTRL11 0x3a11 76 #define OV5640_REG_AEC_CTRL1B 0x3a1b 77 #define OV5640_REG_AEC_CTRL1E 0x3a1e 78 #define OV5640_REG_AEC_CTRL1F 0x3a1f 79 #define OV5640_REG_HZ5060_CTRL00 0x3c00 80 #define OV5640_REG_HZ5060_CTRL01 0x3c01 81 #define OV5640_REG_SIGMADELTA_CTRL0C 0x3c0c 82 #define OV5640_REG_FRAME_CTRL01 0x4202 83 #define OV5640_REG_FORMAT_CONTROL00 0x4300 84 #define OV5640_REG_VFIFO_HSIZE 0x4602 85 #define OV5640_REG_VFIFO_VSIZE 0x4604 86 #define OV5640_REG_JPG_MODE_SELECT 0x4713 87 #define OV5640_REG_CCIR656_CTRL00 0x4730 88 #define OV5640_REG_POLARITY_CTRL00 0x4740 89 #define OV5640_REG_MIPI_CTRL00 0x4800 90 #define OV5640_REG_DEBUG_MODE 0x4814 91 #define OV5640_REG_ISP_FORMAT_MUX_CTRL 0x501f 92 #define OV5640_REG_PRE_ISP_TEST_SET1 0x503d 93 #define OV5640_REG_SDE_CTRL0 0x5580 94 #define OV5640_REG_SDE_CTRL1 0x5581 95 #define OV5640_REG_SDE_CTRL3 0x5583 96 #define OV5640_REG_SDE_CTRL4 0x5584 97 #define OV5640_REG_SDE_CTRL5 0x5585 98 #define OV5640_REG_AVG_READOUT 0x56a1 99 100 enum ov5640_mode_id { 101 OV5640_MODE_QQVGA_160_120 = 0, 102 OV5640_MODE_QCIF_176_144, 103 OV5640_MODE_QVGA_320_240, 104 OV5640_MODE_VGA_640_480, 105 OV5640_MODE_NTSC_720_480, 106 OV5640_MODE_PAL_720_576, 107 OV5640_MODE_XGA_1024_768, 108 OV5640_MODE_720P_1280_720, 109 OV5640_MODE_1080P_1920_1080, 110 OV5640_MODE_QSXGA_2592_1944, 111 OV5640_NUM_MODES, 112 }; 113 114 enum ov5640_frame_rate { 115 OV5640_15_FPS = 0, 116 OV5640_30_FPS, 117 OV5640_60_FPS, 118 OV5640_NUM_FRAMERATES, 119 }; 120 121 enum ov5640_format_mux { 122 OV5640_FMT_MUX_YUV422 = 0, 123 OV5640_FMT_MUX_RGB, 124 OV5640_FMT_MUX_DITHER, 125 OV5640_FMT_MUX_RAW_DPC, 126 OV5640_FMT_MUX_SNR_RAW, 127 OV5640_FMT_MUX_RAW_CIP, 128 }; 129 130 struct ov5640_pixfmt { 131 u32 code; 132 u32 colorspace; 133 }; 134 135 static const struct ov5640_pixfmt ov5640_formats[] = { 136 { MEDIA_BUS_FMT_JPEG_1X8, V4L2_COLORSPACE_JPEG, }, 137 { MEDIA_BUS_FMT_UYVY8_2X8, V4L2_COLORSPACE_SRGB, }, 138 { MEDIA_BUS_FMT_YUYV8_2X8, V4L2_COLORSPACE_SRGB, }, 139 { MEDIA_BUS_FMT_RGB565_2X8_LE, V4L2_COLORSPACE_SRGB, }, 140 { MEDIA_BUS_FMT_RGB565_2X8_BE, V4L2_COLORSPACE_SRGB, }, 141 { MEDIA_BUS_FMT_SBGGR8_1X8, V4L2_COLORSPACE_SRGB, }, 142 { MEDIA_BUS_FMT_SGBRG8_1X8, V4L2_COLORSPACE_SRGB, }, 143 { MEDIA_BUS_FMT_SGRBG8_1X8, V4L2_COLORSPACE_SRGB, }, 144 { MEDIA_BUS_FMT_SRGGB8_1X8, V4L2_COLORSPACE_SRGB, }, 145 }; 146 147 /* 148 * FIXME: remove this when a subdev API becomes available 149 * to set the MIPI CSI-2 virtual channel. 150 */ 151 static unsigned int virtual_channel; 152 module_param(virtual_channel, uint, 0444); 153 MODULE_PARM_DESC(virtual_channel, 154 "MIPI CSI-2 virtual channel (0..3), default 0"); 155 156 static const int ov5640_framerates[] = { 157 [OV5640_15_FPS] = 15, 158 [OV5640_30_FPS] = 30, 159 [OV5640_60_FPS] = 60, 160 }; 161 162 /* regulator supplies */ 163 static const char * const ov5640_supply_name[] = { 164 "DOVDD", /* Digital I/O (1.8V) supply */ 165 "AVDD", /* Analog (2.8V) supply */ 166 "DVDD", /* Digital Core (1.5V) supply */ 167 }; 168 169 #define OV5640_NUM_SUPPLIES ARRAY_SIZE(ov5640_supply_name) 170 171 /* 172 * Image size under 1280 * 960 are SUBSAMPLING 173 * Image size upper 1280 * 960 are SCALING 174 */ 175 enum ov5640_downsize_mode { 176 SUBSAMPLING, 177 SCALING, 178 }; 179 180 struct reg_value { 181 u16 reg_addr; 182 u8 val; 183 u8 mask; 184 u32 delay_ms; 185 }; 186 187 struct ov5640_mode_info { 188 enum ov5640_mode_id id; 189 enum ov5640_downsize_mode dn_mode; 190 u32 hact; 191 u32 htot; 192 u32 vact; 193 u32 vtot; 194 const struct reg_value *reg_data; 195 u32 reg_data_size; 196 u32 max_fps; 197 }; 198 199 struct ov5640_ctrls { 200 struct v4l2_ctrl_handler handler; 201 struct v4l2_ctrl *pixel_rate; 202 struct { 203 struct v4l2_ctrl *auto_exp; 204 struct v4l2_ctrl *exposure; 205 }; 206 struct { 207 struct v4l2_ctrl *auto_wb; 208 struct v4l2_ctrl *blue_balance; 209 struct v4l2_ctrl *red_balance; 210 }; 211 struct { 212 struct v4l2_ctrl *auto_gain; 213 struct v4l2_ctrl *gain; 214 }; 215 struct v4l2_ctrl *brightness; 216 struct v4l2_ctrl *light_freq; 217 struct v4l2_ctrl *saturation; 218 struct v4l2_ctrl *contrast; 219 struct v4l2_ctrl *hue; 220 struct v4l2_ctrl *test_pattern; 221 struct v4l2_ctrl *hflip; 222 struct v4l2_ctrl *vflip; 223 }; 224 225 struct ov5640_dev { 226 struct i2c_client *i2c_client; 227 struct v4l2_subdev sd; 228 struct media_pad pad; 229 struct v4l2_fwnode_endpoint ep; /* the parsed DT endpoint info */ 230 struct clk *xclk; /* system clock to OV5640 */ 231 u32 xclk_freq; 232 233 struct regulator_bulk_data supplies[OV5640_NUM_SUPPLIES]; 234 struct gpio_desc *reset_gpio; 235 struct gpio_desc *pwdn_gpio; 236 bool upside_down; 237 238 /* lock to protect all members below */ 239 struct mutex lock; 240 241 int power_count; 242 243 struct v4l2_mbus_framefmt fmt; 244 bool pending_fmt_change; 245 246 const struct ov5640_mode_info *current_mode; 247 const struct ov5640_mode_info *last_mode; 248 enum ov5640_frame_rate current_fr; 249 struct v4l2_fract frame_interval; 250 251 struct ov5640_ctrls ctrls; 252 253 u32 prev_sysclk, prev_hts; 254 u32 ae_low, ae_high, ae_target; 255 256 bool pending_mode_change; 257 bool streaming; 258 }; 259 260 static inline struct ov5640_dev *to_ov5640_dev(struct v4l2_subdev *sd) 261 { 262 return container_of(sd, struct ov5640_dev, sd); 263 } 264 265 static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl) 266 { 267 return &container_of(ctrl->handler, struct ov5640_dev, 268 ctrls.handler)->sd; 269 } 270 271 /* 272 * FIXME: all of these register tables are likely filled with 273 * entries that set the register to their power-on default values, 274 * and which are otherwise not touched by this driver. Those entries 275 * should be identified and removed to speed register load time 276 * over i2c. 277 */ 278 /* YUV422 UYVY VGA@30fps */ 279 static const struct reg_value ov5640_init_setting_30fps_VGA[] = { 280 {0x3103, 0x11, 0, 0}, {0x3008, 0x82, 0, 5}, {0x3008, 0x42, 0, 0}, 281 {0x3103, 0x03, 0, 0}, {0x3630, 0x36, 0, 0}, 282 {0x3631, 0x0e, 0, 0}, {0x3632, 0xe2, 0, 0}, {0x3633, 0x12, 0, 0}, 283 {0x3621, 0xe0, 0, 0}, {0x3704, 0xa0, 0, 0}, {0x3703, 0x5a, 0, 0}, 284 {0x3715, 0x78, 0, 0}, {0x3717, 0x01, 0, 0}, {0x370b, 0x60, 0, 0}, 285 {0x3705, 0x1a, 0, 0}, {0x3905, 0x02, 0, 0}, {0x3906, 0x10, 0, 0}, 286 {0x3901, 0x0a, 0, 0}, {0x3731, 0x12, 0, 0}, {0x3600, 0x08, 0, 0}, 287 {0x3601, 0x33, 0, 0}, {0x302d, 0x60, 0, 0}, {0x3620, 0x52, 0, 0}, 288 {0x371b, 0x20, 0, 0}, {0x471c, 0x50, 0, 0}, {0x3a13, 0x43, 0, 0}, 289 {0x3a18, 0x00, 0, 0}, {0x3a19, 0xf8, 0, 0}, {0x3635, 0x13, 0, 0}, 290 {0x3636, 0x03, 0, 0}, {0x3634, 0x40, 0, 0}, {0x3622, 0x01, 0, 0}, 291 {0x3c01, 0xa4, 0, 0}, {0x3c04, 0x28, 0, 0}, {0x3c05, 0x98, 0, 0}, 292 {0x3c06, 0x00, 0, 0}, {0x3c07, 0x08, 0, 0}, {0x3c08, 0x00, 0, 0}, 293 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 294 {0x3820, 0x41, 0, 0}, {0x3821, 0x07, 0, 0}, {0x3814, 0x31, 0, 0}, 295 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 296 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 297 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 298 {0x3810, 0x00, 0, 0}, 299 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 300 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 301 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 302 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 303 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 304 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 305 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x3000, 0x00, 0, 0}, 306 {0x3002, 0x1c, 0, 0}, {0x3004, 0xff, 0, 0}, {0x3006, 0xc3, 0, 0}, 307 {0x302e, 0x08, 0, 0}, {0x4300, 0x3f, 0, 0}, 308 {0x501f, 0x00, 0, 0}, {0x4407, 0x04, 0, 0}, 309 {0x440e, 0x00, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 310 {0x4837, 0x0a, 0, 0}, {0x3824, 0x02, 0, 0}, 311 {0x5000, 0xa7, 0, 0}, {0x5001, 0xa3, 0, 0}, {0x5180, 0xff, 0, 0}, 312 {0x5181, 0xf2, 0, 0}, {0x5182, 0x00, 0, 0}, {0x5183, 0x14, 0, 0}, 313 {0x5184, 0x25, 0, 0}, {0x5185, 0x24, 0, 0}, {0x5186, 0x09, 0, 0}, 314 {0x5187, 0x09, 0, 0}, {0x5188, 0x09, 0, 0}, {0x5189, 0x88, 0, 0}, 315 {0x518a, 0x54, 0, 0}, {0x518b, 0xee, 0, 0}, {0x518c, 0xb2, 0, 0}, 316 {0x518d, 0x50, 0, 0}, {0x518e, 0x34, 0, 0}, {0x518f, 0x6b, 0, 0}, 317 {0x5190, 0x46, 0, 0}, {0x5191, 0xf8, 0, 0}, {0x5192, 0x04, 0, 0}, 318 {0x5193, 0x70, 0, 0}, {0x5194, 0xf0, 0, 0}, {0x5195, 0xf0, 0, 0}, 319 {0x5196, 0x03, 0, 0}, {0x5197, 0x01, 0, 0}, {0x5198, 0x04, 0, 0}, 320 {0x5199, 0x6c, 0, 0}, {0x519a, 0x04, 0, 0}, {0x519b, 0x00, 0, 0}, 321 {0x519c, 0x09, 0, 0}, {0x519d, 0x2b, 0, 0}, {0x519e, 0x38, 0, 0}, 322 {0x5381, 0x1e, 0, 0}, {0x5382, 0x5b, 0, 0}, {0x5383, 0x08, 0, 0}, 323 {0x5384, 0x0a, 0, 0}, {0x5385, 0x7e, 0, 0}, {0x5386, 0x88, 0, 0}, 324 {0x5387, 0x7c, 0, 0}, {0x5388, 0x6c, 0, 0}, {0x5389, 0x10, 0, 0}, 325 {0x538a, 0x01, 0, 0}, {0x538b, 0x98, 0, 0}, {0x5300, 0x08, 0, 0}, 326 {0x5301, 0x30, 0, 0}, {0x5302, 0x10, 0, 0}, {0x5303, 0x00, 0, 0}, 327 {0x5304, 0x08, 0, 0}, {0x5305, 0x30, 0, 0}, {0x5306, 0x08, 0, 0}, 328 {0x5307, 0x16, 0, 0}, {0x5309, 0x08, 0, 0}, {0x530a, 0x30, 0, 0}, 329 {0x530b, 0x04, 0, 0}, {0x530c, 0x06, 0, 0}, {0x5480, 0x01, 0, 0}, 330 {0x5481, 0x08, 0, 0}, {0x5482, 0x14, 0, 0}, {0x5483, 0x28, 0, 0}, 331 {0x5484, 0x51, 0, 0}, {0x5485, 0x65, 0, 0}, {0x5486, 0x71, 0, 0}, 332 {0x5487, 0x7d, 0, 0}, {0x5488, 0x87, 0, 0}, {0x5489, 0x91, 0, 0}, 333 {0x548a, 0x9a, 0, 0}, {0x548b, 0xaa, 0, 0}, {0x548c, 0xb8, 0, 0}, 334 {0x548d, 0xcd, 0, 0}, {0x548e, 0xdd, 0, 0}, {0x548f, 0xea, 0, 0}, 335 {0x5490, 0x1d, 0, 0}, {0x5580, 0x02, 0, 0}, {0x5583, 0x40, 0, 0}, 336 {0x5584, 0x10, 0, 0}, {0x5589, 0x10, 0, 0}, {0x558a, 0x00, 0, 0}, 337 {0x558b, 0xf8, 0, 0}, {0x5800, 0x23, 0, 0}, {0x5801, 0x14, 0, 0}, 338 {0x5802, 0x0f, 0, 0}, {0x5803, 0x0f, 0, 0}, {0x5804, 0x12, 0, 0}, 339 {0x5805, 0x26, 0, 0}, {0x5806, 0x0c, 0, 0}, {0x5807, 0x08, 0, 0}, 340 {0x5808, 0x05, 0, 0}, {0x5809, 0x05, 0, 0}, {0x580a, 0x08, 0, 0}, 341 {0x580b, 0x0d, 0, 0}, {0x580c, 0x08, 0, 0}, {0x580d, 0x03, 0, 0}, 342 {0x580e, 0x00, 0, 0}, {0x580f, 0x00, 0, 0}, {0x5810, 0x03, 0, 0}, 343 {0x5811, 0x09, 0, 0}, {0x5812, 0x07, 0, 0}, {0x5813, 0x03, 0, 0}, 344 {0x5814, 0x00, 0, 0}, {0x5815, 0x01, 0, 0}, {0x5816, 0x03, 0, 0}, 345 {0x5817, 0x08, 0, 0}, {0x5818, 0x0d, 0, 0}, {0x5819, 0x08, 0, 0}, 346 {0x581a, 0x05, 0, 0}, {0x581b, 0x06, 0, 0}, {0x581c, 0x08, 0, 0}, 347 {0x581d, 0x0e, 0, 0}, {0x581e, 0x29, 0, 0}, {0x581f, 0x17, 0, 0}, 348 {0x5820, 0x11, 0, 0}, {0x5821, 0x11, 0, 0}, {0x5822, 0x15, 0, 0}, 349 {0x5823, 0x28, 0, 0}, {0x5824, 0x46, 0, 0}, {0x5825, 0x26, 0, 0}, 350 {0x5826, 0x08, 0, 0}, {0x5827, 0x26, 0, 0}, {0x5828, 0x64, 0, 0}, 351 {0x5829, 0x26, 0, 0}, {0x582a, 0x24, 0, 0}, {0x582b, 0x22, 0, 0}, 352 {0x582c, 0x24, 0, 0}, {0x582d, 0x24, 0, 0}, {0x582e, 0x06, 0, 0}, 353 {0x582f, 0x22, 0, 0}, {0x5830, 0x40, 0, 0}, {0x5831, 0x42, 0, 0}, 354 {0x5832, 0x24, 0, 0}, {0x5833, 0x26, 0, 0}, {0x5834, 0x24, 0, 0}, 355 {0x5835, 0x22, 0, 0}, {0x5836, 0x22, 0, 0}, {0x5837, 0x26, 0, 0}, 356 {0x5838, 0x44, 0, 0}, {0x5839, 0x24, 0, 0}, {0x583a, 0x26, 0, 0}, 357 {0x583b, 0x28, 0, 0}, {0x583c, 0x42, 0, 0}, {0x583d, 0xce, 0, 0}, 358 {0x5025, 0x00, 0, 0}, {0x3a0f, 0x30, 0, 0}, {0x3a10, 0x28, 0, 0}, 359 {0x3a1b, 0x30, 0, 0}, {0x3a1e, 0x26, 0, 0}, {0x3a11, 0x60, 0, 0}, 360 {0x3a1f, 0x14, 0, 0}, {0x3008, 0x02, 0, 0}, {0x3c00, 0x04, 0, 300}, 361 }; 362 363 static const struct reg_value ov5640_setting_VGA_640_480[] = { 364 {0x3c07, 0x08, 0, 0}, 365 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 366 {0x3814, 0x31, 0, 0}, 367 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 368 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 369 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 370 {0x3810, 0x00, 0, 0}, 371 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 372 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 373 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 374 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 