xref: /linux/drivers/media/i2c/mt9v111.c (revision 55a42f78ffd386e01a5404419f8c5ded7db70a21)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * V4L2 sensor driver for Aptina MT9V111 image sensor
4  * Copyright (C) 2018 Jacopo Mondi <jacopo@jmondi.org>
5  *
6  * Based on mt9v032 driver
7  * Copyright (C) 2010, Laurent Pinchart <laurent.pinchart@ideasonboard.com>
8  * Copyright (C) 2008, Guennadi Liakhovetski <kernel@pengutronix.de>
9  *
10  * Based on mt9v011 driver
11  * Copyright (c) 2009 Mauro Carvalho Chehab <mchehab@kernel.org>
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/gpio/consumer.h>
17 #include <linux/i2c.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/videodev2.h>
21 #include <linux/v4l2-mediabus.h>
22 #include <linux/module.h>
23 
24 #include <media/v4l2-ctrls.h>
25 #include <media/v4l2-device.h>
26 #include <media/v4l2-fwnode.h>
27 #include <media/v4l2-image-sizes.h>
28 #include <media/v4l2-subdev.h>
29 
30 /*
31  * MT9V111 is a 1/4-Inch CMOS digital image sensor with an integrated
32  * Image Flow Processing (IFP) engine and a sensor core loosely based on
33  * MT9V011.
34  *
35  * The IFP can produce several output image formats from the sensor core
36  * output. This driver currently supports only YUYV format permutations.
37  *
38  * The driver allows manual frame rate control through set_frame_interval subdev
39  * operation or V4L2_CID_V/HBLANK controls, but it is known that the
40  * auto-exposure algorithm might modify the programmed frame rate. While the
41  * driver initially programs the sensor with auto-exposure and
42  * auto-white-balancing enabled, it is possible to disable them and more
43  * precisely control the frame rate.
44  *
45  * While it seems possible to instruct the auto-exposure control algorithm to
46  * respect a programmed frame rate when adjusting the pixel integration time,
47  * registers controlling this feature are not documented in the public
48  * available sensor manual used to develop this driver (09005aef80e90084,
49  * MT9V111_1.fm - Rev. G 1/05 EN).
50  */
51 
52 #define MT9V111_CHIP_ID_HIGH				0x82
53 #define MT9V111_CHIP_ID_LOW				0x3a
54 
55 #define MT9V111_R01_ADDR_SPACE				0x01
56 #define MT9V111_R01_IFP					0x01
57 #define MT9V111_R01_CORE				0x04
58 
59 #define MT9V111_IFP_R06_OPMODE_CTRL			0x06
60 #define		MT9V111_IFP_R06_OPMODE_CTRL_AWB_EN	BIT(1)
61 #define		MT9V111_IFP_R06_OPMODE_CTRL_AE_EN	BIT(14)
62 #define MT9V111_IFP_R07_IFP_RESET			0x07
63 #define		MT9V111_IFP_R07_IFP_RESET_MASK		BIT(0)
64 #define MT9V111_IFP_R08_OUTFMT_CTRL			0x08
65 #define		MT9V111_IFP_R08_OUTFMT_CTRL_FLICKER	BIT(11)
66 #define		MT9V111_IFP_R08_OUTFMT_CTRL_PCLK	BIT(5)
67 #define MT9V111_IFP_R3A_OUTFMT_CTRL2			0x3a
68 #define		MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_CBCR	BIT(0)
69 #define		MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_YC	BIT(1)
70 #define		MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_MASK	GENMASK(2, 0)
71 #define MT9V111_IFP_RA5_HPAN				0xa5
72 #define MT9V111_IFP_RA6_HZOOM				0xa6
73 #define MT9V111_IFP_RA7_HOUT				0xa7
74 #define MT9V111_IFP_RA8_VPAN				0xa8
75 #define MT9V111_IFP_RA9_VZOOM				0xa9
76 #define MT9V111_IFP_RAA_VOUT				0xaa
77 #define MT9V111_IFP_DECIMATION_MASK			GENMASK(9, 0)
78 #define MT9V111_IFP_DECIMATION_FREEZE			BIT(15)
79 
80 #define MT9V111_CORE_R03_WIN_HEIGHT			0x03
81 #define		MT9V111_CORE_R03_WIN_V_OFFS		2
82 #define MT9V111_CORE_R04_WIN_WIDTH			0x04
83 #define		MT9V111_CORE_R04_WIN_H_OFFS		114
84 #define MT9V111_CORE_R05_HBLANK				0x05
85 #define		MT9V111_CORE_R05_MIN_HBLANK		0x09
86 #define		MT9V111_CORE_R05_MAX_HBLANK		GENMASK(9, 0)
87 #define		MT9V111_CORE_R05_DEF_HBLANK		0x26
88 #define MT9V111_CORE_R06_VBLANK				0x06
89 #define		MT9V111_CORE_R06_MIN_VBLANK		0x03
90 #define		MT9V111_CORE_R06_MAX_VBLANK		GENMASK(11, 0)
91 #define		MT9V111_CORE_R06_DEF_VBLANK		0x04
92 #define MT9V111_CORE_R07_OUT_CTRL			0x07
93 #define		MT9V111_CORE_R07_OUT_CTRL_SAMPLE	BIT(4)
94 #define MT9V111_CORE_R09_PIXEL_INT			0x09
95 #define		MT9V111_CORE_R09_PIXEL_INT_MASK		GENMASK(11, 0)
96 #define MT9V111_CORE_R0D_CORE_RESET			0x0d
97 #define		MT9V111_CORE_R0D_CORE_RESET_MASK	BIT(0)
98 #define MT9V111_CORE_RFF_CHIP_VER			0xff
99 
100 #define MT9V111_PIXEL_ARRAY_WIDTH			640
101 #define MT9V111_PIXEL_ARRAY_HEIGHT			480
102 
103 #define MT9V111_MAX_CLKIN				27000000
104 
105 /* The default sensor configuration at startup time. */
106 static const struct v4l2_mbus_framefmt mt9v111_def_fmt = {
107 	.width		= 640,
108 	.height		= 480,
109 	.code		= MEDIA_BUS_FMT_UYVY8_2X8,
110 	.field		= V4L2_FIELD_NONE,
111 	.colorspace	= V4L2_COLORSPACE_SRGB,
112 	.ycbcr_enc	= V4L2_YCBCR_ENC_601,
113 	.quantization	= V4L2_QUANTIZATION_LIM_RANGE,
114 	.xfer_func	= V4L2_XFER_FUNC_SRGB,
115 };
116 
117 struct mt9v111_dev {
118 	struct device *dev;
119 	struct i2c_client *client;
120 
121 	u8 addr_space;
122 
123 	struct v4l2_subdev sd;
124 	struct media_pad pad;
125 
126 	struct v4l2_ctrl *auto_awb;
127 	struct v4l2_ctrl *auto_exp;
128 	struct v4l2_ctrl *hblank;
129 	struct v4l2_ctrl *vblank;
130 	struct v4l2_ctrl_handler ctrls;
131 
132 	/* Output image format and sizes. */
133 	struct v4l2_mbus_framefmt fmt;
134 	unsigned int fps;
135 
136 	/* Protects power up/down sequences. */
137 	struct mutex pwr_mutex;
138 	int pwr_count;
139 
140 	/* Protects stream on/off sequences. */
141 	struct mutex stream_mutex;
142 	bool streaming;
143 
144 	/* Flags to mark HW settings as not yet applied. */
145 	bool pending;
146 
147 	/* Clock provider and system clock frequency. */
148 	struct clk *clk;
149 	u32 sysclk;
150 
151 	struct gpio_desc *oe;
152 	struct gpio_desc *standby;
153 	struct gpio_desc *reset;
154 };
155 
156 #define sd_to_mt9v111(__sd) container_of((__sd), struct mt9v111_dev, sd)
157 
158 /*
159  * mt9v111_mbus_fmt - List all media bus formats supported by the driver.