375 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 376 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 377 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 378 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 379 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 380 }; 381 382 static const struct reg_value ov5640_setting_XGA_1024_768[] = { 383 {0x3c07, 0x08, 0, 0}, 384 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 385 {0x3814, 0x31, 0, 0}, 386 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 387 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 388 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 389 {0x3810, 0x00, 0, 0}, 390 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 391 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 392 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 393 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 394 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 395 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 396 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 397 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 398 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 399 }; 400 401 static const struct reg_value ov5640_setting_QVGA_320_240[] = { 402 {0x3c07, 0x08, 0, 0}, 403 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 404 {0x3814, 0x31, 0, 0}, 405 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 406 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 407 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 408 {0x3810, 0x00, 0, 0}, 409 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 410 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 411 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 412 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 413 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 414 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 415 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 416 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 417 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 418 }; 419 420 static const struct reg_value ov5640_setting_QQVGA_160_120[] = { 421 {0x3c07, 0x08, 0, 0}, 422 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 423 {0x3814, 0x31, 0, 0}, 424 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 425 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 426 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 427 {0x3810, 0x00, 0, 0}, 428 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 429 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 430 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 431 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 432 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 433 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 434 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 435 {0x4407, 0x04, 0, 0}, {0x5001, 0xa3, 0, 0}, 436 }; 437 438 static const struct reg_value ov5640_setting_QCIF_176_144[] = { 439 {0x3c07, 0x08, 0, 0}, 440 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 441 {0x3814, 0x31, 0, 0}, 442 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 443 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 444 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 445 {0x3810, 0x00, 0, 0}, 446 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 447 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 448 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 449 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 450 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 451 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 452 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 453 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 454 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 455 }; 456 457 static const struct reg_value ov5640_setting_NTSC_720_480[] = { 458 {0x3c07, 0x08, 0, 0}, 459 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 460 {0x3814, 0x31, 0, 0}, 461 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 462 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 463 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 464 {0x3810, 0x00, 0, 0}, 465 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x3c, 0, 0}, 466 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 467 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 468 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 469 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 470 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 471 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 472 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 473 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 474 }; 475 476 static const struct reg_value ov5640_setting_PAL_720_576[] = { 477 {0x3c07, 0x08, 0, 0}, 478 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 479 {0x3814, 0x31, 0, 0}, 480 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 481 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 482 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 483 {0x3810, 0x00, 0, 0}, 484 {0x3811, 0x38, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 485 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 486 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 487 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 488 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 489 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 490 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 491 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 492 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 493 }; 494 495 static const struct reg_value ov5640_setting_720P_1280_720[] = { 496 {0x3c07, 0x07, 0, 0}, 497 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 498 {0x3814, 0x31, 0, 0}, 499 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 500 {0x3802, 0x00, 0, 0}, {0x3803, 0xfa, 0, 0}, {0x3804, 0x0a, 0, 0}, 501 {0x3805, 0x3f, 0, 0}, {0x3806, 0x06, 0, 0}, {0x3807, 0xa9, 0, 0}, 502 {0x3810, 0x00, 0, 0}, 503 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0}, 504 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 505 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x02, 0, 0}, 506 {0x3a03, 0xe4, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0xbc, 0, 0}, 507 {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x72, 0, 0}, {0x3a0e, 0x01, 0, 0}, 508 {0x3a0d, 0x02, 0, 0}, {0x3a14, 0x02, 0, 0}, {0x3a15, 0xe4, 0, 0}, 509 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 510 {0x4407, 0x04, 0, 0}, {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0}, 511 {0x3824, 0x04, 0, 0}, {0x5001, 0x83, 0, 0}, 512 }; 513 514 static const struct reg_value ov5640_setting_1080P_1920_1080[] = { 515 {0x3c07, 0x08, 0, 0}, 516 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 517 {0x3814, 0x11, 0, 0}, 518 {0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 519 {0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0}, 520 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0}, 521 {0x3810, 0x00, 0, 0}, 522 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0}, 523 {0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0}, 524 {0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0}, 525 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 526 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 527 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 528 {0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0}, 529 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 530 {0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 0}, 531 {0x3c07, 0x07, 0, 0}, {0x3c08, 0x00, 0, 0}, 532 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 533 {0x3800, 0x01, 0, 0}, {0x3801, 0x50, 0, 0}, {0x3802, 0x01, 0, 0}, 534 {0x3803, 0xb2, 0, 0}, {0x3804, 0x08, 0, 0}, {0x3805, 0xef, 0, 0}, 535 {0x3806, 0x05, 0, 0}, {0x3807, 0xf1, 0, 0}, 536 {0x3612, 0x2b, 0, 0}, {0x3708, 0x64, 0, 0}, 537 {0x3a02, 0x04, 0, 0}, {0x3a03, 0x60, 0, 0}, {0x3a08, 0x01, 0, 0}, 538 {0x3a09, 0x50, 0, 0}, {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x18, 0, 0}, 539 {0x3a0e, 0x03, 0, 0}, {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x04, 0, 0}, 540 {0x3a15, 0x60, 0, 0}, {0x4407, 0x04, 0, 0}, 541 {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0}, {0x3824, 0x04, 0, 0}, 542 {0x4005, 0x1a, 0, 0}, 543 }; 544 545 static const struct reg_value ov5640_setting_QSXGA_2592_1944[] = { 546 {0x3c07, 0x08, 0, 0}, 547 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 548 {0x3814, 0x11, 0, 0}, 549 {0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 550 {0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0}, 551 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0}, 552 {0x3810, 0x00, 0, 0}, 553 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0}, 554 {0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0}, 555 {0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0}, 556 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 557 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 558 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 559 {0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0}, 560 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 561 {0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 70}, 562 }; 563 564 /* power-on sensor init reg table */ 565 static const struct ov5640_mode_info ov5640_mode_init_data = { 566 0, SUBSAMPLING, 640, 1896, 480, 984, 567 ov5640_init_setting_30fps_VGA, 568 ARRAY_SIZE(ov5640_init_setting_30fps_VGA), 569 OV5640_30_FPS, 570 }; 571 572 static const struct ov5640_mode_info 573 ov5640_mode_data[OV5640_NUM_MODES] = { 574 {OV5640_MODE_QQVGA_160_120, SUBSAMPLING, 575 160, 1896, 120, 984, 576 ov5640_setting_QQVGA_160_120, 577 ARRAY_SIZE(ov5640_setting_QQVGA_160_120), 578 OV5640_30_FPS}, 579 {OV5640_MODE_QCIF_176_144, SUBSAMPLING, 580 176, 1896, 144, 984, 581 ov5640_setting_QCIF_176_144, 582 ARRAY_SIZE(ov5640_setting_QCIF_176_144), 583 OV5640_30_FPS}, 584 {OV5640_MODE_QVGA_320_240, SUBSAMPLING, 585 320, 1896, 240, 984, 586 ov5640_setting_QVGA_320_240, 587 ARRAY_SIZE(ov5640_setting_QVGA_320_240), 588 OV5640_30_FPS}, 589 {OV5640_MODE_VGA_640_480, SUBSAMPLING, 590 640, 1896, 480, 1080, 591 ov5640_setting_VGA_640_480, 592 ARRAY_SIZE(ov5640_setting_VGA_640_480), 593 OV5640_60_FPS}, 594 {OV5640_MODE_NTSC_720_480, SUBSAMPLING, 595 720, 1896, 480, 984, 596 ov5640_setting_NTSC_720_480, 597 ARRAY_SIZE(ov5640_setting_NTSC_720_480), 598 OV5640_30_FPS}, 599 {OV5640_MODE_PAL_720_576, SUBSAMPLING, 600 720, 1896, 576, 984, 601 ov5640_setting_PAL_720_576, 602 ARRAY_SIZE(ov5640_setting_PAL_720_576), 603 OV5640_30_FPS}, 604 {OV5640_MODE_XGA_1024_768, SUBSAMPLING, 605 1024, 1896, 768, 1080, 606 ov5640_setting_XGA_1024_768, 607 ARRAY_SIZE(ov5640_setting_XGA_1024_768), 608 OV5640_30_FPS}, 609 {OV5640_MODE_720P_1280_720, SUBSAMPLING, 610 1280, 1892, 720, 740, 611 ov5640_setting_720P_1280_720, 612 ARRAY_SIZE(ov5640_setting_720P_1280_720), 613 OV5640_30_FPS}, 614 {OV5640_MODE_1080P_1920_1080, SCALING, 615 1920, 2500, 1080, 1120, 616 ov5640_setting_1080P_1920_1080, 617 ARRAY_SIZE(ov5640_setting_1080P_1920_1080), 618 OV5640_30_FPS}, 619 {OV5640_MODE_QSXGA_2592_1944, SCALING, 620 2592, 2844, 1944, 1968, 621 ov5640_setting_QSXGA_2592_1944, 622 ARRAY_SIZE(ov5640_setting_QSXGA_2592_1944), 623 OV5640_15_FPS}, 624 }; 625 626 static int ov5640_init_slave_id(struct ov5640_dev *sensor) 627 { 628 struct i2c_client *client = sensor->i2c_client; 629 struct i2c_msg msg; 630 u8 buf[3]; 631 int ret; 632 633 if (client->addr == OV5640_DEFAULT_SLAVE_ID) 634 return 0; 635 636 buf[0] = OV5640_REG_SLAVE_ID >> 8; 637 buf[1] = OV5640_REG_SLAVE_ID & 0xff; 638 buf[2] = client->addr << 1; 639 640 msg.addr = OV5640_DEFAULT_SLAVE_ID; 641 msg.flags = 0; 642 msg.buf = buf; 643 msg.len = sizeof(buf); 644 