160  *
161  * Only list the media bus code here. The image sizes are freely configurable
162  * in the pixel array sizes range.
163  *
164  * The desired frame interval, in the supported frame interval range, is
165  * obtained by configuring blanking as the sensor does not have a PLL but
166  * only a fixed clock divider that generates the output pixel clock.
167  */
168 static struct mt9v111_mbus_fmt {
169 	u32	code;
170 } mt9v111_formats[] = {
171 	{
172 		.code	= MEDIA_BUS_FMT_UYVY8_2X8,
173 	},
174 	{
175 		.code	= MEDIA_BUS_FMT_YUYV8_2X8,
176 	},
177 	{
178 		.code	= MEDIA_BUS_FMT_VYUY8_2X8,
179 	},
180 	{
181 		.code	= MEDIA_BUS_FMT_YVYU8_2X8,
182 	},
183 };
184 
185 static u32 mt9v111_frame_intervals[] = {5, 10, 15, 20, 30};
186 
187 /*
188  * mt9v111_frame_sizes - List sensor's supported resolutions.
189  *
190  * Resolution generated through decimation in the IFP block from the
191  * full VGA pixel array.
192  */
193 static struct v4l2_rect mt9v111_frame_sizes[] = {
194 	{
195 		.width	= 640,
196 		.height	= 480,
197 	},
198 	{
199 		.width	= 352,
200 		.height	= 288
201 	},
202 	{
203 		.width	= 320,
204 		.height	= 240,
205 	},
206 	{
207 		.width	= 176,
208 		.height	= 144,
209 	},
210 	{
211 		.width	= 160,
212 		.height	= 120,
213 	},
214 };
215 
216 /* --- Device I/O access --- */
217 
218 static int __mt9v111_read(struct i2c_client *c, u8 reg, u16 *val)
219 {
220 	struct i2c_msg msg[2];
221 	__be16 buf;
222 	int ret;
223 
224 	msg[0].addr = c->addr;
225 	msg[0].flags = 0;
226 	msg[0].len = 1;
227 	msg[0].buf = &reg;
228 
229 	msg[1].addr = c->addr;
230 	msg[1].flags = I2C_M_RD;
231 	msg[1].len = 2;
232 	msg[1].buf = (char *)&buf;
233 
234 	ret = i2c_transfer(c->adapter, msg, 2);
235 	if (ret < 0) {
236 		dev_err(&c->dev, "i2c read transfer error: %d\n", ret);
237 		return ret;
238 	}
239 
240 	*val = be16_to_cpu(buf);
241 
242 	dev_dbg(&c->dev, "%s: %x=%x\n", __func__, reg, *val);
243 
244 	return 0;
245 }
246 
247 static int __mt9v111_write(struct i2c_client *c, u8 reg, u16 val)
248 {
249 	struct i2c_msg msg;
250 	u8 buf[3] = { 0 };
251 	int ret;
252 
253 	buf[0] = reg;
254 	buf[1] = val >> 8;
255 	buf[2] = val & 0xff;
256 
257 	msg.addr = c->addr;
258 	msg.flags = 0;
259 	msg.len = 3;
260 	msg.buf = (char *)buf;
261 
262 	dev_dbg(&c->dev, "%s: %x = %x%x\n", __func__, reg, buf[1], buf[2]);
263 
264 	ret = i2c_transfer(c->adapter, &msg, 1);
265 	if (ret < 0) {
266 		dev_err(&c->dev, "i2c write transfer error: %d\n", ret);
267 		return ret;
268 	}
269 
270 	return 0;
271 }
272 
273 static int __mt9v111_addr_space_select(struct i2c_client *c, u16 addr_space)
274 {
275 	struct v4l2_subdev *sd = i2c_get_clientdata(c);
276 	struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
277 	u16 val;
278 	int ret;
279 
280 	if (mt9v111->addr_space == addr_space)
281 		return 0;
282 
283 	ret = __mt9v111_write(c, MT9V111_R01_ADDR_SPACE, addr_space);
284 	if (ret)
285 		return ret;
286 
287 	/* Verify address space has been updated */
288 	ret = __mt9v111_read(c, MT9V111_R01_ADDR_SPACE, &val);
289 	if (ret)
290 		return ret;
291 
292 	if (val != addr_space)
293 		return -EINVAL;
294 
295 	mt9v111->addr_space = addr_space;
296 
297 	return 0;
298 }
299 
300 static int mt9v111_read(struct i2c_client *c, u8 addr_space, u8 reg, u16 *val)
301 {
302 	int ret;
303 
304 	/* Select register address space first. */
305 	ret = __mt9v111_addr_space_select(c, addr_space);
306 	if (ret)
307 		return ret;
308 
309 	ret = __mt9v111_read(c, reg, val);
310 	if (ret)
311 		return ret;
312 
313 	return 0;
314 }
315 
316 static int mt9v111_write(struct i2c_client *c, u8 addr_space, u8 reg, u16 val)
317 {
318 	int ret;
319 
320 	/* Select register address space first. */
321 	ret = __mt9v111_addr_space_select(c, addr_space);
322 	if (ret)
323 		return ret;
324 
325 	ret = __mt9v111_write(c, reg, val);
326 	if (ret)
327 		return ret;
328 
329 	return 0;
330 }
331 
332 static int mt9v111_update(struct i2c_client *c, u8 addr_space, u8 reg,