645 ret = i2c_transfer(client->adapter, &msg, 1); 646 if (ret < 0) { 647 dev_err(&client->dev, "%s: failed with %d\n", __func__, ret); 648 return ret; 649 } 650 651 return 0; 652 } 653 654 static int ov5640_write_reg(struct ov5640_dev *sensor, u16 reg, u8 val) 655 { 656 struct i2c_client *client = sensor->i2c_client; 657 struct i2c_msg msg; 658 u8 buf[3]; 659 int ret; 660 661 buf[0] = reg >> 8; 662 buf[1] = reg & 0xff; 663 buf[2] = val; 664 665 msg.addr = client->addr; 666 msg.flags = client->flags; 667 msg.buf = buf; 668 msg.len = sizeof(buf); 669 670 ret = i2c_transfer(client->adapter, &msg, 1); 671 if (ret < 0) { 672 dev_err(&client->dev, "%s: error: reg=%x, val=%x\n", 673 __func__, reg, val); 674 return ret; 675 } 676 677 return 0; 678 } 679 680 static int ov5640_read_reg(struct ov5640_dev *sensor, u16 reg, u8 *val) 681 { 682 struct i2c_client *client = sensor->i2c_client; 683 struct i2c_msg msg[2]; 684 u8 buf[2]; 685 int ret; 686 687 buf[0] = reg >> 8; 688 buf[1] = reg & 0xff; 689 690 msg[0].addr = client->addr; 691 msg[0].flags = client->flags; 692 msg[0].buf = buf; 693 msg[0].len = sizeof(buf); 694 695 msg[1].addr = client->addr; 696 msg[1].flags = client->flags | I2C_M_RD; 697 msg[1].buf = buf; 698 msg[1].len = 1; 699 700 ret = i2c_transfer(client->adapter, msg, 2); 701 if (ret < 0) { 702 dev_err(&client->dev, "%s: error: reg=%x\n", 703 __func__, reg); 704 return ret; 705 } 706 707 *val = buf[0]; 708 return 0; 709 } 710 711 static int ov5640_read_reg16(struct ov5640_dev *sensor, u16 reg, u16 *val) 712 { 713 u8 hi, lo; 714 int ret; 715 716 ret = ov5640_read_reg(sensor, reg, &hi); 717 if (ret) 718 return ret; 719 ret = ov5640_read_reg(sensor, reg + 1, &lo); 720 if (ret) 721 return ret; 722 723 *val = ((u16)hi << 8) | (u16)lo; 724 return 0; 725 } 726 727 static int ov5640_write_reg16(struct ov5640_dev *sensor, u16 reg, u16 val) 728 { 729 int ret; 730 731 ret = ov5640_write_reg(sensor, reg, val >> 8); 732 if (ret) 733 return ret; 734 735 return ov5640_write_reg(sensor, reg + 1, val & 0xff); 736 } 737 738 static int ov5640_mod_reg(struct ov5640_dev *sensor, u16 reg, 739 u8 mask, u8 val) 740 { 741 u8 readval; 742 int ret; 743 744 ret = ov5640_read_reg(sensor, reg, &readval); 745 if (ret) 746 return ret; 747 748 readval &= ~mask; 749 val &= mask; 750 val |= readval; 751 752 return ov5640_write_reg(sensor, reg, val); 753 } 754 755 /* 756 * After trying the various combinations, reading various 757 * documentations spread around the net, and from the various 758 * feedback, the clock tree is probably as follows: 759 * 760 * +--------------+ 761 * | Ext. Clock | 762 * +-+------------+ 763 * | +----------+ 764 * +->| PLL1 | - reg 0x3036, for the multiplier 765 * +-+--------+ - reg 0x3037, bits 0-3 for the pre-divider 766 * | +--------------+ 767 * +->| System Clock | - reg 0x3035, bits 4-7 768 * +-+------------+ 769 * | +--------------+ 770 * +->| MIPI Divider | - reg 0x3035, bits 0-3 771 * | +-+------------+ 772 * | +----------------> MIPI SCLK 773 * | + +-----+ 774 * | +->| / 2 |-------> MIPI BIT CLK 775 * | +-----+ 776 * | +--------------+ 777 * +->| PLL Root Div | - reg 0x3037, bit 4 778 * +-+------------+ 779 * | +---------+ 780 * +->| Bit Div | - reg 0x3034, bits 0-3 781 * +-+-------+ 782 * | +-------------+ 783 * +->| SCLK Div | - reg 0x3108, bits 0-1 784 * | +-+-----------+ 785 * | +---------------> SCLK 786 * | +-------------+ 787 * +->| SCLK 2X Div | - reg 0x3108, bits 2-3 788 * | +-+-----------+ 789 * | +---------------> SCLK 2X 790 * | +-------------+ 791 * +->| PCLK Div | - reg 0x3108, bits 4-5 792 * ++------------+ 793 * + +-----------+ 794 * +->| P_DIV | - reg 0x3035, bits 0-3 795 * +-----+-----+ 796 * +------------> PCLK 797 * 798 * This is deviating from the datasheet at least for the register 799 * 0x3108, since it's said here that the PCLK would be clocked from 800 * the PLL. 801 * 802 * There seems to be also (unverified) constraints: 803 * - the PLL pre-divider output rate should be in the 4-27MHz range 804 * - the PLL multiplier output rate should be in the 500-1000MHz range 805 * - PCLK >= SCLK * 2 in YUV, >= SCLK in Raw or JPEG 806 * 807 * In the two latter cases, these constraints are met since our 808 * factors are hardcoded. If we were to change that, we would need to 809 * take this into account. The only varying parts are the PLL 810 * multiplier and the system clock divider, which are shared between 811 * all these clocks so won't cause any issue. 812 */ 813 814 /* 815 * This is supposed to be ranging from 1 to 8, but the value is always 816 * set to 3 in the vendor kernels. 817 */ 818 #define OV5640_PLL_PREDIV 3 819 820 #define OV5640_PLL_MULT_MIN 4 821 #define OV5640_PLL_MULT_MAX 252 822 823 /* 824 * This is supposed to be ranging from 1 to 16, but the value is 825 * always set to either 1 or 2 in the vendor kernels. 826 */ 827 #define OV5640_SYSDIV_MIN 1 828 #define OV5640_SYSDIV_MAX 16 829 830 /* 831 * Hardcode these values for scaler and non-scaler modes. 832 * FIXME: to be re-calcualted for 1 data lanes setups 833 */ 834 #define OV5640_MIPI_DIV_PCLK 2 835 #define OV5640_MIPI_DIV_SCLK 1 836 837 /* 838 * This is supposed to be ranging from 1 to 2, but the value is always 839 * set to 2 in the vendor kernels. 840 */ 841 #define OV5640_PLL_ROOT_DIV 2 842 #define OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 BIT(4) 843 844 /* 845 * We only supports 8-bit formats at the moment 846 */ 847 #define OV5640_BIT_DIV 2 848 #define OV5640_PLL_CTRL0_MIPI_MODE_8BIT 0x08 849 850 /* 851 * This is supposed to be ranging from 1 to 8, but the value is always 852 * set to 2 in the vendor kernels. 853 */ 854 #define OV5640_SCLK_ROOT_DIV 2 855 856 /* 857 * This is hardcoded so that the consistency is maintained between SCLK and 858 * SCLK 2x. 859 */ 860 #define OV5640_SCLK2X_ROOT_DIV (OV5640_SCLK_ROOT_DIV / 2) 861 862 /* 863 * This is supposed to be ranging from 1 to 8, but the value is always 864 * set to 1 in the vendor kernels. 865 */ 866 #define OV5640_PCLK_ROOT_DIV 1 867 #define OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS 0x00 868 869 static unsigned long ov5640_compute_sys_clk(struct ov5640_dev *sensor, 870 u8 pll_prediv, u8 pll_mult, 871 u8 sysdiv) 872 { 873 unsigned long sysclk = sensor->xclk_freq / pll_prediv * pll_mult; 874 875 /* PLL1 output cannot exceed 1GHz. */ 876 if (sysclk / 1000000 > 1000) 877 return 0; 878 879 return sysclk / sysdiv; 880 } 881 882 static unsigned long ov5640_calc_sys_clk(struct ov5640_dev *sensor, 883 unsigned long rate, 884 u8 *pll_prediv, u8 *pll_mult, 885 u8 *sysdiv) 886 { 887 unsigned long best = ~0; 888 u8 best_sysdiv = 1, best_mult = 1; 889 u8 _sysdiv, _pll_mult; 890 891 for (_sysdiv = OV5640_SYSDIV_MIN; 892 _sysdiv <= OV5640_SYSDIV_MAX; 893 _sysdiv++) { 894 for (_pll_mult = OV5640_PLL_MULT_MIN; 895 _pll_mult <= OV5640_PLL_MULT_MAX; 896 _pll_mult++) { 897 unsigned long _rate; 898 899 /* 900 * The PLL multiplier cannot be odd if above 901 * 127. 902 */ 903 if (_pll_mult > 127 && (_pll_mult % 2)) 904 continue; 905 906 _rate = ov5640_compute_sys_clk(sensor, 907 OV5640_PLL_PREDIV, 908 _pll_mult, _sysdiv); 909 910 /* 911 * We have reached the maximum allowed PLL1 output, 912 * increase sysdiv. 913 */ 914 if (!_rate) 915 break; 916 917 /* 918 * Prefer rates above the expected clock rate than 919 * below, even if that means being less precise. 920 */ 921 if (_rate < rate) 922 continue; 923 924 if (abs(rate - _rate) < abs(rate - best)) { 925 best = _rate; 926 best_sysdiv = _sysdiv; 927 best_mult = _pll_mult; 928 } 929 930 if (_rate == rate) 931 goto out; 932 } 933 } 934 935 out: 936 *sysdiv = best_sysdiv; 937 *pll_prediv = OV5640_PLL_PREDIV; 938 *pll_mult = best_mult; 939 940 return best; 941 } 942 943 /* 944 * ov5640_set_mipi_pclk() - Calculate the clock tree configuration values 945 * for the MIPI CSI-2 output. 946 * 947 * @rate: The requested bandwidth per lane in bytes per second. 948 * 'Bandwidth Per Lane' is calculated as: 949 * bpl = HTOT * VTOT * FPS * bpp / num_lanes; 950 * 951 * This function use the requested bandwidth to calculate: 952 * - sample_rate = bpl / (bpp / num_lanes); 953 * = bpl / (PLL_RDIV * BIT_DIV * PCLK_DIV * MIPI_DIV / num_lanes); 954 * 955 * - mipi_sclk = bpl / MIPI_DIV / 2; ( / 2 is for CSI-2 DDR) 956 * 957 * with these fixed parameters: 958 * PLL_RDIV = 2; 959 * BIT_DIVIDER = 2; (MIPI_BIT_MODE == 8 ? 2 : 2,5); 960 * PCLK_DIV = 1; 961 * 962 * The MIPI clock generation differs for modes that use the scaler and modes 963 * that do not. In case the scaler is in use, the MIPI_SCLK generates the MIPI 964 * BIT CLk, and thus: 965 * 966 * - mipi_sclk = bpl / MIPI_DIV / 2; 967 * MIPI_DIV = 1; 968 * 969 * For modes that do not go through the scaler, the MIPI BIT CLOCK is generated 970 * from the pixel clock, and thus: 971 * 972 * - sample_rate = bpl / (bpp / num_lanes); 973 * = bpl / (2 * 2 * 1 * MIPI_DIV / num_lanes); 974 * = bpl / (4 * MIPI_DIV / num_lanes); 975 * - MIPI_DIV = bpp / (4 * num_lanes); 976 * 977 * FIXME: this have been tested with 16bpp and 2 lanes setup only. 978 * MIPI_DIV is fixed to value 2, but it -might- be changed according to the 979 * above formula for setups with 1 lane or image formats with different bpp. 980 * 981 * FIXME: this deviates from the sensor manual documentation which is quite 982 * thin on the MIPI clock tree generation part. 983 */ 984 static int ov5640_set_mipi_pclk(struct ov5640_dev *sensor, 985 unsigned long rate) 986 { 987 const struct ov5640_mode_info *mode = sensor->current_mode; 988 u8 prediv, mult, sysdiv; 989 u8 mipi_div; 990 int ret; 991 992 /* 993 * 1280x720 is reported to use 'SUBSAMPLING' only, 994 * but according to the sensor manual it goes through the 995 * scaler before subsampling. 996 */ 997 if (mode->dn_mode == SCALING || 998 (mode->id == OV5640_MODE_720P_1280_720)) 999 mipi_div = OV5640_MIPI_DIV_SCLK; 1000 else 1001 mipi_div = OV5640_MIPI_DIV_PCLK; 1002 1003 ov5640_calc_sys_clk(sensor, rate, &prediv, &mult, &sysdiv); 1004 1005 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0, 1006 0x0f, OV5640_PLL_CTRL0_MIPI_MODE_8BIT); 1007 1008 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1, 1009 0xff, sysdiv << 4 | mipi_div); 1010 if (ret) 1011 return ret; 1012 1013 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2, 0xff, mult); 1014 if (ret) 1015 return ret; 1016 1017 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3, 1018 0x1f, OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 | prediv); 1019 if (ret) 1020 return ret; 1021 1022 return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 1023 0x30, OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS); 1024 } 1025 1026 static unsigned long ov5640_calc_pclk(struct ov5640_dev *sensor, 1027 unsigned long rate, 1028 u8 *pll_prediv, u8 *pll_mult, u8 *sysdiv, 1029 u8 *pll_rdiv, u8 *bit_div, u8 *pclk_div) 1030 { 1031 unsigned long _rate = rate * OV5640_PLL_ROOT_DIV * OV5640_BIT_DIV * 1032 OV5640_PCLK_ROOT_DIV; 1033 1034 _rate = ov5640_calc_sys_clk(sensor, _rate, pll_prediv, pll_mult, 1035 sysdiv); 1036 *pll_rdiv = OV5640_PLL_ROOT_DIV; 1037 *bit_div = OV5640_BIT_DIV; 1038 *pclk_div = OV5640_PCLK_ROOT_DIV; 1039 1040 return _rate / *pll_rdiv / *bit_div / *pclk_div; 1041 } 1042 1043 static int ov5640_set_dvp_pclk(struct ov5640_dev *sensor, unsigned long rate) 1044 { 1045 u8 prediv, mult, sysdiv, pll_rdiv, bit_div, pclk_div; 1046 int ret; 1047 1048 ov5640_calc_pclk(sensor, rate, &prediv, &mult, &sysdiv, &pll_rdiv, 1049 &bit_div, &pclk_div); 1050 1051 if (bit_div == 2) 1052 bit_div = 8; 1053 1054 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0, 1055 0x0f, bit_div); 1056 if (ret) 1057 return ret; 1058 1059 /* 1060 * We need to set sysdiv according to the clock, and to clear 1061 * the MIPI divider. 1062 */ 1063 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1, 1064 0xff, sysdiv << 4); 1065 if (ret) 1066 return ret; 1067 1068 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2, 1069 0xff, mult); 1070 if (ret) 1071 return ret; 1072 1073 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3, 1074 0x1f, prediv | ((pll_rdiv - 1) << 4)); 1075 if (ret) 1076 return ret; 1077 1078 return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x30, 1079 (ilog2(pclk_div) << 4)); 1080 } 1081 1082 /* set JPEG framing sizes */ 1083 static int ov5640_set_jpeg_timings(struct ov5640_dev *sensor, 1084 const struct ov5640_mode_info *mode) 1085 { 1086 int ret; 1087 1088 /* 1089 * compression mode 3 timing 1090 * 1091 * Data is transmitted with programmable width (VFIFO_HSIZE). 1092 * No padding done. Last line may have less data. Varying 1093 * number of lines per frame, depending on amount of data. 1094 */ 1095 ret = ov5640_mod_reg(sensor, OV5640_REG_JPG_MODE_SELECT, 0x7, 0x3); 1096 if (ret < 0) 1097 return ret; 1098 1099 ret = ov5640_write_reg16(sensor, OV5640_REG_VFIFO_HSIZE, mode->hact); 1100 if (ret < 0) 1101 return ret; 1102 1103 return ov5640_write_reg16(sensor, OV5640_REG_VFIFO_VSIZE, mode->vact); 1104 } 1105 1106 /* download ov5640 settings to sensor through i2c */ 1107 static int ov5640_set_timings(struct ov5640_dev *sensor, 1108 const struct ov5640_mode_info *mode) 1109 { 1110 int ret; 1111 1112 if (sensor->fmt.code == MEDIA_BUS_FMT_JPEG_1X8) { 1113 ret = ov5640_set_jpeg_timings(sensor, mode); 1114 if (ret < 0) 1115 return ret; 1116 } 1117 1118 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPHO, mode->hact); 1119 if (ret < 0) 1120 return ret; 1121 1122 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPVO, mode->vact); 1123 if (ret < 0) 1124 return ret; 1125 1126 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_HTS, mode->htot); 1127 if (ret < 0) 1128 return ret; 1129 1130 return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, mode->vtot); 1131 } 1132 1133 static int ov5640_load_regs(struct ov5640_dev *sensor, 1134 const struct ov5640_mode_info *mode) 1135 { 1136 const struct reg_value *regs = mode->reg_data; 1137 unsigned int i; 1138 u32 delay_ms; 1139 u16 reg_addr; 1140 u8 mask, val; 1141 int ret = 0; 1142 1143 for (i = 0; i < mode->reg_data_size; ++i, ++regs) { 1144 delay_ms = regs->delay_ms; 1145 reg_addr = regs->reg_addr; 1146 val = regs->val; 1147 mask = regs->mask; 1148 1149 /* remain in power down mode for DVP */ 1150 if (regs->reg_addr == OV5640_REG_SYS_CTRL0 && 1151 val == OV5640_REG_SYS_CTRL0_SW_PWUP && 1152 sensor->ep.bus_type != V4L2_MBUS_CSI2_DPHY) 1153 continue; 1154 1155 if (mask) 1156 ret = ov5640_mod_reg(sensor, reg_addr, mask, val); 1157 else 1158 ret = ov5640_write_reg(sensor, reg_addr, val); 1159 if (ret) 1160 break; 1161 1162 if (delay_ms) 1163 usleep_range(1000 * delay_ms, 1000 * delay_ms + 100); 1164 } 1165 1166 return ov5640_set_timings(sensor, mode); 1167 } 1168 1169 static int ov5640_set_autoexposure(struct ov5640_dev *sensor, bool on) 1170 { 1171 return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL, 1172 BIT(0), on ? 0 : BIT(0)); 1173 } 1174 1175 /* read exposure, in number of line periods */ 1176 static int ov5640_get_exposure(struct ov5640_dev *sensor) 1177 { 1178 int exp, ret; 1179 u8 temp; 1180 1181 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_HI, &temp); 1182 if (ret) 1183 return ret; 1184 exp = ((int)temp & 0x0f) << 16; 1185 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_MED, &temp); 1186 if (ret) 1187 return ret; 1188 exp |= ((int)temp << 8); 1189 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_LO, &temp); 1190 if (ret) 1191 return ret; 1192 exp |= (int)temp; 1193 1194 return exp >> 4; 1195 } 1196 1197 /* write exposure, given number of line periods */ 1198 static int ov5640_set_exposure(struct ov5640_dev *sensor, u32 exposure) 1199 { 1200 int ret; 1201 1202 exposure <<= 4; 1203 1204 ret = ov5640_write_reg(sensor, 1205 OV5640_REG_AEC_PK_EXPOSURE_LO, 1206 exposure & 0xff); 1207 if (ret) 1208 return ret; 1209 ret = ov5640_write_reg(sensor, 1210 OV5640_REG_AEC_PK_EXPOSURE_MED, 1211 (exposure >> 8) & 0xff); 1212 if (ret) 1213 return ret; 1214 return ov5640_write_reg(sensor, 1215 OV5640_REG_AEC_PK_EXPOSURE_HI, 1216 (exposure >> 16) & 0x0f); 1217 } 1218 1219 static int ov5640_get_gain(struct ov5640_dev *sensor) 1220 { 1221 u16 gain; 1222 int ret; 1223 1224 ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN, &gain); 1225 if (ret) 1226 return ret; 1227 1228 return gain & 0x3ff; 1229 } 1230 1231 static int ov5640_set_gain(struct ov5640_dev *sensor, int gain) 1232 { 1233 return ov5640_write_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN, 1234 (u16)gain & 0x3ff); 1235 } 1236 1237 static int ov5640_set_autogain(struct ov5640_dev *sensor, bool on) 1238 { 1239 return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL, 1240 BIT(1), on ? 0 : BIT(1)); 1241 } 1242 1243 static int ov5640_set_stream_dvp(struct ov5640_dev *sensor, bool on) 1244 { 1245 return ov5640_write_reg(sensor, OV5640_REG_SYS_CTRL0, on ? 1246 OV5640_REG_SYS_CTRL0_SW_PWUP : 1247 OV5640_REG_SYS_CTRL0_SW_PWDN); 1248 } 1249 1250 static int ov5640_set_stream_mipi(struct ov5640_dev *sensor, bool on) 1251 { 1252 int ret; 1253 1254 /* 1255 * Enable/disable the MIPI interface 1256 * 1257 * 0x300e = on ? 0x45 : 0x40 1258 * 1259 * FIXME: the sensor manual (version 2.03) reports 1260 * [7:5] = 000 : 1 data lane mode 1261 * [7:5] = 001 : 2 data lanes mode 1262 * But this settings do not work, while the following ones 1263 * have been validated for 2 data lanes mode. 1264 * 1265 * [7:5] = 010 : 2 data lanes mode 1266 * [4] = 0 : Power up MIPI HS Tx 1267 * [3] = 0 : Power up MIPI LS Rx 1268 * [2] = 1/0 : MIPI interface enable/disable 1269 * [1:0] = 01/00: FIXME: 'debug' 1270 */ 1271 ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 1272 on ? 0x45 : 0x40); 1273 if (ret) 1274 return ret; 1275 1276 return ov5640_write_reg(sensor, OV5640_REG_FRAME_CTRL01, 1277 on ? 0x00 : 0x0f); 1278 } 1279 1280 static int ov5640_get_sysclk(struct ov5640_dev *sensor) 1281 { 1282 /* calculate sysclk */ 1283 u32 xvclk = sensor->xclk_freq / 10000; 1284 u32 multiplier, prediv, VCO, sysdiv, pll_rdiv; 1285 u32 sclk_rdiv_map[] = {1, 2, 4, 8}; 1286 u32 bit_div2x = 1, sclk_rdiv, sysclk; 1287 u8 temp1, temp2; 1288 int ret; 1289 1290 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL0, &temp1); 1291 if (ret) 1292 return ret; 1293 temp2 = temp1 & 0x0f; 1294 if (temp2 == 8 || temp2 == 10) 1295 bit_div2x = temp2 / 2; 1296 1297 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL1, &temp1); 1298 if (ret) 1299 return ret; 1300 sysdiv = temp1 >> 4; 1301 if (sysdiv == 0) 1302 sysdiv = 16; 1303 1304 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL2, &temp1); 1305 if (ret) 1306 return ret; 1307 multiplier = temp1; 1308 1309 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL3, &temp1); 1310 if (ret) 1311 return ret; 1312 prediv = temp1 & 0x0f; 1313 pll_rdiv = ((temp1 >> 4) & 0x01) + 1; 1314 1315 ret = ov5640_read_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, &temp1); 1316 if (ret) 1317 return ret; 1318 temp2 = temp1 & 0x03; 1319 sclk_rdiv = sclk_rdiv_map[temp2]; 1320 1321 if (!prediv || !sysdiv || !pll_rdiv || !bit_div2x) 1322 return -EINVAL; 1323 1324 VCO = xvclk * multiplier / prediv; 1325 1326 sysclk = VCO / sysdiv / pll_rdiv * 2 / bit_div2x / sclk_rdiv; 1327 1328 return sysclk; 1329 } 1330 1331 static int ov5640_set_night_mode(struct ov5640_dev *sensor) 1332 { 1333 /* read HTS from register settings */ 1334 u8 mode; 1335 int ret; 1336 1337 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_CTRL00, &mode); 1338 if (ret) 1339 return ret; 1340 mode &= 0xfb; 1341 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL00, mode); 1342 } 1343 1344 static int ov5640_get_hts(struct ov5640_dev *sensor) 1345 { 1346 /* read HTS from register settings */ 1347 u16 hts; 1348 int ret; 1349 1350 ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_HTS, &hts); 1351 if (ret) 1352 return ret; 1353 return hts; 1354 } 1355 1356 static int ov5640_get_vts(struct ov5640_dev *sensor) 1357 { 1358 u16 vts; 1359 int ret; 1360 1361 ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_VTS, &vts); 1362 if (ret) 1363 return ret; 1364 return vts; 1365 } 1366 1367 static int ov5640_set_vts(struct ov5640_dev *sensor, int vts) 1368 { 1369 return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, vts); 1370 } 1371 1372 static int ov5640_get_light_freq(struct ov5640_dev *sensor) 1373 { 1374 /* get banding filter value */ 1375 int ret, light_freq = 0; 1376 u8 temp, temp1; 1377 1378 ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL01, &temp); 1379 if (ret) 1380 return ret; 1381 1382 if (temp & 0x80) { 1383 /* manual */ 1384 ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL00, 1385 &temp1); 1386 if (ret) 1387 return ret; 1388 if (temp1 & 0x04) { 1389 /* 50Hz */ 1390 light_freq = 50; 1391 } else { 1392 /* 60Hz */ 1393 light_freq = 60; 1394 } 1395 } else { 1396 /* auto */ 1397 ret = ov5640_read_reg(sensor, OV5640_REG_SIGMADELTA_CTRL0C, 1398 &temp1); 1399 if (ret) 1400 return ret; 1401 1402 if (temp1 & 0x01) { 1403 /* 50Hz */ 1404 light_freq = 50; 1405 } else { 1406 /* 60Hz */ 1407 } 1408 } 1409 1410 return light_freq; 1411 } 1412 1413 static int ov5640_set_bandingfilter(struct ov5640_dev *sensor) 1414 { 1415 u32 band_step60, max_band60, band_step50, max_band50, prev_vts; 1416 int ret; 1417 1418 /* read preview PCLK */ 1419 ret = ov5640_get_sysclk(sensor); 1420 if (ret < 0) 1421 return ret; 1422 if (ret == 0) 1423 return -EINVAL; 1424 sensor->prev_sysclk = ret; 1425 /* read preview HTS */ 1426 ret = ov5640_get_hts(sensor); 1427 if (ret < 0) 1428 return ret; 1429 if (ret == 0) 1430 return -EINVAL; 1431 sensor->prev_hts = ret; 1432 1433 /* read preview VTS */ 1434 ret = ov5640_get_vts(sensor); 1435 if (ret < 0) 1436 return ret; 1437 prev_vts = ret; 1438 1439 /* calculate banding filter */ 1440 /* 60Hz */ 1441 band_step60 = sensor->prev_sysclk * 100 / sensor->prev_hts * 100 / 120; 1442 ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B60_STEP, band_step60); 1443 if (ret) 1444 return ret; 1445 if (!band_step60) 1446 return -EINVAL; 1447 max_band60 = (int)((prev_vts - 4) / band_step60); 1448 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0D, max_band60); 1449 if (ret) 1450 return ret; 1451 1452 /* 50Hz */ 1453 band_step50 = sensor->prev_sysclk * 100 / sensor->prev_hts; 1454 ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B50_STEP, band_step50); 1455 if (ret) 1456 return ret; 1457 if (!band_step50) 1458 return -EINVAL; 1459 max_band50 = (int)((prev_vts - 4) / band_step50); 1460 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0E, max_band50); 1461 } 1462 1463 static int ov5640_set_ae_target(struct ov5640_dev *sensor, int target) 1464 { 1465 /* stable in high */ 1466 u32 fast_high, fast_low; 1467 int ret; 1468 1469 sensor->ae_low = target * 23 / 25; /* 0.92 */ 1470 sensor->ae_high = target * 27 / 25; /* 1.08 */ 1471 1472 fast_high = sensor->ae_high << 1; 1473 if (fast_high > 255) 1474 fast_high = 255; 1475 1476 fast_low = sensor->ae_low >> 1; 1477 1478 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0F, sensor->ae_high); 1479 if (ret) 1480 return ret; 1481 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL10, sensor->ae_low); 1482 if (ret) 1483 return ret; 1484 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1B, sensor->ae_high); 1485 if (ret) 1486 return ret; 1487 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1E, sensor->ae_low); 1488 if (ret) 1489 return ret; 1490 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL11, fast_high); 1491 if (ret) 1492 return ret; 1493 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1F, fast_low); 1494 } 1495 1496 static int ov5640_get_binning(struct ov5640_dev *sensor) 1497 { 1498 u8 temp; 1499 int ret; 1500 1501 ret = ov5640_read_reg(sensor, OV5640_REG_TIMING_TC_REG21, &temp); 1502 if (ret) 1503 return ret; 1504 1505 return temp & BIT(0); 1506 } 1507 1508 static int ov5640_set_binning(struct ov5640_dev *sensor, bool enable) 1509 { 1510 int ret; 1511 1512 /* 1513 * TIMING TC REG21: 1514 * - [0]: Horizontal binning enable 1515 */ 1516 ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21, 1517 BIT(0), enable ? BIT(0) : 0); 1518 if (ret) 1519 return ret; 1520 /* 1521 * TIMING TC REG20: 1522 * - [0]: Undocumented, but hardcoded init sequences 1523 * are always setting REG21/REG20 bit 0 to same value... 