333 			  u16 mask, u16 val)
334 {
335 	u16 current_val;
336 	int ret;
337 
338 	/* Select register address space first. */
339 	ret = __mt9v111_addr_space_select(c, addr_space);
340 	if (ret)
341 		return ret;
342 
343 	/* Read the current register value, then update it. */
344 	ret = __mt9v111_read(c, reg, &current_val);
345 	if (ret)
346 		return ret;
347 
348 	current_val &= ~mask;
349 	current_val |= (val & mask);
350 	ret = __mt9v111_write(c, reg, current_val);
351 	if (ret)
352 		return ret;
353 
354 	return 0;
355 }
356 
357 /* --- Sensor HW operations --- */
358 
359 static int __mt9v111_power_on(struct v4l2_subdev *sd)
360 {
361 	struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
362 	int ret;
363 
364 	ret = clk_prepare_enable(mt9v111->clk);
365 	if (ret)
366 		return ret;
367 
368 	gpiod_set_value(mt9v111->standby, 0);
369 	usleep_range(500, 1000);
370 
371 	gpiod_set_value(mt9v111->oe, 1);
372 	usleep_range(500, 1000);
373 
374 	return 0;
375 }
376 
377 static int __mt9v111_power_off(struct v4l2_subdev *sd)
378 {
379 	struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
380 
381 	gpiod_set_value(mt9v111->oe, 0);
382 	usleep_range(500, 1000);
383 
384 	gpiod_set_value(mt9v111->standby, 1);
385 	usleep_range(500, 1000);
386 
387 	clk_disable_unprepare(mt9v111->clk);
388 
389 	return 0;
390 }
391 
392 static int __mt9v111_hw_reset(struct mt9v111_dev *mt9v111)
393 {
394 	if (!mt9v111->reset)
395 		return -EINVAL;
396 
397 	gpiod_set_value(mt9v111->reset, 1);
398 	usleep_range(500, 1000);
399 
400 	gpiod_set_value(mt9v111->reset, 0);
401 	usleep_range(500, 1000);
402 
403 	return 0;
404 }
405 
406 static int __mt9v111_sw_reset(struct mt9v111_dev *mt9v111)
407 {
408 	struct i2c_client *c = mt9v111->client;
409 	int ret;
410 
411 	/* Software reset core and IFP blocks. */
412 
413 	ret = mt9v111_update(c, MT9V111_R01_CORE,
414 			     MT9V111_CORE_R0D_CORE_RESET,
415 			     MT9V111_CORE_R0D_CORE_RESET_MASK, 1);
416 	if (ret)
417 		return ret;
418 	usleep_range(500, 1000);
419 
420 	ret = mt9v111_update(c, MT9V111_R01_CORE,
421 			     MT9V111_CORE_R0D_CORE_RESET,
422 			     MT9V111_CORE_R0D_CORE_RESET_MASK, 0);
423 	if (ret)
424 		return ret;
425 	usleep_range(500, 1000);
426 
427 	ret = mt9v111_update(c, MT9V111_R01_IFP,
428 			     MT9V111_IFP_R07_IFP_RESET,
429 			     MT9V111_IFP_R07_IFP_RESET_MASK, 1);
430 	if (ret)
431 		return ret;
432 	usleep_range(500, 1000);
433 
434 	ret = mt9v111_update(c, MT9V111_R01_IFP,
435 			     MT9V111_IFP_R07_IFP_RESET,
436 			     MT9V111_IFP_R07_IFP_RESET_MASK, 0);
437 	if (ret)
438 		return ret;
439 	usleep_range(500, 1000);
440 
441 	return 0;
442 }
443 
444 static int mt9v111_calc_frame_rate(struct mt9v111_dev *mt9v111,
445 				   struct v4l2_fract *tpf)
446 {
447 	unsigned int fps = tpf->numerator ?
448 			   tpf->denominator / tpf->numerator :
449 			   tpf->denominator;
450 	unsigned int best_diff;
451 	unsigned int frm_cols;
452 	unsigned int row_pclk;
453 	unsigned int best_fps;
454 	unsigned int pclk;
455 	unsigned int diff;
456 	unsigned int idx;
457 	unsigned int hb;
458 	unsigned int vb;
459 	unsigned int i;
460 	int ret;
461 
462 	/* Approximate to the closest supported frame interval. */
463 	best_diff = ~0L;
464 	for (i = 0, idx = 0; i < ARRAY_SIZE(mt9v111_frame_intervals); i++) {
465 		diff = abs(fps - mt9v111_frame_intervals[i]);
466 		if (diff < best_diff) {
467 			idx = i;
468 			best_diff = diff;
469 		}
470 	}
471 	fps = mt9v111_frame_intervals[idx];
472 
473 	/*
474 	 * The sensor does not provide a PLL circuitry and pixel clock is
475 	 * generated dividing the master clock source by two.
476 	 *
477 	 * Trow = (W + Hblank + 114) * 2 * (1 / SYSCLK)
478 	 * TFrame = Trow * (H + Vblank + 2)
479 	 *
480 	 * FPS = (SYSCLK / 2) / (Trow * (H + Vblank + 2))
481 	 *
482 	 * This boils down to tune H and V blanks to best approximate the
483 	 * above equation.
484 	 *
485 	 * Test all available H/V blank values, until we reach the
486 	 * desired frame rate.