1524 */ 1525 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20, 1526 BIT(0), enable ? BIT(0) : 0); 1527 } 1528 1529 static int ov5640_set_virtual_channel(struct ov5640_dev *sensor) 1530 { 1531 struct i2c_client *client = sensor->i2c_client; 1532 u8 temp, channel = virtual_channel; 1533 int ret; 1534 1535 if (channel > 3) { 1536 dev_err(&client->dev, 1537 "%s: wrong virtual_channel parameter, expected (0..3), got %d\n", 1538 __func__, channel); 1539 return -EINVAL; 1540 } 1541 1542 ret = ov5640_read_reg(sensor, OV5640_REG_DEBUG_MODE, &temp); 1543 if (ret) 1544 return ret; 1545 temp &= ~(3 << 6); 1546 temp |= (channel << 6); 1547 return ov5640_write_reg(sensor, OV5640_REG_DEBUG_MODE, temp); 1548 } 1549 1550 static const struct ov5640_mode_info * 1551 ov5640_find_mode(struct ov5640_dev *sensor, enum ov5640_frame_rate fr, 1552 int width, int height, bool nearest) 1553 { 1554 const struct ov5640_mode_info *mode; 1555 1556 mode = v4l2_find_nearest_size(ov5640_mode_data, 1557 ARRAY_SIZE(ov5640_mode_data), 1558 hact, vact, 1559 width, height); 1560 1561 if (!mode || 1562 (!nearest && (mode->hact != width || mode->vact != height))) 1563 return NULL; 1564 1565 /* Check to see if the current mode exceeds the max frame rate */ 1566 if (ov5640_framerates[fr] > ov5640_framerates[mode->max_fps]) 1567 return NULL; 1568 1569 return mode; 1570 } 1571 1572 static u64 ov5640_calc_pixel_rate(struct ov5640_dev *sensor) 1573 { 1574 u64 rate; 1575 1576 rate = sensor->current_mode->vtot * sensor->current_mode->htot; 1577 rate *= ov5640_framerates[sensor->current_fr]; 1578 1579 return rate; 1580 } 1581 1582 /* 1583 * sensor changes between scaling and subsampling, go through 1584 * exposure calculation 1585 */ 1586 static int ov5640_set_mode_exposure_calc(struct ov5640_dev *sensor, 1587 const struct ov5640_mode_info *mode) 1588 { 1589 u32 prev_shutter, prev_gain16; 1590 u32 cap_shutter, cap_gain16; 1591 u32 cap_sysclk, cap_hts, cap_vts; 1592 u32 light_freq, cap_bandfilt, cap_maxband; 1593 u32 cap_gain16_shutter; 1594 u8 average; 1595 int ret; 1596 1597 if (!mode->reg_data) 1598 return -EINVAL; 1599 1600 /* read preview shutter */ 1601 ret = ov5640_get_exposure(sensor); 1602 if (ret < 0) 1603 return ret; 1604 prev_shutter = ret; 1605 ret = ov5640_get_binning(sensor); 1606 if (ret < 0) 1607 return ret; 1608 if (ret && mode->id != OV5640_MODE_720P_1280_720 && 1609 mode->id != OV5640_MODE_1080P_1920_1080) 1610 prev_shutter *= 2; 1611 1612 /* read preview gain */ 1613 ret = ov5640_get_gain(sensor); 1614 if (ret < 0) 1615 return ret; 1616 prev_gain16 = ret; 1617 1618 /* get average */ 1619 ret = ov5640_read_reg(sensor, OV5640_REG_AVG_READOUT, &average); 1620 if (ret) 1621 return ret; 1622 1623 /* turn off night mode for capture */ 1624 ret = ov5640_set_night_mode(sensor); 1625 if (ret < 0) 1626 return ret; 1627 1628 /* Write capture setting */ 1629 ret = ov5640_load_regs(sensor, mode); 1630 if (ret < 0) 1631 return ret; 1632 1633 /* read capture VTS */ 1634 ret = ov5640_get_vts(sensor); 1635 if (ret < 0) 1636 return ret; 1637 cap_vts = ret; 1638 ret = ov5640_get_hts(sensor); 1639 if (ret < 0) 1640 return ret; 1641 if (ret == 0) 1642 return -EINVAL; 1643 cap_hts = ret; 1644 1645 ret = ov5640_get_sysclk(sensor); 1646 if (ret < 0) 1647 return ret; 1648 if (ret == 0) 1649 return -EINVAL; 1650 cap_sysclk = ret; 1651 1652 /* calculate capture banding filter */ 1653 ret = ov5640_get_light_freq(sensor); 1654 if (ret < 0) 1655 return ret; 1656 light_freq = ret; 1657 1658 if (light_freq == 60) { 1659 /* 60Hz */ 1660 cap_bandfilt = cap_sysclk * 100 / cap_hts * 100 / 120; 1661 } else { 1662 /* 50Hz */ 1663 cap_bandfilt = cap_sysclk * 100 / cap_hts; 1664 } 1665 1666 if (!sensor->prev_sysclk) { 1667 ret = ov5640_get_sysclk(sensor); 1668 if (ret < 0) 1669 return ret; 1670 if (ret == 0) 1671 return -EINVAL; 1672 sensor->prev_sysclk = ret; 1673 } 1674 1675 if (!cap_bandfilt) 1676 return -EINVAL; 1677 1678 cap_maxband = (int)((cap_vts - 4) / cap_bandfilt); 1679 1680 /* calculate capture shutter/gain16 */ 1681 if (average > sensor->ae_low && average < sensor->ae_high) { 1682 /* in stable range */ 1683 cap_gain16_shutter = 1684 prev_gain16 * prev_shutter * 1685 cap_sysclk / sensor->prev_sysclk * 1686 sensor->prev_hts / cap_hts * 1687 sensor->ae_target / average; 1688 } else { 1689 cap_gain16_shutter = 1690 prev_gain16 * prev_shutter * 1691 cap_sysclk / sensor->prev_sysclk * 1692 sensor->prev_hts / cap_hts; 1693 } 1694 1695 /* gain to shutter */ 1696 if (cap_gain16_shutter < (cap_bandfilt * 16)) { 1697 /* shutter < 1/100 */ 1698 cap_shutter = cap_gain16_shutter / 16; 1699 if (cap_shutter < 1) 1700 cap_shutter = 1; 1701 1702 cap_gain16 = cap_gain16_shutter / cap_shutter; 1703 if (cap_gain16 < 16) 1704 cap_gain16 = 16; 1705 } else { 1706 if (cap_gain16_shutter > (cap_bandfilt * cap_maxband * 16)) { 1707 /* exposure reach max */ 1708 cap_shutter = cap_bandfilt * cap_maxband; 1709 if (!cap_shutter) 1710 return -EINVAL; 1711 1712 cap_gain16 = cap_gain16_shutter / cap_shutter; 1713 } else { 1714 /* 1/100 < (cap_shutter = n/100) =< max */ 1715 cap_shutter = 1716 ((int)(cap_gain16_shutter / 16 / cap_bandfilt)) 1717 * cap_bandfilt; 1718 if (!cap_shutter) 1719 return -EINVAL; 1720 1721 cap_gain16 = cap_gain16_shutter / cap_shutter; 1722 } 1723 } 1724 1725 /* set capture gain */ 1726 ret = ov5640_set_gain(sensor, cap_gain16); 1727 if (ret) 1728 return ret; 1729 1730 /* write capture shutter */ 1731 if (cap_shutter > (cap_vts - 4)) { 1732 cap_vts = cap_shutter + 4; 1733 ret = ov5640_set_vts(sensor, cap_vts); 1734 if (ret < 0) 1735 return ret; 1736 } 1737 1738 /* set exposure */ 1739 return ov5640_set_exposure(sensor, cap_shutter); 1740 } 1741 1742 /* 1743 * if sensor changes inside scaling or subsampling 1744 * change mode directly 1745 */ 1746 static int ov5640_set_mode_direct(struct ov5640_dev *sensor, 1747 const struct ov5640_mode_info *mode) 1748 { 1749 if (!mode->reg_data) 1750 return -EINVAL; 1751 1752 /* Write capture setting */ 1753 return ov5640_load_regs(sensor, mode); 1754 } 1755 1756 static int ov5640_set_mode(struct ov5640_dev *sensor) 1757 { 1758 const struct ov5640_mode_info *mode = sensor->current_mode; 1759 const struct ov5640_mode_info *orig_mode = sensor->last_mode; 1760 enum ov5640_downsize_mode dn_mode, orig_dn_mode; 1761 bool auto_gain = sensor->ctrls.auto_gain->val == 1; 1762 bool auto_exp = sensor->ctrls.auto_exp->val == V4L2_EXPOSURE_AUTO; 1763 unsigned long rate; 1764 int ret; 1765 1766 dn_mode = mode->dn_mode; 1767 orig_dn_mode = orig_mode->dn_mode; 1768 1769 /* auto gain and exposure must be turned off when changing modes */ 1770 if (auto_gain) { 1771 ret = ov5640_set_autogain(sensor, false); 1772 if (ret) 1773 return ret; 1774 } 1775 1776 if (auto_exp) { 1777 ret = ov5640_set_autoexposure(sensor, false); 1778 if (ret) 1779 goto restore_auto_gain; 1780 } 1781 1782 /* 1783 * All the formats we support have 16 bits per pixel, seems to require 1784 * the same rate than YUV, so we can just use 16 bpp all the time. 1785 */ 1786 rate = ov5640_calc_pixel_rate(sensor) * 16; 1787 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) { 1788 rate = rate / sensor->ep.bus.mipi_csi2.num_data_lanes; 1789 ret = ov5640_set_mipi_pclk(sensor, rate); 1790 } else { 1791 rate = rate / sensor->ep.bus.parallel.bus_width; 1792 ret = ov5640_set_dvp_pclk(sensor, rate); 1793 } 1794 1795 if (ret < 0) 1796 return 0; 1797 1798 if ((dn_mode == SUBSAMPLING && orig_dn_mode == SCALING) || 1799 (dn_mode == SCALING && orig_dn_mode == SUBSAMPLING)) { 1800 /* 1801 * change between subsampling and scaling 1802 * go through exposure calculation 1803 */ 1804 ret = ov5640_set_mode_exposure_calc(sensor, mode); 1805 } else { 1806 /* 1807 * change inside subsampling or scaling 1808 * download firmware directly 1809 */ 1810 ret = ov5640_set_mode_direct(sensor, mode); 1811 } 1812 if (ret < 0) 1813 goto restore_auto_exp_gain; 1814 1815 /* restore auto gain and exposure */ 1816 if (auto_gain) 1817 ov5640_set_autogain(sensor, true); 1818 if (auto_exp) 1819 ov5640_set_autoexposure(sensor, true); 1820 1821 ret = ov5640_set_binning(sensor, dn_mode != SCALING); 1822 if (ret < 0) 1823 return ret; 1824 ret = ov5640_set_ae_target(sensor, sensor->ae_target); 1825 if (ret < 0) 1826 return ret; 1827 ret = ov5640_get_light_freq(sensor); 1828 if (ret < 0) 1829 return ret; 1830 ret = ov5640_set_bandingfilter(sensor); 1831 if (ret < 0) 1832 return ret; 1833 ret = ov5640_set_virtual_channel(sensor); 1834 if (ret < 0) 1835 return ret; 1836 1837 sensor->pending_mode_change = false; 1838 sensor->last_mode = mode; 1839 1840 return 0; 1841 1842 restore_auto_exp_gain: 1843 if (auto_exp) 1844 ov5640_set_autoexposure(sensor, true); 1845 restore_auto_gain: 1846 if (auto_gain) 1847 ov5640_set_autogain(sensor, true); 1848 1849 return ret; 1850 } 1851 1852 static int ov5640_set_framefmt(struct ov5640_dev *sensor, 1853 struct v4l2_mbus_framefmt *format); 1854 1855 /* restore the last set video mode after chip power-on */ 1856 static int ov5640_restore_mode(struct ov5640_dev *sensor) 1857 { 1858 int ret; 1859 1860 /* first load the initial register values */ 1861 ret = ov5640_load_regs(sensor, &ov5640_mode_init_data); 1862 if (ret < 0) 1863 return ret; 1864 sensor->last_mode = &ov5640_mode_init_data; 1865 1866 ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x3f, 1867 (ilog2(OV5640_SCLK2X_ROOT_DIV) << 2) | 1868 ilog2(OV5640_SCLK_ROOT_DIV)); 1869 if (ret) 1870 return ret; 1871 1872 /* now restore the last capture mode */ 1873 ret = ov5640_set_mode(sensor); 1874 if (ret < 0) 1875 return ret; 1876 1877 return ov5640_set_framefmt(sensor, &sensor->fmt); 1878 } 1879 1880 static void ov5640_power(struct ov5640_dev *sensor, bool enable) 1881 { 1882 gpiod_set_value_cansleep(sensor->pwdn_gpio, enable ? 