487 	 */
488 	best_fps = vb = hb = 0;
489 	pclk = DIV_ROUND_CLOSEST(mt9v111->sysclk, 2);
490 	row_pclk = MT9V111_PIXEL_ARRAY_WIDTH + 7 + MT9V111_CORE_R04_WIN_H_OFFS;
491 	frm_cols = MT9V111_PIXEL_ARRAY_HEIGHT + 7 + MT9V111_CORE_R03_WIN_V_OFFS;
492 
493 	best_diff = ~0L;
494 	for (vb = MT9V111_CORE_R06_MIN_VBLANK;
495 	     vb < MT9V111_CORE_R06_MAX_VBLANK; vb++) {
496 		for (hb = MT9V111_CORE_R05_MIN_HBLANK;
497 		     hb < MT9V111_CORE_R05_MAX_HBLANK; hb += 10) {
498 			unsigned int t_frame = (row_pclk + hb) *
499 					       (frm_cols + vb);
500 			unsigned int t_fps = DIV_ROUND_CLOSEST(pclk, t_frame);
501 
502 			diff = abs(fps - t_fps);
503 			if (diff < best_diff) {
504 				best_diff = diff;
505 				best_fps = t_fps;
506 
507 				if (diff == 0)
508 					break;
509 			}
510 		}
511 
512 		if (diff == 0)
513 			break;
514 	}
515 
516 	ret = v4l2_ctrl_s_ctrl_int64(mt9v111->hblank, hb);
517 	if (ret)
518 		return ret;
519 
520 	ret = v4l2_ctrl_s_ctrl_int64(mt9v111->vblank, vb);
521 	if (ret)
522 		return ret;
523 
524 	tpf->numerator = 1;
525 	tpf->denominator = best_fps;
526 
527 	return 0;
528 }
529 
530 static int mt9v111_hw_config(struct mt9v111_dev *mt9v111)
531 {
532 	struct i2c_client *c = mt9v111->client;
533 	u16 outfmtctrl2;
534 	int ret;
535 
536 	/* Force device reset. */
537 	ret = __mt9v111_hw_reset(mt9v111);
538 	if (ret == -EINVAL)
539 		ret = __mt9v111_sw_reset(mt9v111);
540 	if (ret)
541 		return ret;
542 
543 	/* Configure internal clock sample rate. */
544 	ret = mt9v111->sysclk < DIV_ROUND_CLOSEST(MT9V111_MAX_CLKIN, 2) ?
545 				mt9v111_update(c, MT9V111_R01_CORE,
546 					MT9V111_CORE_R07_OUT_CTRL,
547 					MT9V111_CORE_R07_OUT_CTRL_SAMPLE, 1) :
548 				mt9v111_update(c, MT9V111_R01_CORE,
549 					MT9V111_CORE_R07_OUT_CTRL,
550 					MT9V111_CORE_R07_OUT_CTRL_SAMPLE, 0);
551 	if (ret)
552 		return ret;
553 
554 	/*
555 	 * Configure output image format components ordering.
556 	 *
557 	 * TODO: IFP block can also output several RGB permutations, we only
558 	 *	 support YUYV permutations at the moment.
559 	 */
560 	switch (mt9v111->fmt.code) {
561 	case MEDIA_BUS_FMT_YUYV8_2X8:
562 			outfmtctrl2 = MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_YC;
563 			break;
564 	case MEDIA_BUS_FMT_VYUY8_2X8:
565 			outfmtctrl2 = MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_CBCR;
566 			break;
567 	case MEDIA_BUS_FMT_YVYU8_2X8:
568 			outfmtctrl2 = MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_YC |
569 				      MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_CBCR;
570 			break;
571 	case MEDIA_BUS_FMT_UYVY8_2X8:
572 	default:
573 			outfmtctrl2 = 0;
574 			break;
575 	}
576 
577 	ret = mt9v111_update(c, MT9V111_R01_IFP, MT9V111_IFP_R3A_OUTFMT_CTRL2,
578 			     MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_MASK,
579 			     outfmtctrl2);
580 	if (ret)
581 		return ret;
582 
583 	/*
584 	 * Do not change default sensor's core configuration:
585 	 * output the whole 640x480 pixel array, skip 18 columns and 6 rows.
586 	 *
587 	 * Instead, control the output image size through IFP block.
588 	 *
589 	 * TODO: No zoom&pan support. Currently we control the output image
590 	 *	 size only through decimation, with no zoom support.
591 	 */
592 	ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA5_HPAN,
593 			    MT9V111_IFP_DECIMATION_FREEZE);
594 	if (ret)
595 		return ret;
596 
597 	ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA8_VPAN,
598 			    MT9V111_IFP_DECIMATION_FREEZE);
599 	if (ret)
600 		return ret;
601 
602 	ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA6_HZOOM,
603 			    MT9V111_IFP_DECIMATION_FREEZE |
604 			    MT9V111_PIXEL_ARRAY_WIDTH);
605 	if (ret)
606 		return ret;
607 
608 	ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA9_VZOOM,
609 			    MT9V111_IFP_DECIMATION_FREEZE |
610 			    MT9V111_PIXEL_ARRAY_HEIGHT);
611 	if (ret)
612 		return ret;
613 
614 	ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA7_HOUT,
615 			    MT9V111_IFP_DECIMATION_FREEZE |
616 			    mt9v111->fmt.width);
617 	if (ret)
618 		return ret;
619 
620 	ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RAA_VOUT,
621 			    mt9v111->fmt.height);
622 	if (ret)
623 		return ret;
624 
625 	/* Apply controls to set auto exp, auto awb and timings */
626 	ret = v4l2_ctrl_handler_setup(&mt9v111->ctrls);
627 	if (ret)
628 		return ret;
629 
630 	/*
631 	 * Set pixel integration time to the whole frame time.
632 	 * This value controls the shutter delay when running with AE
633 	 * disabled. If longer than frame time, it affects the output
634 	 * frame rate.
635 	 */
636 	return mt9v111_write(c, MT9V111_R01_CORE, MT9V111_CORE_R09_PIXEL_INT,
637 			     MT9V111_PIXEL_ARRAY_HEIGHT);
638 }
639 
640 /* ---  V4L2 subdev operations --- */
641 
642 static int mt9v111_s_power(struct v4l2_subdev *sd, int on)
643 {
644 	struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
645 	int pwr_count;
646 	int ret = 0;
647 
648 	mutex_lock(&mt9v111->pwr_mutex);
649 
650 	/*
651 	 * Make sure we're transitioning from 0 to 1, or viceversa,
652 	 * before actually changing the power state.
653 	 */
654 	pwr_count = mt9v111->pwr_count;
655 	pwr_count += on ? 1 : -1;
656 	if (pwr_count == !!on) {
657 		ret = on ? __mt9v111_power_on(sd) :
658 			   __mt9v111_power_off(sd);
659 		if (!ret)
660 			/* All went well, updated power counter. */
661 			mt9v111->pwr_count = pwr_count;
662 
663 		mutex_unlock(&mt9v111->pwr_mutex);
664 
665 		return ret;
666 	}
667 
668 	/*
669 	 * Update power counter to keep track of how many nested calls we
670 	 * received.
671 	 */
672 	WARN_ON(pwr_count < 0 || pwr_count > 1);
673 	mt9v111->pwr_count = pwr_count;
674 
675 	mutex_unlock(&mt9v111->pwr_mutex);
676 
677 	return ret;
678 }
679 
680 static int mt9v111_s_stream(struct v4l2_subdev *subdev, int enable)
681 {
682 	struct mt9v111_dev *mt9v111 = sd_to_mt9v111(subdev);
683 	int ret;
684 
685 	mutex_lock(&mt9v111->stream_mutex);
686 
687 	if (mt9v111->streaming == enable) {
688 		mutex_unlock(&mt9v111->stream_mutex);
689 		return 0;
690 	}
691 
692 	ret = mt9v111_s_power(subdev, enable);
693 	if (ret)
694 		goto error_unlock;
695 
696 	if (enable && mt9v111->pending) {
697 		ret = mt9v111_hw_config(mt9v111);
698 		if (ret)
699 			goto error_unlock;
700 
701 		/*
702 		 * No need to update control here as far as only H/VBLANK are
703 		 * supported and immediately programmed to registers in .s_ctrl
704 		 */
705 
706 		mt9v111->pending = false;
707 	}
708 
709 	mt9v111->streaming = enable ? true : false;
710 	mutex_unlock(&mt9v111->stream_mutex);
711 
712 	return 0;
713 
714 error_unlock:
715 	mutex_unlock(&mt9v111->stream_mutex);
716 
717 	return ret;
718 }
719 
720 static int mt9v111_set_frame_interval(struct v4l2_subdev *sd,
721 				      struct v4l2_subdev_state *sd_state,
722 				      struct v4l2_subdev_frame_interval *ival)
723 {
724 	struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
725 	struct v4l2_fract *tpf = &ival->interval;
726 	unsigned int fps = tpf->numerator ?
727 			   tpf->denominator / tpf->numerator :
728 			   tpf->denominator;
729 	unsigned int max_fps;
730 
731 	/*
732 	 * FIXME: Implement support for V4L2_SUBDEV_FORMAT_TRY, using the V4L2
733 	 * subdev active state API.
734 	 */
735 	if (ival->which != V4L2_SUBDEV_FORMAT_ACTIVE)
736 		return -EINVAL;
737 
738 	if (!tpf->numerator)
739 		tpf->numerator = 1;
740 
741 	mutex_lock(&mt9v111->stream_mutex);
742 
743 	if (mt9v111->streaming) {
744 		mutex_unlock(&mt9v111->stream_mutex);
745 		return -EBUSY;
746 	}
747 
748 	if (mt9v111->fps == fps) {
749 		mutex_unlock(&mt9v111->stream_mutex);
750 		return 0;
751 	}
752 
753 	/* Make sure frame rate/image sizes constraints are respected. */
754 	if (mt9v111->fmt.width < QVGA_WIDTH &&
755 	    mt9v111->fmt.height < QVGA_HEIGHT)
756 		max_fps = 90;
757 	else if (mt9v111->fmt.width < CIF_WIDTH &&
758 		 mt9v111->fmt.height < CIF_HEIGHT)
759 		max_fps = 60;
760 	else
761 		max_fps = mt9v111->sysclk <
762 				DIV_ROUND_CLOSEST(MT9V111_MAX_CLKIN, 2) ? 15 :
763 									  30;
764 
765 	if (fps > max_fps) {
766 		mutex_unlock(&mt9v111->stream_mutex);
767 		return -EINVAL;
768 	}
769 
770 	mt9v111_calc_frame_rate(mt9v111, tpf);
771 
772 	mt9v111->fps = fps;
773 	mt9v111->pending = true;
774 
775 	mutex_unlock(&mt9v111->stream_mutex);
776 
777 	return 0;
778 }
779 
780 static int mt9v111_get_frame_interval(struct v4l2_subdev *sd,
781 				      struct v4l2_subdev_state *sd_state,
782 				      struct v4l2_subdev_frame_interval *ival)
783 {
784 	struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
785 	struct v4l2_fract *tpf = &ival->interval;
786 
787 	/*
788 	 * FIXME: Implement support for V4L2_SUBDEV_FORMAT_TRY, using the V4L2
789 	 * subdev active state API.
790 	 */
791 	if (ival->which != V4L2_SUBDEV_FORMAT_ACTIVE)
792 		return -EINVAL;
793 
794 	mutex_lock(&mt9v111->stream_mutex);
795 
796 	tpf->numerator = 1;
797 	tpf->denominator = mt9v111->fps;
798 
799 	mutex_unlock(&mt9v111->stream_mutex);
800 
801 	return 0;
802 }
803 
804 static struct v4l2_mbus_framefmt *__mt9v111_get_pad_format(
805 					struct mt9v111_dev *mt9v111,
806 					struct v4l2_subdev_state *sd_state,
807 					unsigned int pad,
808 					enum v4l2_subdev_format_whence which)
809 {
810 	switch (which) {
811 	case V4L2_SUBDEV_FORMAT_TRY:
812 		return v4l2_subdev_state_get_format(sd_state, pad);
813 	case V4L2_SUBDEV_FORMAT_ACTIVE:
814 		return &mt9v111->fmt;
815 	default:
816 		return NULL;
817 	}
818 }
819 
820 static int mt9v111_enum_mbus_code(struct v4l2_subdev *subdev,
821 				  struct v4l2_subdev_state *sd_state,
822 				  struct v4l2_subdev_mbus_code_enum *code)
823 {
824 	if (code->pad || code->index > ARRAY_SIZE(mt9v111_formats) - 1)
825 		return -EINVAL;
826 
827 	code->code = mt9v111_formats[code->index].code;
828 
829 	return 0;
830 }
831 
832 static int mt9v111_enum_frame_interval(struct v4l2_subdev *sd,
833 				struct v4l2_subdev_state *sd_state,
834 				struct v4l2_subdev_frame_interval_enum *fie)
835 {
836 	unsigned int i;
837 
838 	if (fie->pad || fie->index >= ARRAY_SIZE(mt9v111_frame_intervals))
839 		return -EINVAL;
840 
841 	for (i = 0; i < ARRAY_SIZE(mt9v111_frame_sizes); i++)
842 		if (fie->width == mt9v111_frame_sizes[i].width &&
843 		    fie->height == mt9v111_frame_sizes[i].height)
844 			break;
845 
846 	if (i == ARRAY_SIZE(mt9v111_frame_sizes))
847 		return -EINVAL;
848 
849 	fie->interval.numerator = 1;
850 	fie->interval.denominator = mt9v111_frame_intervals[fie->index];
851 
852 	return 0;
853 }
854 
855 static int mt9v111_enum_frame_size(struct v4l2_subdev *subdev,