0 : 1); 1883 } 1884 1885 static void ov5640_reset(struct ov5640_dev *sensor) 1886 { 1887 if (!sensor->reset_gpio) 1888 return; 1889 1890 gpiod_set_value_cansleep(sensor->reset_gpio, 0); 1891 1892 /* camera power cycle */ 1893 ov5640_power(sensor, false); 1894 usleep_range(5000, 10000); 1895 ov5640_power(sensor, true); 1896 usleep_range(5000, 10000); 1897 1898 gpiod_set_value_cansleep(sensor->reset_gpio, 1); 1899 usleep_range(1000, 2000); 1900 1901 gpiod_set_value_cansleep(sensor->reset_gpio, 0); 1902 usleep_range(20000, 25000); 1903 } 1904 1905 static int ov5640_set_power_on(struct ov5640_dev *sensor) 1906 { 1907 struct i2c_client *client = sensor->i2c_client; 1908 int ret; 1909 1910 ret = clk_prepare_enable(sensor->xclk); 1911 if (ret) { 1912 dev_err(&client->dev, "%s: failed to enable clock\n", 1913 __func__); 1914 return ret; 1915 } 1916 1917 ret = regulator_bulk_enable(OV5640_NUM_SUPPLIES, 1918 sensor->supplies); 1919 if (ret) { 1920 dev_err(&client->dev, "%s: failed to enable regulators\n", 1921 __func__); 1922 goto xclk_off; 1923 } 1924 1925 ov5640_reset(sensor); 1926 ov5640_power(sensor, true); 1927 1928 ret = ov5640_init_slave_id(sensor); 1929 if (ret) 1930 goto power_off; 1931 1932 return 0; 1933 1934 power_off: 1935 ov5640_power(sensor, false); 1936 regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies); 1937 xclk_off: 1938 clk_disable_unprepare(sensor->xclk); 1939 return ret; 1940 } 1941 1942 static void ov5640_set_power_off(struct ov5640_dev *sensor) 1943 { 1944 ov5640_power(sensor, false); 1945 regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies); 1946 clk_disable_unprepare(sensor->xclk); 1947 } 1948 1949 static int ov5640_set_power_mipi(struct ov5640_dev *sensor, bool on) 1950 { 1951 int ret; 1952 1953 if (!on) { 1954 /* Reset MIPI bus settings to their default values. */ 1955 ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x58); 1956 ov5640_write_reg(sensor, OV5640_REG_MIPI_CTRL00, 0x04); 1957 ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT00, 0x00); 1958 return 0; 1959 } 1960 1961 /* 1962 * Power up MIPI HS Tx and LS Rx; 2 data lanes mode 1963 * 1964 * 0x300e = 0x40 1965 * [7:5] = 010 : 2 data lanes mode (see FIXME note in 1966 * "ov5640_set_stream_mipi()") 1967 * [4] = 0 : Power up MIPI HS Tx 1968 * [3] = 0 : Power up MIPI LS Rx 1969 * [2] = 0 : MIPI interface disabled 1970 */ 1971 ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x40); 1972 if (ret) 1973 return ret; 1974 1975 /* 1976 * Gate clock and set LP11 in 'no packets mode' (idle) 1977 * 1978 * 0x4800 = 0x24 1979 * [5] = 1 : Gate clock when 'no packets' 1980 * [2] = 1 : MIPI bus in LP11 when 'no packets' 1981 */ 1982 ret = ov5640_write_reg(sensor, OV5640_REG_MIPI_CTRL00, 0x24); 1983 if (ret) 1984 return ret; 1985 1986 /* 1987 * Set data lanes and clock in LP11 when 'sleeping' 1988 * 1989 * 0x3019 = 0x70 1990 * [6] = 1 : MIPI data lane 2 in LP11 when 'sleeping' 1991 * [5] = 1 : MIPI data lane 1 in LP11 when 'sleeping' 1992 * [4] = 1 : MIPI clock lane in LP11 when 'sleeping' 1993 */ 1994 ret = ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT00, 0x70); 1995 if (ret) 1996 return ret; 1997 1998 /* Give lanes some time to coax into LP11 state. */ 1999 usleep_range(500, 1000); 2000 2001 return 0; 2002 } 2003 2004 static int ov5640_set_power_dvp(struct ov5640_dev *sensor, bool on) 2005 { 2006 unsigned int flags = sensor->ep.bus.parallel.flags; 2007 bool bt656 = sensor->ep.bus_type == V4L2_MBUS_BT656; 2008 u8 polarities = 0; 2009 int ret; 2010 2011 if (!on) { 2012 /* Reset settings to their default values. */ 2013 ov5640_write_reg(sensor, OV5640_REG_CCIR656_CTRL00, 0x00); 2014 ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x58); 2015 ov5640_write_reg(sensor, OV5640_REG_POLARITY_CTRL00, 0x20); 2016 ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE01, 0x00); 2017 ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE02, 0x00); 2018 return 0; 2019 } 2020 2021 /* 2022 * Note about parallel port configuration. 2023 * 2024 * When configured in parallel mode, the OV5640 will 2025 * output 10 bits data on DVP data lines [9:0]. 2026 * If only 8 bits data are wanted, the 8 bits data lines 2027 * of the camera interface must be physically connected 2028 * on the DVP data lines [9:2]. 2029 * 2030 * Control lines polarity can be configured through 2031 * devicetree endpoint control lines properties. 2032 * If no endpoint control lines properties are set, 2033 * polarity will be as below: 2034 * - VSYNC: active high 2035 * - HREF: active low 2036 * - PCLK: active low 2037 * 2038 * VSYNC & HREF are not configured if BT656 bus mode is selected 2039 */ 2040 2041 /* 2042 * BT656 embedded synchronization configuration 2043 * 2044 * CCIR656 CTRL00 2045 * - [7]: SYNC code selection (0: auto generate sync code, 2046 * 1: sync code from regs 0x4732-0x4735) 2047 * - [6]: f value in CCIR656 SYNC code when fixed f value 2048 * - [5]: Fixed f value 2049 * - [4:3]: Blank toggle data options (00: data=1'h040/1'h200, 2050 * 01: data from regs 0x4736-0x4738, 10: always keep 0) 2051 * - [1]: Clip data disable 2052 * - [0]: CCIR656 mode enable 2053 * 2054 * Default CCIR656 SAV/EAV mode with default codes 2055 * SAV=0xff000080 & EAV=0xff00009d is enabled here with settings: 2056 * - CCIR656 mode enable 2057 * - auto generation of sync codes 2058 * - blank toggle data 1'h040/1'h200 2059 * - clip reserved data (0x00 & 0xff changed to 0x01 & 0xfe) 2060 */ 2061 ret = ov5640_write_reg(sensor, OV5640_REG_CCIR656_CTRL00, 2062 bt656 ? 0x01 : 0x00); 2063 if (ret) 2064 return ret; 2065 2066 /* 2067 * configure parallel port control lines polarity 2068 * 2069 * POLARITY CTRL0 2070 * - [5]: PCLK polarity (0: active low, 1: active high) 2071 * - [1]: HREF polarity (0: active low, 1: active high) 2072 * - [0]: VSYNC polarity (mismatch here between 2073 * datasheet and hardware, 0 is active high 2074 * and 1 is active low...) 2075 */ 2076 if (!bt656) { 2077 if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH) 2078 polarities |= BIT(1); 2079 if (flags & V4L2_MBUS_VSYNC_ACTIVE_LOW) 2080 polarities |= BIT(0); 2081 } 2082 if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING) 2083 polarities |= BIT(5); 2084 2085 ret = ov5640_write_reg(sensor, OV5640_REG_POLARITY_CTRL00, polarities); 2086 if (ret) 2087 return ret; 2088 2089 /* 2090 * powerdown MIPI TX/RX PHY & enable DVP 2091 * 2092 * MIPI CONTROL 00 2093 * [4] = 1 : Power down MIPI HS Tx 2094 * [3] = 1 : Power down MIPI LS Rx 2095 * [2] = 0 : DVP enable (MIPI disable) 2096 */ 2097 ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x18); 2098 if (ret) 2099 return ret; 2100 2101 /* 2102 * enable VSYNC/HREF/PCLK DVP control lines 2103 * & D[9:6] DVP data lines 2104 * 2105 * PAD OUTPUT ENABLE 01 2106 * - 6: VSYNC output enable 2107 * - 5: HREF output enable 2108 * - 4: PCLK output enable 2109 * - [3:0]: D[9:6] output enable 2110 */ 2111 ret = ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE01, 2112 bt656 ? 0x1f : 0x7f); 2113 if (ret) 2114 return ret; 2115 2116 /* 2117 * enable D[5:0] DVP data lines 2118 * 2119 * PAD OUTPUT ENABLE 02 2120 * - [7:2]: D[5:0] output enable 2121 */ 2122 return ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE02, 0xfc); 2123 } 2124 2125 static int ov5640_set_power(struct ov5640_dev *sensor, bool on) 2126 { 2127 int ret = 0; 2128 2129 if (on) { 2130 ret = ov5640_set_power_on(sensor); 2131 if (ret) 2132 return ret; 2133 2134 ret = ov5640_restore_mode(sensor); 2135 if (ret) 2136 goto power_off; 2137 } 2138 2139 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) 2140 ret = ov5640_set_power_mipi(sensor, on); 2141 else 2142 ret = ov5640_set_power_dvp(sensor, on); 2143 if (ret) 2144 goto power_off; 2145 2146 if (!on) 2147 ov5640_set_power_off(sensor); 2148 2149 return 0; 2150 2151 power_off: 2152 ov5640_set_power_off(sensor); 2153 return ret; 2154 } 2155 2156 /* --------------- Subdev Operations --------------- */ 2157 2158 static int ov5640_s_power(struct v4l2_subdev *sd, int on) 2159 { 2160 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2161 int ret = 0; 2162 2163 mutex_lock(&sensor->lock); 2164 2165 /* 2166 * If the power count is modified from 0 to != 0 or from != 0 to 0, 2167 * update the power state. 2168 */ 2169 if (sensor->power_count == !on) { 2170 ret = ov5640_set_power(sensor, !!on); 2171 if (ret) 2172 goto out; 2173 } 2174 2175 /* Update the power count. */ 2176 sensor->power_count += on ? 1 : -1; 2177 WARN_ON(sensor->power_count < 0); 2178 out: 2179 mutex_unlock(&sensor->lock); 2180 2181 if (on && !ret && sensor->power_count == 1) { 2182 /* restore controls */ 2183 ret = v4l2_ctrl_handler_setup(&sensor->ctrls.handler); 2184 } 2185 2186 return ret; 2187 } 2188 2189 static int ov5640_try_frame_interval(struct ov5640_dev *sensor, 2190 struct v4l2_fract *fi, 2191 u32 width, u32 height) 2192 { 2193 const struct ov5640_mode_info *mode; 2194 enum ov5640_frame_rate rate = OV5640_15_FPS; 2195 int minfps, maxfps, best_fps, fps; 2196 int i; 2197 2198 minfps = ov5640_framerates[OV5640_15_FPS]; 2199 maxfps = ov5640_framerates[OV5640_60_FPS]; 2200 2201 if (fi->numerator == 0) { 2202 fi->denominator = maxfps; 2203 fi->numerator = 1; 2204 rate = OV5640_60_FPS; 2205 goto find_mode; 2206 } 2207 2208 fps = clamp_val(DIV_ROUND_CLOSEST(fi->denominator, fi->numerator), 2209 minfps, maxfps); 2210 2211 best_fps = minfps; 2212 for (i = 0; i < ARRAY_SIZE(ov5640_framerates); i++) { 2213 int curr_fps = ov5640_framerates[i]; 2214 2215 if (abs(curr_fps - fps) < abs(best_fps - fps)) { 2216 best_fps = curr_fps; 2217 rate = i; 2218 } 2219 } 2220 2221 fi->numerator = 1; 2222 fi->denominator = best_fps; 2223 2224 find_mode: 2225 mode = ov5640_find_mode(sensor, rate, width, height, false); 2226 return mode ? rate : -EINVAL; 2227 } 2228 2229 static int ov5640_get_fmt(struct v4l2_subdev *sd, 2230 struct v4l2_subdev_state *sd_state, 2231 struct v4l2_subdev_format *format) 2232 { 2233 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2234 struct v4l2_mbus_framefmt *fmt; 2235 2236 if (format->pad != 0) 2237 return -EINVAL; 2238 2239 mutex_lock(&sensor->lock); 2240 2241 if (format->which == V4L2_SUBDEV_FORMAT_TRY) 2242 fmt = v4l2_subdev_get_try_format(&sensor->sd, sd_state, 2243 format->pad); 2244 else 2245 fmt = &sensor->fmt; 2246 2247 format->format = *fmt; 2248 2249 mutex_unlock(&sensor->lock); 2250 2251 return 0; 2252 } 2253 2254 static int ov5640_try_fmt_internal(struct v4l2_subdev *sd, 2255 struct v4l2_mbus_framefmt *fmt, 2256 enum ov5640_frame_rate fr, 2257 const struct ov5640_mode_info **new_mode) 2258 { 2259 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2260 const struct ov5640_mode_info *mode; 2261 int i; 2262 2263 mode = ov5640_find_mode(sensor, fr, fmt->width, fmt->height, true); 2264 if (!mode) 2265 return -EINVAL; 2266 fmt->width = mode->hact; 2267 fmt->height = mode->vact; 2268 2269 if (new_mode) 2270 *new_mode = mode; 2271 2272 for (i = 0; i < ARRAY_SIZE(ov5640_formats); i++) 2273 if (ov5640_formats[i].code == fmt->code) 2274 break; 2275 if (i >= ARRAY_SIZE(ov5640_formats)) 2276 i = 0; 2277 2278 fmt->code = ov5640_formats[i].code; 2279 fmt->colorspace = ov5640_formats[i].colorspace; 2280 fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace); 2281 fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE; 2282 fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace); 2283 2284 return 0; 2285 } 2286 2287 static int ov5640_set_fmt(struct v4l2_subdev *sd, 2288 struct v4l2_subdev_state *sd_state, 2289 struct v4l2_subdev_format *format) 2290 { 2291 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2292 const struct ov5640_mode_info *new_mode; 2293 struct v4l2_mbus_framefmt *mbus_fmt = &format->format; 2294 struct v4l2_mbus_framefmt *fmt; 2295 int ret; 2296 2297 if (format->pad != 0) 2298 return -EINVAL; 2299 2300 mutex_lock(&sensor->lock); 2301 2302 if (sensor->streaming) { 2303 ret = -EBUSY; 2304 goto out; 2305 } 2306 2307 ret = ov5640_try_fmt_internal(sd, mbus_fmt, 2308 sensor->current_fr, &new_mode); 2309 if (ret) 2310 goto out; 2311 2312 if (format->which == V4L2_SUBDEV_FORMAT_TRY) 2313 fmt = v4l2_subdev_get_try_format(sd, sd_state, 0); 2314 else 2315 fmt = &sensor->fmt; 2316 2317 *fmt = *mbus_fmt; 2318 2319 if (new_mode != sensor->current_mode) { 2320 sensor->current_mode = new_mode; 2321 sensor->pending_mode_change = true; 2322 } 2323 if (mbus_fmt->code != sensor->fmt.code) 2324 sensor->pending_fmt_change = true; 2325 2326 __v4l2_ctrl_s_ctrl_int64(sensor->ctrls.pixel_rate, 2327 ov5640_calc_pixel_rate(sensor)); 2328 out: 2329 mutex_unlock(&sensor->lock); 2330 return ret; 2331 } 2332 2333 static int ov5640_set_framefmt(struct ov5640_dev *sensor, 2334 struct v4l2_mbus_framefmt *format) 2335 { 2336 int ret = 0; 2337 bool is_jpeg = false; 2338 u8 fmt, mux; 2339 2340 switch (format->code) { 2341 case MEDIA_BUS_FMT_UYVY8_2X8: 2342 /* YUV422, UYVY */ 2343 fmt = 0x3f; 2344 mux = OV5640_FMT_MUX_YUV422; 2345 break; 2346 case MEDIA_BUS_FMT_YUYV8_2X8: 2347 /* YUV422, YUYV */ 2348 fmt = 0x30; 2349 mux = OV5640_FMT_MUX_YUV422; 2350 break; 2351 case MEDIA_BUS_FMT_RGB565_2X8_LE: 2352 /* RGB565 {g[2:0],b[4:0]},{r[4:0],g[5:3]} */ 2353 fmt = 0x6F; 2354 mux = OV5640_FMT_MUX_RGB; 2355 break; 2356 case MEDIA_BUS_FMT_RGB565_2X8_BE: 2357 /* RGB565 {r[4:0],g[5:3]},{g[2:0],b[4:0]} */ 2358 fmt = 0x61; 2359 mux = OV5640_FMT_MUX_RGB; 2360 break; 2361 case MEDIA_BUS_FMT_JPEG_1X8: 2362 /* YUV422, YUYV */ 2363 fmt = 0x30; 2364 mux = OV5640_FMT_MUX_YUV422; 2365 is_jpeg = true; 2366 break; 2367 case MEDIA_BUS_FMT_SBGGR8_1X8: 2368 /* Raw, BGBG... / GRGR... */ 2369 fmt = 0x00; 2370 mux = OV5640_FMT_MUX_RAW_DPC; 2371 break; 2372 case MEDIA_BUS_FMT_SGBRG8_1X8: 2373 /* Raw bayer, GBGB... / RGRG... */ 2374 fmt = 0x01; 2375 mux = OV5640_FMT_MUX_RAW_DPC; 2376 break; 2377 case MEDIA_BUS_FMT_SGRBG8_1X8: 2378 /* Raw bayer, GRGR... / BGBG... */ 2379 fmt = 0x02; 2380 mux = OV5640_FMT_MUX_RAW_DPC; 2381 break; 2382 case MEDIA_BUS_FMT_SRGGB8_1X8: 2383 /* Raw bayer, RGRG... / GBGB... */ 2384 fmt = 0x03; 2385 mux = OV5640_FMT_MUX_RAW_DPC; 2386 break; 2387 default: 2388 return -EINVAL; 2389 } 2390 2391 /* FORMAT CONTROL00: YUV and RGB formatting */ 2392 ret = ov5640_write_reg(sensor, OV5640_REG_FORMAT_CONTROL00, fmt); 2393 if (ret) 2394 return ret; 2395 2396 /* FORMAT MUX CONTROL: ISP YUV or RGB */ 2397 ret = ov5640_write_reg(sensor, OV5640_REG_ISP_FORMAT_MUX_CTRL, mux); 2398 if (ret) 2399 return ret; 2400 2401 /* 2402 * TIMING TC REG21: 2403 * - [5]: JPEG enable 2404 */ 2405 ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21, 2406 BIT(5), is_jpeg ? BIT(5) : 0); 2407 if (ret) 2408 return ret; 2409 2410 /* 2411 * SYSTEM RESET02: 2412 * - [4]: Reset JFIFO 2413 * - [3]: Reset SFIFO 2414 * - [2]: Reset JPEG 2415 */ 2416 ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_RESET02, 2417 BIT(4) | BIT(3) | BIT(2), 2418 is_jpeg ? 