856 				   struct v4l2_subdev_state *sd_state,
857 				   struct v4l2_subdev_frame_size_enum *fse)
858 {
859 	if (fse->pad || fse->index >= ARRAY_SIZE(mt9v111_frame_sizes))
860 		return -EINVAL;
861 
862 	fse->min_width = mt9v111_frame_sizes[fse->index].width;
863 	fse->max_width = mt9v111_frame_sizes[fse->index].width;
864 	fse->min_height = mt9v111_frame_sizes[fse->index].height;
865 	fse->max_height = mt9v111_frame_sizes[fse->index].height;
866 
867 	return 0;
868 }
869 
870 static int mt9v111_get_format(struct v4l2_subdev *subdev,
871 			      struct v4l2_subdev_state *sd_state,
872 			      struct v4l2_subdev_format *format)
873 {
874 	struct mt9v111_dev *mt9v111 = sd_to_mt9v111(subdev);
875 
876 	if (format->pad)
877 		return -EINVAL;
878 
879 	mutex_lock(&mt9v111->stream_mutex);
880 	format->format = *__mt9v111_get_pad_format(mt9v111, sd_state,
881 						   format->pad,
882 						   format->which);
883 	mutex_unlock(&mt9v111->stream_mutex);
884 
885 	return 0;
886 }
887 
888 static int mt9v111_set_format(struct v4l2_subdev *subdev,
889 			      struct v4l2_subdev_state *sd_state,
890 			      struct v4l2_subdev_format *format)
891 {
892 	struct mt9v111_dev *mt9v111 = sd_to_mt9v111(subdev);
893 	struct v4l2_mbus_framefmt new_fmt;
894 	struct v4l2_mbus_framefmt *__fmt;
895 	unsigned int best_fit = ~0L;
896 	unsigned int idx = 0;
897 	unsigned int i;
898 
899 	mutex_lock(&mt9v111->stream_mutex);
900 	if (mt9v111->streaming) {
901 		mutex_unlock(&mt9v111->stream_mutex);
902 		return -EBUSY;
903 	}
904 
905 	if (format->pad) {
906 		mutex_unlock(&mt9v111->stream_mutex);
907 		return -EINVAL;
908 	}
909 
910 	/* Update mbus format code and sizes. */
911 	for (i = 0; i < ARRAY_SIZE(mt9v111_formats); i++) {
912 		if (format->format.code == mt9v111_formats[i].code) {
913 			new_fmt.code = mt9v111_formats[i].code;
914 			break;
915 		}
916 	}
917 	if (i == ARRAY_SIZE(mt9v111_formats))
918 		new_fmt.code = mt9v111_formats[0].code;
919 
920 	for (i = 0; i < ARRAY_SIZE(mt9v111_frame_sizes); i++) {
921 		unsigned int fit = abs(mt9v111_frame_sizes[i].width -
922 				       format->format.width) +
923 				   abs(mt9v111_frame_sizes[i].height -
924 				       format->format.height);
925 		if (fit < best_fit) {
926 			best_fit = fit;
927 			idx = i;
928 
929 			if (fit == 0)
930 				break;
931 		}
932 	}
933 	new_fmt.width = mt9v111_frame_sizes[idx].width;
934 	new_fmt.height = mt9v111_frame_sizes[idx].height;
935 
936 	/* Update the device (or pad) format if it has changed. */
937 	__fmt = __mt9v111_get_pad_format(mt9v111, sd_state, format->pad,
938 					 format->which);
939 
940 	/* Format hasn't changed, stop here. */
941 	if (__fmt->code == new_fmt.code &&
942 	    __fmt->width == new_fmt.width &&
943 	    __fmt->height == new_fmt.height)
944 		goto done;
945 
946 	/* Update the format and sizes, then  mark changes as pending. */
947 	__fmt->code = new_fmt.code;
948 	__fmt->width = new_fmt.width;
949 	__fmt->height = new_fmt.height;
950 
951 	if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE)
952 		mt9v111->pending = true;
953 
954 	dev_dbg(mt9v111->dev, "%s: mbus_code: %x - (%ux%u)\n",
955 		__func__, __fmt->code, __fmt->width, __fmt->height);
956 
957 done:
958 	format->format = *__fmt;
959 
960 	mutex_unlock(&mt9v111->stream_mutex);
961 
962 	return 0;
963 }
964 
965 static int mt9v111_init_state(struct v4l2_subdev *subdev,
966 			      struct v4l2_subdev_state *sd_state)
967 {
968 	*v4l2_subdev_state_get_format(sd_state, 0) = mt9v111_def_fmt;
969 
970 	return 0;
971 }
972 
973 static const struct v4l2_subdev_core_ops mt9v111_core_ops = {
974 	.s_power		= mt9v111_s_power,
975 };
976 
977 static const struct v4l2_subdev_video_ops mt9v111_video_ops = {
978 	.s_stream		= mt9v111_s_stream,
979 };
980 
981 static const struct v4l2_subdev_pad_ops mt9v111_pad_ops = {
982 	.enum_mbus_code		= mt9v111_enum_mbus_code,
983 	.enum_frame_size	= mt9v111_enum_frame_size,
984 	.enum_frame_interval	= mt9v111_enum_frame_interval,
985 	.get_fmt		= mt9v111_get_format,
986 	.set_fmt		= mt9v111_set_format,
987 	.get_frame_interval	= mt9v111_get_frame_interval,
988 	.set_frame_interval	= mt9v111_set_frame_interval,
989 };
990 
991 static const struct v4l2_subdev_ops mt9v111_ops = {
992 	.core	= &mt9v111_core_ops,
993 	.video	= &mt9v111_video_ops,
994 	.pad	= &mt9v111_pad_ops,
995 };
996 
997 static const struct v4l2_subdev_internal_ops mt9v111_internal_ops = {
998 	.init_state		= mt9v111_init_state,
999 };
1000 
1001 static const struct media_entity_operations mt9v111_subdev_entity_ops = {
1002 	.link_validate = v4l2_subdev_link_validate,
1003 };
1004 
1005 /* --- V4L2 ctrl --- */
1006 static int mt9v111_s_ctrl(struct v4l2_ctrl *ctrl)
1007 {
1008 	struct mt9v111_dev *mt9v111 = container_of(ctrl->handler,
1009 						   struct mt9v111_dev,
1010 						   ctrls);
1011 	int ret;
1012 
1013 	mutex_lock(&mt9v111->pwr_mutex);
1014 	/*
1015 	 * If sensor is powered down, just cache new control values,
1016 	 * no actual register access.