0 : (BIT(4) | BIT(3) | BIT(2))); 2419 if (ret) 2420 return ret; 2421 2422 /* 2423 * CLOCK ENABLE02: 2424 * - [5]: Enable JPEG 2x clock 2425 * - [3]: Enable JPEG clock 2426 */ 2427 return ov5640_mod_reg(sensor, OV5640_REG_SYS_CLOCK_ENABLE02, 2428 BIT(5) | BIT(3), 2429 is_jpeg ? (BIT(5) | BIT(3)) : 0); 2430 } 2431 2432 /* 2433 * Sensor Controls. 2434 */ 2435 2436 static int ov5640_set_ctrl_hue(struct ov5640_dev *sensor, int value) 2437 { 2438 int ret; 2439 2440 if (value) { 2441 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, 2442 BIT(0), BIT(0)); 2443 if (ret) 2444 return ret; 2445 ret = ov5640_write_reg16(sensor, OV5640_REG_SDE_CTRL1, value); 2446 } else { 2447 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(0), 0); 2448 } 2449 2450 return ret; 2451 } 2452 2453 static int ov5640_set_ctrl_contrast(struct ov5640_dev *sensor, int value) 2454 { 2455 int ret; 2456 2457 if (value) { 2458 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, 2459 BIT(2), BIT(2)); 2460 if (ret) 2461 return ret; 2462 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL5, 2463 value & 0xff); 2464 } else { 2465 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(2), 0); 2466 } 2467 2468 return ret; 2469 } 2470 2471 static int ov5640_set_ctrl_saturation(struct ov5640_dev *sensor, int value) 2472 { 2473 int ret; 2474 2475 if (value) { 2476 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, 2477 BIT(1), BIT(1)); 2478 if (ret) 2479 return ret; 2480 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL3, 2481 value & 0xff); 2482 if (ret) 2483 return ret; 2484 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL4, 2485 value & 0xff); 2486 } else { 2487 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(1), 0); 2488 } 2489 2490 return ret; 2491 } 2492 2493 static int ov5640_set_ctrl_white_balance(struct ov5640_dev *sensor, int awb) 2494 { 2495 int ret; 2496 2497 ret = ov5640_mod_reg(sensor, OV5640_REG_AWB_MANUAL_CTRL, 2498 BIT(0), awb ? 0 : 1); 2499 if (ret) 2500 return ret; 2501 2502 if (!awb) { 2503 u16 red = (u16)sensor->ctrls.red_balance->val; 2504 u16 blue = (u16)sensor->ctrls.blue_balance->val; 2505 2506 ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_R_GAIN, red); 2507 if (ret) 2508 return ret; 2509 ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_B_GAIN, blue); 2510 } 2511 2512 return ret; 2513 } 2514 2515 static int ov5640_set_ctrl_exposure(struct ov5640_dev *sensor, 2516 enum v4l2_exposure_auto_type auto_exposure) 2517 { 2518 struct ov5640_ctrls *ctrls = &sensor->ctrls; 2519 bool auto_exp = (auto_exposure == V4L2_EXPOSURE_AUTO); 2520 int ret = 0; 2521 2522 if (ctrls->auto_exp->is_new) { 2523 ret = ov5640_set_autoexposure(sensor, auto_exp); 2524 if (ret) 2525 return ret; 2526 } 2527 2528 if (!auto_exp && ctrls->exposure->is_new) { 2529 u16 max_exp; 2530 2531 ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_VTS, 2532 &max_exp); 2533 if (ret) 2534 return ret; 2535 ret = ov5640_get_vts(sensor); 2536 if (ret < 0) 2537 return ret; 2538 max_exp += ret; 2539 ret = 0; 2540 2541 if (ctrls->exposure->val < max_exp) 2542 ret = ov5640_set_exposure(sensor, ctrls->exposure->val); 2543 } 2544 2545 return ret; 2546 } 2547 2548 static int ov5640_set_ctrl_gain(struct ov5640_dev *sensor, bool auto_gain) 2549 { 2550 struct ov5640_ctrls *ctrls = &sensor->ctrls; 2551 int ret = 0; 2552 2553 if (ctrls->auto_gain->is_new) { 2554 ret = ov5640_set_autogain(sensor, auto_gain); 2555 if (ret) 2556 return ret; 2557 } 2558 2559 if (!auto_gain && ctrls->gain->is_new) 2560 ret = ov5640_set_gain(sensor, ctrls->gain->val); 2561 2562 return ret; 2563 } 2564 2565 static const char * const test_pattern_menu[] = { 2566 "Disabled", 2567 "Color bars", 2568 "Color bars w/ rolling bar", 2569 "Color squares", 2570 "Color squares w/ rolling bar", 2571 }; 2572 2573 #define OV5640_TEST_ENABLE BIT(7) 2574 #define OV5640_TEST_ROLLING BIT(6) /* rolling horizontal bar */ 2575 #define OV5640_TEST_TRANSPARENT BIT(5) 2576 #define OV5640_TEST_SQUARE_BW BIT(4) /* black & white squares */ 2577 #define OV5640_TEST_BAR_STANDARD (0 << 2) 2578 #define OV5640_TEST_BAR_VERT_CHANGE_1 (1 << 2) 2579 #define OV5640_TEST_BAR_HOR_CHANGE (2 << 2) 2580 #define OV5640_TEST_BAR_VERT_CHANGE_2 (3 << 2) 2581 #define OV5640_TEST_BAR (0 << 0) 2582 #define OV5640_TEST_RANDOM (1 << 0) 2583 #define OV5640_TEST_SQUARE (2 << 0) 2584 #define OV5640_TEST_BLACK (3 << 0) 2585 2586 static const u8 test_pattern_val[] = { 2587 0, 2588 OV5640_TEST_ENABLE | OV5640_TEST_BAR_VERT_CHANGE_1 | 2589 OV5640_TEST_BAR, 2590 OV5640_TEST_ENABLE | OV5640_TEST_ROLLING | 2591 OV5640_TEST_BAR_VERT_CHANGE_1 | OV5640_TEST_BAR, 2592 OV5640_TEST_ENABLE | OV5640_TEST_SQUARE, 2593 OV5640_TEST_ENABLE | OV5640_TEST_ROLLING | OV5640_TEST_SQUARE, 2594 }; 2595 2596 static int ov5640_set_ctrl_test_pattern(struct ov5640_dev *sensor, int value) 2597 { 2598 return ov5640_write_reg(sensor, OV5640_REG_PRE_ISP_TEST_SET1, 2599 test_pattern_val[value]); 2600 } 2601 2602 static int ov5640_set_ctrl_light_freq(struct ov5640_dev *sensor, int value) 2603 { 2604 int ret; 2605 2606 ret = ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL01, BIT(7), 2607 (value == V4L2_CID_POWER_LINE_FREQUENCY_AUTO) ? 2608 0 : BIT(7)); 2609 if (ret) 2610 return ret; 2611 2612 return ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL00, BIT(2), 2613 (value == V4L2_CID_POWER_LINE_FREQUENCY_50HZ) ? 2614 BIT(2) : 0); 2615 } 2616 2617 static int ov5640_set_ctrl_hflip(struct ov5640_dev *sensor, int value) 2618 { 2619 /* 2620 * If sensor is mounted upside down, mirror logic is inversed. 2621 * 2622 * Sensor is a BSI (Back Side Illuminated) one, 2623 * so image captured is physically mirrored. 2624 * This is why mirror logic is inversed in 2625 * order to cancel this mirror effect. 2626 */ 2627 2628 /* 2629 * TIMING TC REG21: 2630 * - [2]: ISP mirror 2631 * - [1]: Sensor mirror 2632 */ 2633 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21, 2634 BIT(2) | BIT(1), 2635 (!(value ^ sensor->upside_down)) ? 2636 (BIT(2) | BIT(1)) : 0); 2637 } 2638 2639 static int ov5640_set_ctrl_vflip(struct ov5640_dev *sensor, int value) 2640 { 2641 /* If sensor is mounted upside down, flip logic is inversed */ 2642 2643 /* 2644 * TIMING TC REG20: 2645 * - [2]: ISP vflip 2646 * - [1]: Sensor vflip 2647 */ 2648 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20, 2649 BIT(2) | BIT(1), 2650 (value ^ sensor->upside_down) ? 2651 (BIT(2) | BIT(1)) : 0); 2652 } 2653 2654 static int ov5640_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 2655 { 2656 struct v4l2_subdev *sd = ctrl_to_sd(ctrl); 2657 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2658 int val; 2659 2660 /* v4l2_ctrl_lock() locks our own mutex */ 2661 2662 switch (ctrl->id) { 2663 case V4L2_CID_AUTOGAIN: 2664 val = ov5640_get_gain(sensor); 2665 if (val < 0) 2666 return val; 2667 sensor->ctrls.gain->val = val; 2668 break; 2669 case V4L2_CID_EXPOSURE_AUTO: 2670 val = ov5640_get_exposure(sensor); 2671 if (val < 0) 2672 return val; 2673 sensor->ctrls.exposure->val = val; 2674 break; 2675 } 2676 2677 return 0; 2678 } 2679 2680 static int ov5640_s_ctrl(struct v4l2_ctrl *ctrl) 2681 { 2682 struct v4l2_subdev *sd = ctrl_to_sd(ctrl); 2683 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2684 int ret; 2685 2686 /* v4l2_ctrl_lock() locks our own mutex */ 2687 2688 /* 2689 * If the device is not powered up by the host driver do 2690 * not apply any controls to H/W at this time. Instead 2691 * the controls will be restored right after power-up. 2692 */ 2693 if (sensor->power_count == 0) 2694 return 0; 2695 2696 switch (ctrl->id) { 2697 case V4L2_CID_AUTOGAIN: 2698 ret = ov5640_set_ctrl_gain(sensor, ctrl->val); 2699 break; 2700 case V4L2_CID_EXPOSURE_AUTO: 2701 ret = ov5640_set_ctrl_exposure(sensor, ctrl->val); 2702 break; 2703 case V4L2_CID_AUTO_WHITE_BALANCE: 2704 ret = ov5640_set_ctrl_white_balance(sensor, ctrl->val); 2705 break; 2706 case V4L2_CID_HUE: 2707 ret = ov5640_set_ctrl_hue(sensor, ctrl->val); 2708 break; 2709 case V4L2_CID_CONTRAST: 2710 ret = ov5640_set_ctrl_contrast(sensor, ctrl->val); 2711 break; 2712 case V4L2_CID_SATURATION: 2713 ret = ov5640_set_ctrl_saturation(sensor, ctrl->val); 2714 break; 2715 case V4L2_CID_TEST_PATTERN: 2716 ret = ov5640_set_ctrl_test_pattern(sensor, ctrl->val); 2717 break; 2718 case V4L2_CID_POWER_LINE_FREQUENCY: 2719 ret = ov5640_set_ctrl_light_freq(sensor, ctrl->val); 2720 break; 2721 case V4L2_CID_HFLIP: 2722 ret = ov5640_set_ctrl_hflip(sensor, ctrl->val); 2723 break; 2724 case V4L2_CID_VFLIP: 2725 ret = ov5640_set_ctrl_vflip(sensor, ctrl->val); 2726 break; 2727 default: 2728 ret = -EINVAL; 2729 break; 2730 } 2731 2732 return ret; 2733 } 2734 2735 static const struct v4l2_ctrl_ops ov5640_ctrl_ops = { 2736 .g_volatile_ctrl = ov5640_g_volatile_ctrl, 2737 .s_ctrl = ov5640_s_ctrl, 2738 }; 2739 2740 static int ov5640_init_controls(struct ov5640_dev *sensor) 2741 { 2742 const struct v4l2_ctrl_ops *ops = &ov5640_ctrl_ops; 2743 struct ov5640_ctrls *ctrls = &sensor->ctrls; 2744 struct v4l2_ctrl_handler *hdl = &ctrls->handler; 2745 int ret; 2746 2747 v4l2_ctrl_handler_init(hdl, 32); 2748 2749 /* we can use our own mutex for the ctrl lock */ 2750 hdl->lock = &sensor->lock; 2751 2752 /* Clock related controls */ 2753 ctrls->pixel_rate = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_PIXEL_RATE, 2754 0, INT_MAX, 1, 2755 ov5640_calc_pixel_rate(sensor)); 2756 2757 /* Auto/manual white balance */ 2758 ctrls->auto_wb = v4l2_ctrl_new_std(hdl, ops, 2759 V4L2_CID_AUTO_WHITE_BALANCE, 2760 0, 1, 1, 1); 2761 ctrls->blue_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE, 2762 0, 4095, 1, 0); 2763 ctrls->red_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE, 2764 0, 4095, 1, 0); 2765 /* Auto/manual exposure */ 2766 ctrls->auto_exp = v4l2_ctrl_new_std_menu(hdl, ops, 2767 V4L2_CID_EXPOSURE_AUTO, 2768 V4L2_EXPOSURE_MANUAL, 0, 2769 V4L2_EXPOSURE_AUTO); 2770 ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE, 2771 0, 65535, 1, 0); 2772 /* Auto/manual gain */ 2773 ctrls->auto_gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTOGAIN, 2774 0, 1, 1, 1); 2775 ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN, 2776 0, 1023, 1, 0); 2777 2778 ctrls->saturation = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SATURATION, 2779 0, 255, 1, 64); 2780 ctrls->hue = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HUE, 2781 0, 359, 1, 0); 2782 ctrls->contrast = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_CONTRAST, 2783 0, 255, 1, 0); 2784 ctrls->test_pattern = 2785 v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN, 2786 ARRAY_SIZE(test_pattern_menu) - 1, 2787 0, 0, test_pattern_menu); 2788 ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP, 2789 0, 1, 1, 0); 2790 ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP, 2791 0, 1, 1, 0); 2792 2793 ctrls->light_freq = 2794 v4l2_ctrl_new_std_menu(hdl, ops, 2795 V4L2_CID_POWER_LINE_FREQUENCY, 2796 V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0, 2797 V4L2_CID_POWER_LINE_FREQUENCY_50HZ); 2798 2799 if (hdl->error) { 2800 ret = hdl->error; 2801 goto free_ctrls; 2802 } 2803 2804 ctrls->pixel_rate->flags |= V4L2_CTRL_FLAG_READ_ONLY; 2805 ctrls->gain->flags |= V4L2_CTRL_FLAG_VOLATILE; 2806 ctrls->exposure->flags |= V4L2_CTRL_FLAG_VOLATILE; 2807 2808 v4l2_ctrl_auto_cluster(3, &ctrls->auto_wb, 0, false); 2809 v4l2_ctrl_auto_cluster(2, &ctrls->auto_gain, 0, true); 2810 v4l2_ctrl_auto_cluster(2, &ctrls->auto_exp, 1, true); 2811 2812 sensor->sd.ctrl_handler = hdl; 2813 return 0; 2814 2815 free_ctrls: 2816 v4l2_ctrl_handler_free(hdl); 2817 return ret; 2818 } 2819 2820 static int ov5640_enum_frame_size(struct v4l2_subdev *sd, 2821 struct v4l2_subdev_state *sd_state, 2822 struct v4l2_subdev_frame_size_enum *fse) 2823 { 2824 if (fse->pad != 0) 2825 return -EINVAL; 2826 if (fse->index >= OV5640_NUM_MODES) 2827 return -EINVAL; 2828 2829 fse->min_width = 2830 ov5640_mode_data[fse->index].hact; 2831 fse->max_width = fse->min_width; 2832 fse->min_height = 2833 ov5640_mode_data[fse->index].vact; 2834 fse->max_height = fse->min_height; 2835 2836 return 0; 2837 } 2838 2839 static int ov5640_enum_frame_interval( 2840 struct v4l2_subdev *sd, 2841 struct v4l2_subdev_state *sd_state, 2842 struct v4l2_subdev_frame_interval_enum *fie) 2843 { 2844 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2845 struct v4l2_fract tpf; 2846 int ret; 2847 2848 if (fie->pad != 0) 2849 return -EINVAL; 2850 if (fie->index >= OV5640_NUM_FRAMERATES) 2851 return -EINVAL; 2852 2853 tpf.numerator = 1; 2854 tpf.denominator = ov5640_framerates[fie->index]; 2855 2856 ret = ov5640_try_frame_interval(sensor, &tpf, 2857 fie->width, fie->height); 2858 if (ret < 0) 2859 return -EINVAL; 2860 2861 fie->interval = tpf; 2862 return 0; 2863 } 2864 2865 static int ov5640_g_frame_interval(struct v4l2_subdev *sd, 2866 struct v4l2_subdev_frame_interval *fi) 2867 { 2868 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2869 2870 mutex_lock(&sensor->lock); 2871 fi->interval = sensor->frame_interval; 2872 mutex_unlock(&sensor->lock); 2873 2874 return 0; 2875 } 2876 2877 static int ov5640_s_frame_interval(struct v4l2_subdev *sd, 2878 struct v4l2_subdev_frame_interval *fi) 2879 { 2880 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2881 const struct ov5640_mode_info *mode; 2882 int frame_rate, ret = 0; 2883 2884 if (fi->pad != 0) 2885 return -EINVAL; 2886 2887 mutex_lock(&sensor->lock); 2888 2889 if (sensor->streaming) { 2890 ret = -EBUSY; 2891 goto out; 2892 } 2893 2894 mode = sensor->current_mode; 2895 2896 frame_rate = ov5640_try_frame_interval(sensor, &fi->interval, 2897 mode->hact, mode->vact); 2898 if (frame_rate < 0) { 2899 /* Always return a valid frame interval value */ 2900 fi->interval = sensor->frame_interval; 2901 goto out; 2902 } 2903 2904 mode = ov5640_find_mode(sensor, frame_rate, mode->hact, 2905 mode->vact, true); 2906 if (!mode) { 2907 ret = -EINVAL; 2908 goto out; 2909 } 2910 2911 if (mode != sensor->current_mode || 2912 frame_rate != sensor->current_fr) { 2913 sensor->current_fr = frame_rate; 2914 sensor->frame_interval = fi->interval; 2915 sensor->current_mode = mode; 2916 sensor->pending_mode_change = true; 2917 2918 __v4l2_ctrl_s_ctrl_int64(sensor->ctrls.pixel_rate, 2919 ov5640_calc_pixel_rate(sensor)); 2920 } 2921 out: 2922 mutex_unlock(&sensor->lock); 2923 return ret; 2924 } 2925 2926 static int ov5640_enum_mbus_code(struct v4l2_subdev *sd, 2927 struct v4l2_subdev_state *sd_state, 2928 struct v4l2_subdev_mbus_code_enum *code) 2929 { 2930 if (code->pad != 0) 2931 return -EINVAL; 2932 if (code->index >= ARRAY_SIZE(ov5640_formats)) 2933 return -EINVAL; 2934 2935 code->code = ov5640_formats[code->index].code; 2936 return 0; 2937 } 2938 2939 static int ov5640_s_stream(struct v4l2_subdev *sd, int enable) 2940 { 2941 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2942 int ret = 0; 2943 2944 mutex_lock(&sensor->lock); 2945 2946 if (sensor->streaming == !enable) { 2947 if (enable && sensor->pending_mode_change) { 2948 ret = ov5640_set_mode(sensor); 2949 if (ret) 2950 goto out; 2951 } 2952 2953 if (enable && sensor->pending_fmt_change) { 2954 ret = ov5640_set_framefmt(sensor, &sensor->fmt); 2955 if (ret) 2956 goto out; 2957 sensor->pending_fmt_change = false; 2958 } 2959 2960 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) 2961 ret = ov5640_set_stream_mipi(sensor, enable); 2962 else 2963 ret = ov5640_set_stream_dvp(sensor, enable); 2964 2965 if (!ret) 2966 sensor->streaming = enable; 2967 } 2968 out: 2969 mutex_unlock(&sensor->lock); 2970 return ret; 2971 } 2972 2973 static const struct v4l2_subdev_core_ops ov5640_core_ops = { 2974 .s_power = ov5640_s_power, 2975 .log_status = v4l2_ctrl_subdev_log_status, 2976 .subscribe_event = v4l2_ctrl_subdev_subscribe_event, 2977 .unsubscribe_event = v4l2_event_subdev_unsubscribe, 2978 }; 2979 2980 static const struct v4l2_subdev_video_ops ov5640_video_ops = { 2981 .g_frame_interval = ov5640_g_frame_interval, 2982 .s_frame_interval = ov5640_s_frame_interval, 2983 .s_stream = ov5640_s_stream, 2984 }; 2985 2986 static const struct v4l2_subdev_pad_ops ov5640_pad_ops = { 2987 .enum_mbus_code = ov5640_enum_mbus_code, 2988 .get_fmt = ov5640_get_fmt, 2989 .set_fmt = ov5640_set_fmt, 2990 .enum_frame_size = ov5640_enum_frame_size, 2991 .enum_frame_interval = ov5640_enum_frame_interval, 2992 }; 2993 2994 static const struct v4l2_subdev_ops ov5640_subdev_ops = { 2995 .core = &ov5640_core_ops, 2996 .video = &ov5640_video_ops, 2997 .pad = &ov5640_pad_ops, 2998 }; 2999 3000 static int ov5640_get_regulators(struct ov5640_dev *sensor) 3001 { 3002 int i; 3003 3004 for (i = 0; i < OV5640_NUM_SUPPLIES; i++) 3005 sensor->supplies[i].supply = ov5640_supply_name[i]; 3006 3007 return devm_regulator_bulk_get(&sensor->i2c_client->dev, 3008 OV5640_NUM_SUPPLIES, 3009 sensor->supplies); 3010 } 3011 3012 static int ov5640_check_chip_id(struct ov5640_dev *sensor) 3013 { 3014 struct i2c_client *client = sensor->i2c_client; 3015 int ret = 0; 3016 u16 chip_id; 3017 3018 ret = ov5640_set_power_on(sensor); 3019 if (ret) 3020 return ret; 3021 3022 ret = ov5640_read_reg16(sensor, OV5640_REG_CHIP_ID, &chip_id); 3023 if (ret) { 3024 dev_err(&client->dev, "%s: failed to read chip identifier\n", 3025 __func__); 3026 goto power_off; 3027 } 3028 3029 if (chip_id != 0x5640) { 3030 dev_err(&client->dev, "%s: wrong chip identifier, expected 0x5640, got 0x%x\n", 3031 __func__, chip_id); 3032 ret = -ENXIO; 3033 } 3034 3035 power_off: 3036 ov5640_set_power_off(sensor); 3037 return ret; 3038 } 3039 3040 static int ov5640_probe(struct i2c_client *client) 3041 { 3042 struct device *dev = &client->dev; 3043 struct fwnode_handle *endpoint; 3044 struct ov5640_dev *sensor; 3045 struct v4l2_mbus_framefmt *fmt; 3046 u32 rotation; 3047 int ret; 3048 3049 sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL); 3050 if (!sensor) 3051 return -ENOMEM; 3052 3053 sensor->i2c_client = client; 3054 3055 /* 3056 * default init sequence initialize sensor to 3057 * YUV422 UYVY VGA@30fps 3058 */ 3059 fmt = &sensor->fmt; 3060 fmt->code = MEDIA_BUS_FMT_UYVY8_2X8; 3061 fmt->colorspace = V4L2_COLORSPACE_SRGB; 3062 fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace); 3063 fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE; 3064 fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace); 3065 fmt->width = 640; 3066 fmt->height = 480; 3067 fmt->field = V4L2_FIELD_NONE; 3068 sensor->frame_interval.numerator = 1; 3069 sensor->frame_interval.denominator = ov5640_framerates[OV5640_30_FPS]; 3070 sensor->current_fr = OV5640_30_FPS; 3071 sensor->current_mode = 3072 &ov5640_mode_data[OV5640_MODE_VGA_640_480]; 3073 sensor->last_mode = sensor->current_mode; 3074 3075 sensor->ae_target = 52; 3076 3077 /* optional indication of physical rotation of sensor */ 3078 ret = fwnode_property_read_u32(dev_fwnode(&client->dev), "rotation", 3079 &rotation); 3080 if (!ret) { 3081 switch (rotation) { 3082 case 180: 3083 sensor->upside_down = true; 3084 fallthrough; 3085 case 0: 3086 break; 3087 default: 3088 dev_warn(dev, "%u degrees rotation is not supported, ignoring...\n", 3089 rotation); 3090 } 3091 } 3092 3093 endpoint = fwnode_graph_get_next_endpoint(dev_fwnode(&client->dev), 3094 NULL); 3095 if (!endpoint) { 3096 dev_err(dev, "endpoint node not found\n"); 3097 return -EINVAL; 3098 } 3099 3100 ret = v4l2_fwnode_endpoint_parse(endpoint, &sensor->ep); 3101 fwnode_handle_put(endpoint); 3102 if (ret) { 3103 dev_err(dev, "Could not parse endpoint\n"); 3104 return ret; 3105 } 3106 3107 if (sensor->ep.bus_type != V4L2_MBUS_PARALLEL && 3108 sensor->ep.bus_type != V4L2_MBUS_CSI2_DPHY && 3109 sensor->ep.bus_type != V4L2_MBUS_BT656) { 3110 dev_err(dev, "Unsupported bus type %d\n", sensor->ep.bus_type); 3111 return -EINVAL; 3112 } 3113 3114 /* get system clock (xclk) */ 3115 sensor->xclk = devm_clk_get(dev, "xclk"); 3116 if (IS_ERR(sensor->xclk)) { 3117 dev_err(dev, "failed to get xclk\n"); 3118 return PTR_ERR(sensor->xclk); 3119 } 3120 3121 sensor->xclk_freq = clk_get_rate(sensor->xclk); 3122 if (sensor->xclk_freq < OV5640_XCLK_MIN || 3123 sensor->xclk_freq > OV5640_XCLK_MAX) { 3124 dev_err(dev, "xclk frequency out of range: %d Hz\n", 3125 sensor->xclk_freq); 3126 return -EINVAL; 3127 } 3128 3129 /* request optional power down pin */ 3130 sensor->pwdn_gpio = devm_gpiod_get_optional(dev, "powerdown", 3131 GPIOD_OUT_HIGH); 3132 if (IS_ERR(sensor->pwdn_gpio)) 3133 return PTR_ERR(sensor->pwdn_gpio); 3134 3135 /* request optional reset pin */ 3136 sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset", 3137 GPIOD_OUT_HIGH); 3138 if (IS_ERR(sensor->reset_gpio)) 3139 return PTR_ERR(sensor->reset_gpio); 3140 3141 v4l2_i2c_subdev_init(&sensor->sd, client, &ov5640_subdev_ops); 3142 3143 sensor->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | 3144 V4L2_SUBDEV_FL_HAS_EVENTS; 3145 sensor->pad.flags = MEDIA_PAD_FL_SOURCE; 3146 sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR; 3147 ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad); 3148 if (ret) 3149 return ret; 3150 3151 ret = ov5640_get_regulators(sensor); 3152 if (ret) 3153 return ret; 3154 3155 mutex_init(&sensor->lock); 3156 3157 ret = ov5640_check_chip_id(sensor); 3158 if (ret) 3159 goto entity_cleanup; 3160 3161 ret = ov5640_init_controls(sensor); 3162 if (ret) 3163 goto entity_cleanup; 3164 3165 ret = v4l2_async_register_subdev_sensor(&sensor->sd); 3166 if (ret) 3167 goto free_ctrls; 3168 3169 return 0; 3170 3171 free_ctrls: 3172 v4l2_ctrl_handler_free(&sensor->ctrls.handler); 3173 entity_cleanup: 3174 media_entity_cleanup(&sensor->sd.entity); 3175 mutex_destroy(&sensor->lock); 3176 return ret; 3177 } 3178 3179 static int ov5640_remove(struct i2c_client *client) 3180 { 3181 struct v4l2_subdev *sd = i2c_get_clientdata(client); 3182 struct ov5640_dev *sensor = to_ov5640_dev(sd); 3183 3184 v4l2_async_unregister_subdev(&sensor->sd); 3185 media_entity_cleanup(&sensor->sd.entity); 3186 v4l2_ctrl_handler_free(&sensor->ctrls.handler); 3187 mutex_destroy(&sensor->lock); 3188 3189 return 0; 3190 } 3191 3192 static const struct i2c_device_id ov5640_id[] = { 3193 {"ov5640", 0}, 3194 {}, 3195 }; 3196 MODULE_DEVICE_TABLE(i2c, ov5640_id); 3197 3198 static const struct of_device_id ov5640_dt_ids[] = { 3199 { .compatible = "ovti,ov5640" }, 3200 { /* sentinel */ } 3201 }; 3202 MODULE_DEVICE_TABLE(of, ov5640_dt_ids); 3203 3204 static struct i2c_driver ov5640_i2c_driver = { 3205 .driver = { 3206 .name = "ov5640", 3207 .of_match_table = ov5640_dt_ids, 3208 }, 3209 .id_table = ov5640_id, 3210 .probe_new = ov5640_probe, 3211 .remove = ov5640_remove, 3212 }; 3213 3214 module_i2c_driver(ov5640_i2c_driver); 3215 3216 MODULE_DESCRIPTION("OV5640 MIPI Camera Subdev Driver"); 3217 MODULE_LICENSE("GPL"); 3218