1017 	 */
1018 	if (!mt9v111->pwr_count) {
1019 		mt9v111->pending = true;
1020 		mutex_unlock(&mt9v111->pwr_mutex);
1021 		return 0;
1022 	}
1023 	mutex_unlock(&mt9v111->pwr_mutex);
1024 
1025 	/*
1026 	 * Flickering control gets disabled if both auto exp and auto awb
1027 	 * are disabled too. If any of the two is enabled, enable it.
1028 	 *
1029 	 * Disabling flickering when ae and awb are off allows a more precise
1030 	 * control of the programmed frame rate.
1031 	 */
1032 	if (mt9v111->auto_exp->is_new || mt9v111->auto_awb->is_new) {
1033 		if (mt9v111->auto_exp->val == V4L2_EXPOSURE_MANUAL &&
1034 		    mt9v111->auto_awb->val == V4L2_WHITE_BALANCE_MANUAL)
1035 			ret = mt9v111_update(mt9v111->client, MT9V111_R01_IFP,
1036 					     MT9V111_IFP_R08_OUTFMT_CTRL,
1037 					     MT9V111_IFP_R08_OUTFMT_CTRL_FLICKER,
1038 					     0);
1039 		else
1040 			ret = mt9v111_update(mt9v111->client, MT9V111_R01_IFP,
1041 					     MT9V111_IFP_R08_OUTFMT_CTRL,
1042 					     MT9V111_IFP_R08_OUTFMT_CTRL_FLICKER,
1043 					     1);
1044 		if (ret)
1045 			return ret;
1046 	}
1047 
1048 	ret = -EINVAL;
1049 	switch (ctrl->id) {
1050 	case V4L2_CID_AUTO_WHITE_BALANCE:
1051 		ret = mt9v111_update(mt9v111->client, MT9V111_R01_IFP,
1052 				     MT9V111_IFP_R06_OPMODE_CTRL,
1053 				     MT9V111_IFP_R06_OPMODE_CTRL_AWB_EN,
1054 				     ctrl->val == V4L2_WHITE_BALANCE_AUTO ?
1055 				     MT9V111_IFP_R06_OPMODE_CTRL_AWB_EN : 0);
1056 		break;
1057 	case V4L2_CID_EXPOSURE_AUTO:
1058 		ret = mt9v111_update(mt9v111->client, MT9V111_R01_IFP,
1059 				     MT9V111_IFP_R06_OPMODE_CTRL,
1060 				     MT9V111_IFP_R06_OPMODE_CTRL_AE_EN,
1061 				     ctrl->val == V4L2_EXPOSURE_AUTO ?
1062 				     MT9V111_IFP_R06_OPMODE_CTRL_AE_EN : 0);
1063 		break;
1064 	case V4L2_CID_HBLANK:
1065 		ret = mt9v111_update(mt9v111->client, MT9V111_R01_CORE,
1066 				     MT9V111_CORE_R05_HBLANK,
1067 				     MT9V111_CORE_R05_MAX_HBLANK,
1068 				     mt9v111->hblank->val);
1069 		break;
1070 	case V4L2_CID_VBLANK:
1071 		ret = mt9v111_update(mt9v111->client, MT9V111_R01_CORE,
1072 				     MT9V111_CORE_R06_VBLANK,
1073 				     MT9V111_CORE_R06_MAX_VBLANK,
1074 				     mt9v111->vblank->val);
1075 		break;
1076 	}
1077 
1078 	return ret;
1079 }
1080 
1081 static const struct v4l2_ctrl_ops mt9v111_ctrl_ops = {
1082 	.s_ctrl = mt9v111_s_ctrl,
1083 };
1084 
1085 static int mt9v111_chip_probe(struct mt9v111_dev *mt9v111)
1086 {
1087 	int ret;
1088 	u16 val;
1089 
1090 	ret = __mt9v111_power_on(&mt9v111->sd);
1091 	if (ret)
1092 		return ret;
1093 
1094 	ret = mt9v111_read(mt9v111->client, MT9V111_R01_CORE,
1095 			   MT9V111_CORE_RFF_CHIP_VER, &val);
1096 	if (ret)
1097 		goto power_off;
1098 
1099 	if ((val >> 8) != MT9V111_CHIP_ID_HIGH &&
1100 	    (val & 0xff) != MT9V111_CHIP_ID_LOW) {
1101 		dev_err(mt9v111->dev,
1102 			"Unable to identify MT9V111 chip: 0x%2x%2x\n",
1103 			val >> 8, val & 0xff);
1104 		ret = -EIO;
1105 		goto power_off;
1106 	}
1107 
1108 	dev_dbg(mt9v111->dev, "Chip identified: 0x%2x%2x\n",
1109 		val >> 8, val & 0xff);
1110 
1111 power_off:
1112 	__mt9v111_power_off(&mt9v111->sd);
1113 
1114 	return ret;
1115 }
1116 
1117 static int mt9v111_probe(struct i2c_client *client)
1118 {
1119 	struct mt9v111_dev *mt9v111;
1120 	struct v4l2_fract tpf;
1121 	int ret;
1122 
1123 	mt9v111 = devm_kzalloc(&client->dev, sizeof(*mt9v111), GFP_KERNEL);
1124 	if (!mt9v111)
1125 		return -ENOMEM;
1126 
1127 	mt9v111->dev = &client->dev;
1128 	mt9v111->client = client;
1129 
1130 	mt9v111->clk = devm_v4l2_sensor_clk_get(&client->dev, NULL);
1131 	if (IS_ERR(mt9v111->clk))
1132 		return dev_err_probe(&client->dev, PTR_ERR(mt9v111->clk),
1133 				     "failed to get the clock\n");
1134 
1135 	mt9v111->sysclk = clk_get_rate(mt9v111->clk);
1136 	if (mt9v111->sysclk > MT9V111_MAX_CLKIN)
1137 		return -EINVAL;
1138 
1139 	mt9v111->oe = devm_gpiod_get_optional(&client->dev, "enable",
1140 					      GPIOD_OUT_LOW);
1141 	if (IS_ERR(mt9v111->oe)) {
1142 		dev_err(&client->dev, "Unable to get GPIO \"enable\": %ld\n",
1143 			PTR_ERR(mt9v111->oe));
1144 		return PTR_ERR(mt9v111->oe);
1145 	}
1146 
1147 	mt9v111->standby = devm_gpiod_get_optional(&client->dev, "standby",
1148 						   GPIOD_OUT_HIGH);
1149 	if (IS_ERR(mt9v111->standby)) {
1150 		dev_err(&client->dev, "Unable to get GPIO \"standby\": %ld\n",
1151 			PTR_ERR(mt9v111->standby));
1152 		return PTR_ERR(mt9v111->standby);
1153 	}
1154 
1155 	mt9v111->reset = devm_gpiod_get_optional(&client->dev, "reset",
1156 						 GPIOD_OUT_LOW);
1157 	if (IS_ERR(mt9v111->reset)) {
1158 		dev_err(&client->dev, "Unable to get GPIO \"reset\": %ld\n",
1159 			PTR_ERR(mt9v111->reset));
1160 		return PTR_ERR(mt9v111->reset);
1161 	}
1162 
1163 	mutex_init(&mt9v111->pwr_mutex);
1164 	mutex_init(&mt9v111->stream_mutex);
1165 
1166 	v4l2_ctrl_handler_init(&mt9v111->ctrls, 5);
1167 
1168 	mt9v111->auto_awb = v4l2_ctrl_new_std(&mt9v111->ctrls,
1169 					      &mt9v111_ctrl_ops,
1170 					      V4L2_CID_AUTO_WHITE_BALANCE,
1171 					      0, 1, 1,
1172 					      V4L2_WHITE_BALANCE_AUTO);
1173 	mt9v111->auto_exp = v4l2_ctrl_new_std_menu(&mt9v111->ctrls,
1174 						   &mt9v111_ctrl_ops,
1175 						   V4L2_CID_EXPOSURE_AUTO,
1176 						   V4L2_EXPOSURE_MANUAL,
1177 						   0, V4L2_EXPOSURE_AUTO);
1178 	mt9v111->hblank = v4l2_ctrl_new_std(&mt9v111->ctrls, &mt9v111_ctrl_ops,
1179 					    V4L2_CID_HBLANK,
1180 					    MT9V111_CORE_R05_MIN_HBLANK,
1181 					    MT9V111_CORE_R05_MAX_HBLANK, 1,
1182 					    MT9V111_CORE_R05_DEF_HBLANK);
1183 	mt9v111->vblank = v4l2_ctrl_new_std(&mt9v111->ctrls, &mt9v111_ctrl_ops,
1184 					    V4L2_CID_VBLANK,
1185 					    MT9V111_CORE_R06_MIN_VBLANK,
1186 					    MT9V111_CORE_R06_MAX_VBLANK, 1,
1187 					    MT9V111_CORE_R06_DEF_VBLANK);
1188 
1189 	/* PIXEL_RATE is fixed: just expose it to user space. */
1190 	v4l2_ctrl_new_std(&mt9v111->ctrls, &mt9v111_ctrl_ops,
1191 			  V4L2_CID_PIXEL_RATE, 0,
1192 			  DIV_ROUND_CLOSEST(mt9v111->sysclk, 2), 1,
1193 			  DIV_ROUND_CLOSEST(mt9v111->sysclk, 2));
1194 
1195 	if (mt9v111->ctrls.error) {
1196 		ret = mt9v111->ctrls.error;
1197 		goto error_free_ctrls;
1198 	}
1199 	mt9v111->sd.ctrl_handler = &mt9v111->ctrls;
1200 
1201 	/* Start with default configuration: 640x480 UYVY. */
1202 	mt9v111->fmt	= mt9v111_def_fmt;
1203 
1204 	/* Re-calculate blankings for 640x480@15fps. */
1205 	mt9v111->fps		= 15;
1206 	tpf.numerator		= 1;
1207 	tpf.denominator		= mt9v111->fps;
1208 	mt9v111_calc_frame_rate(mt9v111, &tpf);
1209 
1210 	mt9v111->pwr_count	= 0;
1211 	mt9v111->addr_space	= MT9V111_R01_IFP;
1212 	mt9v111->pending	= true;
1213 
1214 	v4l2_i2c_subdev_init(&mt9v111->sd, client, &mt9v111_ops);
1215 	mt9v111->sd.internal_ops = &mt9v111_internal_ops;
1216 
1217 	mt9v111->sd.flags	|= V4L2_SUBDEV_FL_HAS_DEVNODE;
1218 	mt9v111->sd.entity.ops	= &mt9v111_subdev_entity_ops;
1219 	mt9v111->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
1220 
1221 	mt9v111->pad.flags	= MEDIA_PAD_FL_SOURCE;
1222 	ret = media_entity_pads_init(&mt9v111->sd.entity, 1, &mt9v111->pad);
1223 	if (ret)
1224 		goto error_free_entity;
1225 
1226 	ret = mt9v111_chip_probe(mt9v111);
1227 	if (ret)
1228 		goto error_free_entity;
1229 
1230 	ret = v4l2_async_register_subdev(&mt9v111->sd);
1231 	if (ret)
1232 		goto error_free_entity;
1233 
1234 	return 0;
1235 
1236 error_free_entity:
1237 	media_entity_cleanup(&mt9v111->sd.entity);
1238 
1239 error_free_ctrls:
1240 	v4l2_ctrl_handler_free(&mt9v111->ctrls);
1241 
1242 	mutex_destroy(&mt9v111->pwr_mutex);
1243 	mutex_destroy(&mt9v111->stream_mutex);
1244 
1245 	return ret;
1246 }
1247 
1248 static void mt9v111_remove(struct i2c_client *client)
1249 {
1250 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
1251 	struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
1252 
1253 	v4l2_async_unregister_subdev(sd);
1254 
1255 	media_entity_cleanup(&sd->entity);
1256 
1257 	v4l2_ctrl_handler_free(&mt9v111->ctrls);
1258 
1259 	mutex_destroy(&mt9v111->pwr_mutex);
1260 	mutex_destroy(&mt9v111->stream_mutex);
1261 }
1262 
1263 static const struct of_device_id mt9v111_of_match[] = {
1264 	{ .compatible = "aptina,mt9v111", },
1265 	{ /* sentinel */ }
1266 };
1267 MODULE_DEVICE_TABLE(of, mt9v111_of_match);
1268 
1269 static struct i2c_driver mt9v111_driver = {
1270 	.driver = {
1271 		.name = "mt9v111",
1272 		.of_match_table = mt9v111_of_match,
1273 	},
1274 	.probe		= mt9v111_probe,
1275 	.remove		= mt9v111_remove,
1276 };
1277 
1278 module_i2c_driver(mt9v111_driver);
1279 
1280 MODULE_DESCRIPTION("V4L2 sensor driver for Aptina MT9V111");
1281 MODULE_AUTHOR("Jacopo Mondi <jacopo@jmondi.org>");
1282 MODULE_LICENSE("GPL v2");
1283